uprobes/x86: Kill adjust_ret_addr(), simplify UPROBE_FIX_CALL logic
[linux-2.6-block.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
2b144498 35/* Adjust IP back to vicinity of actual insn */
78d9af4c 36#define UPROBE_FIX_IP 0x01
0326f5a9 37
2b144498 38/* Adjust the return address of a call insn */
78d9af4c 39#define UPROBE_FIX_CALL 0x02
2b144498 40
bdc1e472 41/* Instruction will modify TF, don't change it */
78d9af4c 42#define UPROBE_FIX_SETF 0x04
bdc1e472 43
78d9af4c
ON
44#define UPROBE_FIX_RIP_AX 0x08
45#define UPROBE_FIX_RIP_CX 0x10
2b144498 46
0326f5a9
SD
47#define UPROBE_TRAP_NR UINT_MAX
48
2b144498 49/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
50#define OPCODE1(insn) ((insn)->opcode.bytes[0])
51#define OPCODE2(insn) ((insn)->opcode.bytes[1])
52#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 53#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
54
55#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
56 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
57 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
58 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
59 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
60 << (row % 32))
61
04a3d984
SD
62/*
63 * Good-instruction tables for 32-bit apps. This is non-const and volatile
64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
65 * some versions of gcc to think only *(unsigned long*) is used.
66 */
8dbacad9 67#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
04a3d984 68static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
69 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
70 /* ---------------------------------------------- */
71 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
72 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
73 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
74 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
75 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
76 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
77 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
78 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
79 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
80 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
81 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
82 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
83 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
84 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
85 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
86 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
87 /* ---------------------------------------------- */
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89};
8dbacad9
ON
90#else
91#define good_insns_32 NULL
92#endif
2b144498 93
04a3d984 94/* Good-instruction tables for 64-bit apps */
8dbacad9 95#if defined(CONFIG_X86_64)
04a3d984
SD
96static volatile u32 good_insns_64[256 / 32] = {
97 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
98 /* ---------------------------------------------- */
99 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
100 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
101 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
102 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
103 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
104 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
105 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
106 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
107 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
108 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
109 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
110 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
111 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
112 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
113 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
114 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
115 /* ---------------------------------------------- */
116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
117};
8dbacad9
ON
118#else
119#define good_insns_64 NULL
120#endif
121
122/* Using this for both 64-bit and 32-bit apps */
123static volatile u32 good_2byte_insns[256 / 32] = {
124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
125 /* ---------------------------------------------- */
126 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
127 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
128 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
129 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
130 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
131 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
132 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
133 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
134 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
135 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
136 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
137 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
138 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
139 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
140 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
141 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
142 /* ---------------------------------------------- */
143 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
144};
2b144498
SD
145#undef W
146
147/*
148 * opcodes we'll probably never support:
7b2d81d4
IM
149 *
150 * 6c-6d, e4-e5, ec-ed - in
151 * 6e-6f, e6-e7, ee-ef - out
152 * cc, cd - int3, int
153 * cf - iret
154 * d6 - illegal instruction
155 * f1 - int1/icebp
156 * f4 - hlt
157 * fa, fb - cli, sti
158 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
2b144498
SD
159 *
160 * invalid opcodes in 64-bit mode:
2b144498 161 *
7b2d81d4
IM
162 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
163 * 63 - we support this opcode in x86_64 but not in i386.
2b144498
SD
164 *
165 * opcodes we may need to refine support for:
7b2d81d4
IM
166 *
167 * 0f - 2-byte instructions: For many of these instructions, the validity
168 * depends on the prefix and/or the reg field. On such instructions, we
169 * just consider the opcode combination valid if it corresponds to any
170 * valid instruction.
171 *
172 * 8f - Group 1 - only reg = 0 is OK
173 * c6-c7 - Group 11 - only reg = 0 is OK
174 * d9-df - fpu insns with some illegal encodings
175 * f2, f3 - repnz, repz prefixes. These are also the first byte for
176 * certain floating-point instructions, such as addsd.
