License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / arch / x86 / kernel / vm86_32.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
624dffcb 6 * stack - Manfred Spraul <manfred@colorfullife.com>
1da177e4
LT
7 *
8 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9 * them correctly. Now the emulation will be in a
10 * consistent state after stackfaults - Kasper Dupont
11 * <kasperd@daimi.au.dk>
12 *
13 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14 * <kasperd@daimi.au.dk>
15 *
16 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17 * caused by Kasper Dupont's changes - Stas Sergeev
18 *
19 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20 * Kasper Dupont <kasperd@daimi.au.dk>
21 *
22 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23 * Kasper Dupont <kasperd@daimi.au.dk>
24 *
25 * 9 apr 2002 - Changed stack access macros to jump to a label
26 * instead of returning to userspace. This simplifies
27 * do_int, and is needed by handle_vm6_fault. Kasper
28 * Dupont <kasperd@daimi.au.dk>
29 *
30 */
31
c767a54b
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
a9415644 34#include <linux/capability.h>
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/interrupt.h>
5522ddb3 37#include <linux/syscalls.h>
1da177e4 38#include <linux/sched.h>
68db0cf1 39#include <linux/sched/task_stack.h>
1da177e4
LT
40#include <linux/kernel.h>
41#include <linux/signal.h>
42#include <linux/string.h>
43#include <linux/mm.h>
44#include <linux/smp.h>
1da177e4
LT
45#include <linux/highmem.h>
46#include <linux/ptrace.h>
7e7f8a03 47#include <linux/audit.h>
49d26b6e 48#include <linux/stddef.h>
9fda6a06 49#include <linux/slab.h>
76fc5e7b 50#include <linux/security.h>
1da177e4 51
7c0f6ba6 52#include <linux/uaccess.h>
1da177e4
LT
53#include <asm/io.h>
54#include <asm/tlbflush.h>
55#include <asm/irq.h>
5ed92a8a 56#include <asm/traps.h>
ba3e127e 57#include <asm/vm86.h>
1da177e4
LT
58
59/*
60 * Known problems:
61 *
62 * Interrupt handling is not guaranteed:
63 * - a real x86 will disable all interrupts for one instruction
64 * after a "mov ss,xx" to make stack handling atomic even without
65 * the 'lss' instruction. We can't guarantee this in v86 mode,
66 * as the next instruction might result in a page fault or similar.
67 * - a real x86 will have interrupts disabled for one instruction
68 * past the 'sti' that enables them. We don't bother with all the
69 * details yet.
70 *
71 * Let's hope these problems do not actually matter for anything.
72 */
73
74
1da177e4
LT
75/*
76 * 8- and 16-bit register defines..
77 */
65ea5b03
PA
78#define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
79#define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
80#define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
81#define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
1da177e4
LT
82
83/*
84 * virtual flags (16 and 32-bit versions)
85 */
decd275e
BG
86#define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
87#define VEFLAGS (current->thread.vm86->veflags)
1da177e4 88
83e714e8 89#define set_flags(X, new, mask) \
1da177e4
LT
90((X) = ((X) & ~(mask)) | ((new) & (mask)))
91
92#define SAFE_MASK (0xDD5)
93#define RETURN_MASK (0xDFF)
94
5ed92a8a 95void save_v86_state(struct kernel_vm86_regs *regs, int retval)
1da177e4
LT
96{
97 struct tss_struct *tss;
ed0b2edb
BG
98 struct task_struct *tsk = current;
99 struct vm86plus_struct __user *user;
9fda6a06 100 struct vm86 *vm86 = current->thread.vm86;
ed0b2edb 101 long err = 0;
1da177e4
LT
102
103 /*
104 * This gets called from entry.S with interrupts disabled, but
105 * from process context. Enable interrupts here, before trying
106 * to access user space.
