Merge tag 'cgroup-for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux-block.git] / arch / x86 / kvm / hyperv.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
e83d5887
AS
2/*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
e83d5887 19 */
8d20bd63 20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
e83d5887
AS
21
22#include "x86.h"
23#include "lapic.h"
5c919412 24#include "ioapic.h"
f97f5a56 25#include "cpuid.h"
e83d5887 26#include "hyperv.h"
aee73823 27#include "mmu.h"
79033beb 28#include "xen.h"
e83d5887 29
b2d8b167 30#include <linux/cpu.h>
e83d5887 31#include <linux/kvm_host.h>
765eaa0f 32#include <linux/highmem.h>
32ef5517 33#include <linux/sched/cputime.h>
0823570f 34#include <linux/spinlock.h>
faeb7833 35#include <linux/eventfd.h>
32ef5517 36
5c919412 37#include <asm/apicdef.h>
c58a318f 38#include <asm/mshyperv.h>
e83d5887
AS
39#include <trace/events/kvm.h>
40
41#include "trace.h"
59508b30 42#include "irq.h"
5974565b 43#include "fpu.h"
e83d5887 44
ca7372ac 45#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
f21dd494 46
db9cf24c
VS
47/*
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
52 *
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54 * assigned.
55 *
56 * 0x8002 - Bit 0
57 * 0x8003 - Bit 1
58 * ..
59 * 0x8041 - Bit 63
60 *
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62 */
63#define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
8644f771
VK
65static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 bool vcpu_kick);
67
5c919412
AS
68static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69{
70 return atomic64_read(&synic->sint[sint]);
71}
72
73static inline int synic_get_sint_vector(u64 sint_value)
74{
75 if (sint_value & HV_SYNIC_SINT_MASKED)
76 return -1;
77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78}
79
80static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 int vector)
82{
83 int i;
84
85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
87 return true;
88 }
89 return false;
90}
91
92static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 int vector)
94{
95 int i;
96 u64 sint_value;
97
98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 sint_value = synic_read_sint(synic, i);
100 if (synic_get_sint_vector(sint_value) == vector &&
101 sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 return true;
103 }
104 return false;
105}
106
98f65ad4
VK
107static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 int vector)
109{
0f250a64
VK
110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
fe06a0c0 112 bool auto_eoi_old, auto_eoi_new;
0f250a64 113
87a8d795
VK
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 return;
116
98f65ad4
VK
117 if (synic_has_vector_connected(synic, vector))
118 __set_bit(vector, synic->vec_bitmap);
119 else
120 __clear_bit(vector, synic->vec_bitmap);
121
fe06a0c0 122 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);
0f250a64 123
98f65ad4
VK
124 if (synic_has_vector_auto_eoi(synic, vector))
125 __set_bit(vector, synic->auto_eoi_bitmap);
126 else
127 __clear_bit(vector, synic->auto_eoi_bitmap);
0f250a64 128
fe06a0c0 129 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);
0f250a64 130
fe06a0c0 131 if (auto_eoi_old == auto_eoi_new)
0f250a64
VK
132 return;
133
f1575642
SC
134 if (!enable_apicv)
135 return;
136
187c8833 137 down_write(&vcpu->kvm->arch.apicv_update_lock);
0f250a64
VK
138
139 if (auto_eoi_new)
140 hv->synic_auto_eoi_used++;
141 else
142 hv->synic_auto_eoi_used--;
143
320af55a
SC
144 /*
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
147 */
148 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
149 APICV_INHIBIT_REASON_HYPERV,
150 !!hv->synic_auto_eoi_used);
0f250a64 151
187c8833 152 up_write(&vcpu->kvm->arch.apicv_update_lock);
98f65ad4
VK
153}
154
7be58a64
AS
155static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 u64 data, bool host)
5c919412 157{
98f65ad4 158 int vector, old_vector;
915e6f78 159 bool masked;
5c919412
AS
160
161 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
915e6f78
VK
162 masked = data & HV_SYNIC_SINT_MASKED;
163
164 /*
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
168 */
169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
5c919412
AS
170 return 1;
171 /*
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
176 */
98f65ad4 177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
5c919412
AS
178
179 atomic64_set(&synic->sint[sint], data);
180
98f65ad4 181 synic_update_vector(synic, old_vector);
5c919412 182
98f65ad4 183 synic_update_vector(synic, vector);
5c919412
AS
184
185 /* Load SynIC vectors into EOI exit bitmap */
e0121fa2 186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
5c919412
AS
187 return 0;
188}
189
d3457c87
RK
190static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191{
192 struct kvm_vcpu *vcpu = NULL;
46808a4c 193 unsigned long i;
d3457c87 194
9170200e
VK
195 if (vpidx >= KVM_MAX_VCPUS)
196 return NULL;
197
198 vcpu = kvm_get_vcpu(kvm, vpidx);
f2bc14b6 199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
d3457c87
RK
200 return vcpu;
201 kvm_for_each_vcpu(i, vcpu, kvm)
f2bc14b6 202 if (kvm_hv_get_vpindex(vcpu) == vpidx)
d3457c87
RK
203 return vcpu;
204 return NULL;
205}
206
207static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
5c919412
AS
208{
209 struct kvm_vcpu *vcpu;
210 struct kvm_vcpu_hv_synic *synic;
211
d3457c87 212 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
919f4ebc 213 if (!vcpu || !to_hv_vcpu(vcpu))
5c919412 214 return NULL;
e0121fa2 215 synic = to_hv_synic(vcpu);
5c919412
AS
216 return (synic->active) ? synic : NULL;
217}
218
219static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220{
221 struct kvm *kvm = vcpu->kvm;
e0121fa2 222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
ef3f3980 223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1f4b34f8 224 struct kvm_vcpu_hv_stimer *stimer;
08a800ac 225 int gsi, idx;
5c919412 226
18659a9c 227 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
5c919412 228
1f4b34f8 229 /* Try to deliver pending Hyper-V SynIC timers messages */
1f4b34f8
AS
230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 stimer = &hv_vcpu->stimer[idx];
6a058a1e 232 if (stimer->msg_pending && stimer->config.enable &&
8644f771 233 !stimer->config.direct_mode &&
08a800ac
VK
234 stimer->config.sintx == sint)
235 stimer_mark_pending(stimer, false);
1f4b34f8 236 }
1f4b34f8 237
5c919412 238 idx = srcu_read_lock(&kvm->irq_srcu);
1f4b34f8 239 gsi = atomic_read(&synic->sint_to_gsi[sint]);
5c919412
AS
240 if (gsi != -1)
241 kvm_notify_acked_gsi(kvm, gsi);
242 srcu_read_unlock(&kvm->irq_srcu, idx);
243}
244
db397571
AS
245static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246{
e0121fa2 247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
9ff5e030 248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
db397571
AS
249
250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 hv_vcpu->exit.u.synic.msr = msr;
252 hv_vcpu->exit.u.synic.control = synic->control;
253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257}
258
5c919412
AS
259static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 u32 msr, u64 data, bool host)
261{
e0121fa2 262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
5c919412
AS
263 int ret;
264
b1e34d32 265 if (!synic->active && (!host || data))
5c919412
AS
266 return 1;
267
18659a9c
AS
268 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
269
5c919412
AS
270 ret = 0;
271 switch (msr) {
272 case HV_X64_MSR_SCONTROL:
273 synic->control = data;
db397571
AS
274 if (!host)
275 synic_exit(synic, msr);
5c919412
AS
276 break;
277 case HV_X64_MSR_SVERSION:
278 if (!host) {
279 ret = 1;
280 break;
281 }
282 synic->version = data;
283 break;
284 case HV_X64_MSR_SIEFP:
efc479e6
RK
285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 !synic->dont_zero_synic_pages)
5c919412
AS
287 if (kvm_clear_guest(vcpu->kvm,
288 data & PAGE_MASK, PAGE_SIZE)) {
289 ret = 1;
290 break;
291 }
292 synic->evt_page = data;
db397571
AS
293 if (!host)
294 synic_exit(synic, msr);
5c919412
AS
295 break;
296 case HV_X64_MSR_SIMP:
efc479e6
RK
297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 !synic->dont_zero_synic_pages)
5c919412
AS
299 if (kvm_clear_guest(vcpu->kvm,
300 data & PAGE_MASK, PAGE_SIZE)) {
301 ret = 1;
302 break;
303 }
304 synic->msg_page = data;
db397571
AS
305 if (!host)
306 synic_exit(synic, msr);
5c919412
AS
307 break;
308 case HV_X64_MSR_EOM: {
309 int i;
310
b1e34d32
VK
311 if (!synic->active)
312 break;
313
5c919412
AS
314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 kvm_hv_notify_acked_sint(vcpu, i);
316 break;
317 }
318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
7be58a64 319 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
5c919412
AS
320 break;
321 default:
322 ret = 1;
323 break;
324 }
325 return ret;
326}
327
f97f5a56
JD
328static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329{
10d7bf1e 330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
f97f5a56 331
10d7bf1e
VK
332 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
f97f5a56
JD
334}
335
336static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337{
05f04ae4 338 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
f97f5a56
JD
339
340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 hv->hv_syndbg.control.status =
342 vcpu->run->hyperv.u.syndbg.status;
343 return 1;
344}
345
346static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347{
f69b55ef 348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
9ff5e030 349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
f97f5a56
JD
350
351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 hv_vcpu->exit.u.syndbg.msr = msr;
353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 vcpu->arch.complete_userspace_io =
358 kvm_hv_syndbg_complete_userspace;
359
360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361}
362
363static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364{
f69b55ef 365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
f97f5a56
JD
366
367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 return 1;
369
370 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
ef3f3980 371 to_hv_vcpu(vcpu)->vp_index, msr, data);
f97f5a56
JD
372 switch (msr) {
373 case HV_X64_MSR_SYNDBG_CONTROL:
374 syndbg->control.control = data;
375 if (!host)
376 syndbg_exit(vcpu, msr);
377 break;
378 case HV_X64_MSR_SYNDBG_STATUS:
379 syndbg->control.status = data;
380 break;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 syndbg->control.send_page = data;
383 break;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 syndbg->control.recv_page = data;
386 break;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 syndbg->control.pending_page = data;
389 if (!host)
390 syndbg_exit(vcpu, msr);
391 break;
392 case HV_X64_MSR_SYNDBG_OPTIONS:
393 syndbg->options = data;
394 break;
395 default:
396 break;
397 }
398
399 return 0;
400}
401
402static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403{
f69b55ef 404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
f97f5a56
JD
405
406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 return 1;
408
409 switch (msr) {
410 case HV_X64_MSR_SYNDBG_CONTROL:
411 *pdata = syndbg->control.control;
412 break;
413 case HV_X64_MSR_SYNDBG_STATUS:
414 *pdata = syndbg->control.status;
415 break;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 *pdata = syndbg->control.send_page;
418 break;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 *pdata = syndbg->control.recv_page;
421 break;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 *pdata = syndbg->control.pending_page;
424 break;
425 case HV_X64_MSR_SYNDBG_OPTIONS:
426 *pdata = syndbg->options;
427 break;
428 default:
429 break;
430 }
431
f2bc14b6 432 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
f97f5a56
JD
433
434 return 0;
435}
436
44883f01
PB
437static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 bool host)
5c919412
AS
439{
440 int ret;
441
44883f01 442 if (!synic->active && !host)
5c919412
AS
443 return 1;
444
445 ret = 0;
446 switch (msr) {
447 case HV_X64_MSR_SCONTROL:
448 *pdata = synic->control;
449 break;
450 case HV_X64_MSR_SVERSION:
451 *pdata = synic->version;
452 break;
453 case HV_X64_MSR_SIEFP:
454 *pdata = synic->evt_page;
455 break;
456 case HV_X64_MSR_SIMP:
457 *pdata = synic->msg_page;
458 break;
459 case HV_X64_MSR_EOM:
460 *pdata = 0;
461 break;
462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
464 break;
465 default:
466 ret = 1;
467 break;
468 }
469 return ret;
470}
471
ecd8a8c2 472static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
5c919412 473{
e0121fa2 474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
5c919412
AS
475 struct kvm_lapic_irq irq;
476 int ret, vector;
477
7ec37d1c
VK
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 return -EINVAL;
480
5c919412
AS
481 if (sint >= ARRAY_SIZE(synic->sint))
482 return -EINVAL;
483
484 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
485 if (vector < 0)
486 return -ENOENT;
487
488 memset(&irq, 0, sizeof(irq));
f98a3efb 489 irq.shorthand = APIC_DEST_SELF;
5c919412
AS
490 irq.dest_mode = APIC_DEST_PHYSICAL;
491 irq.delivery_mode = APIC_DM_FIXED;
492 irq.vector = vector;
493 irq.level = 1;
494
f98a3efb 495 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
18659a9c 496 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
5c919412
AS
497 return ret;
498}
499
d3457c87 500int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
5c919412
AS
501{
502 struct kvm_vcpu_hv_synic *synic;
503
d3457c87 504 synic = synic_get(kvm, vpidx);
5c919412
AS
505 if (!synic)
506 return -EINVAL;
507
508 return synic_set_irq(synic, sint);
509}
510
511void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
512{
e0121fa2 513 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
5c919412
AS
514 int i;
515
18659a9c 516 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
5c919412
AS
517
518 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
519 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
520 kvm_hv_notify_acked_sint(vcpu, i);
521}
522
d3457c87 523static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
5c919412
AS
524{
525 struct kvm_vcpu_hv_synic *synic;
526
d3457c87 527 synic = synic_get(kvm, vpidx);
5c919412
AS
528 if (!synic)
529 return -EINVAL;
530
531 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
532 return -EINVAL;
533
534 atomic_set(&synic->sint_to_gsi[sint], gsi);
535 return 0;
536}
537
538void kvm_hv_irq_routing_update(struct kvm *kvm)
539{
540 struct kvm_irq_routing_table *irq_rt;
541 struct kvm_kernel_irq_routing_entry *e;
542 u32 gsi;
543
544 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
545 lockdep_is_held(&kvm->irq_lock));
546
547 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
548 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
549 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
550 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
551 e->hv_sint.sint, gsi);
552 }
553 }
554}
555
556static void synic_init(struct kvm_vcpu_hv_synic *synic)
557{
558 int i;
559
560 memset(synic, 0, sizeof(*synic));
561 synic->version = HV_SYNIC_VERSION_1;
562 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
563 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
564 atomic_set(&synic->sint_to_gsi[i], -1);
565 }
566}
567
93bf4172
AS
568static u64 get_time_ref_counter(struct kvm *kvm)
569{
05f04ae4 570 struct kvm_hv *hv = to_kvm_hv(kvm);
095cf55d
PB
571 struct kvm_vcpu *vcpu;
572 u64 tsc;
573
574 /*
cc9cfddb
VK
575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576 * is broken, disabled or being updated.
