x86/entry: Move paranoid irq tracing out of ASM code
[linux-block.git] / arch / x86 / kernel / traps.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1991, 1992 Linus Torvalds
a8c1be9d 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
1da177e4
LT
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
c1d518c8 10 * Handle hardware traps and faults.
1da177e4 11 */
c767a54b
JP
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
56dd9470 15#include <linux/context_tracking.h>
b5964405
IM
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
b5964405
IM
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
b5964405 21#include <linux/kdebug.h>
f503b5ae 22#include <linux/kgdb.h>
1da177e4 23#include <linux/kernel.h>
186f4360 24#include <linux/export.h>
b5964405 25#include <linux/ptrace.h>
b02ef20a 26#include <linux/uprobes.h>
1da177e4 27#include <linux/string.h>
b5964405 28#include <linux/delay.h>
1da177e4 29#include <linux/errno.h>
b5964405
IM
30#include <linux/kexec.h>
31#include <linux/sched.h>
68db0cf1 32#include <linux/sched/task_stack.h>
1da177e4 33#include <linux/timer.h>
1da177e4 34#include <linux/init.h>
91768d6c 35#include <linux/bug.h>
b5964405
IM
36#include <linux/nmi.h>
37#include <linux/mm.h>
c1d518c8
AH
38#include <linux/smp.h>
39#include <linux/io.h>
0d00449c
PZ
40#include <linux/hardirq.h>
41#include <linux/atomic.h>
42
b5964405 43#include <asm/stacktrace.h>
1da177e4 44#include <asm/processor.h>
1da177e4 45#include <asm/debugreg.h>
35de5b06 46#include <asm/text-patching.h>
08d636b6 47#include <asm/ftrace.h>
c1d518c8 48#include <asm/traps.h>
1da177e4 49#include <asm/desc.h>
78f7f1e5 50#include <asm/fpu/internal.h>
6650cdd9 51#include <asm/cpu.h>
ed1bbc40 52#include <asm/cpu_entry_area.h>
9e55e44e 53#include <asm/mce.h>
4eefbe79 54#include <asm/fixmap.h>
1164dd00 55#include <asm/mach_traps.h>
17f41571 56#include <asm/alternative.h>
a84eeaa9 57#include <asm/fpu/xstate.h>
ba3e127e 58#include <asm/vm86.h>
6fc9dc81 59#include <asm/umip.h>
59c1dcbe
JH
60#include <asm/insn.h>
61#include <asm/insn-eval.h>
c1d518c8 62
081f75bb 63#ifdef CONFIG_X86_64
428cf902 64#include <asm/x86_init.h>
081f75bb
AH
65#include <asm/pgalloc.h>
66#include <asm/proto.h>
081f75bb 67#else
c1d518c8 68#include <asm/processor-flags.h>
8e6dafd6 69#include <asm/setup.h>
b2502b41 70#include <asm/proto.h>
081f75bb 71#endif
1da177e4 72
7854f822 73DECLARE_BITMAP(system_vectors, NR_VECTORS);
b77b881f 74
d99e1bd1 75static inline void cond_local_irq_enable(struct pt_regs *regs)
762db434
AH
76{
77 if (regs->flags & X86_EFLAGS_IF)
78 local_irq_enable();
79}
80
d99e1bd1 81static inline void cond_local_irq_disable(struct pt_regs *regs)
3d2a71a5
AH
82{
83 if (regs->flags & X86_EFLAGS_IF)
84 local_irq_disable();
3d2a71a5
AH
85}
86
9a93848f
PZ
87int is_valid_bugaddr(unsigned long addr)
88{
89 unsigned short ud;
90
91 if (addr < TASK_SIZE_MAX)
92 return 0;
93
94 if (probe_kernel_address((unsigned short *)addr, ud))
95 return 0;
96
97 return ud == INSN_UD0 || ud == INSN_UD2;
98}
99
8a524f80 100int fixup_bug(struct pt_regs *regs, int trapnr)
9a93848f
PZ
101{
102 if (trapnr != X86_TRAP_UD)
103 return 0;
104
105 switch (report_bug(regs->ip, regs)) {
106 case BUG_TRAP_TYPE_NONE:
107 case BUG_TRAP_TYPE_BUG:
108 break;
109
110 case BUG_TRAP_TYPE_WARN:
3b3a371c 111 regs->ip += LEN_UD2;
9a93848f
PZ
112 return 1;
113 }
114
115 return 0;
116}
117
9326638c 118static nokprobe_inline int
79e21d65 119do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
c416ddf5 120 struct pt_regs *regs, long error_code)
1da177e4 121{
d74ef111 122 if (v8086_mode(regs)) {
3c1326f8 123 /*
c416ddf5 124 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
3c1326f8
AH
125 * On nmi (interrupt 2), do_trap should not be called.