177 *
178 * fe - Group 4 - only reg = 0 or 1 is OK
179 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
180 *
181 * others -- Do we need to support these?
7b2d81d4
IM
182 *
183 * 0f - (floating-point?) prefetch instructions
184 * 07, 17, 1f - pop es, pop ss, pop ds
185 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 186 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
187 * 67 - addr16 prefix
188 * ce - into
189 * f0 - lock prefix
2b144498
SD
190 */
191
192/*
193 * TODO:
194 * - Where necessary, examine the modrm byte and allow only valid instructions
195 * in the different Groups and fpu instructions.
196 */
197
198static bool is_prefix_bad(struct insn *insn)
199{
200 int i;
201
202 for (i = 0; i < insn->prefixes.nbytes; i++) {
203 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
204 case 0x26: /* INAT_PFX_ES */
205 case 0x2E: /* INAT_PFX_CS */
206 case 0x36: /* INAT_PFX_DS */
207 case 0x3E: /* INAT_PFX_SS */
208 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
209 return true;
210 }
211 }
212 return false;
213}
214
73175d0d 215static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
2b144498 216{
73175d0d
ON
217 u32 volatile *good_insns;
218
219 insn_init(insn, auprobe->insn, x86_64);
ff261964
ON
220 /* has the side-effect of processing the entire instruction */
221 insn_get_length(insn);
222 if (WARN_ON_ONCE(!insn_complete(insn)))
223 return -ENOEXEC;
2b144498 224
2b144498
SD
225 if (is_prefix_bad(insn))
226 return -ENOTSUPP;
7b2d81d4 227
73175d0d
ON
228 if (x86_64)
229 good_insns = good_insns_64;
230 else
231 good_insns = good_insns_32;
232
233 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
2b144498 234 return 0;
7b2d81d4 235
2b144498
SD
236 if (insn->opcode.nbytes == 2) {
237 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
238 return 0;
239 }
7b2d81d4 240
2b144498
SD
241 return -ENOTSUPP;
242}
243
2b144498 244#ifdef CONFIG_X86_64
2ae1f49a
ON
245static inline bool is_64bit_mm(struct mm_struct *mm)
246{
247 return !config_enabled(CONFIG_IA32_EMULATION) ||
b24dc8da 248 !(mm->context.ia32_compat == TIF_IA32);
2ae1f49a 249}
2b144498 250/*
3ff54efd 251 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
252 * immediately. Otherwise, rewrite the instruction so that it accesses
253 * its memory operand indirectly through a scratch register. Set
97aa5cdd
ON
254 * def->fixups and def->riprel_target accordingly. (The contents of the
255 * scratch register will be saved before we single-step the modified
256 * instruction, and restored afterward).
2b144498
SD
257 *
258 * We do this because a rip-relative instruction can access only a
259 * relatively small area (+/- 2 GB from the instruction), and the XOL
260 * area typically lies beyond that area. At least for instructions
261 * that store to memory, we can't execute the original instruction
262 * and "fix things up" later, because the misdirected store could be
263 * disastrous.
264 *
265 * Some useful facts about rip-relative instructions:
7b2d81d4
IM
266 *
267 * - There's always a modrm byte.
268 * - There's never a SIB byte.
269 * - The displacement is always 4 bytes.
2b144498 270 */
e3343e6a 271static void
59078d4b 272handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
273{
274 u8 *cursor;
275 u8 reg;
276
2b144498
SD
277 if (!insn_rip_relative(insn))
278 return;
279
280 /*
281 * insn_rip_relative() would have decoded rex_prefix, modrm.
282 * Clear REX.b bit (extension of MODRM.rm field):
283 * we want to encode rax/rcx, not r8/r9.
284 */
285 if (insn->rex_prefix.nbytes) {
3ff54efd 286 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
2b144498
SD
287 *cursor &= 0xfe; /* Clearing REX.B bit */
288 }
289
290 /*
291 * Point cursor at the modrm byte. The next 4 bytes are the
292 * displacement. Beyond the displacement, for some instructions,
293 * is the immediate operand.