107 */
108 local_irq_enable();
109
13426356
BG
110 if (!vm86 || !vm86->user_vm86) {
111 pr_alert("no user_vm86: BAD\n");
1da177e4
LT
112 do_exit(SIGSEGV);
113 }
decd275e 114 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
13426356 115 user = vm86->user_vm86;
ed0b2edb 116
d4ce0f26 117 if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
ed0b2edb
BG
118 sizeof(struct vm86plus_struct) :
119 sizeof(struct vm86_struct))) {
13426356 120 pr_alert("could not access userspace vm86 info\n");
ed0b2edb
BG
121 do_exit(SIGSEGV);
122 }
123
124 put_user_try {
125 put_user_ex(regs->pt.bx, &user->regs.ebx);
126 put_user_ex(regs->pt.cx, &user->regs.ecx);
127 put_user_ex(regs->pt.dx, &user->regs.edx);
128 put_user_ex(regs->pt.si, &user->regs.esi);
129 put_user_ex(regs->pt.di, &user->regs.edi);
130 put_user_ex(regs->pt.bp, &user->regs.ebp);
131 put_user_ex(regs->pt.ax, &user->regs.eax);
132 put_user_ex(regs->pt.ip, &user->regs.eip);
133 put_user_ex(regs->pt.cs, &user->regs.cs);
134 put_user_ex(regs->pt.flags, &user->regs.eflags);
135 put_user_ex(regs->pt.sp, &user->regs.esp);
136 put_user_ex(regs->pt.ss, &user->regs.ss);
137 put_user_ex(regs->es, &user->regs.es);
138 put_user_ex(regs->ds, &user->regs.ds);
139 put_user_ex(regs->fs, &user->regs.fs);
140 put_user_ex(regs->gs, &user->regs.gs);
141
9fda6a06 142 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
ed0b2edb
BG
143 } put_user_catch(err);
144 if (err) {
13426356 145 pr_alert("could not access userspace vm86 info\n");
1da177e4
LT
146 do_exit(SIGSEGV);
147 }
148
24933b82 149 tss = &per_cpu(cpu_tss, get_cpu());
9fda6a06 150 tsk->thread.sp0 = vm86->saved_sp0;
ed0b2edb
BG
151 tsk->thread.sysenter_cs = __KERNEL_CS;
152 load_sp0(tss, &tsk->thread);
9fda6a06 153 vm86->saved_sp0 = 0;
1da177e4
LT
154 put_cpu();
155
5ed92a8a 156 memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
49d26b6e 157
5ed92a8a 158 lazy_load_gs(vm86->regs32.gs);
49d26b6e 159
5ed92a8a 160 regs->pt.ax = retval;
1da177e4
LT
161}
162
60ec5585 163static void mark_screen_rdonly(struct mm_struct *mm)
1da177e4 164{
3ba5b5ea
KS
165 struct vm_area_struct *vma;
166 spinlock_t *ptl;
1da177e4 167 pgd_t *pgd;
e0c4f675 168 p4d_t *p4d;
1da177e4
LT
169 pud_t *pud;
170 pmd_t *pmd;
60ec5585 171 pte_t *pte;
1da177e4
LT
172 int i;
173
1a5a9906 174 down_write(&mm->mmap_sem);
60ec5585 175 pgd = pgd_offset(mm, 0xA0000);
1da177e4
LT
176 if (pgd_none_or_clear_bad(pgd))
177 goto out;
e0c4f675
KS
178 p4d = p4d_offset(pgd, 0xA0000);
179 if (p4d_none_or_clear_bad(p4d))
180 goto out;
181 pud = pud_offset(p4d, 0xA0000);
1da177e4
LT
182 if (pud_none_or_clear_bad(pud))
183 goto out;
184 pmd = pmd_offset(pud, 0xA0000);
78ddc534
KS
185
186 if (pmd_trans_huge(*pmd)) {
3ba5b5ea 187 vma = find_vma(mm, 0xA0000);
78ddc534
KS
188 split_huge_pmd(vma, pmd, 0xA0000);
189 }
1da177e4
LT
190 if (pmd_none_or_clear_bad(pmd))
191 goto out;
60ec5585 192 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
1da177e4
LT
193 for (i = 0; i < 32; i++) {
194 if (pte_present(*pte))
195 set_pte(pte, pte_wrprotect(*pte));
196 pte++;
197 }
60ec5585 198 pte_unmap_unlock(pte, ptl);
1da177e4 199out:
1a5a9906 200 up_write(&mm->mmap_sem);
9ccee237 201 flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
1da177e4
LT
202}
203
204
205
206static int do_vm86_irq_handling(int subfunction, int irqnumber);
13426356 207static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
1da177e4 208
13426356 209SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
1da177e4 210{
13426356 211 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
1da177e4
LT
212}
213
214
5522ddb3 215SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
1da177e4 216{
f1382f15 217 switch (cmd) {
83e714e8
PC
218 case VM86_REQUEST_IRQ:
219 case VM86_FREE_IRQ:
220 case VM86_GET_IRQ_BITS:
221 case VM86_GET_AND_RESET_IRQ:
5522ddb3 222 return do_vm86_irq_handling(cmd, (int)arg);
83e714e8
PC
223 case VM86_PLUS_INSTALL_CHECK:
224 /*
225 * NOTE: on old vm86 stuff this will return the error
226 * from access_ok(), because the subfunction is
227 * interpreted as (invalid) address to vm86_struct.