126 */
c416ddf5
FW
127 if (trapnr < X86_TRAP_UD) {
128 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
129 error_code, trapnr))
130 return 0;
131 }
79e21d65 132 } else if (!user_mode(regs)) {
81fd9c18 133 if (fixup_exception(regs, trapnr, error_code, 0))
9a93848f
PZ
134 return 0;
135
9a93848f
PZ
136 tsk->thread.error_code = error_code;
137 tsk->thread.trap_nr = trapnr;
138 die(str, regs, error_code);
c416ddf5 139 }
1da177e4 140
b5964405 141 /*
51e7dc70 142 * We want error_code and trap_nr set for userspace faults and
b5964405
IM
143 * kernelspace faults which result in die(), but not
144 * kernelspace faults which are fixed up. die() gives the
145 * process no chance to handle the signal and notice the
146 * kernel fault information, so that won't result in polluting
147 * the information about previously queued, but not yet
be4c11af 148 * delivered, faults. See also exc_general_protection below.
b5964405
IM
149 */
150 tsk->thread.error_code = error_code;
51e7dc70 151 tsk->thread.trap_nr = trapnr;
d1895183 152
c416ddf5
FW
153 return -1;
154}
1da177e4 155
6ace1098
EB
156static void show_signal(struct task_struct *tsk, int signr,
157 const char *type, const char *desc,
158 struct pt_regs *regs, long error_code)
159{
081f75bb
AH
160 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
161 printk_ratelimit()) {
6ace1098
EB
162 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
163 tsk->comm, task_pid_nr(tsk), type, desc,
c767a54b 164 regs->ip, regs->sp, error_code);
1c99a687 165 print_vma_addr(KERN_CONT " in ", regs->ip);
c767a54b 166 pr_cont("\n");
081f75bb 167 }
6ace1098
EB
168}
169
9326638c 170static void
c416ddf5 171do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
164881b6 172 long error_code, int sicode, void __user *addr)
c416ddf5
FW
173{
174 struct task_struct *tsk = current;
175
c416ddf5
FW
176 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
177 return;
d1895183 178
6ace1098 179 show_signal(tsk, signr, "trap ", str, regs, error_code);
081f75bb 180
164881b6 181 if (!sicode)
3cf5d076 182 force_sig(signr);
164881b6 183 else
2e1661d2 184 force_sig_fault(signr, sicode, addr);
1da177e4 185}
9326638c 186NOKPROBE_SYMBOL(do_trap);
1da177e4 187
dff0796e 188static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
164881b6 189 unsigned long trapnr, int signr, int sicode, void __user *addr)
dff0796e 190{
5778077d 191 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
02fdcd5e 192
b8347c21
AS
193 /*
194 * WARN*()s end up here; fix them up before we call the
195 * notifier chain.
196 */
197 if (!user_mode(regs) && fixup_bug(regs, trapnr))
198 return;
199
dff0796e
ON
200 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
201 NOTIFY_STOP) {
d99e1bd1 202 cond_local_irq_enable(regs);
164881b6 203 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
ca4c6a98 204 cond_local_irq_disable(regs);
dff0796e 205 }
dff0796e
ON
206}
207
218e31b6
TG
208/*
209 * Posix requires to provide the address of the faulting instruction for
210 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
211 *
212 * This address is usually regs->ip, but when an uprobe moved the code out
213 * of line then regs->ip points to the XOL code which would confuse
214 * anything which analyzes the fault address vs. the unmodified binary. If
215 * a trap happened in XOL code then uprobe maps regs->ip back to the
216 * original instruction address.
217 */
218static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
219{
220 return (void __user *)uprobe_get_trap_addr(regs);
221}
222
9d06c402
TG
223DEFINE_IDTENTRY(exc_divide_error)
224{
225 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
226 FPE_INTDIV, error_get_trap_addr(regs));
227}
228
4b6b9111
TG
229DEFINE_IDTENTRY(exc_overflow)
230{
231 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
232}
233
49893c5c
TG
234#ifdef CONFIG_X86_F00F_BUG
235void handle_invalid_op(struct pt_regs *regs)
236#else
237static inline void handle_invalid_op(struct pt_regs *regs)
238#endif
239{
240 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
241 ILL_ILLOPN, error_get_trap_addr(regs));
242}
243
244DEFINE_IDTENTRY(exc_invalid_op)
245{
246 handle_invalid_op(regs);
247}
248
f95658fd
TG
249DEFINE_IDTENTRY(exc_coproc_segment_overrun)
250{
251 do_error_trap(regs, 0, "coprocessor segment overrun",
252 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
253}
254
97b3d290
TG
255DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
256{
257 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
258 0, NULL);
259}
260
99a3fb8d
TG
261DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
262{
263 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
264 SIGBUS, 0, NULL);
265}
266
fd9689bf
TG
267DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
268{
269 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
270 0, NULL);
1da177e4
LT
271}
272
436608bb 273DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
6650cdd9
PZI
274{
275 char *str = "alignment check";
276
6650cdd9
PZI
277 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
278 return;
279
280 if (!user_mode(regs))
281 die("Split lock detected\n", regs, error_code);
282
283 local_irq_enable();
284
285 if (handle_user_split_lock(regs, error_code))
286 return;
287
288 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
289 error_code, BUS_ADRALN, NULL);
290}
291
e37e43a4 292#ifdef CONFIG_VMAP_STACK
6271cfdf
AL
293__visible void __noreturn handle_stack_overflow(const char *message,
294 struct pt_regs *regs,
295 unsigned long fault_address)
e37e43a4
AL
296{
297 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
298 (void *)fault_address, current->stack,
299 (char *)current->stack + THREAD_SIZE - 1);
300 die(message, regs, 0);
301
302 /* Be absolutely certain we don't return. */
2022cceb 303 panic("%s", message);
e37e43a4
AL
304}
305#endif
306
7d8d8cfd
AL
307/*
308 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
309 *
310 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
311 * SDM's warnings about double faults being unrecoverable, returning works as
312 * expected. Presumably what the SDM actually means is that the CPU may get
313 * the register state wrong on entry, so returning could be a bad idea.