294 */
3ff54efd 295 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498
SD
296 /*
297 * Convert from rip-relative addressing to indirect addressing
298 * via a scratch register. Change the r/m field from 0x5 (%rip)
299 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
300 */
301 reg = MODRM_REG(insn);
302 if (reg == 0) {
303 /*
304 * The register operand (if any) is either the A register
305 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
306 * REX prefix) %r8. In any case, we know the C register
307 * is NOT the register operand, so we use %rcx (register
308 * #1) for the scratch register.
309 */
78d9af4c 310 auprobe->def.fixups |= UPROBE_FIX_RIP_CX;
2b144498
SD
311 /* Change modrm from 00 000 101 to 00 000 001. */
312 *cursor = 0x1;
313 } else {
314 /* Use %rax (register #0) for the scratch register. */
78d9af4c 315 auprobe->def.fixups |= UPROBE_FIX_RIP_AX;
2b144498
SD
316 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
317 *cursor = (reg << 3);
318 }
319
320 /* Target address = address of next instruction + (signed) offset */
97aa5cdd 321 auprobe->def.riprel_target = (long)insn->length + insn->displacement.value;
7b2d81d4 322
2b144498
SD
323 /* Displacement field is gone; slide immediate field (if any) over. */
324 if (insn->immediate.nbytes) {
325 cursor++;
7b2d81d4 326 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
2b144498 327 }
2b144498
SD
328}
329
d20737c0
ON
330/*
331 * If we're emulating a rip-relative instruction, save the contents
332 * of the scratch register and store the target address in that register.
333 */
334static void
335pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
336 struct arch_uprobe_task *autask)
337{
97aa5cdd 338 if (auprobe->def.fixups & UPROBE_FIX_RIP_AX) {
d20737c0
ON
339 autask->saved_scratch_register = regs->ax;
340 regs->ax = current->utask->vaddr;
97aa5cdd
ON
341 regs->ax += auprobe->def.riprel_target;
342 } else if (auprobe->def.fixups & UPROBE_FIX_RIP_CX) {
d20737c0
ON
343 autask->saved_scratch_register = regs->cx;
344 regs->cx = current->utask->vaddr;
97aa5cdd 345 regs->cx += auprobe->def.riprel_target;
d20737c0
ON
346 }
347}
348
349static void
350handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
351{
97aa5cdd 352 if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
d20737c0
ON
353 struct arch_uprobe_task *autask;
354
355 autask = &current->utask->autask;
97aa5cdd 356 if (auprobe->def.fixups & UPROBE_FIX_RIP_AX)
d20737c0
ON
357 regs->ax = autask->saved_scratch_register;
358 else
359 regs->cx = autask->saved_scratch_register;
360
361 /*
362 * The original instruction includes a displacement, and so
363 * is 4 bytes longer than what we've just single-stepped.
364 * Caller may need to apply other fixups to handle stuff
365 * like "jmpq *...(%rip)" and "callq *...(%rip)".
