x86: Print ratio freq_max/freq_base used in frequency invariance calculations
[linux-2.6-block.git] / arch / x86 / kernel / smpboot.c
CommitLineData
9ff554e9 1// SPDX-License-Identifier: GPL-2.0-or-later
c767a54b 2 /*
4cedb334
GOC
3 * x86 SMP booting functions
4 *
87c6fe26 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
8f47e163 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
4cedb334
GOC
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
4cedb334
GOC
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
c767a54b
JP
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
68a1c3f8
GC
42#include <linux/init.h>
43#include <linux/smp.h>
186f4360 44#include <linux/export.h>
70708a18 45#include <linux/sched.h>
105ab3d8 46#include <linux/sched/topology.h>
ef8bd77f 47#include <linux/sched/hotplug.h>
68db0cf1 48#include <linux/sched/task_stack.h>
69c18c15 49#include <linux/percpu.h>
57c8a661 50#include <linux/memblock.h>
cb3c8b90
GOC
51#include <linux/err.h>
52#include <linux/nmi.h>
69575d38 53#include <linux/tboot.h>
5a0e3ad6 54#include <linux/gfp.h>
1a022e3f 55#include <linux/cpuidle.h>
98fa15f3 56#include <linux/numa.h>
65fddcfc 57#include <linux/pgtable.h>
e2b0d619 58#include <linux/overflow.h>
69c18c15 59
8aef135c 60#include <asm/acpi.h>
cb3c8b90 61#include <asm/desc.h>
69c18c15
GC
62#include <asm/nmi.h>
63#include <asm/irq.h>
48927bbb 64#include <asm/realmode.h>
69c18c15
GC
65#include <asm/cpu.h>
66#include <asm/numa.h>
cb3c8b90
GOC
67#include <asm/tlbflush.h>
68#include <asm/mtrr.h>
ea530692 69#include <asm/mwait.h>
7b6aa335 70#include <asm/apic.h>
7167d08e 71#include <asm/io_apic.h>
78f7f1e5 72#include <asm/fpu/internal.h>
569712b2 73#include <asm/setup.h>
bdbcdd48 74#include <asm/uv/uv.h>
cb3c8b90 75#include <linux/mc146818rtc.h>
b81bb373 76#include <asm/i8259.h>
646e29a1 77#include <asm/misc.h>
9043442b 78#include <asm/qspinlock.h>
1340ccfa
AS
79#include <asm/intel-family.h>
80#include <asm/cpu_device_id.h>
1f50ddb4 81#include <asm/spec-ctrl.h>
447ae316 82#include <asm/hw_irq.h>
c9a1ff31 83#include <asm/stackprotector.h>
48927bbb 84
41ea6672
NF
85#ifdef CONFIG_ACPI_CPPC_LIB
86#include <acpi/cppc_acpi.h>
87#endif
88
a355352b 89/* representing HT siblings of each logical CPU */
0816b0f0 90DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
a355352b
GC
91EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
92
93/* representing HT and core siblings of each logical CPU */
0816b0f0 94DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
a355352b
GC
95EXPORT_PER_CPU_SYMBOL(cpu_core_map);
96
2e4c54da
LB
97/* representing HT, core, and die siblings of each logical CPU */
98DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
99EXPORT_PER_CPU_SYMBOL(cpu_die_map);
100
0816b0f0 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
b3d7336d 102
a355352b 103/* Per CPU bogomips and other parameters */
2c773dd3 104DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
a355352b 105EXPORT_PER_CPU_SYMBOL(cpu_info);
768d9505 106
1f12e32f 107/* Logical package management. We might want to allocate that dynamically */
1f12e32f
TG
108unsigned int __max_logical_packages __read_mostly;
109EXPORT_SYMBOL(__max_logical_packages);
7b0501b1 110static unsigned int logical_packages __read_mostly;
212bf4fd 111static unsigned int logical_die __read_mostly;
1f12e32f 112
70b8301f 113/* Maximum number of SMT threads on any online core */
947134d9 114int __read_mostly __max_smt_threads = 1;
70b8301f 115
7d25127c
TC
116/* Flag to indicate if a complete sched domain rebuild is required */
117bool x86_topology_update;
118
119int arch_update_cpu_topology(void)
120{
121 int retval = x86_topology_update;
122
123 x86_topology_update = false;
124 return retval;
125}
126
f77aa308
TG
127static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
128{
129 unsigned long flags;
130
131 spin_lock_irqsave(&rtc_lock, flags);
132 CMOS_WRITE(0xa, 0xf);
133 spin_unlock_irqrestore(&rtc_lock, flags);
f77aa308
TG
134 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
135 start_eip >> 4;
f77aa308
TG
136 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
137 start_eip & 0xf;
f77aa308
TG
138}
139
140static inline void smpboot_restore_warm_reset_vector(void)
141{
142 unsigned long flags;
143
f77aa308
TG
144 /*
145 * Paranoid: Set warm reset code and vector here back
146 * to default values.