228 * So the installation check works.
229 */
5522ddb3 230 return 0;
1da177e4
LT
231 }
232
233 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
90c6085a 234 return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
1da177e4
LT
235}
236
237
13426356 238static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
1da177e4
LT
239{
240 struct tss_struct *tss;
ed0b2edb 241 struct task_struct *tsk = current;
9fda6a06 242 struct vm86 *vm86 = tsk->thread.vm86;
90c6085a 243 struct kernel_vm86_regs vm86regs;
5ed92a8a 244 struct pt_regs *regs = current_pt_regs();
ed0b2edb
BG
245 unsigned long err = 0;
246
76fc5e7b
AL
247 err = security_mmap_addr(0);
248 if (err) {
249 /*
250 * vm86 cannot virtualize the address space, so vm86 users
251 * need to manage the low 1MB themselves using mmap. Given
252 * that BIOS places important data in the first page, vm86
253 * is essentially useless if mmap_min_addr != 0. DOSEMU,
254 * for example, won't even bother trying to use vm86 if it
255 * can't map a page at virtual address 0.
256 *
257 * To reduce the available kernel attack surface, simply
258 * disallow vm86(old) for users who cannot mmap at va 0.
259 *
260 * The implementation of security_mmap_addr will allow
261 * suitably privileged users to map va 0 even if
262 * vm.mmap_min_addr is set above 0, and we want this
263 * behavior for vm86 as well, as it ensures that legacy
264 * tools like vbetool will not fail just because of
265 * vm.mmap_min_addr.
266 */
267 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
268 current->comm, task_pid_nr(current),
269 from_kuid_munged(&init_user_ns, current_uid()));
270 return -EPERM;
271 }
272
9fda6a06
BG
273 if (!vm86) {
274 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
275 return -ENOMEM;
276 tsk->thread.vm86 = vm86;
277 }
278 if (vm86->saved_sp0)
ed0b2edb
BG
279 return -EPERM;
280
13426356 281 if (!access_ok(VERIFY_READ, user_vm86, plus ?