366 */
367 if (correction)
368 *correction += 4;
369 }
370}
2ae1f49a
ON
371#else /* 32-bit: */
372static inline bool is_64bit_mm(struct mm_struct *mm)
2b144498 373{
2ae1f49a 374 return false;
2b144498 375}
d20737c0
ON
376/*
377 * No RIP-relative addressing on 32-bit
378 */
59078d4b 379static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 380{
d20737c0
ON
381}
382static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
383 struct arch_uprobe_task *autask)
384{
385}
386static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
387 long *correction)
388{
2b144498 389}
2b144498
SD
390#endif /* CONFIG_X86_64 */
391
8ad8e9d3
ON
392struct uprobe_xol_ops {
393 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
394 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
395 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
588fbd61 396 void (*abort)(struct arch_uprobe *, struct pt_regs *);
8ad8e9d3
ON
397};
398
8faaed1b
ON
399static inline int sizeof_long(void)
400{
401 return is_ia32_task() ? 4 : 8;
402}
403
8ad8e9d3
ON
404static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
405{
406 pre_xol_rip_insn(auprobe, regs, &current->utask->autask);
407 return 0;
408}
409
2b82cadf
ON
410static int push_ret_address(struct pt_regs *regs, unsigned long ip)
411{
412 unsigned long new_sp = regs->sp - sizeof_long();
413
414 if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
415 return -EFAULT;
416
417 regs->sp = new_sp;
418 return 0;
419}
420
8ad8e9d3
ON
421static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
422{
423 struct uprobe_task *utask = current->utask;
424 long correction = (long)(utask->vaddr - utask->xol_vaddr);
8ad8e9d3
ON
425
426 handle_riprel_post_xol(auprobe, regs, &correction);
97aa5cdd 427 if (auprobe->def.fixups & UPROBE_FIX_IP)
8ad8e9d3
ON
428 regs->ip += correction;
429
97aa5cdd 430 if (auprobe->def.fixups & UPROBE_FIX_CALL) {
1dc76e6e
ON
431 regs->sp += sizeof_long();
432 if (push_ret_address(regs, utask->vaddr + auprobe->def.ilen))
75f9ef0b 433 return -ERESTART;
75f9ef0b 434 }
220ef8dc 435 /* popf; tell the caller to not touch TF */
97aa5cdd 436 if (auprobe->def.fixups & UPROBE_FIX_SETF)
220ef8dc 437 utask->autask.saved_tf = true;
8ad8e9d3 438
75f9ef0b 439 return 0;
8ad8e9d3
ON
440}
441
588fbd61
ON
442static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
443{
444 handle_riprel_post_xol(auprobe, regs, NULL);
445}
446
8ad8e9d3
ON
447static struct uprobe_xol_ops default_xol_ops = {
448 .pre_xol = default_pre_xol_op,
449 .post_xol = default_post_xol_op,
588fbd61 450 .abort = default_abort_op,
8ad8e9d3
ON
451};
452
8e89c0be
ON
453static bool branch_is_call(struct arch_uprobe *auprobe)
454{
455 return auprobe->branch.opc1 == 0xe8;
456}
457
8f95505b
ON
458#define CASE_COND \
459 COND(70, 71, XF(OF)) \
460 COND(72, 73, XF(CF)) \
461 COND(74, 75, XF(ZF)) \
462 COND(78, 79, XF(SF)) \
463 COND(7a, 7b, XF(PF)) \
464 COND(76, 77, XF(CF) || XF(ZF)) \
465 COND(7c, 7d, XF(SF) != XF(OF)) \
466 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
467
468#define COND(op_y, op_n, expr) \
469 case 0x ## op_y: DO((expr) != 0) \
470 case 0x ## op_n: DO((expr) == 0)
471
472#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
473
474static bool is_cond_jmp_opcode(u8 opcode)
475{
476 switch (opcode) {
477 #define DO(expr) \
478 return true;
479 CASE_COND
480 #undef DO
481
482 default:
483 return false;
484 }
485}
486
487static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
488{
489 unsigned long flags = regs->flags;
490
491 switch (auprobe->branch.opc1) {
492 #define DO(expr) \
493 return expr;
494 CASE_COND
495 #undef DO
496
497 default: /* not a conditional jmp */
498 return true;
499 }
500}
501
502#undef XF
503#undef COND
504#undef CASE_COND
505
7ba6db2d
ON
506static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
507{
8e89c0be 508 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
8f95505b 509 unsigned long offs = (long)auprobe->branch.offs;
8e89c0be
ON
510
511 if (branch_is_call(auprobe)) {
8e89c0be
ON
512 /*
513 * If it fails we execute this (mangled, see the comment in
514 * branch_clear_offset) insn out-of-line. In the likely case
515 * this should trigger the trap, and the probed application
516 * should die or restart the same insn after it handles the
517 * signal, arch_uprobe_post_xol() won't be even called.
518 *
519 * But there is corner case, see the comment in ->post_xol().