095cf55d 577 */
cc9cfddb 578 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
095cf55d
PB
579 return div_u64(get_kvmclock_ns(kvm), 100);
580
581 vcpu = kvm_get_vcpu(kvm, 0);
582 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
583 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
584 + hv->tsc_ref.tsc_offset;
93bf4172
AS
585}
586
f3b138c5 587static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
1f4b34f8
AS
588 bool vcpu_kick)
589{
aafa97fd 590 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
1f4b34f8
AS
591
592 set_bit(stimer->index,
ef3f3980 593 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
1f4b34f8
AS
594 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
595 if (vcpu_kick)
596 kvm_vcpu_kick(vcpu);
597}
598
1f4b34f8
AS
599static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
600{
aafa97fd 601 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
1f4b34f8 602
aafa97fd 603 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
ac3e5fca
AS
604 stimer->index);
605
019b9781 606 hrtimer_cancel(&stimer->timer);
1f4b34f8 607 clear_bit(stimer->index,
ef3f3980 608 to_hv_vcpu(vcpu)->stimer_pending_bitmap);
1f4b34f8 609 stimer->msg_pending = false;
f808495d 610 stimer->exp_time = 0;
1f4b34f8
AS
611}
612
613static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
614{
615 struct kvm_vcpu_hv_stimer *stimer;
616
617 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
aafa97fd 618 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
ac3e5fca 619 stimer->index);
f3b138c5 620 stimer_mark_pending(stimer, true);
1f4b34f8
AS
621
622 return HRTIMER_NORESTART;
623}
624
f808495d
AS
625/*
626 * stimer_start() assumptions:
627 * a) stimer->count is not equal to 0
628 * b) stimer->config has HV_STIMER_ENABLE flag
629 */
1f4b34f8
AS
630static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
631{
632 u64 time_now;
633 ktime_t ktime_now;
634
aafa97fd 635 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
1f4b34f8
AS
636 ktime_now = ktime_get();
637
6a058a1e 638 if (stimer->config.periodic) {
f808495d
AS
639 if (stimer->exp_time) {
640 if (time_now >= stimer->exp_time) {
641 u64 remainder;
642
643 div64_u64_rem(time_now - stimer->exp_time,
644 stimer->count, &remainder);
645 stimer->exp_time =
646 time_now + (stimer->count - remainder);
647 }
648 } else
649 stimer->exp_time = time_now + stimer->count;
1f4b34f8 650
ac3e5fca 651 trace_kvm_hv_stimer_start_periodic(
aafa97fd 652 hv_stimer_to_vcpu(stimer)->vcpu_id,
ac3e5fca
AS
653 stimer->index,
654 time_now, stimer->exp_time);
655
1f4b34f8 656 hrtimer_start(&stimer->timer,
f808495d
AS
657 ktime_add_ns(ktime_now,
658 100 * (stimer->exp_time - time_now)),
1f4b34f8
AS
659 HRTIMER_MODE_ABS);
660 return 0;
661 }
662 stimer->exp_time = stimer->count;
663 if (time_now >= stimer->count) {
664 /*
665 * Expire timer according to Hypervisor Top-Level Functional
666 * specification v4(15.3.1):
667 * "If a one shot is enabled and the specified count is in
668 * the past, it will expire immediately."
669 */
f3b138c5 670 stimer_mark_pending(stimer, false);
1f4b34f8
AS
671 return 0;
672 }
673
aafa97fd 674 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
ac3e5fca
AS
675 stimer->index,
676 time_now, stimer->count);
677
1f4b34f8
AS
678 hrtimer_start(&stimer->timer,
679 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
680 HRTIMER_MODE_ABS);
681 return 0;
682}
683
684static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
685 bool host)
686{
8644f771
VK
687 union hv_stimer_config new_config = {.as_uint64 = config},
688 old_config = {.as_uint64 = stimer->config.as_uint64};
aafa97fd 689 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
1aa8a418 690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
e0121fa2 691 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
dbcf3f96 692
b1e34d32 693 if (!synic->active && (!host || config))
dbcf3f96 694 return 1;
6a058a1e 695
1aa8a418
VK
696 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
697 !(hv_vcpu->cpuid_cache.features_edx &
698 HV_STIMER_DIRECT_MODE_AVAILABLE)))
699 return 1;
700
aafa97fd 701 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
ac3e5fca
AS
702 stimer->index, config, host);
703
f3b138c5 704 stimer_cleanup(stimer);
8644f771
VK
705 if (old_config.enable &&
706 !new_config.direct_mode && new_config.sintx == 0)
6a058a1e
VK
707 new_config.enable = 0;
708 stimer->config.as_uint64 = new_config.as_uint64;
8644f771 709
013cc6eb
VK
710 if (stimer->config.enable)
711 stimer_mark_pending(stimer, false);
712
1f4b34f8
AS
713 return 0;
714}
715
716static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
717 bool host)
718{
aafa97fd 719 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
e0121fa2 720 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
dbcf3f96 721
b1e34d32 722 if (!synic->active && (!host || count))
dbcf3f96
VK
723 return 1;
724
aafa97fd 725 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
ac3e5fca
AS
726 stimer->index, count, host);
727
1f4b34f8 728 stimer_cleanup(stimer);
f3b138c5 729 stimer->count = count;
1f4b34f8 730 if (stimer->count == 0)
6a058a1e
VK
731 stimer->config.enable = 0;
732 else if (stimer->config.auto_enable)
733 stimer->config.enable = 1;
013cc6eb
VK
734
735 if (stimer->config.enable)
736 stimer_mark_pending(stimer, false);
737
1f4b34f8
AS
738 return 0;
739}
740
741static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
742{
6a058a1e 743 *pconfig = stimer->config.as_uint64;
1f4b34f8
AS
744 return 0;
745}
746
747static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
748{
749 *pcount = stimer->count;
750 return 0;
751}
752
753static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
7deec5e0 754 struct hv_message *src_msg, bool no_retry)
1f4b34f8 755{
e0121fa2 756 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
3a0e7731
RK
757 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
758 gfn_t msg_page_gfn;
759 struct hv_message_header hv_hdr;
1f4b34f8 760 int r;
1f4b34f8
AS
761
762 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
763 return -ENOENT;
764
3a0e7731 765 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
1f4b34f8 766
3a0e7731
RK
767 /*
768 * Strictly following the spec-mandated ordering would assume setting
769 * .msg_pending before checking .message_type. However, this function
770 * is only called in vcpu context so the entire update is atomic from
771 * guest POV and thus the exact order here doesn't matter.
772 */
773 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
774 msg_off + offsetof(struct hv_message,
775 header.message_type),
776 sizeof(hv_hdr.message_type));
777 if (r < 0)
778 return r;
779
780 if (hv_hdr.message_type != HVMSG_NONE) {
7deec5e0
RK
781 if (no_retry)
782 return 0;
783
3a0e7731
RK
784 hv_hdr.message_flags.msg_pending = 1;
785 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
786 &hv_hdr.message_flags,
787 msg_off +
788 offsetof(struct hv_message,
789 header.message_flags),
790 sizeof(hv_hdr.message_flags));
791 if (r < 0)
792 return r;
793 return -EAGAIN;
1f4b34f8 794 }
3a0e7731
RK
795
796 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
797 sizeof(src_msg->header) +
798 src_msg->header.payload_size);
799 if (r < 0)
800 return r;
801
802 r = synic_set_irq(synic, sint);
803 if (r < 0)
804 return r;
805 if (r == 0)
806 return -EFAULT;
807 return 0;
1f4b34f8
AS
808}
809
0cdeabb1 810static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
1f4b34f8 811{
aafa97fd 812 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
1f4b34f8
AS
813 struct hv_message *msg = &stimer->msg;
814 struct hv_timer_message_payload *payload =
815 (struct hv_timer_message_payload *)&msg->u.payload;
1f4b34f8 816
7deec5e0
RK
817 /*
818 * To avoid piling up periodic ticks, don't retry message
819 * delivery for them (within "lazy" lost ticks policy).