ed0b2edb
BG
282 sizeof(struct vm86_struct) :
283 sizeof(struct vm86plus_struct)))
284 return -EFAULT;
285
90c6085a 286 memset(&vm86regs, 0, sizeof(vm86regs));
ed0b2edb
BG
287 get_user_try {
288 unsigned short seg;
13426356
BG
289 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
290 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
291 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
292 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
293 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
294 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
295 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
296 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
297 get_user_ex(seg, &user_vm86->regs.cs);
90c6085a 298 vm86regs.pt.cs = seg;
13426356
BG
299 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
300 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
301 get_user_ex(seg, &user_vm86->regs.ss);
90c6085a 302 vm86regs.pt.ss = seg;
13426356
BG
303 get_user_ex(vm86regs.es, &user_vm86->regs.es);
304 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
305 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
306 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
307
308 get_user_ex(vm86->flags, &user_vm86->flags);
309 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
310 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
ed0b2edb
BG
311 } get_user_catch(err);
312 if (err)
313 return err;
314
13426356
BG
315 if (copy_from_user(&vm86->int_revectored,
316 &user_vm86->int_revectored,
ed0b2edb
BG
317 sizeof(struct revectored_struct)))
318 return -EFAULT;
13426356
BG
319 if (copy_from_user(&vm86->int21_revectored,
320 &user_vm86->int21_revectored,
ed0b2edb
BG
321 sizeof(struct revectored_struct)))
322 return -EFAULT;
323 if (plus) {
13426356 324 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
ed0b2edb
BG
325 sizeof(struct vm86plus_info_struct)))
326 return -EFAULT;
d4ce0f26
BG
327 vm86->vm86plus.is_vm86pus = 1;
328 } else
329 memset(&vm86->vm86plus, 0,
330 sizeof(struct vm86plus_info_struct));
5ed92a8a
BG
331
332 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
13426356 333 vm86->user_vm86 = user_vm86;
1da177e4
LT
334
335/*
65ea5b03 336 * The flags register is also special: we cannot trust that the user
1da177e4
LT
337 * has set it up safely, so this makes sure interrupt etc flags are
338 * inherited from protected mode.
339 */
90c6085a
BG
340 VEFLAGS = vm86regs.pt.flags;
341 vm86regs.pt.flags &= SAFE_MASK;
5ed92a8a 342 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
90c6085a 343 vm86regs.pt.flags |= X86_VM_MASK;
1da177e4 344
5ed92a8a 345 vm86regs.pt.orig_ax = regs->orig_ax;
df1ae9a5 346
d4ce0f26 347 switch (vm86->cpu_type) {
83e714e8 348 case CPU_286:
decd275e 349 vm86->veflags_mask = 0;
83e714e8
PC
350 break;
351 case CPU_386:
decd275e 352 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
83e714e8
PC
353 break;
354 case CPU_486:
decd275e 355 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
83e714e8
PC
356 break;
357 default:
decd275e 358 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
83e714e8 359 break;
1da177e4
LT
360 }
361
362/*
5ed92a8a 363 * Save old state
1da177e4 364 */
9fda6a06 365 vm86->saved_sp0 = tsk->thread.sp0;
5ed92a8a 366 lazy_save_gs(vm86->regs32.gs);
1da177e4 367
24933b82 368 tss = &per_cpu(cpu_tss, get_cpu());
5ed92a8a
BG
369 /* make room for real-mode segments */
370 tsk->thread.sp0 += 16;
362f924b 371
bc696ca0 372 if (static_cpu_has(X86_FEATURE_SEP))
1da177e4 373 tsk->thread.sysenter_cs = 0;
362f924b 374
faca6227 375 load_sp0(tss, &tsk->thread);
1da177e4
LT
376 put_cpu();
377
d4ce0f26 378 if (vm86->flags & VM86_SCREEN_BITMAP)
60ec5585 379 mark_screen_rdonly(tsk->mm);
7e7f8a03 380
5ed92a8a
BG
381 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
382 force_iret();
383 return regs->ax;
1da177e4
LT
384}
385
83e714e8 386static inline void set_IF(struct kernel_vm86_regs *regs)
1da177e4 387{
a5c15d41 388 VEFLAGS |= X86_EFLAGS_VIF;
1da177e4
LT
389}
390
83e714e8 391static inline void clear_IF(struct kernel_vm86_regs *regs)
1da177e4 392{
a5c15d41 393 VEFLAGS &= ~X86_EFLAGS_VIF;
1da177e4
LT
394}
395
83e714e8 396static inline void clear_TF(struct kernel_vm86_regs *regs)
1da177e4 397{
a5c15d41 398 regs->pt.flags &= ~X86_EFLAGS_TF;
1da177e4
LT
399}
400
83e714e8 401static inline void clear_AC(struct kernel_vm86_regs *regs)
1da177e4 402{
a5c15d41 403 regs->pt.flags &= ~X86_EFLAGS_AC;
1da177e4
LT
404}
405
83e714e8
PC
406/*
407 * It is correct to call set_IF(regs) from the set_vflags_*
1da177e4
LT
408 * functions. However someone forgot to call clear_IF(regs)
409 * in the opposite case.