520 */
2b82cadf 521 if (push_ret_address(regs, new_ip))
8e89c0be 522 return false;
8f95505b
ON
523 } else if (!check_jmp_cond(auprobe, regs)) {
524 offs = 0;
8e89c0be
ON
525 }
526
8f95505b 527 regs->ip = new_ip + offs;
7ba6db2d
ON
528 return true;
529}
530
8e89c0be
ON
531static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
532{
533 BUG_ON(!branch_is_call(auprobe));
534 /*
535 * We can only get here if branch_emulate_op() failed to push the ret
536 * address _and_ another thread expanded our stack before the (mangled)
537 * "call" insn was executed out-of-line. Just restore ->sp and restart.
538 * We could also restore ->ip and try to call branch_emulate_op() again.
539 */
540 regs->sp += sizeof_long();
541 return -ERESTART;
542}
543
544static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
545{
546 /*
547 * Turn this insn into "call 1f; 1:", this is what we will execute
548 * out-of-line if ->emulate() fails. We only need this to generate
549 * a trap, so that the probed task receives the correct signal with
550 * the properly filled siginfo.
551 *
552 * But see the comment in ->post_xol(), in the unlikely case it can
553 * succeed. So we need to ensure that the new ->ip can not fall into
554 * the non-canonical area and trigger #GP.
555 *
556 * We could turn it into (say) "pushf", but then we would need to
557 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
558 * of ->insn[] for set_orig_insn().
559 */
560 memset(auprobe->insn + insn_offset_immediate(insn),
561 0, insn->immediate.nbytes);
562}
563
7ba6db2d
ON
564static struct uprobe_xol_ops branch_xol_ops = {
565 .emulate = branch_emulate_op,
8e89c0be 566 .post_xol = branch_post_xol_op,
7ba6db2d
ON
567};
568
569/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
570static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
571{
8e89c0be 572 u8 opc1 = OPCODE1(insn);
250bbd12 573 int i;
8e89c0be 574
8e89c0be 575 switch (opc1) {
7ba6db2d
ON
576 case 0xeb: /* jmp 8 */
577 case 0xe9: /* jmp 32 */
d2410063 578 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
7ba6db2d 579 break;
8e89c0be
ON
580
581 case 0xe8: /* call relative */
582 branch_clear_offset(auprobe, insn);
583 break;
8f95505b 584
6cc5e7ff
ON
585 case 0x0f:
586 if (insn->opcode.nbytes != 2)
587 return -ENOSYS;
588 /*
589 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
590 * OPCODE1() of the "short" jmp which checks the same condition.
591 */
592 opc1 = OPCODE2(insn) - 0x10;
7ba6db2d 593 default:
8f95505b
ON
594 if (!is_cond_jmp_opcode(opc1))
595 return -ENOSYS;
7ba6db2d
ON
596 }
597
250bbd12
DV
598 /*
599 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
600 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
601 * No one uses these insns, reject any branch insns with such prefix.
602 */
603 for (i = 0; i < insn->prefixes.nbytes; i++) {
604 if (insn->prefixes.bytes[i] == 0x66)
605 return -ENOTSUPP;
606 }
607
8e89c0be 608 auprobe->branch.opc1 = opc1;
7ba6db2d
ON
609 auprobe->branch.ilen = insn->length;
610 auprobe->branch.offs = insn->immediate.value;
611
612 auprobe->ops = &branch_xol_ops;
613 return 0;
614}
615
2b144498 616/**
0326f5a9 617 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 618 * @mm: the probed address space.
3ff54efd 619 * @arch_uprobe: the probepoint information.
7eb9ba5e 620 * @addr: virtual address at which to install the probepoint
2b144498
SD
621 * Return 0 on success or a -ve number on error.
622 */
7eb9ba5e 623int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 624{
2b144498 625 struct insn insn;
ddb69f27
ON
626 bool fix_ip = true, fix_call = false;
627 int ret;
2b144498 628
2ae1f49a 629 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
ddb69f27 630 if (ret)
2b144498 631 return ret;
7b2d81d4 632
7ba6db2d
ON
633 ret = branch_setup_xol_ops(auprobe, &insn);
634 if (ret != -ENOSYS)
635 return ret;
636
ddb69f27 637 /*
97aa5cdd
ON
638 * Figure out which fixups default_post_xol_op() will need to perform,
639 * and annotate def->fixups accordingly. To start with, ->fixups is
640 * either zero or it reflects rip-related fixups.
