Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[linux-2.6-block.git] / arch / x86 / kernel / uv_time.c
CommitLineData
5ab5ab34
DS
1/*
2 * SGI RTC clock/timer routines.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
20 */
21#include <linux/clockchips.h>
22
23#include <asm/uv/uv_mmrs.h>
24#include <asm/uv/uv_hub.h>
25#include <asm/uv/bios.h>
26#include <asm/uv/uv.h>
1400b3fa
DS
27#include <asm/apic.h>
28#include <asm/cpu.h>
5ab5ab34
DS
29
30#define RTC_NAME "sgi_rtc"
31
c5428e95 32static cycle_t uv_read_rtc(struct clocksource *cs);
5ab5ab34
DS
33static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
34static void uv_rtc_timer_setup(enum clock_event_mode,
35 struct clock_event_device *);
36
37static struct clocksource clocksource_uv = {
38 .name = RTC_NAME,
39 .rating = 400,
40 .read = uv_read_rtc,
41 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42 .shift = 10,
43 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
44};
45
46static struct clock_event_device clock_event_device_uv = {
47 .name = RTC_NAME,
48 .features = CLOCK_EVT_FEAT_ONESHOT,
49 .shift = 20,
50 .rating = 400,
51 .irq = -1,
52 .set_next_event = uv_rtc_next_event,
53 .set_mode = uv_rtc_timer_setup,
54 .event_handler = NULL,
55};
56
57static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58
59/* There is one of these allocated per node */
60struct uv_rtc_timer_head {
61 spinlock_t lock;
62 /* next cpu waiting for timer, local node relative: */
63 int next_cpu;
64 /* number of cpus on this node: */
65 int ncpus;
66 struct {
67 int lcpu; /* systemwide logical cpu number */
68 u64 expires; /* next timer expiration for this cpu */
69 } cpu[1];
70};
71
72/*
73 * Access to uv_rtc_timer_head via blade id.
74 */
75static struct uv_rtc_timer_head **blade_info __read_mostly;
76
8c28de4d 77static int uv_rtc_evt_enable;
5ab5ab34
DS
78
79/*
80 * Hardware interface routines
81 */
82
83/* Send IPIs to another node */
84static void uv_rtc_send_IPI(int cpu)
85{
86 unsigned long apicid, val;
87 int pnode;
88
1400b3fa 89 apicid = cpu_physical_id(cpu);
5ab5ab34
DS
90 pnode = uv_apicid_to_pnode(apicid);
91 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
4a4de9c7 93 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
5ab5ab34
DS
94
95 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
96}
97
98/* Check for an RTC interrupt pending */
99static int uv_intr_pending(int pnode)
100{
101 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
102 UVH_EVENT_OCCURRED0_RTC1_MASK;
103}
104
105/* Setup interrupt and return non-zero if early expiration occurred. */
106static int uv_setup_intr(int cpu, u64 expires)
107{
108 u64 val;
109 int pnode = uv_cpu_to_pnode(cpu);
110
111 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
112 UVH_RTC1_INT_CONFIG_M_MASK);
113 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
114
115 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
116 UVH_EVENT_OCCURRED0_RTC1_MASK);
117
4a4de9c7 118 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
5ab5ab34
DS
119 ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
120
121 /* Set configuration */
122 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
123 /* Initialize comparator value */
124 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
125
e47938b1
DS
126 if (uv_read_rtc(NULL) <= expires)
127 return 0;
128
129 return !uv_intr_pending(pnode);
5ab5ab34
DS
130}
131
132/*
133 * Per-cpu timer tracking routines
134 */
135
136static __init void uv_rtc_deallocate_timers(void)
137{
138 int bid;
139
140 for_each_possible_blade(bid) {
141 kfree(blade_info[bid]);
142 }
143 kfree(blade_info);
144}
145
146/* Allocate per-node list of cpu timer expiration times. */