314 *
315 * Various CPU engineers have promised that double faults due to an IRET fault
316 * while the stack is read-only are, in fact, recoverable.
317 *
318 * On x86_32, this is entered through a task gate, and regs are synthesized
319 * from the TSS. Returning is, in principle, okay, but changes to regs will
320 * be lost. If, for some reason, we need to return to a context with modified
321 * regs, the shim code could be adjusted to synchronize the registers.
c29c775a
TG
322 *
323 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
324 * to be read before doing anything else.
7d8d8cfd 325 */
c29c775a 326DEFINE_IDTENTRY_DF(exc_double_fault)
081f75bb
AH
327{
328 static const char str[] = "double fault";
329 struct task_struct *tsk = current;
330
7102cb07 331#ifdef CONFIG_VMAP_STACK
c29c775a
TG
332 unsigned long address = read_cr2();
333#endif
334
af726f21
AL
335#ifdef CONFIG_X86_ESPFIX64
336 extern unsigned char native_irq_return_iret[];
337
338 /*
339 * If IRET takes a non-IST fault on the espfix64 stack, then we
6d9256f0
AL
340 * end up promoting it to a doublefault. In that case, take
341 * advantage of the fact that we're not using the normal (TSS.sp0)
342 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
343 * and then modify our own IRET frame so that, when we return,
344 * we land directly at the #GP(0) vector with the stack already
345 * set up according to its expectations.
346 *
347 * The net result is that our #GP handler will think that we
348 * entered from usermode with the bad user context.
95927475 349 *
0d00449c 350 * No need for nmi_enter() here because we don't use RCU.
af726f21 351 */
c739f930 352 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
af726f21
AL
353 regs->cs == __KERNEL_CS &&
354 regs->ip == (unsigned long)native_irq_return_iret)
355 {
c482feef 356 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
e9660391 357 unsigned long *p = (unsigned long *)regs->sp;
af726f21 358
6d9256f0
AL
359 /*
360 * regs->sp points to the failing IRET frame on the
361 * ESPFIX64 stack. Copy it to the entry stack. This fills
362 * in gpregs->ss through gpregs->ip.
363 *
364 */
e9660391
PZ
365 gpregs->ip = p[0];
366 gpregs->cs = p[1];
367 gpregs->flags = p[2];
368 gpregs->sp = p[3];
369 gpregs->ss = p[4];
6d9256f0 370 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
af726f21 371
6d9256f0
AL
372 /*
373 * Adjust our frame so that we return straight to the #GP
374 * vector with the expected RSP value. This is safe because
375 * we won't enable interupts or schedule before we invoke
376 * general_protection, so nothing will clobber the stack
377 * frame we just set up.
bd7b1f7c
AL
378 *
379 * We will enter general_protection with kernel GSBASE,
380 * which is what the stub expects, given that the faulting
381 * RIP will be the IRET instruction.
6d9256f0 382 */
be4c11af 383 regs->ip = (unsigned long)asm_exc_general_protection;
6d9256f0 384 regs->sp = (unsigned long)&gpregs->orig_ax;
95927475 385
af726f21
AL
386 return;
387 }
388#endif
389
0d00449c 390 nmi_enter();
c29c775a 391 instrumentation_begin();
c9408265 392 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
081f75bb
AH
393
394 tsk->thread.error_code = error_code;
51e7dc70 395 tsk->thread.trap_nr = X86_TRAP_DF;
081f75bb 396
e37e43a4
AL
397#ifdef CONFIG_VMAP_STACK
398 /*
399 * If we overflow the stack into a guard page, the CPU will fail
400 * to deliver #PF and will send #DF instead. Similarly, if we
401 * take any non-IST exception while too close to the bottom of
402 * the stack, the processor will get a page fault while
403 * delivering the exception and will generate a double fault.
404 *
405 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
406 * Page-Fault Exception (#PF):
407 *
408 * Processors update CR2 whenever a page fault is detected. If a
409 * second page fault occurs while an earlier page fault is being
6d9256f0 410 * delivered, the faulting linear address of the second fault will
e37e43a4
AL
411 * overwrite the contents of CR2 (replacing the previous
412 * address). These updates to CR2 occur even if the page fault
413 * results in a double fault or occurs during the delivery of a
414 * double fault.