820 */
6a058a1e 821 bool no_retry = stimer->config.periodic;
7deec5e0 822
1f4b34f8
AS
823 payload->expiration_time = stimer->exp_time;
824 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
e0121fa2 825 return synic_deliver_msg(to_hv_synic(vcpu),
6a058a1e 826 stimer->config.sintx, msg,
7deec5e0 827 no_retry);
1f4b34f8
AS
828}
829
8644f771
VK
830static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
831{
aafa97fd 832 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
8644f771
VK
833 struct kvm_lapic_irq irq = {
834 .delivery_mode = APIC_DM_FIXED,
835 .vector = stimer->config.apic_vector
836 };
837
a073d7e3
WL
838 if (lapic_in_kernel(vcpu))
839 return !kvm_apic_set_irq(vcpu, &irq, NULL);
840 return 0;
8644f771
VK
841}
842
1f4b34f8
AS
843static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
844{
8644f771 845 int r, direct = stimer->config.direct_mode;
ac3e5fca 846
0cdeabb1 847 stimer->msg_pending = true;
8644f771
VK
848 if (!direct)
849 r = stimer_send_msg(stimer);
850 else
851 r = stimer_notify_direct(stimer);
aafa97fd 852 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
8644f771 853 stimer->index, direct, r);
ac3e5fca 854 if (!r) {
0cdeabb1 855 stimer->msg_pending = false;
6a058a1e
VK
856 if (!(stimer->config.periodic))
857 stimer->config.enable = 0;
0cdeabb1 858 }
1f4b34f8
AS
859}
860
861void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
862{
ef3f3980 863 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1f4b34f8 864 struct kvm_vcpu_hv_stimer *stimer;
f3b138c5 865 u64 time_now, exp_time;
1f4b34f8
AS
866 int i;
867
f2bc14b6
VK
868 if (!hv_vcpu)
869 return;
870
1f4b34f8
AS
871 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
872 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
873 stimer = &hv_vcpu->stimer[i];
6a058a1e 874 if (stimer->config.enable) {
f3b138c5
AS
875 exp_time = stimer->exp_time;
876
877 if (exp_time) {
878 time_now =
879 get_time_ref_counter(vcpu->kvm);
880 if (time_now >= exp_time)
881 stimer_expiration(stimer);
882 }
0cdeabb1 883
6a058a1e 884 if ((stimer->config.enable) &&
f1ff89ec
RK
885 stimer->count) {
886 if (!stimer->msg_pending)
887 stimer_start(stimer);
888 } else
0cdeabb1 889 stimer_cleanup(stimer);
1f4b34f8
AS
890 }
891 }
892}
893
894void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
895{
ef3f3980 896 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1f4b34f8
AS
897 int i;
898
fc08b628
VK
899 if (!hv_vcpu)
900 return;
901
1f4b34f8
AS
902 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
903 stimer_cleanup(&hv_vcpu->stimer[i]);
4592b7ea
VK
904
905 kfree(hv_vcpu);
906 vcpu->arch.hyperv = NULL;
1f4b34f8
AS
907}
908
72bbf935
LP
909bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
910{
9ff5e030
VK
911 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
912
f2bc14b6
VK
913 if (!hv_vcpu)
914 return false;
915
9ff5e030 916 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
72bbf935
LP
917 return false;
918 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
919}
920EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
921
b415d8d4 922int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
72bbf935 923{
046f5756
VK
924 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
925
926 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
b415d8d4 927 return -EFAULT;
046f5756 928
b415d8d4
VK
929 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
930 &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
72bbf935
LP
931}
932EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
933
1f4b34f8
AS
934static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
935{
936 struct hv_message *msg = &stimer->msg;
937 struct hv_timer_message_payload *payload =
938 (struct hv_timer_message_payload *)&msg->u.payload;
939
940 memset(&msg->header, 0, sizeof(msg->header));
941 msg->header.message_type = HVMSG_TIMER_EXPIRED;
942 msg->header.payload_size = sizeof(*payload);
943
944 payload->timer_index = stimer->index;
945 payload->expiration_time = 0;
946 payload->delivery_time = 0;
947}
948
949static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
950{
951 memset(stimer, 0, sizeof(*stimer));
952 stimer->index = timer_index;
953 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
954 stimer->timer.function = stimer_timer_callback;
955 stimer_prepare_msg(stimer);
956}
957
3be29eb7 958int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
5c919412 959{
1cac8d9f 960 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1f4b34f8
AS
961 int i;
962
1cac8d9f
SC
963 if (hv_vcpu)
964 return 0;
965
4592b7ea
VK
966 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
967 if (!hv_vcpu)
968 return -ENOMEM;
969
970 vcpu->arch.hyperv = hv_vcpu;
971 hv_vcpu->vcpu = vcpu;
972
1f4b34f8
AS
973 synic_init(&hv_vcpu->synic);
974
975 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
976 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
977 stimer_init(&hv_vcpu->stimer[i], i);
4592b7ea 978
4eeef242 979 hv_vcpu->vp_index = vcpu->vcpu_idx;
fc08b628 980
53ca765a
VK
981 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
982 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
983 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
984 }
0823570f 985
4592b7ea 986 return 0;
5c919412
AS
987}
988
fc08b628 989int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
d3457c87 990{
fc08b628
VK
991 struct kvm_vcpu_hv_synic *synic;
992 int r;
d3457c87 993
1cac8d9f
SC
994 r = kvm_hv_vcpu_init(vcpu);
995 if (r)
996 return r;
d3457c87 997
fc08b628 998 synic = to_hv_synic(vcpu);
efc479e6 999
efc479e6
RK
1000 synic->active = true;
1001 synic->dont_zero_synic_pages = dont_zero_synic_pages;
99b48ecc 1002 synic->control = HV_SYNIC_CONTROL_ENABLE;
5c919412
AS
1003 return 0;
1004}
1005
e83d5887
AS
1006static bool kvm_hv_msr_partition_wide(u32 msr)
1007{
1008 bool r = false;
1009
1010 switch (msr) {
1011 case HV_X64_MSR_GUEST_OS_ID:
1012 case HV_X64_MSR_HYPERCALL:
1013 case HV_X64_MSR_REFERENCE_TSC:
1014 case HV_X64_MSR_TIME_REF_COUNT:
e7d9513b
AS
1015 case HV_X64_MSR_CRASH_CTL:
1016 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
e516cebb 1017 case HV_X64_MSR_RESET:
a2e164e7
VK
1018 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1019 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1020 case HV_X64_MSR_TSC_EMULATION_STATUS:
2be1bd3a 1021 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
f97f5a56
JD
1022 case HV_X64_MSR_SYNDBG_OPTIONS:
1023 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
e83d5887
AS
1024 r = true;
1025 break;
1026 }
1027
1028 return r;
1029}
1030
05f04ae4 1031static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
e7d9513b 1032{
05f04ae4 1033 struct kvm_hv *hv = to_kvm_hv(kvm);
86187937 1034 size_t size = ARRAY_SIZE(hv->hv_crash_param);
e7d9513b 1035
86187937 1036 if (WARN_ON_ONCE(index >= size))
e7d9513b
AS
1037 return -EINVAL;
1038
86187937 1039 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
e7d9513b
AS
1040 return 0;
1041}
1042
05f04ae4 1043static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
e7d9513b 1044{
05f04ae4 1045 struct kvm_hv *hv = to_kvm_hv(kvm);
e7d9513b
AS
1046
1047 *pdata = hv->hv_crash_ctl;
1048 return 0;
1049}
1050
05f04ae4 1051static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
e7d9513b 1052{
05f04ae4 1053 struct kvm_hv *hv = to_kvm_hv(kvm);
e7d9513b 1054
05f04ae4 1055 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
e7d9513b
AS
1056
1057 return 0;
1058}
1059
05f04ae4 1060static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
e7d9513b 1061{
05f04ae4 1062 struct kvm_hv *hv = to_kvm_hv(kvm);
86187937 1063 size_t size = ARRAY_SIZE(hv->hv_crash_param);
e7d9513b 1064
86187937 1065 if (WARN_ON_ONCE(index >= size))
e7d9513b
AS
1066 return -EINVAL;
1067
86187937 1068 hv->hv_crash_param[array_index_nospec(index, size)] = data;
e7d9513b
AS
1069 return 0;
1070}
1071
095cf55d
PB
1072/*
1073 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1074 * between them is possible:
1075 *
1076 * kvmclock formula:
1077 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1078 * + system_time
1079 *
1080 * Hyper-V formula:
1081 * nsec/100 = ticks * scale / 2^64 + offset
1082 *
1083 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1084 * By dividing the kvmclock formula by 100 and equating what's left we get:
1085 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1086 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1087 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1088 *
1089 * Now expand the kvmclock formula and divide by 100:
1090 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1091 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1092 * + system_time
1093 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1094 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1095 * + system_time / 100
1096 *
1097 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1098 * nsec/100 = ticks * scale / 2^64
1099 * - tsc_timestamp * scale / 2^64
1100 * + system_time / 100
1101 *
1102 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1103 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1104 *
1105 * These two equivalencies are implemented in this function.
1106 */
1107static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
7357b1df 1108 struct ms_hyperv_tsc_page *tsc_ref)
095cf55d
PB
1109{
1110 u64 max_mul;
1111
1112 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1113 return false;
1114
1115 /*
1116 * check if scale would overflow, if so we use the time ref counter
1117 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1118 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1119 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1120 */
1121 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1122 if (hv_clock->tsc_to_system_mul >= max_mul)
1123 return false;
1124
1125 /*
1126 * Otherwise compute the scale and offset according to the formulas
1127 * derived above.
1128 */
1129 tsc_ref->tsc_scale =
1130 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1131 hv_clock->tsc_to_system_mul,
1132 100);
1133
1134 tsc_ref->tsc_offset = hv_clock->system_time;
1135 do_div(tsc_ref->tsc_offset, 100);
1136 tsc_ref->tsc_offset -=
1137 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1138 return true;
1139}
1140
0469f2f7
VK
1141/*
1142 * Don't touch TSC page values if the guest has opted for TSC emulation after
1143 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1144 * access emulation and Hyper-V is known to expect the values in TSC page to
1145 * stay constant before TSC access emulation is disabled from guest side
1146 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1147 * frequency and guest visible TSC value across migration (and prevent it when
1148 * TSC scaling is unsupported).
1149 */
1150static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1151{
1152 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1153 hv->hv_tsc_emulation_control;
1154}
1155
095cf55d
PB
1156void kvm_hv_setup_tsc_page(struct kvm *kvm,
1157 struct pvclock_vcpu_time_info *hv_clock)
1158{
05f04ae4 1159 struct kvm_hv *hv = to_kvm_hv(kvm);
095cf55d
PB
1160 u32 tsc_seq;
1161 u64 gfn;
1162
1163 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
7357b1df 1164 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
095cf55d 1165
42dcbe7d
VK
1166 mutex_lock(&hv->hv_lock);
1167
cc9cfddb 1168 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
42dcbe7d 1169 hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
cc9cfddb 1170 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
42dcbe7d 1171 goto out_unlock;
095cf55d 1172
3f5ad8be
PB
1173 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1174 goto out_unlock;
1175
095cf55d
PB
1176 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1177 /*
1178 * Because the TSC parameters only vary when there is a
1179 * change in the master clock, do not bother with caching.
1180 */
1181 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1182 &tsc_seq, sizeof(tsc_seq))))
cc9cfddb 1183 goto out_err;
095cf55d 1184
0469f2f7
VK
1185 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1186 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1187 goto out_err;
1188
1189 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1190 goto out_unlock;
1191 }
1192
095cf55d
PB
1193 /*
1194 * While we're computing and writing the parameters, force the
1195 * guest to use the time reference count MSR.
1196 */
1197 hv->tsc_ref.tsc_sequence = 0;
1198 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1199 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
cc9cfddb 1200 goto out_err;
095cf55d
PB
1201
1202 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
cc9cfddb 1203 goto out_err;
095cf55d
PB
1204
1205 /* Ensure sequence is zero before writing the rest of the struct. */
1206 smp_wmb();
1207 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
cc9cfddb 1208 goto out_err;
095cf55d
PB
1209
1210 /*
1211 * Now switch to the TSC page mechanism by writing the sequence.