ddb69f27 641 */
ddb69f27
ON
642 switch (OPCODE1(&insn)) {
643 case 0x9d: /* popf */
97aa5cdd 644 auprobe->def.fixups |= UPROBE_FIX_SETF;
ddb69f27
ON
645 break;
646 case 0xc3: /* ret or lret -- ip is correct */
647 case 0xcb:
648 case 0xc2:
649 case 0xca:
650 fix_ip = false;
651 break;
ddb69f27
ON
652 case 0x9a: /* call absolute - Fix return addr, not ip */
653 fix_call = true;
654 fix_ip = false;
655 break;
656 case 0xea: /* jmp absolute -- ip is correct */
657 fix_ip = false;
658 break;
659 case 0xff:
ddb69f27
ON
660 switch (MODRM_REG(&insn)) {
661 case 2: case 3: /* call or lcall, indirect */
662 fix_call = true;
663 case 4: case 5: /* jmp or ljmp, indirect */
664 fix_ip = false;
665 }
e55848a4 666 /* fall through */
ddb69f27 667 default:
e55848a4 668 handle_riprel_insn(auprobe, &insn);
ddb69f27
ON
669 }
670
1dc76e6e 671 auprobe->def.ilen = insn.length;
ddb69f27 672 if (fix_ip)
97aa5cdd 673 auprobe->def.fixups |= UPROBE_FIX_IP;
ddb69f27 674 if (fix_call)
97aa5cdd 675 auprobe->def.fixups |= UPROBE_FIX_CALL;
7b2d81d4 676
8ad8e9d3 677 auprobe->ops = &default_xol_ops;
2b144498
SD
678 return 0;
679}
0326f5a9 680
0326f5a9
SD
681/*
682 * arch_uprobe_pre_xol - prepare to execute out of line.
683 * @auprobe: the probepoint information.
684 * @regs: reflects the saved user state of current task.
685 */
686int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
687{
34e7317d 688 struct uprobe_task *utask = current->utask;
0326f5a9 689
dd91016d
ON
690 if (auprobe->ops->pre_xol) {
691 int err = auprobe->ops->pre_xol(auprobe, regs);
692 if (err)
693 return err;
694 }
695
34e7317d
ON
696 regs->ip = utask->xol_vaddr;
697 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 698 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 699
34e7317d 700 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
701 regs->flags |= X86_EFLAGS_TF;
702 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
703 set_task_blockstep(current, false);
704
0326f5a9
SD
705 return 0;
706}
707
0326f5a9
SD
708/*
709 * If xol insn itself traps and generates a signal(Say,
710 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
711 * instruction jumps back to its own address. It is assumed that anything
712 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
713 *
714 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
715 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
716 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
717 */
718bool arch_uprobe_xol_was_trapped(struct task_struct *t)
719{
720 if (t->thread.trap_nr != UPROBE_TRAP_NR)
721 return true;
722
723 return false;
724}
725
726/*
727 * Called after single-stepping. To avoid the SMP problems that can
728 * occur when we temporarily put back the original opcode to
729 * single-step, we single-stepped a copy of the instruction.
730 *
731 * This function prepares to resume execution after the single-step.
732 * We have to fix things up as follows:
733 *
734 * Typically, the new ip is relative to the copied instruction. We need
735 * to make it relative to the original instruction (FIX_IP). Exceptions
736 * are return instructions and absolute or indirect jump or call instructions.
737 *
738 * If the single-stepped instruction was a call, the return address that
739 * is atop the stack is the address following the copied instruction. We
740 * need to make it the address following the original instruction (FIX_CALL).