415 *
416 * The logic below has a small possibility of incorrectly diagnosing
417 * some errors as stack overflows. For example, if the IDT or GDT
418 * gets corrupted such that #GP delivery fails due to a bad descriptor
419 * causing #GP and we hit this condition while CR2 coincidentally
420 * points to the stack guard page, we'll think we overflowed the
421 * stack. Given that we're going to panic one way or another
422 * if this happens, this isn't necessarily worth fixing.
423 *
424 * If necessary, we could improve the test by only diagnosing
425 * a stack overflow if the saved RSP points within 47 bytes of
426 * the bottom of the stack: if RSP == tsk_stack + 48 and we
427 * take an exception, the stack is already aligned and there
428 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
429 * possible error code, so a stack overflow would *not* double
430 * fault. With any less space left, exception delivery could
431 * fail, and, as a practical matter, we've overflowed the
432 * stack even if the actual trigger for the double fault was
433 * something else.
434 */
c29c775a
TG
435 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
436 handle_stack_overflow("kernel stack overflow (double-fault)",
437 regs, address);
438 }
e37e43a4
AL
439#endif
440
93efbde2 441 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
0337b7eb 442 die("double fault", regs, error_code);
93efbde2 443 panic("Machine halted.");
c29c775a 444 instrumentation_end();
081f75bb 445}
081f75bb 446
58d9c81f 447DEFINE_IDTENTRY(exc_bounds)
fe3d197f 448{
58d9c81f 449 if (notify_die(DIE_TRAP, "bounds", regs, 0,
fe3d197f 450 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
8c84014f 451 return;
d99e1bd1 452 cond_local_irq_enable(regs);
fe3d197f 453
f39b6f0e 454 if (!user_mode(regs))
58d9c81f 455 die("bounds", regs, 0);
fe3d197f 456
58d9c81f 457 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
ca4c6a98
TG
458
459 cond_local_irq_disable(regs);
fe3d197f
DH
460}
461
59c1dcbe
JH
462enum kernel_gp_hint {
463 GP_NO_HINT,
464 GP_NON_CANONICAL,
465 GP_CANONICAL
466};
467
468/*
469 * When an uncaught #GP occurs, try to determine the memory address accessed by
470 * the instruction and return that address to the caller. Also, try to figure
471 * out whether any part of the access to that address was non-canonical.
472 */
473static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
474 unsigned long *addr)
1da177e4 475{
59c1dcbe
JH
476 u8 insn_buf[MAX_INSN_SIZE];
477 struct insn insn;
478
479 if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
480 return GP_NO_HINT;
481
482 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
483 insn_get_modrm(&insn);
484 insn_get_sib(&insn);
485
486 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
487 if (*addr == -1UL)
488 return GP_NO_HINT;
489
490#ifdef CONFIG_X86_64
491 /*
492 * Check that:
493 * - the operand is not in the kernel half
494 * - the last byte of the operand is not in the user canonical half
495 */
496 if (*addr < ~__VIRTUAL_MASK &&
497 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
498 return GP_NON_CANONICAL;
499#endif
500
501 return GP_CANONICAL;
502}
503
504#define GPFSTR "general protection fault"
505
be4c11af 506DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
1da177e4 507{
59c1dcbe 508 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
36209766 509 enum kernel_gp_hint hint = GP_NO_HINT;
13485ab5 510 struct task_struct *tsk;
36209766
BP
511 unsigned long gp_addr;
512 int ret;
b5964405 513
d99e1bd1 514 cond_local_irq_enable(regs);
c6df0d71 515
6fc9dc81
RN
516 if (static_cpu_has(X86_FEATURE_UMIP)) {
517 if (user_mode(regs) && fixup_umip_exception(regs))
ca4c6a98 518 goto exit;
6fc9dc81
RN
519 }
520
d74ef111 521 if (v8086_mode(regs)) {
ef3f6288
FW
522 local_irq_enable();
523 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
ca4c6a98 524 local_irq_disable();
8c84014f 525 return;
ef3f6288 526 }
1da177e4 527
13485ab5 528 tsk = current;
ef3f6288 529
36209766 530 if (user_mode(regs)) {
ef3f6288
FW
531 tsk->thread.error_code = error_code;
532 tsk->thread.trap_nr = X86_TRAP_GP;
76dee4a7 533
36209766
BP
534 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
535 force_sig(SIGSEGV);
ca4c6a98 536 goto exit;
ef3f6288 537 }
1da177e4 538
36209766 539 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
ca4c6a98 540 goto exit;
59c1dcbe 541
13485ab5 542 tsk->thread.error_code = error_code;
51e7dc70 543 tsk->thread.trap_nr = X86_TRAP_GP;
b5964405 544
36209766
BP
545 /*
546 * To be potentially processing a kprobe fault and to trust the result
547 * from kprobe_running(), we have to be non-preemptible.