1212 */
1213 tsc_seq++;
1214 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1215 tsc_seq = 1;
1216
1217 /* Write the struct entirely before the non-zero sequence. */
1218 smp_wmb();
1219
1220 hv->tsc_ref.tsc_sequence = tsc_seq;
cc9cfddb
VK
1221 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1222 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1223 goto out_err;
1224
1225 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1226 goto out_unlock;
1227
1228out_err:
1229 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
3f5ad8be 1230out_unlock:
05f04ae4 1231 mutex_unlock(&hv->hv_lock);
095cf55d
PB
1232}
1233
42dcbe7d 1234void kvm_hv_request_tsc_page_update(struct kvm *kvm)
e880c6ea
VK
1235{
1236 struct kvm_hv *hv = to_kvm_hv(kvm);
e880c6ea
VK
1237
1238 mutex_lock(&hv->hv_lock);
1239
42dcbe7d
VK
1240 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1241 !tsc_page_update_unsafe(hv))
1242 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
cc9cfddb 1243
e880c6ea
VK
1244 mutex_unlock(&hv->hv_lock);
1245}
1246
b4128000
VK
1247static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1248{
1561c2cb
VK
1249 if (!hv_vcpu->enforce_cpuid)
1250 return true;
1251
1252 switch (msr) {
1253 case HV_X64_MSR_GUEST_OS_ID:
1254 case HV_X64_MSR_HYPERCALL:
1255 return hv_vcpu->cpuid_cache.features_eax &
1256 HV_MSR_HYPERCALL_AVAILABLE;
b80a92ff
VK
1257 case HV_X64_MSR_VP_RUNTIME:
1258 return hv_vcpu->cpuid_cache.features_eax &
1259 HV_MSR_VP_RUNTIME_AVAILABLE;
c2b32867
VK
1260 case HV_X64_MSR_TIME_REF_COUNT:
1261 return hv_vcpu->cpuid_cache.features_eax &
1262 HV_MSR_TIME_REF_COUNT_AVAILABLE;
d2ac25d4
VK
1263 case HV_X64_MSR_VP_INDEX:
1264 return hv_vcpu->cpuid_cache.features_eax &
1265 HV_MSR_VP_INDEX_AVAILABLE;
679008e4
VK
1266 case HV_X64_MSR_RESET:
1267 return hv_vcpu->cpuid_cache.features_eax &
1268 HV_MSR_RESET_AVAILABLE;
a1ec661c
VK
1269 case HV_X64_MSR_REFERENCE_TSC:
1270 return hv_vcpu->cpuid_cache.features_eax &
1271 HV_MSR_REFERENCE_TSC_AVAILABLE;
9e2715ca
VK
1272 case HV_X64_MSR_SCONTROL:
1273 case HV_X64_MSR_SVERSION:
1274 case HV_X64_MSR_SIEFP:
1275 case HV_X64_MSR_SIMP:
1276 case HV_X64_MSR_EOM:
1277 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1278 return hv_vcpu->cpuid_cache.features_eax &
1279 HV_MSR_SYNIC_AVAILABLE;
eba60dda
VK
1280 case HV_X64_MSR_STIMER0_CONFIG:
1281 case HV_X64_MSR_STIMER1_CONFIG:
1282 case HV_X64_MSR_STIMER2_CONFIG:
1283 case HV_X64_MSR_STIMER3_CONFIG:
1284 case HV_X64_MSR_STIMER0_COUNT:
1285 case HV_X64_MSR_STIMER1_COUNT:
1286 case HV_X64_MSR_STIMER2_COUNT:
1287 case HV_X64_MSR_STIMER3_COUNT:
1288 return hv_vcpu->cpuid_cache.features_eax &
1289 HV_MSR_SYNTIMER_AVAILABLE;
978b5747
VK
1290 case HV_X64_MSR_EOI:
1291 case HV_X64_MSR_ICR:
1292 case HV_X64_MSR_TPR:
1293 case HV_X64_MSR_VP_ASSIST_PAGE:
1294 return hv_vcpu->cpuid_cache.features_eax &
1295 HV_MSR_APIC_ACCESS_AVAILABLE;
1296 break;
9442f3bd
VK
1297 case HV_X64_MSR_TSC_FREQUENCY:
1298 case HV_X64_MSR_APIC_FREQUENCY:
1299 return hv_vcpu->cpuid_cache.features_eax &
1300 HV_ACCESS_FREQUENCY_MSRS;
234d01ba
VK
1301 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1302 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1303 case HV_X64_MSR_TSC_EMULATION_STATUS:
1304 return hv_vcpu->cpuid_cache.features_eax &
1305 HV_ACCESS_REENLIGHTENMENT;
2be1bd3a
VK
1306 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1307 return hv_vcpu->cpuid_cache.features_eax &
1308 HV_ACCESS_TSC_INVARIANT;
0a19c899
VK
1309 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1310 case HV_X64_MSR_CRASH_CTL:
1311 return hv_vcpu->cpuid_cache.features_edx &
1312 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
17b6d517
VK
1313 case HV_X64_MSR_SYNDBG_OPTIONS:
1314 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1315 return hv_vcpu->cpuid_cache.features_edx &
1316 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1561c2cb
VK
1317 default:
1318 break;
1319 }
1320
d66bfa36 1321 return false;
b4128000
VK
1322}
1323
e7d9513b
AS
1324static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1325 bool host)
e83d5887
AS
1326{
1327 struct kvm *kvm = vcpu->kvm;
05f04ae4 1328 struct kvm_hv *hv = to_kvm_hv(kvm);
e83d5887 1329
b4128000
VK
1330 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1331 return 1;
1332
e83d5887
AS
1333 switch (msr) {
1334 case HV_X64_MSR_GUEST_OS_ID:
1335 hv->hv_guest_os_id = data;
1336 /* setting guest os id to zero disables hypercall page */
1337 if (!hv->hv_guest_os_id)
1338 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1339 break;
1340 case HV_X64_MSR_HYPERCALL: {
79033beb
JM
1341 u8 instructions[9];
1342 int i = 0;
1343 u64 addr;
e83d5887
AS
1344
1345 /* if guest os id is not set hypercall should remain disabled */
1346 if (!hv->hv_guest_os_id)
1347 break;
1348 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1349 hv->hv_hypercall = data;
1350 break;
1351 }
79033beb
JM
1352
1353 /*
1354 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1355 * the same way Xen itself does, by setting the bit 31 of EAX
1356 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1357 * going to be clobbered on 64-bit.
1358 */
1359 if (kvm_xen_hypercall_enabled(kvm)) {
1360 /* orl $0x80000000, %eax */
1361 instructions[i++] = 0x0d;
1362 instructions[i++] = 0x00;
1363 instructions[i++] = 0x00;
1364 instructions[i++] = 0x00;
1365 instructions[i++] = 0x80;
1366 }
1367
1368 /* vmcall/vmmcall */
1369 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1370 i += 3;
1371
1372 /* ret */
1373 ((unsigned char *)instructions)[i++] = 0xc3;
1374
1375 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1376 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
e83d5887
AS
1377 return 1;
1378 hv->hv_hypercall = data;
e83d5887
AS
1379 break;
1380 }
095cf55d 1381 case HV_X64_MSR_REFERENCE_TSC:
e83d5887 1382 hv->hv_tsc_page = data;
cc9cfddb
VK
1383 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1384 if (!host)
1385 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1386 else
1387 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
095cf55d 1388 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
cc9cfddb
VK
1389 } else {
1390 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1391 }
e83d5887 1392 break;
e7d9513b 1393 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
05f04ae4 1394 return kvm_hv_msr_set_crash_data(kvm,
e7d9513b
AS
1395 msr - HV_X64_MSR_CRASH_P0,
1396 data);
1397 case HV_X64_MSR_CRASH_CTL:
05f04ae4
VK
1398 if (host)
1399 return kvm_hv_msr_set_crash_ctl(kvm, data);
1400
1401 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1402 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1403 hv->hv_crash_param[0],
1404 hv->hv_crash_param[1],
1405 hv->hv_crash_param[2],
1406 hv->hv_crash_param[3],
1407 hv->hv_crash_param[4]);
1408
1409 /* Send notification about crash to user space */
1410 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1411 }
1412 break;
e516cebb
AS
1413 case HV_X64_MSR_RESET:
1414 if (data == 1) {
1415 vcpu_debug(vcpu, "hyper-v reset requested\n");
1416 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1417 }
1418 break;
a2e164e7
VK
1419 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1420 hv->hv_reenlightenment_control = data;
1421 break;
1422 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1423 hv->hv_tsc_emulation_control = data;
1424 break;
1425 case HV_X64_MSR_TSC_EMULATION_STATUS:
d2547cf5
VK
1426 if (data && !host)
1427 return 1;
1428
a2e164e7
VK
1429 hv->hv_tsc_emulation_status = data;
1430 break;
44883f01
PB
1431 case HV_X64_MSR_TIME_REF_COUNT:
1432 /* read-only, but still ignore it if host-initiated */
1433 if (!host)
1434 return 1;
1435 break;
2be1bd3a
VK
1436 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1437 /* Only bit 0 is supported */
1438 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1439 return 1;
1440
1441 /* The feature can't be disabled from the guest */
1442 if (!host && hv->hv_invtsc_control && !data)
1443 return 1;
1444
1445 hv->hv_invtsc_control = data;
1446 break;
f97f5a56
JD
1447 case HV_X64_MSR_SYNDBG_OPTIONS:
1448 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1449 return syndbg_set_msr(vcpu, msr, data, host);
e83d5887 1450 default:
e76ae527 1451 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
e83d5887
AS
1452 return 1;
1453 }
1454 return 0;
1455}
1456
9eec50b8
AS
1457/* Calculate cpu time spent by current task in 100ns units */
1458static u64 current_task_runtime_100ns(void)
1459{
5613fda9 1460 u64 utime, stime;
9eec50b8
AS
1461
1462 task_cputime_adjusted(current, &utime, &stime);
5613fda9
FW
1463
1464 return div_u64(utime + stime, 100);
9eec50b8
AS
1465}
1466
1467static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
e83d5887 1468{
9ff5e030 1469 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
e83d5887 1470
b4128000
VK
1471 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1472 return 1;
1473
e83d5887 1474 switch (msr) {
87ee613d 1475 case HV_X64_MSR_VP_INDEX: {
05f04ae4 1476 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
87ee613d
VK
1477 u32 new_vp_index = (u32)data;
1478
1479 if (!host || new_vp_index >= KVM_MAX_VCPUS)
d3457c87 1480 return 1;
87ee613d
VK
1481
1482 if (new_vp_index == hv_vcpu->vp_index)
1483 return 0;
1484
1485 /*
1486 * The VP index is initialized to vcpu_index by
1487 * kvm_hv_vcpu_postcreate so they initially match. Now the
1488 * VP index is changing, adjust num_mismatched_vp_indexes if
1489 * it now matches or no longer matches vcpu_idx.
1490 */
4eeef242 1491 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
87ee613d 1492 atomic_inc(&hv->num_mismatched_vp_indexes);
4eeef242 1493 else if (new_vp_index == vcpu->vcpu_idx)
87ee613d
VK
1494 atomic_dec(&hv->num_mismatched_vp_indexes);
1495
1496 hv_vcpu->vp_index = new_vp_index;
d3457c87 1497 break;
87ee613d 1498 }
d4abc577 1499 case HV_X64_MSR_VP_ASSIST_PAGE: {
e83d5887
AS
1500 u64 gfn;
1501 unsigned long addr;
1502
d4abc577 1503 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1779a39f 1504 hv_vcpu->hv_vapic = data;
77c3323f 1505 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
e83d5887
AS
1506 return 1;
1507 break;
1508 }
d4abc577 1509 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
e83d5887
AS
1510 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1511 if (kvm_is_error_hva(addr))
1512 return 1;
12e0c618
VK
1513
1514 /*
67b0ae43 1515 * Clear apic_assist portion of struct hv_vp_assist_page
12e0c618
VK
1516 * only, there can be valuable data in the rest which needs
1517 * to be preserved e.g. on migration.