410 * After the command sequence CLI PUSHF STI POPF you should
ab4a574e 411 * end up with interrupts disabled, but you ended up with
1da177e4
LT
412 * interrupts enabled.
413 * ( I was testing my own changes, but the only bug I
414 * could find was in a function I had not changed. )
415 * [KD]
416 */
417
83e714e8 418static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
1da177e4 419{
decd275e 420 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
65ea5b03 421 set_flags(regs->pt.flags, flags, SAFE_MASK);
a5c15d41 422 if (flags & X86_EFLAGS_IF)
1da177e4
LT
423 set_IF(regs);
424 else
425 clear_IF(regs);
426}
427
83e714e8 428static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
1da177e4 429{
decd275e 430 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
65ea5b03 431 set_flags(regs->pt.flags, flags, SAFE_MASK);
a5c15d41 432 if (flags & X86_EFLAGS_IF)
1da177e4
LT
433 set_IF(regs);
434 else
435 clear_IF(regs);
436}
437
83e714e8 438static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
1da177e4 439{
65ea5b03 440 unsigned long flags = regs->pt.flags & RETURN_MASK;
1da177e4 441
a5c15d41 442 if (VEFLAGS & X86_EFLAGS_VIF)
443 flags |= X86_EFLAGS_IF;
444 flags |= X86_EFLAGS_IOPL;
decd275e 445 return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
1da177e4
LT
446}
447
83e714e8 448static inline int is_revectored(int nr, struct revectored_struct *bitmap)
1da177e4 449{
2823d4da 450 return test_bit(nr, bitmap->__map);
1da177e4
LT
451}
452
453#define val_byte(val, n) (((__u8 *)&val)[n])
454
455#define pushb(base, ptr, val, err_label) \
456 do { \
457 __u8 __val = val; \
458 ptr--; \
459 if (put_user(__val, base + ptr) < 0) \
460 goto err_label; \
83e714e8 461 } while (0)
1da177e4
LT
462
463#define pushw(base, ptr, val, err_label) \
464 do { \
465 __u16 __val = val; \
466 ptr--; \
467 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
468 goto err_label; \
469 ptr--; \
470 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
471 goto err_label; \
83e714e8 472 } while (0)
1da177e4
LT
473
474#define pushl(base, ptr, val, err_label) \
475 do { \
476 __u32 __val = val; \
477 ptr--; \
478 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
479 goto err_label; \
480 ptr--; \
481 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
482 goto err_label; \
483 ptr--; \
484 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
485 goto err_label; \
486 ptr--; \
487 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
488 goto err_label; \
83e714e8 489 } while (0)
1da177e4
LT
490
491#define popb(base, ptr, err_label) \
492 ({ \
493 __u8 __res; \
494 if (get_user(__res, base + ptr) < 0) \
495 goto err_label; \
496 ptr++; \
497 __res; \
498 })
499
500#define popw(base, ptr, err_label) \
501 ({ \
502 __u16 __res; \
503 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
504 goto err_label; \
505 ptr++; \
506 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
507 goto err_label; \
508 ptr++; \
509 __res; \
510 })
511
512#define popl(base, ptr, err_label) \
513 ({ \
514 __u32 __res; \
515 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
516 goto err_label; \
517 ptr++; \
518 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
519 goto err_label; \
520 ptr++; \
521 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
522 goto err_label; \
523 ptr++; \