548 */
549 if (!preemptible() &&
550 kprobe_running() &&
551 kprobe_fault_handler(regs, X86_TRAP_GP))
ca4c6a98 552 goto exit;
aa49f204 553
36209766
BP
554 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
555 if (ret == NOTIFY_STOP)
ca4c6a98 556 goto exit;
1da177e4 557
36209766
BP
558 if (error_code)
559 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
560 else
561 hint = get_kernel_gp_address(regs, &gp_addr);
562
563 if (hint != GP_NO_HINT)
564 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
565 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
566 : "maybe for address",
567 gp_addr);
568
569 /*
570 * KASAN is interested only in the non-canonical case, clear it
571 * otherwise.
572 */
573 if (hint != GP_NON_CANONICAL)
574 gp_addr = 0;
b5964405 575
36209766 576 die_addr(desc, regs, error_code, gp_addr);
abd4f750 577
ca4c6a98
TG
578exit:
579 cond_local_irq_disable(regs);
1da177e4
LT
580}
581
21e28290
PZ
582static bool do_int3(struct pt_regs *regs)
583{
584 int res;
585
586#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
587 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
588 SIGTRAP) == NOTIFY_STOP)
589 return true;
590#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
591
592#ifdef CONFIG_KPROBES
593 if (kprobe_int3_handler(regs))
594 return true;
595#endif
596 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
597
598 return res == NOTIFY_STOP;
599}
600
601static void do_int3_user(struct pt_regs *regs)
602{
603 if (do_int3(regs))
604 return;
605
606 cond_local_irq_enable(regs);
607 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
608 cond_local_irq_disable(regs);
609}
610
8edd7e37 611DEFINE_IDTENTRY_RAW(exc_int3)
1da177e4 612{
f64366ef
PZ
613 /*
614 * poke_int3_handler() is completely self contained code; it does (and
615 * must) *NOT* call out to anything, lest it hits upon yet another
616 * INT3.
617 */
17f41571
JK
618 if (poke_int3_handler(regs))
619 return;
620
d8ba61ba 621 /*
fa95d7dc 622 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore
8edd7e37
TG
623 * can trigger INT3, hence poke_int3_handler() must be done
624 * before. If the entry came from kernel mode, then use nmi_enter()
625 * because the INT3 could have been hit in any context including
626 * NMI.
d8ba61ba 627 */
21e28290 628 if (user_mode(regs)) {
fa95d7dc 629 idtentry_enter_user(regs);
21e28290
PZ
630 instrumentation_begin();
631 do_int3_user(regs);
632 instrumentation_end();
fa95d7dc 633 idtentry_exit_user(regs);
21e28290
PZ
634 } else {
635 nmi_enter();
636 instrumentation_begin();
3ffdfdce 637 trace_hardirqs_off_prepare();
21e28290
PZ
638 if (!do_int3(regs))
639 die("int3", regs, 0);
3ffdfdce
TG
640 if (regs->flags & X86_EFLAGS_IF)
641 trace_hardirqs_on_prepare();
21e28290 642 instrumentation_end();
0d00449c 643 nmi_exit();
21e28290 644 }
1da177e4 645}
1da177e4 646
081f75bb 647#ifdef CONFIG_X86_64
bd8b96df 648/*
7f2590a1
AL
649 * Help handler running on a per-cpu (IST or entry trampoline) stack
650 * to switch to the normal thread stack if the interrupted code was in
651 * user mode. The actual stack switch is done in entry_64.S
bd8b96df 652 */
daf7a697 653asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
081f75bb 654{
7f2590a1
AL
655 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
656 if (regs != eregs)
657 *regs = *eregs;
081f75bb
AH
658 return regs;
659}
b645af2d
AL
660
661struct bad_iret_stack {
662 void *error_entry_ret;
663 struct pt_regs regs;
664};
665
d73a3329 666asmlinkage __visible noinstr
b645af2d
AL
667struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
668{
669 /*
670 * This is called from entry_64.S early in handling a fault
671 * caused by a bad iret to user mode. To handle the fault
7f2590a1
AL
672 * correctly, we want to move our stack frame to where it would
673 * be had we entered directly on the entry stack (rather than
674 * just below the IRET frame) and we want to pretend that the
675 * exception came from the IRET target.
b645af2d 676 */
d73a3329
TG
677 struct bad_iret_stack tmp, *new_stack =
678 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
b645af2d 679
d73a3329
TG
680 /* Copy the IRET target to the temporary storage. */
681 memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
b645af2d
AL
682
683 /* Copy the remainder of the stack from the current stack. */
d73a3329
TG
684 memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
685
686 /* Update the entry stack */
687 memcpy(new_stack, &tmp, sizeof(tmp));
b645af2d 688
f39b6f0e 689 BUG_ON(!user_mode(&new_stack->regs));
b645af2d
AL
690 return new_stack;
691}
081f75bb
AH
692#endif
693
f2b37575
AL
694static bool is_sysenter_singlestep(struct pt_regs *regs)
695{
696 /*
697 * We don't try for precision here. If we're anywhere in the region of
698 * code that can be single-stepped in the SYSENTER entry path, then
699 * assume that this is a useless single-step trap due to SYSENTER
700 * being invoked with TF set. (We don't know in advance exactly
701 * which instructions will be hit because BTF could plausibly
702 * be set.)