147 */
148 spin_lock_irqsave(&rtc_lock, flags);
149 CMOS_WRITE(0, 0xf);
150 spin_unlock_irqrestore(&rtc_lock, flags);
151
152 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
153}
154
41ea6672 155static void init_freq_invariance(bool secondary, bool cppc_ready);
1567c3e3 156
cb3c8b90 157/*
30106c17
FY
158 * Report back to the Boot Processor during boot time or to the caller processor
159 * during CPU online.
cb3c8b90 160 */
148f9bb8 161static void smp_callin(void)
cb3c8b90 162{
f91fecc0 163 int cpuid;
cb3c8b90
GOC
164
165 /*
166 * If waken up by an INIT in an 82489DX configuration
656bba30
LB
167 * cpu_callout_mask guarantees we don't get here before
168 * an INIT_deassert IPI reaches our local APIC, so it is
169 * now safe to touch our local APIC.
cb3c8b90 170 */
e1c467e6 171 cpuid = smp_processor_id();
cb3c8b90 172
cb3c8b90
GOC
173 /*
174 * the boot CPU has finished the init stage and is spinning
175 * on callin_map until we finish. We are free to set up this
176 * CPU, first the APIC. (this is probably redundant on most
177 * boards)
178 */
05f7e46d 179 apic_ap_setup();
cb3c8b90 180
b565201c
JS
181 /*
182 * Save our processor parameters. Note: this information
183 * is needed for clock calibration.
184 */
185 smp_store_cpu_info(cpuid);
186
76ce7cfe
PT
187 /*
188 * The topology information must be up to date before
189 * calibrate_delay() and notify_cpu_starting().
190 */
191 set_cpu_sibling_map(raw_smp_processor_id());
192
41ea6672 193 init_freq_invariance(true, false);
1567c3e3 194
cb3c8b90
GOC
195 /*
196 * Get our bogomips.
b565201c
JS
197 * Update loops_per_jiffy in cpu_data. Previous call to
198 * smp_store_cpu_info() stored a value that is close but not as
199 * accurate as the value just calculated.
cb3c8b90 200 */
cb3c8b90 201 calibrate_delay();
b565201c 202 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
cfc1b9a6 203 pr_debug("Stack at about %p\n", &cpuid);
cb3c8b90 204
5ef428c4
AK
205 wmb();
206
85257024
PZ
207 notify_cpu_starting(cpuid);
208
cb3c8b90
GOC
209 /*
210 * Allow the master to continue.
211 */
c2d1cec1 212 cpumask_set_cpu(cpuid, cpu_callin_mask);
cb3c8b90
GOC
213}
214
e1c467e6
FY
215static int cpu0_logical_apicid;
216static int enable_start_cpu0;
bbc2ff6a
GOC
217/*
218 * Activate a secondary processor.
219 */
148f9bb8 220static void notrace start_secondary(void *unused)
bbc2ff6a
GOC
221{
222 /*
c7ad5ad2
AL
223 * Don't put *anything* except direct CPU state initialization
224 * before cpu_init(), SMP booting is too fragile that we want to
225 * limit the things done here to the most necessary things.