524 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
525 goto err_label; \
526 ptr++; \
527 __res; \
528 })
529
530/* There are so many possible reasons for this function to return
531 * VM86_INTx, so adding another doesn't bother me. We can expect
532 * userspace programs to be able to handle it. (Getting a problem
533 * in userspace is always better than an Oops anyway.) [KD]
534 */
535static void do_int(struct kernel_vm86_regs *regs, int i,
83e714e8 536 unsigned char __user *ssp, unsigned short sp)
1da177e4
LT
537{
538 unsigned long __user *intr_ptr;
539 unsigned long segoffs;
90c6085a 540 struct vm86 *vm86 = current->thread.vm86;
1da177e4 541
65ea5b03 542 if (regs->pt.cs == BIOSSEG)
1da177e4 543 goto cannot_handle;
d4ce0f26 544 if (is_revectored(i, &vm86->int_revectored))
1da177e4 545 goto cannot_handle;
d4ce0f26 546 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
1da177e4
LT
547 goto cannot_handle;
548 intr_ptr = (unsigned long __user *) (i << 2);
549 if (get_user(segoffs, intr_ptr))
550 goto cannot_handle;
551 if ((segoffs >> 16) == BIOSSEG)
552 goto cannot_handle;
553 pushw(ssp, sp, get_vflags(regs), cannot_handle);
65ea5b03 554 pushw(ssp, sp, regs->pt.cs, cannot_handle);
1da177e4 555 pushw(ssp, sp, IP(regs), cannot_handle);
65ea5b03 556 regs->pt.cs = segoffs >> 16;
1da177e4
LT
557 SP(regs) -= 6;
558 IP(regs) = segoffs & 0xffff;
559 clear_TF(regs);
560 clear_IF(regs);
561 clear_AC(regs);
562 return;
563
564cannot_handle:
5ed92a8a 565 save_v86_state(regs, VM86_INTx + (i << 8));
1da177e4
LT
566}
567
83e714e8 568int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
1da177e4 569{
90c6085a
BG
570 struct vm86 *vm86 = current->thread.vm86;
571
572 if (vm86->vm86plus.is_vm86pus) {
6554287b 573 if ((trapno == 3) || (trapno == 1)) {
5ed92a8a 574 save_v86_state(regs, VM86_TRAP + (trapno << 8));
6554287b
BO
575 return 0;
576 }
65ea5b03 577 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
1da177e4
LT
578 return 0;
579 }
83e714e8 580 if (trapno != 1)
1da177e4 581 return 1; /* we let this handle by the calling routine */
51e7dc70 582 current->thread.trap_nr = trapno;
1da177e4 583 current->thread.error_code = error_code;
0f540910 584 force_sig(SIGTRAP, current);
1da177e4
LT
585 return 0;
586}
587
83e714e8 588void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
1da177e4
LT
589{
590 unsigned char opcode;
591 unsigned char __user *csp;
592 unsigned char __user *ssp;
5fd75ebb 593 unsigned short ip, sp, orig_flags;
1da177e4 594 int data32, pref_done;
d4ce0f26 595 struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
1da177e4
LT
596
597#define CHECK_IF_IN_TRAP \
d4ce0f26 598 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
a5c15d41 599 newflags |= X86_EFLAGS_TF
1da177e4 600
65ea5b03 601 orig_flags = *(unsigned short *)&regs->pt.flags;
5fd75ebb 602
65ea5b03
PA
603 csp = (unsigned char __user *) (regs->pt.cs << 4);
604 ssp = (unsigned char __user *) (regs->pt.ss << 4);
1da177e4
LT
605 sp = SP(regs);
606 ip = IP(regs);
607
608 data32 = 0;
609 pref_done = 0;
610 do {
611 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
83e714e8
PC
612 case 0x66: /* 32-bit data */ data32 = 1; break;
613 case 0x67: /* 32-bit address */ break;
614 case 0x2e: /* CS */ break;
615 case 0x3e: /* DS */ break;
616 case 0x26: /* ES */ break;
617 case 0x36: /* SS */ break;
618 case 0x65: /* GS */ break;
619 case 0x64: /* FS */ break;