703 */
704#ifdef CONFIG_X86_32
705 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
706 (unsigned long)__end_SYSENTER_singlestep_region -
707 (unsigned long)__begin_SYSENTER_singlestep_region;
708#elif defined(CONFIG_IA32_EMULATION)
709 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
710 (unsigned long)__end_entry_SYSENTER_compat -
711 (unsigned long)entry_SYSENTER_compat;
712#else
713 return false;
714#endif
715}
716
9f58fdde
PZ
717static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
718{
719 /*
720 * Disable breakpoints during exception handling; recursive exceptions
721 * are exceedingly 'fun'.
722 *
723 * Since this function is NOKPROBE, and that also applies to
724 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
725 * HW_BREAKPOINT_W on our stack)
726 *
727 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
728 * includes the entry stack is excluded for everything.
729 */
730 get_debugreg(*dr7, 7);
731 set_debugreg(0, 7);
732
733 /*
734 * Ensure the compiler doesn't lower the above statements into
735 * the critical section; disabling breakpoints late would not
736 * be good.
737 */
738 barrier();
739
740 /*
741 * The Intel SDM says:
742 *
743 * Certain debug exceptions may clear bits 0-3. The remaining
744 * contents of the DR6 register are never cleared by the
745 * processor. To avoid confusion in identifying debug
746 * exceptions, debug handlers should clear the register before
747 * returning to the interrupted task.
748 *
749 * Keep it simple: clear DR6 immediately.
750 */
751 get_debugreg(*dr6, 6);
752 set_debugreg(0, 6);
753 /* Filter out all the reserved bits which are preset to 1 */
754 *dr6 &= ~DR6_RESERVED;
755}
756
757static __always_inline void debug_exit(unsigned long dr7)
758{
759 /*
760 * Ensure the compiler doesn't raise this statement into
761 * the critical section; enabling breakpoints early would
762 * not be good.
763 */
764 barrier();
765 set_debugreg(dr7, 7);
766}
767
1da177e4
LT
768/*
769 * Our handling of the processor debug registers is non-trivial.
770 * We do not clear them on entry and exit from the kernel. Therefore
771 * it is possible to get a watchpoint trap here from inside the kernel.
772 * However, the code in ./ptrace.c has ensured that the user can
773 * only set watchpoints on userspace addresses. Therefore the in-kernel
774 * watchpoint trap can only occur in code which is reading/writing
775 * from user space. Such code must not hold kernel locks (since it
776 * can equally take a page fault), therefore it is safe to call
777 * force_sig_info even though that claims and releases locks.
b5964405 778 *
1da177e4
LT
779 * Code in ./signal.c ensures that the debug control register
780 * is restored before we deliver any signal, and therefore that
781 * user code runs with the correct debug control register even though
782 * we clear it here.
783 *
784 * Being careful here means that we don't have to be as careful in a
785 * lot of more complicated places (task switching can be a bit lazy
786 * about restoring all the debug state, and ptrace doesn't have to
787 * find every occurrence of the TF bit that could be saved away even
788 * by user code)
c1d518c8
AH
789 *
790 * May run on IST stack.
1da177e4 791 */
9347f413
TG
792static void noinstr handle_debug(struct pt_regs *regs, unsigned long dr6,
793 bool user_icebp)
1da177e4 794{
1da177e4 795 struct task_struct *tsk = current;
da654b74 796 int si_code;
1da177e4 797
08d68323
P
798 /* Store the virtualized DR6 value */
799 tsk->thread.debugreg6 = dr6;
800
75347bb2 801 instrumentation_begin();
6f6343f5 802#ifdef CONFIG_KPROBES
75347bb2
TG
803 if (kprobe_debug_handler(regs)) {
804 instrumentation_end();
4c0dcd83 805 return;
75347bb2 806 }
6f6343f5
MH
807#endif
808
2bbc68f8 809 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
75347bb2
TG
810 SIGTRAP) == NOTIFY_STOP) {
811 instrumentation_end();
4c0dcd83 812 return;
75347bb2 813 }
3d2a71a5 814
42181186
SR
815 /*
816 * Let others (NMI) know that the debug stack is in use
817 * as we may switch to the interrupt stack.
818 */
819 debug_stack_usage_inc();
820
1da177e4 821 /* It's safe to allow irq's after DR6 has been saved */
d99e1bd1 822 cond_local_irq_enable(regs);
1da177e4 823
d74ef111 824 if (v8086_mode(regs)) {
2bbc68f8
TG
825 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
826 X86_TRAP_DB);
9347f413 827 goto out;
1da177e4
LT
828 }
829
f2b37575
AL
830 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
831 /*
832 * Historical junk that used to handle SYSENTER single-stepping.