bbc2ff6a 226 */
7652ac92 227 cr4_init();
e1c467e6 228
fd89a137 229#ifdef CONFIG_X86_32
b40827fa 230 /* switch away from the initial page table */
fd89a137
JR
231 load_cr3(swapper_pg_dir);
232 __flush_tlb_all();
233#endif
520d0308 234 cpu_init_exception_handling();
4ba55e65
AL
235 cpu_init();
236 x86_cpuinit.early_percpu_clock_init();
237 preempt_disable();
238 smp_callin();
239
240 enable_start_cpu0 = 0;
241
bbc2ff6a
GOC
242 /* otherwise gcc will move up smp_processor_id before the cpu_init */
243 barrier();
244 /*
a1652bb8 245 * Check TSC synchronization with the boot CPU:
bbc2ff6a
GOC
246 */
247 check_tsc_sync_target();
248
1f50ddb4
TG
249 speculative_store_bypass_ht_init();
250
bbc2ff6a 251 /*
8ed4f3e6
TG
252 * Lock vector_lock, set CPU online and bring the vector
253 * allocator online. Online must be set with vector_lock held
254 * to prevent a concurrent irq setup/teardown from seeing a
255 * half valid vector space.
bbc2ff6a 256 */
d388e5fd 257 lock_vector_lock();
c2d1cec1 258 set_cpu_online(smp_processor_id(), true);
8ed4f3e6 259 lapic_online();
d388e5fd 260 unlock_vector_lock();
2a442c9c 261 cpu_set_state_online(smp_processor_id());
78c06176 262 x86_platform.nmi_init();
bbc2ff6a 263
0cefa5b9
MS
264 /* enable local interrupts */
265 local_irq_enable();
266
736decac 267 x86_cpuinit.setup_percpu_clockev();
bbc2ff6a
GOC
268
269 wmb();
fc6d73d6 270 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
bbc2ff6a
GOC
271}
272
6a4d2657
TG
273/**
274 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
275 * @cpu: CPU to check
276 */
277bool topology_is_primary_thread(unsigned int cpu)
278{
279 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
280}
281
f048c399
TG
282/**
283 * topology_smt_supported - Check whether SMT is supported by the CPUs
284 */
285bool topology_smt_supported(void)
286{
287 return smp_num_siblings > 1;
288}
289
30bb9811
AK
290/**
291 * topology_phys_to_logical_pkg - Map a physical package id to a logical
292 *
293 * Returns logical package id or -1 if not found
294 */
295int topology_phys_to_logical_pkg(unsigned int phys_pkg)
296{
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 struct cpuinfo_x86 *c = &cpu_data(cpu);
301
302 if (c->initialized && c->phys_proc_id == phys_pkg)
303 return c->logical_proc_id;
304 }
305 return -1;
306}
307EXPORT_SYMBOL(topology_phys_to_logical_pkg);
212bf4fd
LB
308/**
309 * topology_phys_to_logical_die - Map a physical die id to logical
310 *
311 * Returns logical die id or -1 if not found
312 */
313int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
314{
315 int cpu;
316 int proc_id = cpu_data(cur_cpu).phys_proc_id;
317
318 for_each_possible_cpu(cpu) {
319 struct cpuinfo_x86 *c = &cpu_data(cpu);
320
321 if (c->initialized && c->cpu_die_id == die_id &&
322 c->phys_proc_id == proc_id)
323 return c->logical_die_id;
324 }
325 return -1;
326}
327EXPORT_SYMBOL(topology_phys_to_logical_die);
30bb9811 328
9d85eb91
TG
329/**
330 * topology_update_package_map - Update the physical to logical package map
331 * @pkg: The physical package id as retrieved via CPUID
332 * @cpu: The cpu for which this is updated
333 */
334int topology_update_package_map(unsigned int pkg, unsigned int cpu)
1f12e32f 335{
30bb9811 336 int new;
1f12e32f 337
30bb9811
AK
338 /* Already available somewhere? */
339 new = topology_phys_to_logical_pkg(pkg);
340 if (new >= 0)
1f12e32f
TG
341 goto found;
342
7b0501b1 343 new = logical_packages++;
9d85eb91
TG
344 if (new != pkg) {
345 pr_info("CPU %u Converting physical %u to logical package %u\n",
346 cpu, pkg, new);
347 }
1f12e32f 348found:
30bb9811 349 cpu_data(cpu).logical_proc_id = new;
1f12e32f
TG
350 return 0;
351}
212bf4fd
LB
352/**
353 * topology_update_die_map - Update the physical to logical die map
354 * @die: The die id as retrieved via CPUID
355 * @cpu: The cpu for which this is updated
356 */
357int topology_update_die_map(unsigned int die, unsigned int cpu)
358{
359 int new;
360
361 /* Already available somewhere? */
362 new = topology_phys_to_logical_die(die, cpu);
363 if (new >= 0)
364 goto found;
365
366 new = logical_die++;
367 if (new != die) {
368 pr_info("CPU %u Converting physical %u to logical die %u\n",