1518 */
9eb41c52 1519 if (__put_user(0, (u32 __user *)addr))
e83d5887 1520 return 1;
1779a39f 1521 hv_vcpu->hv_vapic = data;
e83d5887 1522 kvm_vcpu_mark_page_dirty(vcpu, gfn);
77c3323f 1523 if (kvm_lapic_set_pv_eoi(vcpu,
72bbf935
LP
1524 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1525 sizeof(struct hv_vp_assist_page)))
e83d5887
AS
1526 return 1;
1527 break;
1528 }
1529 case HV_X64_MSR_EOI:
1530 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1531 case HV_X64_MSR_ICR:
1532 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1533 case HV_X64_MSR_TPR:
1534 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
9eec50b8
AS
1535 case HV_X64_MSR_VP_RUNTIME:
1536 if (!host)
1537 return 1;
1779a39f 1538 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
9eec50b8 1539 break;
5c919412
AS
1540 case HV_X64_MSR_SCONTROL:
1541 case HV_X64_MSR_SVERSION:
1542 case HV_X64_MSR_SIEFP:
1543 case HV_X64_MSR_SIMP:
1544 case HV_X64_MSR_EOM:
1545 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
e0121fa2 1546 return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1f4b34f8
AS
1547 case HV_X64_MSR_STIMER0_CONFIG:
1548 case HV_X64_MSR_STIMER1_CONFIG:
1549 case HV_X64_MSR_STIMER2_CONFIG:
1550 case HV_X64_MSR_STIMER3_CONFIG: {
1551 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1552
aafa97fd 1553 return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1f4b34f8
AS
1554 data, host);
1555 }
1556 case HV_X64_MSR_STIMER0_COUNT:
1557 case HV_X64_MSR_STIMER1_COUNT:
1558 case HV_X64_MSR_STIMER2_COUNT:
1559 case HV_X64_MSR_STIMER3_COUNT: {
1560 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1561
aafa97fd 1562 return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1f4b34f8
AS
1563 data, host);
1564 }
44883f01
PB
1565 case HV_X64_MSR_TSC_FREQUENCY:
1566 case HV_X64_MSR_APIC_FREQUENCY:
1567 /* read-only, but still ignore it if host-initiated */
1568 if (!host)
1569 return 1;
1570 break;
e83d5887 1571 default:
e76ae527 1572 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
e83d5887
AS
1573 return 1;
1574 }
1575
1576 return 0;
1577}
1578
f97f5a56
JD
1579static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1580 bool host)
e83d5887
AS
1581{
1582 u64 data = 0;
1583 struct kvm *kvm = vcpu->kvm;
05f04ae4 1584 struct kvm_hv *hv = to_kvm_hv(kvm);
e83d5887 1585
b4128000
VK
1586 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1587 return 1;
1588
e83d5887
AS
1589 switch (msr) {
1590 case HV_X64_MSR_GUEST_OS_ID:
1591 data = hv->hv_guest_os_id;
1592 break;
1593 case HV_X64_MSR_HYPERCALL:
1594 data = hv->hv_hypercall;
1595 break;
93bf4172
AS
1596 case HV_X64_MSR_TIME_REF_COUNT:
1597 data = get_time_ref_counter(kvm);
e83d5887 1598 break;
e83d5887
AS
1599 case HV_X64_MSR_REFERENCE_TSC:
1600 data = hv->hv_tsc_page;
1601 break;
e7d9513b 1602 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
05f04ae4 1603 return kvm_hv_msr_get_crash_data(kvm,
e7d9513b
AS
1604 msr - HV_X64_MSR_CRASH_P0,
1605 pdata);
1606 case HV_X64_MSR_CRASH_CTL:
05f04ae4 1607 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
e516cebb
AS
1608 case HV_X64_MSR_RESET:
1609 data = 0;
1610 break;
a2e164e7
VK
1611 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1612 data = hv->hv_reenlightenment_control;
1613 break;
1614 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1615 data = hv->hv_tsc_emulation_control;
1616 break;
1617 case HV_X64_MSR_TSC_EMULATION_STATUS:
1618 data = hv->hv_tsc_emulation_status;
1619 break;
2be1bd3a
VK
1620 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1621 data = hv->hv_invtsc_control;
1622 break;
f97f5a56
JD
1623 case HV_X64_MSR_SYNDBG_OPTIONS:
1624 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1625 return syndbg_get_msr(vcpu, msr, pdata, host);
e83d5887 1626 default:
e76ae527 1627 kvm_pr_unimpl_rdmsr(vcpu, msr);
e83d5887
AS
1628 return 1;
1629 }
1630
1631 *pdata = data;
1632 return 0;
1633}
1634
44883f01
PB
1635static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1636 bool host)
e83d5887
AS
1637{
1638 u64 data = 0;
9ff5e030 1639 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
e83d5887 1640
b4128000
VK
1641 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1642 return 1;
1643
e83d5887 1644 switch (msr) {
d3457c87 1645 case HV_X64_MSR_VP_INDEX:
1779a39f 1646 data = hv_vcpu->vp_index;
e83d5887 1647 break;
e83d5887
AS
1648 case HV_X64_MSR_EOI:
1649 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1650 case HV_X64_MSR_ICR:
1651 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1652 case HV_X64_MSR_TPR:
1653 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
d4abc577 1654 case HV_X64_MSR_VP_ASSIST_PAGE:
1779a39f 1655 data = hv_vcpu->hv_vapic;
e83d5887 1656 break;
9eec50b8 1657 case HV_X64_MSR_VP_RUNTIME:
1779a39f 1658 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
9eec50b8 1659 break;
5c919412
AS
1660 case HV_X64_MSR_SCONTROL:
1661 case HV_X64_MSR_SVERSION:
1662 case HV_X64_MSR_SIEFP:
1663 case HV_X64_MSR_SIMP:
1664 case HV_X64_MSR_EOM:
1665 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
e0121fa2 1666 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1f4b34f8
AS
1667 case HV_X64_MSR_STIMER0_CONFIG:
1668 case HV_X64_MSR_STIMER1_CONFIG:
1669 case HV_X64_MSR_STIMER2_CONFIG:
1670 case HV_X64_MSR_STIMER3_CONFIG: {
1671 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1672
aafa97fd 1673 return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1f4b34f8
AS
1674 pdata);
1675 }
1676 case HV_X64_MSR_STIMER0_COUNT:
1677 case HV_X64_MSR_STIMER1_COUNT:
1678 case HV_X64_MSR_STIMER2_COUNT:
1679 case HV_X64_MSR_STIMER3_COUNT: {
1680 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1681
aafa97fd 1682 return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1f4b34f8
AS
1683 pdata);
1684 }
72c139ba
LP
1685 case HV_X64_MSR_TSC_FREQUENCY:
1686 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1687 break;
1688 case HV_X64_MSR_APIC_FREQUENCY:
1689 data = APIC_BUS_FREQUENCY;
1690 break;
e83d5887 1691 default:
e76ae527 1692 kvm_pr_unimpl_rdmsr(vcpu, msr);
e83d5887
AS
1693 return 1;
1694 }
1695 *pdata = data;
1696 return 0;
1697}
1698
e7d9513b 1699int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
e83d5887 1700{
05f04ae4
VK
1701 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1702
8f014550
VK
1703 if (!host && !vcpu->arch.hyperv_enabled)
1704 return 1;
1705
1cac8d9f
SC
1706 if (kvm_hv_vcpu_init(vcpu))
1707 return 1;
fc08b628 1708
e83d5887
AS
1709 if (kvm_hv_msr_partition_wide(msr)) {
1710 int r;
1711
05f04ae4 1712 mutex_lock(&hv->hv_lock);
e7d9513b 1713 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
05f04ae4 1714 mutex_unlock(&hv->hv_lock);
e83d5887
AS
1715 return r;
1716 } else
9eec50b8 1717 return kvm_hv_set_msr(vcpu, msr, data, host);
e83d5887
AS
1718}
1719
44883f01 1720int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
e83d5887 1721{
05f04ae4
VK
1722 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1723
8f014550
VK
1724 if (!host && !vcpu->arch.hyperv_enabled)
1725 return 1;
1726
1cac8d9f
SC
1727 if (kvm_hv_vcpu_init(vcpu))
1728 return 1;
fc08b628 1729
e83d5887
AS
1730 if (kvm_hv_msr_partition_wide(msr)) {
1731 int r;
1732
05f04ae4 1733 mutex_lock(&hv->hv_lock);
f97f5a56 1734 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
05f04ae4 1735 mutex_unlock(&hv->hv_lock);
e83d5887
AS
1736 return r;
1737 } else
44883f01 1738 return kvm_hv_get_msr(vcpu, msr, pdata, host);
e83d5887
AS
1739}
1740
9c52f6b3
SC
1741static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1742 u64 valid_bank_mask, unsigned long *vcpu_mask)
c7012676 1743{
05f04ae4 1744 struct kvm_hv *hv = to_kvm_hv(kvm);
9c52f6b3
SC
1745 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
1746 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
f21dd494 1747 struct kvm_vcpu *vcpu;
46808a4c
MZ
1748 int bank, sbank = 0;
1749 unsigned long i;
9c52f6b3
SC
1750 u64 *bitmap;
1751
1752 BUILD_BUG_ON(sizeof(vp_bitmap) >
1753 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1754
1755 /*
1756 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1757 * fill a temporary buffer and manually test each vCPU's VP index.
1758 */
1759 if (likely(!has_mismatch))
1760 bitmap = (u64 *)vcpu_mask;
1761 else
1762 bitmap = vp_bitmap;
c7012676 1763
9c52f6b3
SC
1764 /*
1765 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1766 * having a '1' for each bank that exists in sparse_banks. Sets must
1767 * be in ascending order, i.e. bank0..bankN.
1768 */
1769 memset(bitmap, 0, sizeof(vp_bitmap));
f21dd494
VK
1770 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1771 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
9c52f6b3 1772 bitmap[bank] = sparse_banks[sbank++];
c7012676 1773
9c52f6b3
SC
1774 if (likely(!has_mismatch))
1775 return;
2cefc5fe 1776
9c52f6b3 1777 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
f21dd494 1778 kvm_for_each_vcpu(i, vcpu, kvm) {
f2bc14b6 1779 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
9c52f6b3 1780 __set_bit(i, vcpu_mask);
f21dd494 1781 }
c7012676
VK
1782}
1783
b6c2c22f
VK
1784static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1785{
1786 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1787 unsigned long sbank;
1788
1789 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1790 return false;
1791
1792 /*
1793 * The index into the sparse bank is the number of preceding bits in
1794 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1795 * fancy math if there can't possibly be preceding bits.
1796 */
1797 if (valid_bit_nr)
1798 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1799 else
1800 sbank = 0;
1801
1802 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1803 (unsigned long *)&sparse_banks[sbank]);
1804}
1805
bd38b320 1806struct kvm_hv_hcall {
8b9e13d2 1807 /* Hypercall input data */
bd38b320
SC
1808 u64 param;
1809 u64 ingpa;
1810 u64 outgpa;
1811 u16 code;
bd1ba573 1812 u16 var_cnt;
bd38b320
SC
1813 u16 rep_cnt;
1814 u16 rep_idx;
1815 bool fast;
1816 bool rep;
5974565b 1817 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
8b9e13d2
VK
1818
1819 /*
1820 * Current read offset when KVM reads hypercall input data gradually,
1821 * either offset in bytes from 'ingpa' for regular hypercalls or the
1822 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1823 */
1824 union {
1825 gpa_t data_offset;
1826 int consumed_xmm_halves;
1827 };
bd38b320
SC
1828};
1829
79661c37 1830
56b5354f 1831static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
8b9e13d2 1832 u16 orig_cnt, u16 cnt_cap, u64 *data)
56b5354f
SC
1833{
1834 /*
1835 * Preserve the original count when ignoring entries via a "cap", KVM
1836 * still needs to validate the guest input (though the non-XMM path
1837 * punts on the checks).