620 case 0xf2: /* repnz */ break;
621 case 0xf3: /* rep */ break;
622 default: pref_done = 1;
1da177e4
LT
623 }
624 } while (!pref_done);
625
626 switch (opcode) {
627
628 /* pushf */
629 case 0x9c:
630 if (data32) {
631 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
632 SP(regs) -= 4;
633 } else {
634 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
635 SP(regs) -= 2;
636 }
637 IP(regs) = ip;
5ed92a8a 638 goto vm86_fault_return;
1da177e4
LT
639
640 /* popf */
641 case 0x9d:
642 {
643 unsigned long newflags;
644 if (data32) {
83e714e8 645 newflags = popl(ssp, sp, simulate_sigsegv);
1da177e4
LT
646 SP(regs) += 4;
647 } else {
648 newflags = popw(ssp, sp, simulate_sigsegv);
649 SP(regs) += 2;
650 }
651 IP(regs) = ip;
652 CHECK_IF_IN_TRAP;
83e714e8 653 if (data32)
1da177e4 654 set_vflags_long(newflags, regs);
83e714e8 655 else
1da177e4 656 set_vflags_short(newflags, regs);
83e714e8 657
5ed92a8a 658 goto check_vip;
1da177e4
LT
659 }
660
661 /* int xx */
662 case 0xcd: {
83e714e8 663 int intno = popb(csp, ip, simulate_sigsegv);
1da177e4 664 IP(regs) = ip;
d4ce0f26 665 if (vmpi->vm86dbg_active) {
5ed92a8a
BG
666 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
667 save_v86_state(regs, VM86_INTx + (intno << 8));
668 return;
669 }
1da177e4
LT
670 }
671 do_int(regs, intno, ssp, sp);
672 return;
673 }
674
675 /* iret */
676 case 0xcf:
677 {
678 unsigned long newip;
679 unsigned long newcs;
680 unsigned long newflags;
681 if (data32) {
83e714e8
PC
682 newip = popl(ssp, sp, simulate_sigsegv);
683 newcs = popl(ssp, sp, simulate_sigsegv);
684 newflags = popl(ssp, sp, simulate_sigsegv);
1da177e4
LT
685 SP(regs) += 12;
686 } else {
687 newip = popw(ssp, sp, simulate_sigsegv);
688 newcs = popw(ssp, sp, simulate_sigsegv);
689 newflags = popw(ssp, sp, simulate_sigsegv);
690 SP(regs) += 6;
691 }
692 IP(regs) = newip;
65ea5b03 693 regs->pt.cs = newcs;
1da177e4
LT
694 CHECK_IF_IN_TRAP;
695 if (data32) {
696 set_vflags_long(newflags, regs);
697 } else {
698 set_vflags_short(newflags, regs);
699 }
5ed92a8a 700 goto check_vip;
1da177e4
LT
701 }
702
703 /* cli */
704 case 0xfa:
705 IP(regs) = ip;
706 clear_IF(regs);
5ed92a8a 707 goto vm86_fault_return;
1da177e4
LT
708
709 /* sti */
710 /*
711 * Damn. This is incorrect: the 'sti' instruction should actually
712 * enable interrupts after the /next/ instruction. Not good.
713 *
714 * Probably needs some horsing around with the TF flag. Aiee..
715 */
716 case 0xfb:
717 IP(regs) = ip;
718 set_IF(regs);
5ed92a8a 719 goto check_vip;
1da177e4
LT
720
721 default:
5ed92a8a 722 save_v86_state(regs, VM86_UNKNOWN);
1da177e4
LT
723 }
724
725 return;
726
5ed92a8a
BG
727check_vip:
728 if (VEFLAGS & X86_EFLAGS_VIP) {
729 save_v86_state(regs, VM86_STI);
730 return;
731 }
732
733vm86_fault_return:
734 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
735 save_v86_state(regs, VM86_PICRETURN);
736 return;
737 }
738 if (orig_flags & X86_EFLAGS_TF)
739 handle_vm86_trap(regs, 0, X86_TRAP_DB);
740 return;
741
1da177e4
LT
742simulate_sigsegv:
743 /* FIXME: After a long discussion with Stas we finally
744 * agreed, that this is wrong. Here we should
745 * really send a SIGSEGV to the user program.
746 * But how do we create the correct context? We
747 * are inside a general protection fault handler
748 * and has just returned from a page fault handler.