369 cpu, die, new);
370 }
371found:
372 cpu_data(cpu).logical_die_id = new;
373 return 0;
374}
1f12e32f 375
30106c17
FY
376void __init smp_store_boot_cpu_info(void)
377{
378 int id = 0; /* CPU 0 */
379 struct cpuinfo_x86 *c = &cpu_data(id);
380
381 *c = boot_cpu_data;
382 c->cpu_index = id;
b4c0a732 383 topology_update_package_map(c->phys_proc_id, id);
212bf4fd 384 topology_update_die_map(c->cpu_die_id, id);
30bb9811 385 c->initialized = true;
30106c17
FY
386}
387
1d89a7f0
GOC
388/*
389 * The bootstrap kernel entry code has set these up. Save them for
390 * a given CPU
391 */
148f9bb8 392void smp_store_cpu_info(int id)
1d89a7f0
GOC
393{
394 struct cpuinfo_x86 *c = &cpu_data(id);
395
30bb9811
AK
396 /* Copy boot_cpu_data only on the first bringup */
397 if (!c->initialized)
398 *c = boot_cpu_data;
1d89a7f0 399 c->cpu_index = id;
30106c17
FY
400 /*
401 * During boot time, CPU0 has this setup already. Save the info when
402 * bringing up AP or offlined CPU0.
403 */
404 identify_secondary_cpu(c);
30bb9811 405 c->initialized = true;
1d89a7f0
GOC
406}
407
cebf15eb
DH
408static bool
409topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
410{
411 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
412
413 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
414}
415
148f9bb8 416static bool
316ad248 417topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
d4fbe4f0 418{
316ad248
PZ
419 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
420
cebf15eb 421 return !WARN_ONCE(!topology_same_node(c, o),
316ad248
PZ
422 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
423 "[node: %d != %d]. Ignoring dependency.\n",
424 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
425}
426
7d79a7bd 427#define link_mask(mfunc, c1, c2) \
316ad248 428do { \
7d79a7bd
BG
429 cpumask_set_cpu((c1), mfunc(c2)); \
430 cpumask_set_cpu((c2), mfunc(c1)); \
316ad248
PZ
431} while (0)
432
148f9bb8 433static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248 434{
362f924b 435 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
316ad248
PZ
436 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
437
438 if (c->phys_proc_id == o->phys_proc_id &&
7745f03e 439 c->cpu_die_id == o->cpu_die_id &&
79a8b9aa
BP
440 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
441 if (c->cpu_core_id == o->cpu_core_id)
442 return topology_sane(c, o, "smt");
443
444 if ((c->cu_id != 0xff) &&
445 (o->cu_id != 0xff) &&
446 (c->cu_id == o->cu_id))
447 return topology_sane(c, o, "smt");
448 }
316ad248
PZ
449
450 } else if (c->phys_proc_id == o->phys_proc_id &&
7745f03e 451 c->cpu_die_id == o->cpu_die_id &&
316ad248
PZ
452 c->cpu_core_id == o->cpu_core_id) {
453 return topology_sane(c, o, "smt");
454 }
455
456 return false;
457}
458
1340ccfa
AS
459/*
460 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
461 *
462 * These are Intel CPUs that enumerate an LLC that is shared by
463 * multiple NUMA nodes. The LLC on these systems is shared for
464 * off-package data access but private to the NUMA node (half
465 * of the package) for on-package access.
466 *
467 * CPUID (the source of the information about the LLC) can only
468 * enumerate the cache as being shared *or* unshared, but not
469 * this particular configuration. The CPU in this case enumerates
470 * the cache to be shared across the entire package (spanning both
471 * NUMA nodes).
472 */
473
474static const struct x86_cpu_id snc_cpu[] = {
adefe55e 475 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
1340ccfa
AS
476 {}
477};
478
148f9bb8 479static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248
PZ
480{
481 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
482
1340ccfa
AS
483 /* Do not match if we do not have a valid APICID for cpu: */
484 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
485 return false;
316ad248 486
1340ccfa
AS
487 /* Do not match if LLC id does not match: */
488 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
489 return false;
490
491 /*
492 * Allow the SNC topology without warning. Return of false
493 * means 'c' does not share the LLC of 'o'. This will be
494 * reflected to userspace.