147static __init int uv_rtc_allocate_timers(void)
148{
149 int cpu;
150
151 blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
152 if (!blade_info)
153 return -ENOMEM;
154 memset(blade_info, 0, uv_possible_blades * sizeof(void *));
155
156 for_each_present_cpu(cpu) {
157 int nid = cpu_to_node(cpu);
158 int bid = uv_cpu_to_blade_id(cpu);
159 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
160 struct uv_rtc_timer_head *head = blade_info[bid];
161
162 if (!head) {
163 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
164 (uv_blade_nr_possible_cpus(bid) *
165 2 * sizeof(u64)),
166 GFP_KERNEL, nid);
167 if (!head) {
168 uv_rtc_deallocate_timers();
169 return -ENOMEM;
170 }
171 spin_lock_init(&head->lock);
172 head->ncpus = uv_blade_nr_possible_cpus(bid);
173 head->next_cpu = -1;
174 blade_info[bid] = head;
175 }
176
177 head->cpu[bcpu].lcpu = cpu;
178 head->cpu[bcpu].expires = ULLONG_MAX;
179 }
180
181 return 0;
182}
183
184/* Find and set the next expiring timer. */
185static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
186{
187 u64 lowest = ULLONG_MAX;
188 int c, bcpu = -1;
189
190 head->next_cpu = -1;
191 for (c = 0; c < head->ncpus; c++) {
192 u64 exp = head->cpu[c].expires;
193 if (exp < lowest) {
194 bcpu = c;
195 lowest = exp;
196 }
197 }
198 if (bcpu >= 0) {
199 head->next_cpu = bcpu;
200 c = head->cpu[bcpu].lcpu;
201 if (uv_setup_intr(c, lowest))
202 /* If we didn't set it up in time, trigger */
203 uv_rtc_send_IPI(c);
204 } else {
205 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
206 UVH_RTC1_INT_CONFIG_M_MASK);
207 }
208}
209
210/*
211 * Set expiration time for current cpu.
212 *
213 * Returns 1 if we missed the expiration time.
214 */
215static int uv_rtc_set_timer(int cpu, u64 expires)
216{
217 int pnode = uv_cpu_to_pnode(cpu);
218 int bid = uv_cpu_to_blade_id(cpu);
219 struct uv_rtc_timer_head *head = blade_info[bid];
220 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
221 u64 *t = &head->cpu[bcpu].expires;
222 unsigned long flags;
223 int next_cpu;
224
225 spin_lock_irqsave(&head->lock, flags);
226
227 next_cpu = head->next_cpu;
228 *t = expires;
e47938b1 229
5ab5ab34
DS
230 /* Will this one be next to go off? */
231 if (next_cpu < 0 || bcpu == next_cpu ||
232 expires < head->cpu[next_cpu].expires) {
233 head->next_cpu = bcpu;
234 if (uv_setup_intr(cpu, expires)) {
235 *t = ULLONG_MAX;
236 uv_rtc_find_next_timer(head, pnode);
237 spin_unlock_irqrestore(&head->lock, flags);
e47938b1 238 return -ETIME;
5ab5ab34
DS
239 }
240 }
241
242 spin_unlock_irqrestore(&head->lock, flags);
243 return 0;
244}
245
246/*
247 * Unset expiration time for current cpu.
248 *
249 * Returns 1 if this timer was pending.
250 */
e47938b1 251static int uv_rtc_unset_timer(int cpu, int force)
5ab5ab34
DS
252{
253 int pnode = uv_cpu_to_pnode(cpu);
254 int bid = uv_cpu_to_blade_id(cpu);
255 struct uv_rtc_timer_head *head = blade_info[bid];
256 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
257 u64 *t = &head->cpu[bcpu].expires;
258 unsigned long flags;
259 int rc = 0;
260
261 spin_lock_irqsave(&head->lock, flags);
262
e47938b1 263 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
5ab5ab34
DS
264 rc = 1;
265
e47938b1
DS
266 if (rc) {
267 *t = ULLONG_MAX;
268 /* Was the hardware setup for this timer? */
269 if (head->next_cpu == bcpu)
270 uv_rtc_find_next_timer(head, pnode);
271 }
5ab5ab34
DS
272
273 spin_unlock_irqrestore(&head->lock, flags);
274
275 return rc;
276}
277
278
279/*
280 * Kernel interface routines.
281 */
282
283/*
284 * Read the RTC.
aca3bb59
DS
285 *
286 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
287 * cachelines of it's own page. This allows faster simultaneous reads
288 * from a given socket.