833 * This should be unreachable now. If we survive for a while
834 * without anyone hitting this warning, we'll turn this into
835 * an oops.
836 */
08d68323
P
837 tsk->thread.debugreg6 &= ~DR_STEP;
838 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
839 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 840 }
9347f413 841
08d68323 842 si_code = get_si_code(tsk->thread.debugreg6);
a1e80faf 843 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
2bbc68f8 844 send_sigtrap(regs, 0, si_code);
9347f413
TG
845
846out:
d99e1bd1 847 cond_local_irq_disable(regs);
42181186 848 debug_stack_usage_dec();
75347bb2 849 instrumentation_end();
4c0dcd83
TG
850}
851
852static __always_inline void exc_debug_kernel(struct pt_regs *regs,
853 unsigned long dr6)
854{
855 nmi_enter();
3ffdfdce
TG
856 instrumentation_begin();
857 trace_hardirqs_off_prepare();
858 instrumentation_end();
859
9347f413
TG
860 /*
861 * The SDM says "The processor clears the BTF flag when it
862 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
863 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
864 */
865 clear_thread_flag(TIF_BLOCKSTEP);
866
867 /*
868 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
869 * watchpoint at the same time then that will still be handled.
870 */
871 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
872 dr6 &= ~DR_STEP;
873
874 /*
875 * If DR6 is zero, no point in trying to handle it. The kernel is
876 * not using INT1.
877 */
878 if (dr6)
879 handle_debug(regs, dr6, false);
880
3ffdfdce
TG
881 instrumentation_begin();
882 if (regs->flags & X86_EFLAGS_IF)
883 trace_hardirqs_on_prepare();
884 instrumentation_end();
4c0dcd83
TG
885 nmi_exit();
886}
887
888static __always_inline void exc_debug_user(struct pt_regs *regs,
889 unsigned long dr6)
890{
fa95d7dc 891 idtentry_enter_user(regs);
9347f413
TG
892 clear_thread_flag(TIF_BLOCKSTEP);
893
894 /*
895 * If dr6 has no reason to give us about the origin of this trap,
896 * then it's very likely the result of an icebp/int01 trap.
897 * User wants a sigtrap for that.
898 */
899 handle_debug(regs, dr6, !dr6);
fa95d7dc 900 idtentry_exit_user(regs);
4c0dcd83
TG
901}
902
903#ifdef CONFIG_X86_64
904/* IST stack entry */
905DEFINE_IDTENTRY_DEBUG(exc_debug)
906{
907 unsigned long dr6, dr7;
908
909 debug_enter(&dr6, &dr7);
910 exc_debug_kernel(regs, dr6);
911 debug_exit(dr7);
912}
913
914/* User entry, runs on regular task stack */
915DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
916{
917 unsigned long dr6, dr7;
918
919 debug_enter(&dr6, &dr7);
920 exc_debug_user(regs, dr6);
921 debug_exit(dr7);
922}
923#else
924/* 32 bit does not have separate entry points. */
925DEFINE_IDTENTRY_DEBUG(exc_debug)
926{
927 unsigned long dr6, dr7;
928
929 debug_enter(&dr6, &dr7);
1da177e4 930
2bbc68f8 931 if (user_mode(regs))
4c0dcd83 932 exc_debug_user(regs, dr6);
2bbc68f8 933 else
4c0dcd83
TG
934 exc_debug_kernel(regs, dr6);
935
9f58fdde 936 debug_exit(dr7);
1da177e4 937}
4c0dcd83 938#endif
1da177e4
LT
939
940/*
941 * Note that we play around with the 'TS' bit in an attempt to get
942 * the correct behaviour even in the presence of the asynchronous
943 * IRQ13 behaviour
944 */
48227e21 945static void math_error(struct pt_regs *regs, int trapnr)
1da177e4 946{
e2e75c91 947 struct task_struct *task = current;
e1cebad4 948 struct fpu *fpu = &task->thread.fpu;
0a996c1a 949 int si_code;
c9408265
KC
950 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
951 "simd exception";
e2e75c91 952
d99e1bd1 953 cond_local_irq_enable(regs);
e2e75c91 954
e1cebad4 955 if (!user_mode(regs)) {
48227e21 956 if (fixup_exception(regs, trapnr, 0, 0))
ca4c6a98 957 goto exit;
3ae6295c 958
48227e21 959 task->thread.error_code = 0;
3ae6295c
SL
960 task->thread.trap_nr = trapnr;
961
48227e21
TG
962 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
963 SIGFPE) != NOTIFY_STOP)
964 die(str, regs, 0);
ca4c6a98 965 goto exit;
e2e75c91 966 }
1da177e4
LT
967
968 /*
969 * Save the info for the exception handler and clear the error.