495 */
496 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
497 return false;
498
499 return topology_sane(c, o, "llc");
d4fbe4f0
AH
500}
501
cebf15eb
DH
502/*
503 * Unlike the other levels, we do not enforce keeping a
504 * multicore group inside a NUMA node. If this happens, we will
505 * discard the MC level of the topology later.
506 */
169d0869 507static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248 508{
cebf15eb
DH
509 if (c->phys_proc_id == o->phys_proc_id)
510 return true;
316ad248
PZ
511 return false;
512}
1d89a7f0 513
2e4c54da
LB
514static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
515{
516 if ((c->phys_proc_id == o->phys_proc_id) &&
517 (c->cpu_die_id == o->cpu_die_id))
518 return true;
519 return false;
520}
521
522
d3d37d85
TC
523#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
524static inline int x86_sched_itmt_flags(void)
525{
526 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
527}
528
529#ifdef CONFIG_SCHED_MC
530static int x86_core_flags(void)
531{
532 return cpu_core_flags() | x86_sched_itmt_flags();
533}
534#endif
535#ifdef CONFIG_SCHED_SMT
536static int x86_smt_flags(void)
537{
538 return cpu_smt_flags() | x86_sched_itmt_flags();
539}
540#endif
541#endif
542
8f37961c 543static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
cebf15eb 544#ifdef CONFIG_SCHED_SMT
d3d37d85 545 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
cebf15eb
DH
546#endif
547#ifdef CONFIG_SCHED_MC
d3d37d85 548 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
cebf15eb
DH
549#endif
550 { NULL, },
551};
8f37961c
TC
552
553static struct sched_domain_topology_level x86_topology[] = {
554#ifdef CONFIG_SCHED_SMT
d3d37d85 555 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
8f37961c
TC
556#endif
557#ifdef CONFIG_SCHED_MC
d3d37d85 558 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
8f37961c
TC
559#endif
560 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
561 { NULL, },
562};
563
cebf15eb 564/*
8f37961c 565 * Set if a package/die has multiple NUMA nodes inside.
1340ccfa
AS
566 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
567 * Sub-NUMA Clustering have this.
cebf15eb 568 */
8f37961c 569static bool x86_has_numa_in_package;
cebf15eb 570
148f9bb8 571void set_cpu_sibling_map(int cpu)
768d9505 572{
316ad248 573 bool has_smt = smp_num_siblings > 1;
b0bc225d 574 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
768d9505 575 struct cpuinfo_x86 *c = &cpu_data(cpu);
316ad248 576 struct cpuinfo_x86 *o;
70b8301f 577 int i, threads;
768d9505 578
c2d1cec1 579 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
768d9505 580
b0bc225d 581 if (!has_mp) {
7d79a7bd 582 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
316ad248 583 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
7d79a7bd 584 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
2e4c54da 585 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
768d9505
GC
586 c->booted_cores = 1;
587 return;
588 }
589
c2d1cec1 590 for_each_cpu(i, cpu_sibling_setup_mask) {
316ad248
PZ
591 o = &cpu_data(i);
592
593 if ((i == cpu) || (has_smt && match_smt(c, o)))
7d79a7bd 594 link_mask(topology_sibling_cpumask, cpu, i);
316ad248 595
b0bc225d 596 if ((i == cpu) || (has_mp && match_llc(c, o)))
7d79a7bd 597 link_mask(cpu_llc_shared_mask, cpu, i);
316ad248 598
ceb1cbac
KB
599 }
600
601 /*
602 * This needs a separate iteration over the cpus because we rely on all
7d79a7bd 603 * topology_sibling_cpumask links to be set-up.
ceb1cbac
KB
604 */
605 for_each_cpu(i, cpu_sibling_setup_mask) {
606 o = &cpu_data(i);
607
169d0869 608 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
7d79a7bd 609 link_mask(topology_core_cpumask, cpu, i);
316ad248 610
768d9505
GC
611 /*
612 * Does this new cpu bringup a new core?