749 * The correct context for the signal handler
750 * should be a mixture of the two, but how do we
751 * get the information? [KD]
752 */
5ed92a8a 753 save_v86_state(regs, VM86_UNKNOWN);
1da177e4
LT
754}
755
756/* ---------------- vm86 special IRQ passing stuff ----------------- */
757
758#define VM86_IRQNAME "vm86irq"
759
760static struct vm86_irqs {
761 struct task_struct *tsk;
762 int sig;
763} vm86_irqs[16];
764
765static DEFINE_SPINLOCK(irqbits_lock);
766static int irqbits;
767
83e714e8 768#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
1da177e4 769 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
83e714e8
PC
770 | (1 << SIGUNUSED))
771
7d12e780 772static irqreturn_t irq_handler(int intno, void *dev_id)
1da177e4
LT
773{
774 int irq_bit;
775 unsigned long flags;
776
83e714e8 777 spin_lock_irqsave(&irqbits_lock, flags);
1da177e4 778 irq_bit = 1 << intno;
83e714e8 779 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
1da177e4
LT
780 goto out;
781 irqbits |= irq_bit;
782 if (vm86_irqs[intno].sig)
783 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
1da177e4
LT
784 /*
785 * IRQ will be re-enabled when user asks for the irq (whether
786 * polling or as a result of the signal)
787 */
ad671423
PP
788 disable_irq_nosync(intno);
789 spin_unlock_irqrestore(&irqbits_lock, flags);
1da177e4
LT
790 return IRQ_HANDLED;
791
792out:
83e714e8 793 spin_unlock_irqrestore(&irqbits_lock, flags);
1da177e4
LT
794 return IRQ_NONE;
795}
796
797static inline void free_vm86_irq(int irqnumber)
798{
799 unsigned long flags;
800
801 free_irq(irqnumber, NULL);
802 vm86_irqs[irqnumber].tsk = NULL;
803
83e714e8 804 spin_lock_irqsave(&irqbits_lock, flags);
1da177e4 805 irqbits &= ~(1 << irqnumber);
83e714e8 806 spin_unlock_irqrestore(&irqbits_lock, flags);
1da177e4
LT
807}
808
809void release_vm86_irqs(struct task_struct *task)
810{
811 int i;
812 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
813 if (vm86_irqs[i].tsk == task)
814 free_vm86_irq(i);
815}
816
817static inline int get_and_reset_irq(int irqnumber)
818{
819 int bit;
820 unsigned long flags;
ad671423 821 int ret = 0;
83e714e8 822
1da177e4
LT
823 if (invalid_vm86_irq(irqnumber)) return 0;
824 if (vm86_irqs[irqnumber].tsk != current) return 0;
83e714e8 825 spin_lock_irqsave(&irqbits_lock, flags);
1da177e4
LT
826 bit = irqbits & (1 << irqnumber);
827 irqbits &= ~bit;
ad671423
PP
828 if (bit) {
829 enable_irq(irqnumber);
830 ret = 1;
831 }
832
83e714e8 833 spin_unlock_irqrestore(&irqbits_lock, flags);
ad671423 834 return ret;
1da177e4
LT
835}
836
837
838static int do_vm86_irq_handling(int subfunction, int irqnumber)
839{
840 int ret;
841 switch (subfunction) {
842 case VM86_GET_AND_RESET_IRQ: {
843 return get_and_reset_irq(irqnumber);
844 }
845 case VM86_GET_IRQ_BITS: {
846 return irqbits;
847 }
848 case VM86_REQUEST_IRQ: {
849 int sig = irqnumber >> 8;
850 int irq = irqnumber & 255;
851 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
852 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
853 if (invalid_vm86_irq(irq)) return -EPERM;
854 if (vm86_irqs[irq].tsk) return -EPERM;
855 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
856 if (ret) return ret;
857 vm86_irqs[irq].sig = sig;
858 vm86_irqs[irq].tsk = current;
859 return irq;
860 }
861 case VM86_FREE_IRQ: {
862 if (invalid_vm86_irq(irqnumber)) return -EPERM;
863 if (!vm86_irqs[irqnumber].tsk) return 0;
864 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
865 free_vm86_irq(irqnumber);
866 return 0;
867 }
868 }
869 return -EINVAL;
870}
871