970 */
e1cebad4
IM
971 fpu__save(fpu);
972
973 task->thread.trap_nr = trapnr;
48227e21 974 task->thread.error_code = 0;
adf77bac 975
0a996c1a 976 si_code = fpu__exception_code(fpu, trapnr);
e1cebad4 977 /* Retry when we get spurious exceptions: */
0a996c1a 978 if (!si_code)
ca4c6a98 979 goto exit;
e1cebad4 980
0a996c1a 981 force_sig_fault(SIGFPE, si_code,
2e1661d2 982 (void __user *)uprobe_get_trap_addr(regs));
ca4c6a98
TG
983exit:
984 cond_local_irq_disable(regs);
1da177e4
LT
985}
986
14a8bd2a 987DEFINE_IDTENTRY(exc_coprocessor_error)
1da177e4 988{
48227e21 989 math_error(regs, X86_TRAP_MF);
1da177e4
LT
990}
991
48227e21 992DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1da177e4 993{
48227e21
TG
994 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
995 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
996 if (!static_cpu_has(X86_FEATURE_XMM)) {
997 __exc_general_protection(regs, 0);
998 return;
999 }
1000 }
1001 math_error(regs, X86_TRAP_XF);
1da177e4
LT
1002}
1003
dad7106f 1004DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1da177e4 1005{
d244d0e1
TG
1006 /*
1007 * This addresses a Pentium Pro Erratum:
1008 *
1009 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1010 * Virtual Wire mode implemented through the local APIC, an
1011 * interrupt vector of 0Fh (Intel reserved encoding) may be
1012 * generated by the local APIC (Int 15). This vector may be
1013 * generated upon receipt of a spurious interrupt (an interrupt
1014 * which is removed before the system receives the INTA sequence)
1015 * instead of the programmed 8259 spurious interrupt vector.
1016 *
1017 * IMPLICATION: The spurious interrupt vector programmed in the
1018 * 8259 is normally handled by an operating system's spurious
1019 * interrupt handler. However, a vector of 0Fh is unknown to some
1020 * operating systems, which would crash if this erratum occurred.
1021 *
1022 * In theory this could be limited to 32bit, but the handler is not
1023 * hurting and who knows which other CPUs suffer from this.
1024 */
081f75bb
AH
1025}
1026
866ae2cc 1027DEFINE_IDTENTRY(exc_device_not_available)
7643e9b9 1028{
ee35b9b9 1029 unsigned long cr0 = read_cr0();
bef8b6da 1030
a334fe43 1031#ifdef CONFIG_MATH_EMULATION
ee35b9b9 1032 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
d315760f
TH
1033 struct math_emu_info info = { };
1034
d99e1bd1 1035 cond_local_irq_enable(regs);
d315760f 1036
aa78bcfa 1037 info.regs = regs;
d315760f 1038 math_emulate(&info);
ca4c6a98
TG
1039
1040 cond_local_irq_disable(regs);
a334fe43 1041 return;
7643e9b9 1042 }
a334fe43 1043#endif
bef8b6da
AL
1044
1045 /* This should not happen. */
bef8b6da
AL
1046 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1047 /* Try to fix it up and carry on. */
1048 write_cr0(cr0 & ~X86_CR0_TS);
1049 } else {
1050 /*
1051 * Something terrible happened, and we're better off trying
1052 * to kill the task than getting stuck in a never-ending
1053 * loop of #NM faults.
1054 */
866ae2cc 1055 die("unexpected #NM exception", regs, 0);
bef8b6da 1056 }
7643e9b9
AH
1057}
1058
081f75bb 1059#ifdef CONFIG_X86_32
d7729050 1060DEFINE_IDTENTRY_SW(iret_error)
f8e0870f 1061{
f8e0870f 1062 local_irq_enable();
d7729050 1063 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
6ba3c97a 1064 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
d7729050 1065 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
164881b6 1066 ILL_BADSTK, (void __user *)NULL);
6ba3c97a 1067 }
ca4c6a98 1068 local_irq_disable();
f8e0870f 1069}
081f75bb 1070#endif
f8e0870f 1071
1da177e4
LT
1072void __init trap_init(void)
1073{
40e7f949
AL
1074 /* Init cpu_entry_area before IST entries are set up */
1075 setup_cpu_entry_areas();
1076
b70543a0 1077 idt_setup_traps();
bb3f0b59 1078
4eefbe79
KC
1079 /*
1080 * Set the IDT descriptor to a fixed read-only location, so that the
1081 * "sidt" instruction will not leak the location of the kernel, and
1082 * to defend the IDT against arbitrary memory write vulnerabilities.
1083 * It will be reloaded in cpu_init() */
92a0f81d
TG
1084 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
1085 PAGE_KERNEL_RO);
1086 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
4eefbe79 1087
1da177e4 1088 /*
b5964405 1089 * Should be a barrier for any external CPU state:
1da177e4
LT
1090 */
1091 cpu_init();
1092
90f6225f 1093 idt_setup_ist_traps();
b4d83270 1094
0a30908b 1095 idt_setup_debugidt_traps();
1da177e4 1096}