613 */
7d79a7bd
BG
614 if (cpumask_weight(
615 topology_sibling_cpumask(cpu)) == 1) {
768d9505
GC
616 /*
617 * for each core in package, increment
618 * the booted_cores for this new cpu
619 */
7d79a7bd
BG
620 if (cpumask_first(
621 topology_sibling_cpumask(i)) == i)
768d9505
GC
622 c->booted_cores++;
623 /*
624 * increment the core count for all
625 * the other cpus in this package
626 */
627 if (i != cpu)
628 cpu_data(i).booted_cores++;
629 } else if (i != cpu && !c->booted_cores)
630 c->booted_cores = cpu_data(i).booted_cores;
631 }
169d0869 632 if (match_pkg(c, o) && !topology_same_node(c, o))
8f37961c 633 x86_has_numa_in_package = true;
2e4c54da
LB
634
635 if ((i == cpu) || (has_mp && match_die(c, o)))
636 link_mask(topology_die_cpumask, cpu, i);
768d9505 637 }
70b8301f
AK
638
639 threads = cpumask_weight(topology_sibling_cpumask(cpu));
640 if (threads > __max_smt_threads)
641 __max_smt_threads = threads;
768d9505
GC
642}
643
70708a18 644/* maps the cpu to the sched domain representing multi-core */
030bb203 645const struct cpumask *cpu_coregroup_mask(int cpu)
70708a18 646{
9f646389 647 return cpu_llc_shared_mask(cpu);
030bb203
RR
648}
649
a4928cff 650static void impress_friends(void)
904541e2
GOC
651{
652 int cpu;
653 unsigned long bogosum = 0;
654 /*
655 * Allow the user to impress friends.
656 */
c767a54b 657 pr_debug("Before bogomips\n");
904541e2 658 for_each_possible_cpu(cpu)
c2d1cec1 659 if (cpumask_test_cpu(cpu, cpu_callout_mask))
904541e2 660 bogosum += cpu_data(cpu).loops_per_jiffy;
c767a54b 661 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
f68e00a3 662 num_online_cpus(),
904541e2
GOC
663 bogosum/(500000/HZ),
664 (bogosum/(5000/HZ))%100);
665
c767a54b 666 pr_debug("Before bogocount - setting activated=1\n");
904541e2
GOC
667}
668
569712b2 669void __inquire_remote_apic(int apicid)
cb3c8b90
GOC
670{
671 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
a6c23905 672 const char * const names[] = { "ID", "VERSION", "SPIV" };
cb3c8b90
GOC
673 int timeout;
674 u32 status;
675
c767a54b 676 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
cb3c8b90
GOC
677
678 for (i = 0; i < ARRAY_SIZE(regs); i++) {
c767a54b 679 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
cb3c8b90
GOC
680
681 /*
682 * Wait for idle.
683 */
684 status = safe_apic_wait_icr_idle();
685 if (status)
c767a54b 686 pr_cont("a previous APIC delivery may have failed\n");
cb3c8b90 687
1b374e4d 688 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
cb3c8b90
GOC
689
690 timeout = 0;
691 do {
692 udelay(100);
693 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
694 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
695
696 switch (status) {
697 case APIC_ICR_RR_VALID:
698 status = apic_read(APIC_RRR);
c767a54b 699 pr_cont("%08x\n", status);
cb3c8b90
GOC
700 break;
701 default:
c767a54b 702 pr_cont("failed\n");
cb3c8b90
GOC
703 }
704 }
705}
706
d68921f9
LB
707/*
708 * The Multiprocessor Specification 1.4 (1997) example code suggests
709 * that there should be a 10ms delay between the BSP asserting INIT
710 * and de-asserting INIT, when starting a remote processor.
711 * But that slows boot and resume on modern processors, which include
712 * many cores and don't require that delay.
713 *
714 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
1a744cb3 715 * Modern processor families are quirked to remove the delay entirely.
d68921f9
LB
716 */
717#define UDELAY_10MS_DEFAULT 10000
718
656279a1 719static unsigned int init_udelay = UINT_MAX;
d68921f9
LB
720
721static int __init cpu_init_udelay(char *str)
722{
723 get_option(&str, &init_udelay);
724
725 return 0;
726}
727early_param("cpu_init_udelay", cpu_init_udelay);
728
1a744cb3
LB
729static void __init smp_quirk_init_udelay(void)
730{
731 /* if cmdline changed it from default, leave it alone */
656279a1 732 if (init_udelay != UINT_MAX)
1a744cb3
LB
733 return;
734
735 /* if modern processor, use no delay */
736 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
0b13bec7 737 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
656279a1 738 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
1a744cb3 739 init_udelay = 0;
656279a1
LB
740 return;
741 }
f1ccd249
LB
742 /* else, use legacy delay */
743 init_udelay = UDELAY_10MS_DEFAULT;
1a744cb3
LB
744}
745
cb3c8b90
GOC
746/*
747 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
748 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
749 * won't ... remember to clear down the APIC, etc later.