1838 */
1839 u16 cnt = min(orig_cnt, cnt_cap);
1840 int i, j;
79661c37 1841
c0f1eaeb
PB
1842 if (hc->fast) {
1843 /*
1844 * Each XMM holds two sparse banks, but do not count halves that
1845 * have already been consumed for hypercall parameters.
1846 */
8b9e13d2 1847 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
c0f1eaeb 1848 return HV_STATUS_INVALID_HYPERCALL_INPUT;
56b5354f
SC
1849
1850 for (i = 0; i < cnt; i++) {
8b9e13d2 1851 j = i + hc->consumed_xmm_halves;
c0f1eaeb 1852 if (j % 2)
56b5354f 1853 data[i] = sse128_hi(hc->xmm[j / 2]);
c0f1eaeb 1854 else
56b5354f 1855 data[i] = sse128_lo(hc->xmm[j / 2]);
c0f1eaeb
PB
1856 }
1857 return 0;
1858 }
1859
8b9e13d2 1860 return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
56b5354f
SC
1861 cnt * sizeof(*data));
1862}
1863
1864static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
8b9e13d2 1865 u64 *sparse_banks)
56b5354f 1866{
ca7372ac 1867 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
56b5354f
SC
1868 return -EINVAL;
1869
1870 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1871 return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
8b9e13d2 1872 sparse_banks);
a0dd008f
SC
1873}
1874
8b9e13d2 1875static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
26097086 1876{
8b9e13d2 1877 return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
26097086
VK
1878}
1879
c58a318f
VK
1880static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1881 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1882 u64 *entries, int count)
0823570f 1883{
0823570f
VK
1884 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1885 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1886
1887 if (!hv_vcpu)
1888 return;
1889
26097086
VK
1890 spin_lock(&tlb_flush_fifo->write_lock);
1891
1892 /*
1893 * All entries should fit on the fifo leaving one free for 'flush all'
1894 * entry in case another request comes in. In case there's not enough
1895 * space, just put 'flush all' entry there.
1896 */
1897 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1898 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1899 goto out_unlock;
1900 }
1901
1902 /*
1903 * Note: full fifo always contains 'flush all' entry, no need to check the
1904 * return value.
1905 */
1906 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1907
1908out_unlock:
1909 spin_unlock(&tlb_flush_fifo->write_lock);
0823570f
VK
1910}
1911
1912int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1913{
1914 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1915 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
26097086
VK
1916 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1917 int i, j, count;
1918 gva_t gva;
0823570f 1919
26097086 1920 if (!tdp_enabled || !hv_vcpu)
0823570f
VK
1921 return -EINVAL;
1922
53ca765a 1923 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));
0823570f 1924
26097086
VK
1925 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1926
1927 for (i = 0; i < count; i++) {
1928 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1929 goto out_flush_all;
1930
1931 /*
1932 * Lower 12 bits of 'address' encode the number of additional
1933 * pages to flush.
1934 */
1935 gva = entries[i] & PAGE_MASK;
1936 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1937 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1938
1939 ++vcpu->stat.tlb_flush;
1940 }
1941 return 0;
1942
1943out_flush_all:
0823570f
VK
1944 kfifo_reset_out(&tlb_flush_fifo->entries);
1945
26097086
VK
1946 /* Fall back to full flush. */
1947 return -ENOSPC;
0823570f
VK
1948}
1949
c0f1eaeb 1950static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
e2f11f42 1951{
7d5e88d3
VK
1952 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1953 u64 *sparse_banks = hv_vcpu->sparse_banks;
72167a9d 1954 struct kvm *kvm = vcpu->kvm;
c7012676 1955 struct hv_tlb_flush_ex flush_ex;
e2f11f42 1956 struct hv_tlb_flush flush;
9c52f6b3 1957 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
c58a318f 1958 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
26097086
VK
1959 /*
1960 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
1961 * entries on the TLB flush fifo. The last entry, however, needs to be
1962 * always left free for 'flush all' entry which gets placed when
1963 * there is not enough space to put all the requested entries.
1964 */
1965 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
1966 u64 *tlb_flush_entries;
2cefc5fe 1967 u64 valid_bank_mask;
0823570f
VK
1968 struct kvm_vcpu *v;
1969 unsigned long i;
c7012676 1970 bool all_cpus;
e2f11f42 1971
79661c37 1972 /*
ca7372ac
VK
1973 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
1974 * sparse banks. Fail the build if KVM's max allowed number of
1975 * vCPUs (>4096) exceeds this limit.
79661c37 1976 */
ca7372ac 1977 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
79661c37 1978
aee73823
VK
1979 /*
1980 * 'Slow' hypercall's first parameter is the address in guest's memory
1981 * where hypercall parameters are placed. This is either a GPA or a
1982 * nested GPA when KVM is handling the call from L2 ('direct' TLB
1983 * flush). Translate the address here so the memory can be uniformly
1984 * read with kvm_read_guest().
1985 */
1986 if (!hc->fast && is_guest_mode(vcpu)) {
1987 hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
1988 if (unlikely(hc->ingpa == INVALID_GPA))
1989 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1990 }
1991
82c1ead0
VK
1992 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
1993 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
5974565b
SC
1994 if (hc->fast) {
1995 flush.address_space = hc->ingpa;
1996 flush.flags = hc->outgpa;
1997 flush.processor_mask = sse128_lo(hc->xmm[0]);
8b9e13d2 1998 hc->consumed_xmm_halves = 1;
5974565b
SC
1999 } else {
2000 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2001 &flush, sizeof(flush))))
2002 return HV_STATUS_INVALID_HYPERCALL_INPUT;
8b9e13d2 2003 hc->data_offset = sizeof(flush);
5974565b 2004 }
e2f11f42 2005
c7012676 2006 trace_kvm_hv_flush_tlb(flush.processor_mask,
c58a318f
VK
2007 flush.address_space, flush.flags,
2008 is_guest_mode(vcpu));
c7012676 2009
2cefc5fe 2010 valid_bank_mask = BIT_ULL(0);
c7012676 2011 sparse_banks[0] = flush.processor_mask;
da66761c
VK
2012
2013 /*
2014 * Work around possible WS2012 bug: it sends hypercalls
2015 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2016 * while also expecting us to flush something and crashing if
2017 * we don't. Let's treat processor_mask == 0 same as
2018 * HV_FLUSH_ALL_PROCESSORS.
2019 */
2020 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2021 flush.processor_mask == 0;
c7012676 2022 } else {
5974565b
SC
2023 if (hc->fast) {
2024 flush_ex.address_space = hc->ingpa;
2025 flush_ex.flags = hc->outgpa;
2026 memcpy(&flush_ex.hv_vp_set,
2027 &hc->xmm[0], sizeof(hc->xmm[0]));
8b9e13d2 2028 hc->consumed_xmm_halves = 2;
5974565b
SC
2029 } else {
2030 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2031 sizeof(flush_ex))))
2032 return HV_STATUS_INVALID_HYPERCALL_INPUT;
8b9e13d2 2033 hc->data_offset = sizeof(flush_ex);
5974565b 2034 }
c7012676
VK
2035
2036 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
2037 flush_ex.hv_vp_set.format,
2038 flush_ex.address_space,
c58a318f 2039 flush_ex.flags, is_guest_mode(vcpu));
c7012676
VK
2040
2041 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2042 all_cpus = flush_ex.hv_vp_set.format !=
2043 HV_GENERIC_SET_SPARSE_4K;
2044
d603fd8d 2045 if (hc->var_cnt != hweight64(valid_bank_mask))
bd1ba573 2046 return HV_STATUS_INVALID_HYPERCALL_INPUT;
c7012676 2047
26097086
VK
2048 if (!all_cpus) {
2049 if (!hc->var_cnt)
2050 goto ret_success;
25af9081 2051
8b9e13d2 2052 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
26097086
VK
2053 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2054 }
c7012676 2055
26097086
VK
2056 /*
2057 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2058 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2059 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2060 * consumed_xmm_halves to make sure TLB flush entries are read
2061 * from the correct offset.
2062 */
8b9e13d2
VK
2063 if (hc->fast)
2064 hc->consumed_xmm_halves += hc->var_cnt;
2065 else
2066 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
26097086
VK
2067 }
2068
2069 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2070 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2071 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2072 tlb_flush_entries = NULL;
2073 } else {
8b9e13d2 2074 if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
25af9081 2075 return HV_STATUS_INVALID_HYPERCALL_INPUT;
26097086 2076 tlb_flush_entries = __tlb_flush_entries;
c7012676 2077 }
e2f11f42 2078
2cefc5fe 2079 /*
f21dd494
VK
2080 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2081 * analyze it here, flush TLB regardless of the specified address space.
2cefc5fe 2082 */
c58a318f
VK
2083 if (all_cpus && !is_guest_mode(vcpu)) {
2084 kvm_for_each_vcpu(i, v, kvm) {
2085 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2086 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2087 tlb_flush_entries, hc->rep_cnt);
2088 }
0823570f 2089
adc43caa 2090 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
c58a318f 2091 } else if (!is_guest_mode(vcpu)) {
9c52f6b3 2092 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
6470accc 2093
0823570f
VK
2094 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2095 v = kvm_get_vcpu(kvm, i);
2096 if (!v)
2097 continue;
c58a318f
VK
2098 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
2099 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2100 tlb_flush_entries, hc->rep_cnt);
2101 }
2102
2103 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
2104 } else {
2105 struct kvm_vcpu_hv *hv_v;
2106
2107 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
2108
2109 kvm_for_each_vcpu(i, v, kvm) {
2110 hv_v = to_hv_vcpu(v);
2111
2112 /*
2113 * The following check races with nested vCPUs entering/exiting
2114 * and/or migrating between L1's vCPUs, however the only case when
2115 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2116 * running on the same L1 vCPU from the moment of the request until
2117 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2118 * cases, e.g. when the target L2 vCPU migrates to a different L1
2119 * vCPU or when the corresponding L1 vCPU temporary switches to a
2120 * different L2 vCPU while the request is being processed.