741 *
742 * If the original instruction was a rip-relative instruction such as
743 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
744 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
745 * We need to restore the contents of the scratch register and adjust
746 * the ip, keeping in mind that the instruction we executed is 4 bytes
747 * shorter than the original instruction (since we squeezed out the offset
748 * field). (FIX_RIP_AX or FIX_RIP_CX)
749 */
750int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
751{
34e7317d 752 struct uprobe_task *utask = current->utask;
220ef8dc
ON
753 bool send_sigtrap = utask->autask.saved_tf;
754 int err = 0;
0326f5a9
SD
755
756 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
6ded5f38 757 current->thread.trap_nr = utask->autask.saved_trap_nr;
014940ba
ON
758
759 if (auprobe->ops->post_xol) {
220ef8dc 760 err = auprobe->ops->post_xol(auprobe, regs);
014940ba 761 if (err) {
75f9ef0b 762 /*
6ded5f38
ON
763 * Restore ->ip for restart or post mortem analysis.
764 * ->post_xol() must not return -ERESTART unless this
765 * is really possible.
75f9ef0b 766 */
6ded5f38 767 regs->ip = utask->vaddr;
75f9ef0b 768 if (err == -ERESTART)
220ef8dc
ON
769 err = 0;
770 send_sigtrap = false;
014940ba
ON
771 }
772 }
4dc316c6
ON
773 /*
774 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
775 * so we can get an extra SIGTRAP if we do not clear TF. We need
776 * to examine the opcode to make it right.
777 */
220ef8dc 778 if (send_sigtrap)
4dc316c6 779 send_sig(SIGTRAP, current, 0);
220ef8dc
ON
780
781 if (!utask->autask.saved_tf)
4dc316c6
ON
782 regs->flags &= ~X86_EFLAGS_TF;
783
220ef8dc 784 return err;
0326f5a9
SD
785}
786
787/* callback routine for handling exceptions. */
788int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
789{
790 struct die_args *args = data;
791 struct pt_regs *regs = args->regs;
792 int ret = NOTIFY_DONE;
793
794 /* We are only interested in userspace traps */
795 if (regs && !user_mode_vm(regs))
796 return NOTIFY_DONE;
797
798 switch (val) {
799 case DIE_INT3:
800 if (uprobe_pre_sstep_notifier(regs))
801 ret = NOTIFY_STOP;
802
803 break;
804
805 case DIE_DEBUG:
806 if (uprobe_post_sstep_notifier(regs))
807 ret = NOTIFY_STOP;
808
809 default:
810 break;
811 }
812
813 return ret;
814}
815
816/*
817 * This function gets called when XOL instruction either gets trapped or
6ded5f38
ON
818 * the thread has a fatal signal. Reset the instruction pointer to its
819 * probed address for the potential restart or for post mortem analysis.
0326f5a9
SD
820 */
821void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
822{
823 struct uprobe_task *utask = current->utask;
824
588fbd61
ON
825 if (auprobe->ops->abort)
826 auprobe->ops->abort(auprobe, regs);
4dc316c6 827
588fbd61
ON
828 current->thread.trap_nr = utask->autask.saved_trap_nr;
829 regs->ip = utask->vaddr;
4dc316c6
ON
830 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
831 if (!utask->autask.saved_tf)
832 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
833}
834
3a4664aa 835static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9 836{
8ad8e9d3
ON
837 if (auprobe->ops->emulate)
838 return auprobe->ops->emulate(auprobe, regs);
0326f5a9
SD
839 return false;
840}
bdc1e472 841
3a4664aa
ON
842bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
843{
844 bool ret = __skip_sstep(auprobe, regs);
845 if (ret && (regs->flags & X86_EFLAGS_TF))
846 send_sig(SIGTRAP, current, 0);
847 return ret;
848}
791eca10
AA
849
850unsigned long
851arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
852{
8faaed1b 853 int rasize = sizeof_long(), nleft;
791eca10
AA
854 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
855
8faaed1b 856 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
857 return -1;
858
859 /* check whether address has been already hijacked */
860 if (orig_ret_vaddr == trampoline_vaddr)
861 return orig_ret_vaddr;
862
8faaed1b
ON
863 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
864 if (likely(!nleft))
791eca10
AA
865 return orig_ret_vaddr;
866
8faaed1b 867 if (nleft != rasize) {
791eca10
AA
868 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
869 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
870
871 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
872 }
873
874 return -1;
875}