750 */
148f9bb8 751int
e1c467e6 752wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
cb3c8b90
GOC
753{
754 unsigned long send_status, accept_status = 0;
755 int maxlvt;
756
757 /* Target chip */
cb3c8b90
GOC
758 /* Boot on the stack */
759 /* Kick the second */
e1c467e6 760 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
cb3c8b90 761
cfc1b9a6 762 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
763 send_status = safe_apic_wait_icr_idle();
764
765 /*
766 * Give the other CPU some time to accept the IPI.
767 */
768 udelay(200);
cff9ab2b 769 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
59ef48a5
CG
770 maxlvt = lapic_get_maxlvt();
771 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
772 apic_write(APIC_ESR, 0);
773 accept_status = (apic_read(APIC_ESR) & 0xEF);
774 }
c767a54b 775 pr_debug("NMI sent\n");
cb3c8b90
GOC
776
777 if (send_status)
c767a54b 778 pr_err("APIC never delivered???\n");
cb3c8b90 779 if (accept_status)
c767a54b 780 pr_err("APIC delivery error (%lx)\n", accept_status);
cb3c8b90
GOC
781
782 return (send_status | accept_status);
783}
cb3c8b90 784
148f9bb8 785static int
569712b2 786wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
cb3c8b90 787{
f5d6a52f 788 unsigned long send_status = 0, accept_status = 0;
cb3c8b90
GOC
789 int maxlvt, num_starts, j;
790
593f4a78
MR
791 maxlvt = lapic_get_maxlvt();
792
cb3c8b90
GOC
793 /*
794 * Be paranoid about clearing APIC errors.
795 */
cff9ab2b 796 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
593f4a78
MR
797 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
798 apic_write(APIC_ESR, 0);
cb3c8b90
GOC
799 apic_read(APIC_ESR);
800 }
801
c767a54b 802 pr_debug("Asserting INIT\n");
cb3c8b90
GOC
803
804 /*
805 * Turn INIT on target chip
806 */
cb3c8b90
GOC
807 /*
808 * Send IPI
809 */
1b374e4d
SS
810 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
811 phys_apicid);
cb3c8b90 812
cfc1b9a6 813 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
814 send_status = safe_apic_wait_icr_idle();
815
7cb68598 816 udelay(init_udelay);
cb3c8b90 817
c767a54b 818 pr_debug("Deasserting INIT\n");
cb3c8b90
GOC
819
820 /* Target chip */
cb3c8b90 821 /* Send IPI */
1b374e4d 822 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
cb3c8b90 823
cfc1b9a6 824 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
825 send_status = safe_apic_wait_icr_idle();
826
827 mb();
cb3c8b90
GOC
828
829 /*
830 * Should we send STARTUP IPIs ?
831 *
832 * Determine this based on the APIC version.
833 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
834 */
cff9ab2b 835 if (APIC_INTEGRATED(boot_cpu_apic_version))
cb3c8b90
GOC
836 num_starts = 2;
837 else
838 num_starts = 0;
839
cb3c8b90
GOC
840 /*
841 * Run STARTUP IPI loop.
842 */
c767a54b 843 pr_debug("#startup loops: %d\n", num_starts);
cb3c8b90 844
cb3c8b90 845 for (j = 1; j <= num_starts; j++) {
c767a54b 846 pr_debug("Sending STARTUP #%d\n", j);
593f4a78
MR
847 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
848 apic_write(APIC_ESR, 0);
cb3c8b90 849 apic_read(APIC_ESR);
c767a54b 850 pr_debug("After apic_write\n");
cb3c8b90
GOC
851
852 /*
853 * STARTUP IPI
854 */
855
856 /* Target chip */
cb3c8b90
GOC
857 /* Boot on the stack */
858 /* Kick the second */
1b374e4d
SS
859 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
860 phys_apicid);
cb3c8b90
GOC
861
862 /*
863 * Give the other CPU some time to accept the IPI.