5ab5ab34 289 */
c5428e95 290static cycle_t uv_read_rtc(struct clocksource *cs)
5ab5ab34 291{
aca3bb59
DS
292 unsigned long offset;
293
294 if (uv_get_min_hub_revision_id() == 1)
295 offset = 0;
296 else
297 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
298
299 return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
5ab5ab34
DS
300}
301
302/*
303 * Program the next event, relative to now
304 */
305static int uv_rtc_next_event(unsigned long delta,
306 struct clock_event_device *ced)
307{
308 int ced_cpu = cpumask_first(ced->cpumask);
309
c5428e95 310 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
5ab5ab34
DS
311}
312
313/*
314 * Setup the RTC timer in oneshot mode
315 */
316static void uv_rtc_timer_setup(enum clock_event_mode mode,
317 struct clock_event_device *evt)
318{
319 int ced_cpu = cpumask_first(evt->cpumask);
320
321 switch (mode) {
322 case CLOCK_EVT_MODE_PERIODIC:
323 case CLOCK_EVT_MODE_ONESHOT:
324 case CLOCK_EVT_MODE_RESUME:
325 /* Nothing to do here yet */
326 break;
327 case CLOCK_EVT_MODE_UNUSED:
328 case CLOCK_EVT_MODE_SHUTDOWN:
e47938b1 329 uv_rtc_unset_timer(ced_cpu, 1);
5ab5ab34
DS
330 break;
331 }
332}
333
334static void uv_rtc_interrupt(void)
335{
5ab5ab34 336 int cpu = smp_processor_id();
e47938b1 337 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
5ab5ab34
DS
338
339 if (!ced || !ced->event_handler)
340 return;
341
e47938b1 342 if (uv_rtc_unset_timer(cpu, 0) != 1)
5ab5ab34
DS
343 return;
344
345 ced->event_handler(ced);
346}
347
8c28de4d
DS
348static int __init uv_enable_evt_rtc(char *str)
349{
350 uv_rtc_evt_enable = 1;
351
352 return 1;
353}
354__setup("uvrtcevt", uv_enable_evt_rtc);
355
5ab5ab34
DS
356static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
357{
358 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
359
360 *ced = clock_event_device_uv;
361 ced->cpumask = cpumask_of(smp_processor_id());
362 clockevents_register_device(ced);
363}
364
365static __init int uv_rtc_setup_clock(void)
366{
367 int rc;
368
581f202b 369 if (!is_uv_system())
5ab5ab34
DS
370 return -ENODEV;
371
5ab5ab34
DS
372 clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
373 clocksource_uv.shift);
374
581f202b
DS
375 /* If single blade, prefer tsc */
376 if (uv_num_possible_blades() == 1)
377 clocksource_uv.rating = 250;
378
5ab5ab34 379 rc = clocksource_register(&clocksource_uv);
8c28de4d
DS
380 if (rc)
381 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
382 else
383 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
384 sn_rtc_cycles_per_second/(unsigned long)1E6);
385
581f202b 386 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
5ab5ab34 387 return rc;
8c28de4d 388
5ab5ab34
DS
389 /* Setup and register clockevents */
390 rc = uv_rtc_allocate_timers();
d5991ff2
DS
391 if (rc)
392 goto error;
393
4a4de9c7 394 x86_platform_ipi_callback = uv_rtc_interrupt;
5ab5ab34
DS
395
396 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
397 NSEC_PER_SEC, clock_event_device_uv.shift);
398
399 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
400 sn_rtc_cycles_per_second;
401
402 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
403 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
404
405 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
406 if (rc) {
4a4de9c7 407 x86_platform_ipi_callback = NULL;
5ab5ab34 408 uv_rtc_deallocate_timers();
d5991ff2 409 goto error;
5ab5ab34
DS
410 }
411
d5991ff2
DS
412 printk(KERN_INFO "UV RTC clockevents registered\n");
413
414 return 0;
415
416error:
417 clocksource_unregister(&clocksource_uv);
418 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
419
5ab5ab34
DS
420 return rc;
421}
422arch_initcall(uv_rtc_setup_clock);