2121 */
2122 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2123 continue;
2124
2125 if (!all_cpus &&
2126 !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
2127 sparse_banks))
2128 continue;
2129
2130 __set_bit(i, vcpu_mask);
2131 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
2132 hv_tlb_flush_enqueue(v, tlb_flush_fifo,
2133 tlb_flush_entries, hc->rep_cnt);
0823570f
VK
2134 }
2135
adc43caa 2136 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
6470accc 2137 }
e2f11f42 2138
c7012676 2139ret_success:
bd38b320 2140 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
e2f11f42 2141 return (u64)HV_STATUS_SUCCESS |
bd38b320 2142 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
e2f11f42
VK
2143}
2144
b6c2c22f
VK
2145static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2146 u64 *sparse_banks, u64 valid_bank_mask)
f21dd494
VK
2147{
2148 struct kvm_lapic_irq irq = {
2149 .delivery_mode = APIC_DM_FIXED,
2150 .vector = vector
2151 };
2152 struct kvm_vcpu *vcpu;
46808a4c 2153 unsigned long i;
f21dd494
VK
2154
2155 kvm_for_each_vcpu(i, vcpu, kvm) {
b6c2c22f
VK
2156 if (sparse_banks &&
2157 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
2158 valid_bank_mask, sparse_banks))
f21dd494
VK
2159 continue;
2160
2161 /* We fail only when APIC is disabled */
2162 kvm_apic_set_irq(vcpu, &irq, NULL);
2163 }
2164}
2165
50e523dd 2166static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
214ff83d 2167{
7d5e88d3
VK
2168 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2169 u64 *sparse_banks = hv_vcpu->sparse_banks;
72167a9d 2170 struct kvm *kvm = vcpu->kvm;
214ff83d
VK
2171 struct hv_send_ipi_ex send_ipi_ex;
2172 struct hv_send_ipi send_ipi;
ea8c66fe 2173 u64 valid_bank_mask;
f21dd494 2174 u32 vector;
214ff83d
VK
2175 bool all_cpus;
2176
50e523dd 2177 if (hc->code == HVCALL_SEND_IPI) {
bd38b320
SC
2178 if (!hc->fast) {
2179 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
214ff83d
VK
2180 sizeof(send_ipi))))
2181 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2182 sparse_banks[0] = send_ipi.cpu_mask;
f21dd494 2183 vector = send_ipi.vector;
214ff83d
VK
2184 } else {
2185 /* 'reserved' part of hv_send_ipi should be 0 */
bd38b320 2186 if (unlikely(hc->ingpa >> 32 != 0))
214ff83d 2187 return HV_STATUS_INVALID_HYPERCALL_INPUT;
bd38b320
SC
2188 sparse_banks[0] = hc->outgpa;
2189 vector = (u32)hc->ingpa;
214ff83d
VK
2190 }
2191 all_cpus = false;
2192 valid_bank_mask = BIT_ULL(0);
2193
f21dd494 2194 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
214ff83d 2195 } else {
47d3e5cd
VK
2196 if (!hc->fast) {
2197 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2198 sizeof(send_ipi_ex))))
2199 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2200 } else {
2201 send_ipi_ex.vector = (u32)hc->ingpa;
2202 send_ipi_ex.vp_set.format = hc->outgpa;
2203 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2204 }
214ff83d
VK
2205
2206 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
2207 send_ipi_ex.vp_set.format,
2208 send_ipi_ex.vp_set.valid_bank_mask);
2209
f21dd494 2210 vector = send_ipi_ex.vector;
214ff83d 2211 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
214ff83d
VK
2212 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2213
d603fd8d 2214 if (hc->var_cnt != hweight64(valid_bank_mask))
bd1ba573
SC
2215 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2216
3244867a
SC
2217 if (all_cpus)
2218 goto check_and_send_ipi;
2219
bd1ba573 2220 if (!hc->var_cnt)
214ff83d
VK
2221 goto ret_success;
2222
8b9e13d2
VK
2223 if (!hc->fast)
2224 hc->data_offset = offsetof(struct hv_send_ipi_ex,
2225 vp_set.bank_contents);
2226 else
2227 hc->consumed_xmm_halves = 1;
2228
2229 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
214ff83d
VK
2230 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2231 }
2232
3244867a 2233check_and_send_ipi:
f21dd494 2234 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
214ff83d
VK
2235 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2236
b6c2c22f
VK
2237 if (all_cpus)
2238 kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
2239 else
2240 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
214ff83d
VK
2241
2242ret_success:
2243 return HV_STATUS_SUCCESS;
2244}
2245
3be29eb7 2246void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
8f014550 2247{
3be29eb7 2248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
8f014550
VK
2249 struct kvm_cpuid_entry2 *entry;
2250
3be29eb7 2251 vcpu->arch.hyperv_enabled = hyperv_enabled;
10d7bf1e 2252
3be29eb7
SC
2253 if (!hv_vcpu) {
2254 /*
2255 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2256 * enabled in CPUID.
2257 */
2258 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
10d7bf1e 2259 return;
3be29eb7 2260 }
10d7bf1e 2261
ce2196b8
VK
2262 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2263
3be29eb7
SC
2264 if (!vcpu->arch.hyperv_enabled)
2265 return;
2266
277ad7d5 2267 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
10d7bf1e
VK
2268 if (entry) {
2269 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2270 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2271 hv_vcpu->cpuid_cache.features_edx = entry->edx;
10d7bf1e
VK
2272 }
2273
277ad7d5 2274 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
10d7bf1e
VK
2275 if (entry) {
2276 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2277 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
10d7bf1e
VK
2278 }
2279
277ad7d5 2280 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
10d7bf1e
VK
2281 if (entry)
2282 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
dea6e140
VK
2283
2284 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2285 if (entry) {
2286 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2287 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2288 }
8f014550
VK
2289}
2290
644f7067
VK
2291int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2292{
2293 struct kvm_vcpu_hv *hv_vcpu;
2294 int ret = 0;
2295
2296 if (!to_hv_vcpu(vcpu)) {
2297 if (enforce) {
2298 ret = kvm_hv_vcpu_init(vcpu);
2299 if (ret)
2300 return ret;
2301 } else {
2302 return 0;
2303 }
2304 }
2305
2306 hv_vcpu = to_hv_vcpu(vcpu);
2307 hv_vcpu->enforce_cpuid = enforce;
2308
2309 return ret;
2310}
2311
83326e43
AS
2312static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2313{
2314 bool longmode;
2315
b5aead00 2316 longmode = is_64_bit_hypercall(vcpu);
83326e43 2317 if (longmode)
de3cd117 2318 kvm_rax_write(vcpu, result);
83326e43 2319 else {
de3cd117
SC
2320 kvm_rdx_write(vcpu, result >> 32);
2321 kvm_rax_write(vcpu, result & 0xffffffff);
83326e43
AS
2322 }
2323}
2324
696ca779 2325static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
83326e43 2326{
c58a318f
VK
2327 u32 tlb_lock_count = 0;
2328 int ret;
2329
2330 if (hv_result_success(result) && is_guest_mode(vcpu) &&
2331 kvm_hv_is_tlb_flush_hcall(vcpu) &&
2332 kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2333 &tlb_lock_count, sizeof(tlb_lock_count)))
2334 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2335
f5714bbb 2336 trace_kvm_hv_hypercall_done(result);
696ca779
RK
2337 kvm_hv_hypercall_set_result(vcpu, result);
2338 ++vcpu->stat.hypercalls;
c58a318f
VK
2339
2340 ret = kvm_skip_emulated_instruction(vcpu);
2341
2342 if (tlb_lock_count)
2343 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2344
2345 return ret;
83326e43
AS
2346}
2347
696ca779
RK
2348static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2349{
2350 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2351}
2352
bd38b320 2353static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
faeb7833 2354{
05f04ae4 2355 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
faeb7833
RK
2356 struct eventfd_ctx *eventfd;
2357
bd38b320 2358 if (unlikely(!hc->fast)) {
faeb7833 2359 int ret;
bd38b320 2360 gpa_t gpa = hc->ingpa;
faeb7833 2361
bd38b320
SC
2362 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2363 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
faeb7833
RK
2364 return HV_STATUS_INVALID_ALIGNMENT;
2365
bd38b320
SC
2366 ret = kvm_vcpu_read_guest(vcpu, gpa,
2367 &hc->ingpa, sizeof(hc->ingpa));
faeb7833
RK
2368 if (ret < 0)
2369 return HV_STATUS_INVALID_ALIGNMENT;
2370 }
2371
2372 /*
2373 * Per spec, bits 32-47 contain the extra "flag number". However, we
2374 * have no use for it, and in all known usecases it is zero, so just
2375 * report lookup failure if it isn't.
2376 */
bd38b320 2377 if (hc->ingpa & 0xffff00000000ULL)
faeb7833
RK
2378 return HV_STATUS_INVALID_PORT_ID;
2379 /* remaining bits are reserved-zero */
bd38b320 2380 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
faeb7833
RK
2381 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2382
452a68d0
PB
2383 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2384 rcu_read_lock();
bd38b320 2385 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
452a68d0 2386 rcu_read_unlock();
faeb7833
RK
2387 if (!eventfd)
2388 return HV_STATUS_INVALID_PORT_ID;
2389
2390 eventfd_signal(eventfd, 1);
2391 return HV_STATUS_SUCCESS;
2392}
2393
5974565b
SC
2394static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2395{
2396 switch (hc->code) {
2397 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2398 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2399 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2400 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
47d3e5cd 2401 case HVCALL_SEND_IPI_EX:
5974565b
SC
2402 return true;
2403 }
2404
2405 return false;
2406}
2407
2408static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2409{
2410 int reg;
2411
2412 kvm_fpu_get();
2413 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2414 _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2415 kvm_fpu_put();
2416}
2417
4ad81a91
VK
2418static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2419{
34ef7d7b
VK
2420 if (!hv_vcpu->enforce_cpuid)
2421 return true;
2422
2423 switch (code) {
2424 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2425 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2426 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
4f532b7f
VK
2427 case HVCALL_POST_MESSAGE:
2428 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
a60b3c59
VK
2429 case HVCALL_SIGNAL_EVENT:
2430 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
a921cf83
VK
2431 case HVCALL_POST_DEBUG_DATA:
2432 case HVCALL_RETRIEVE_DEBUG_DATA:
2433 case HVCALL_RESET_DEBUG_SESSION:
2434 /*
2435 * Return 'true' when SynDBG is disabled so the resulting code
2436 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2437 */
2438 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2439 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
bb53ecb4
VK
2440 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2441 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
445caed0
VK
2442 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2443 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2444 return false;
2445 fallthrough;
bb53ecb4
VK
2446 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2447 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2448 return hv_vcpu->cpuid_cache.enlightenments_eax &
2449 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
d264eb3c 2450 case HVCALL_SEND_IPI_EX:
445caed0
VK
2451 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2452 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2453 return false;
2454 fallthrough;
d264eb3c
VK
2455 case HVCALL_SEND_IPI:
2456 return hv_vcpu->cpuid_cache.enlightenments_eax &
2457 HV_X64_CLUSTER_IPI_RECOMMENDED;
db9cf24c
VS
2458 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2459 return hv_vcpu->cpuid_cache.features_ebx &
2460 HV_ENABLE_EXTENDED_HYPERCALLS;
34ef7d7b
VK
2461 default:
2462 break;
2463 }
2464
4ad81a91
VK
2465 return true;
2466}
2467
e83d5887
AS
2468int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2469{
4e62aa96 2470 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
bd38b320
SC
2471 struct kvm_hv_hcall hc;
2472 u64 ret = HV_STATUS_SUCCESS;
e83d5887
AS
2473
2474 /*
2475 * hypercall generates UD from non zero cpl and real mode
2476 * per HYPER-V spec
2477 */
b3646477 2478 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
e83d5887 2479 kvm_queue_exception(vcpu, UD_VECTOR);
0d9c055e 2480 return 1;
e83d5887
AS
2481 }
2482
f4e4805e 2483#ifdef CONFIG_X86_64
b5aead00 2484 if (is_64_bit_hypercall(vcpu)) {
bd38b320
SC
2485 hc.param = kvm_rcx_read(vcpu);
2486 hc.ingpa = kvm_rdx_read(vcpu);
2487 hc.outgpa = kvm_r8_read(vcpu);
f4e4805e
AB
2488 } else
2489#endif
2490 {
bd38b320
SC
2491 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2492 (kvm_rax_read(vcpu) & 0xffffffff);
2493 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2494 (kvm_rcx_read(vcpu) & 0xffffffff);
2495 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2496 (kvm_rsi_read(vcpu) & 0xffffffff);
e83d5887 2497 }
e83d5887 2498
bd38b320 2499 hc.code = hc.param & 0xffff;
bd1ba573 2500 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
bd38b320
SC
2501 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2502 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2503 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2504 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
e83d5887 2505
bd1ba573
SC
2506 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
2507 hc.rep_idx, hc.ingpa, hc.outgpa);
e83d5887 2508
4e62aa96 2509 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
4ad81a91
VK
2510 ret = HV_STATUS_ACCESS_DENIED;
2511 goto hypercall_complete;
413af660
SC
2512 }
2513
2514 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2515 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2516 goto hypercall_complete;
4ad81a91
VK
2517 }
2518
4e62aa96
VK
2519 if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2520 if (unlikely(hv_vcpu->enforce_cpuid &&
2521 !(hv_vcpu->cpuid_cache.features_edx &
2522 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2523 kvm_queue_exception(vcpu, UD_VECTOR);
2524 return 1;
2525 }
2526
2e2f1e8d 2527 kvm_hv_hypercall_read_xmm(&hc);
4e62aa96 2528 }
2e2f1e8d 2529
bd38b320 2530 switch (hc.code) {
8ed6d767 2531 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
40421f38 2532 if (unlikely(hc.rep || hc.var_cnt)) {
56b9ae78
VK
2533 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2534 break;
2535 }
de63ad4c 2536 kvm_vcpu_on_spin(vcpu, true);
e83d5887 2537 break;
83326e43 2538 case HVCALL_SIGNAL_EVENT:
40421f38 2539 if (unlikely(hc.rep || hc.var_cnt)) {
56b9ae78
VK
2540 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2541 break;
2542 }
bd38b320 2543 ret = kvm_hvcall_signal_event(vcpu, &hc);
d32ef547 2544 if (ret != HV_STATUS_INVALID_PORT_ID)
faeb7833 2545 break;
df561f66 2546 fallthrough; /* maybe userspace knows this conn_id */
faeb7833 2547 case HVCALL_POST_MESSAGE:
a2b5c3c0 2548 /* don't bother userspace if it has no way to handle it */
40421f38 2549 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
56b9ae78 2550 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
a2b5c3c0
PB
2551 break;
2552 }
1a9df326 2553 goto hypercall_userspace_exit;
e2f11f42 2554 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
c0f1eaeb 2555 if (unlikely(hc.var_cnt)) {
e2f11f42
VK
2556 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2557 break;
2558 }
c0f1eaeb 2559 fallthrough;
c7012676 2560 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
5974565b 2561 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
e2f11f42
VK
2562 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2563 break;
2564 }
82c1ead0 2565 ret = kvm_hv_flush_tlb(vcpu, &hc);
c7012676 2566 break;
82c1ead0 2567 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
c0f1eaeb 2568 if (unlikely(hc.var_cnt)) {
c7012676
VK
2569 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2570 break;
2571 }
c0f1eaeb 2572 fallthrough;
c7012676 2573 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
5974565b 2574 if (unlikely(hc.rep)) {
c7012676
VK
2575 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2576 break;
2577 }
82c1ead0 2578 ret = kvm_hv_flush_tlb(vcpu, &hc);
e2f11f42 2579 break;
214ff83d 2580 case HVCALL_SEND_IPI:
c0f1eaeb 2581 if (unlikely(hc.var_cnt)) {
214ff83d
VK
2582 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2583 break;
2584 }
c0f1eaeb 2585 fallthrough;
214ff83d 2586 case HVCALL_SEND_IPI_EX:
47d3e5cd 2587 if (unlikely(hc.rep)) {
214ff83d
VK
2588 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2589 break;
2590 }
50e523dd 2591 ret = kvm_hv_send_ipi(vcpu, &hc);
214ff83d 2592 break;
b187038b
JD
2593 case HVCALL_POST_DEBUG_DATA:
2594 case HVCALL_RETRIEVE_DEBUG_DATA:
bd38b320 2595 if (unlikely(hc.fast)) {
b187038b
JD
2596 ret = HV_STATUS_INVALID_PARAMETER;
2597 break;
2598 }
2599 fallthrough;
2600 case HVCALL_RESET_DEBUG_SESSION: {
f69b55ef 2601 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
b187038b
JD
2602
2603 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2604 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2605 break;
2606 }
2607
2608 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2609 ret = HV_STATUS_OPERATION_DENIED;
2610 break;
2611 }
1a9df326 2612 goto hypercall_userspace_exit;
b187038b 2613 }
db9cf24c
VS
2614 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2615 if (unlikely(hc.fast)) {
2616 ret = HV_STATUS_INVALID_PARAMETER;
2617 break;
2618 }
2619 goto hypercall_userspace_exit;
e83d5887 2620 default:
d32ef547 2621 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
e83d5887
AS
2622 break;
2623 }
2624
4ad81a91 2625hypercall_complete:
696ca779 2626 return kvm_hv_hypercall_complete(vcpu, ret);
1a9df326
VS
2627
2628hypercall_userspace_exit:
2629 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2630 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2631 vcpu->run->hyperv.u.hcall.input = hc.param;
2632 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2633 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2634 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2635 return 0;
e83d5887 2636}
cbc0236a
RK
2637
2638void kvm_hv_init_vm(struct kvm *kvm)
2639{
05f04ae4
VK
2640 struct kvm_hv *hv = to_kvm_hv(kvm);
2641
2642 mutex_init(&hv->hv_lock);
2643 idr_init(&hv->conn_to_evt);
cbc0236a
RK
2644}
2645
2646void kvm_hv_destroy_vm(struct kvm *kvm)
2647{
05f04ae4 2648 struct kvm_hv *hv = to_kvm_hv(kvm);
faeb7833
RK
2649 struct eventfd_ctx *eventfd;
2650 int i;
2651
05f04ae4 2652 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
faeb7833 2653 eventfd_ctx_put(eventfd);
05f04ae4 2654 idr_destroy(&hv->conn_to_evt);
faeb7833
RK
2655}
2656
2657static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2658{
05f04ae4 2659 struct kvm_hv *hv = to_kvm_hv(kvm);
faeb7833
RK
2660 struct eventfd_ctx *eventfd;
2661 int ret;
2662
2663 eventfd = eventfd_ctx_fdget(fd);
2664 if (IS_ERR(eventfd))
2665 return PTR_ERR(eventfd);
2666
2667 mutex_lock(&hv->hv_lock);
2668 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
254272ce 2669 GFP_KERNEL_ACCOUNT);
faeb7833
RK
2670 mutex_unlock(&hv->hv_lock);
2671
2672 if (ret >= 0)
2673 return 0;
2674
2675 if (ret == -ENOSPC)
2676 ret = -EEXIST;
2677 eventfd_ctx_put(eventfd);
2678 return ret;
2679}
2680
2681static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2682{
05f04ae4 2683 struct kvm_hv *hv = to_kvm_hv(kvm);
faeb7833
RK
2684 struct eventfd_ctx *eventfd;
2685
2686 mutex_lock(&hv->hv_lock);
2687 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2688 mutex_unlock(&hv->hv_lock);
2689
2690 if (!eventfd)
2691 return -ENOENT;
2692
2693 synchronize_srcu(&kvm->srcu);
2694 eventfd_ctx_put(eventfd);
2695 return 0;
2696}
2697
2698int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2699{
2700 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2701 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2702 return -EINVAL;
2703
2704 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2705 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2706 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
cbc0236a 2707}
2bc39970 2708
c21d54f0
VK
2709int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2710 struct kvm_cpuid_entry2 __user *entries)
2bc39970 2711{
ea152987 2712 uint16_t evmcs_ver = 0;
2bc39970
VK
2713 struct kvm_cpuid_entry2 cpuid_entries[] = {
2714 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2715 { .function = HYPERV_CPUID_INTERFACE },
2716 { .function = HYPERV_CPUID_VERSION },
2717 { .function = HYPERV_CPUID_FEATURES },
2718 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2719 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
f97f5a56
JD
2720 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2721 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2722 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2bc39970
VK
2723 { .function = HYPERV_CPUID_NESTED_FEATURES },
2724 };
2725 int i, nent = ARRAY_SIZE(cpuid_entries);
2726
33b22172
PB
2727 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2728 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
ea152987 2729
2bc39970
VK
2730 if (cpuid->nent < nent)
2731 return -E2BIG;
2732
2733 if (cpuid->nent > nent)
2734 cpuid->nent = nent;
2735
2736 for (i = 0; i < nent; i++) {
2737 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2738 u32 signature[3];
2739
2740 switch (ent->function) {
2741 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2742 memcpy(signature, "Linux KVM Hv", 12);
2743
f97f5a56 2744 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2bc39970
VK
2745 ent->ebx = signature[0];
2746 ent->ecx = signature[1];
2747 ent->edx = signature[2];
2748 break;
2749
2750 case HYPERV_CPUID_INTERFACE:
8f014550 2751 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2bc39970
VK
2752 break;
2753
2754 case HYPERV_CPUID_VERSION:
2755 /*
2756 * We implement some Hyper-V 2016 functions so let's use
2757 * this version.
2758 */
2759 ent->eax = 0x00003839;
2760 ent->ebx = 0x000A0000;
2761 break;
2762
2763 case HYPERV_CPUID_FEATURES:
dfc53baa 2764 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2bc39970 2765 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
dfc53baa 2766 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2bc39970 2767 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
dfc53baa
JS
2768 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2769 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2770 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2771 ent->eax |= HV_MSR_RESET_AVAILABLE;
2bc39970 2772 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
dfc53baa
JS
2773 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2774 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2be1bd3a 2775 ent->eax |= HV_ACCESS_TSC_INVARIANT;
2bc39970 2776
dfc53baa
JS
2777 ent->ebx |= HV_POST_MESSAGES;
2778 ent->ebx |= HV_SIGNAL_EVENTS;
db9cf24c 2779 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2bc39970 2780
d8f5537a 2781 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2bc39970
VK
2782 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2783 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
a073d7e3 2784
039aeb9d 2785 ent->ebx |= HV_DEBUGGING;
f97f5a56
JD
2786 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2787 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
f84fcb66 2788 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
f97f5a56 2789
a073d7e3
WL
2790 /*
2791 * Direct Synthetic timers only make sense with in-kernel
2792 * LAPIC
2793 */
c21d54f0 2794 if (!vcpu || lapic_in_kernel(vcpu))
a073d7e3 2795 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2bc39970
VK
2796
2797 break;
2798
2799 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2800 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2801 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2bc39970
VK
2802 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2803 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2804 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
f1adceaf
VK
2805 if (evmcs_ver)
2806 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
b2d8b167
VK
2807 if (!cpu_smt_possible())
2808 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
0f250a64
VK
2809
2810 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2bc39970
VK
2811 /*
2812 * Default number of spinlock retry attempts, matches
2813 * HyperV 2016.
2814 */
2815 ent->ebx = 0x00000FFF;
2816
2817 break;
2818
2819 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2820 /* Maximum number of virtual processors */
2821 ent->eax = KVM_MAX_VCPUS;
2822 /*
2823 * Maximum number of logical processors, matches
2824 * HyperV 2016.
2825 */
2826 ent->ebx = 64;
2827
2828 break;
2829
2830 case HYPERV_CPUID_NESTED_FEATURES:
2831 ent->eax = evmcs_ver;
f4de6a1f 2832 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
66c03a92 2833 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
4da77090 2834 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2bc39970
VK
2835 break;
2836
f97f5a56
JD
2837 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2838 memcpy(signature, "Linux KVM Hv", 12);
2839
2840 ent->eax = 0;
2841 ent->ebx = signature[0];
2842 ent->ecx = signature[1];
2843 ent->edx = signature[2];
2844 break;
2845
2846 case HYPERV_CPUID_SYNDBG_INTERFACE:
2847 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2848 ent->eax = signature[0];
2849 break;
2850
2851 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2852 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2853 break;
2854
2bc39970
VK
2855 default:
2856 break;
2857 }
2858 }
2859
2860 if (copy_to_user(entries, cpuid_entries,
2861 nent * sizeof(struct kvm_cpuid_entry2)))
2862 return -EFAULT;
2863
2864 return 0;
2865}