864 */
fcafddec
LB
865 if (init_udelay == 0)
866 udelay(10);
867 else
a9bcaa02 868 udelay(300);
cb3c8b90 869
c767a54b 870 pr_debug("Startup point 1\n");
cb3c8b90 871
cfc1b9a6 872 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
873 send_status = safe_apic_wait_icr_idle();
874
875 /*
876 * Give the other CPU some time to accept the IPI.
877 */
fcafddec
LB
878 if (init_udelay == 0)
879 udelay(10);
880 else
a9bcaa02 881 udelay(200);
cb3c8b90 882
593f4a78 883 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
cb3c8b90 884 apic_write(APIC_ESR, 0);
cb3c8b90
GOC
885 accept_status = (apic_read(APIC_ESR) & 0xEF);
886 if (send_status || accept_status)
887 break;
888 }
c767a54b 889 pr_debug("After Startup\n");
cb3c8b90
GOC
890
891 if (send_status)
c767a54b 892 pr_err("APIC never delivered???\n");
cb3c8b90 893 if (accept_status)
c767a54b 894 pr_err("APIC delivery error (%lx)\n", accept_status);
cb3c8b90
GOC
895
896 return (send_status | accept_status);
897}
cb3c8b90 898
2eaad1fd 899/* reduce the number of lines printed when booting a large cpu count system */
148f9bb8 900static void announce_cpu(int cpu, int apicid)
2eaad1fd 901{
98fa15f3 902 static int current_node = NUMA_NO_NODE;
4adc8b71 903 int node = early_cpu_to_node(cpu);
a17bce4d 904 static int width, node_width;
646e29a1
BP
905
906 if (!width)
907 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
2eaad1fd 908
a17bce4d
BP
909 if (!node_width)
910 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
911
912 if (cpu == 1)
913 printk(KERN_INFO "x86: Booting SMP configuration:\n");
914
719b3680 915 if (system_state < SYSTEM_RUNNING) {
2eaad1fd
MT
916 if (node != current_node) {
917 if (current_node > (-1))
a17bce4d 918 pr_cont("\n");
2eaad1fd 919 current_node = node;
a17bce4d
BP
920
921 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
922 node_width - num_digits(node), " ", node);
2eaad1fd 923 }
646e29a1
BP
924
925 /* Add padding for the BSP */
926 if (cpu == 1)
927 pr_cont("%*s", width + 1, " ");
928
929 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
930
2eaad1fd
MT
931 } else
932 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
933 node, cpu, apicid);
934}
935
e1c467e6
FY
936static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
937{
938 int cpu;
939
940 cpu = smp_processor_id();
941 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
942 return NMI_HANDLED;
943
944 return NMI_DONE;
945}
946
947/*
948 * Wake up AP by INIT, INIT, STARTUP sequence.
949 *
950 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
951 * boot-strap code which is not a desired behavior for waking up BSP. To
952 * void the boot-strap code, wake up CPU0 by NMI instead.
953 *
954 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
955 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
956 * We'll change this code in the future to wake up hard offlined CPU0 if
957 * real platform and request are available.
958 */
148f9bb8 959static int
e1c467e6
FY
960wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
961 int *cpu0_nmi_registered)
962{
963 int id;
964 int boot_error;
965
ea7bdc65
JK
966 preempt_disable();
967
e1c467e6
FY
968 /*
969 * Wake up AP by INIT, INIT, STARTUP sequence.
970 */
ea7bdc65
JK
971 if (cpu) {
972 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
973 goto out;
974 }
e1c467e6
FY
975
976 /*
977 * Wake up BSP by nmi.
978 *
979 * Register a NMI handler to help wake up CPU0.
980 */
981 boot_error = register_nmi_handler(NMI_LOCAL,
982 wakeup_cpu0_nmi, 0, "wake_cpu0");
983
984 if (!boot_error) {
985 enable_start_cpu0 = 1;
986 *cpu0_nmi_registered = 1;
987 if (apic->dest_logical == APIC_DEST_LOGICAL)
988 id = cpu0_logical_apicid;
989 else
990 id = apicid;
991 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
992 }
ea7bdc65
JK
993
994out:
995 preempt_enable();
e1c467e6
FY
996
997 return boot_error;
998}
999
66c7ceb4 1000int common_cpu_up(unsigned int cpu, struct task_struct *idle)
3f85483b 1001{
66c7ceb4
TG
1002 int ret;
1003
3f85483b
BO
1004 /* Just in case we booted with a single CPU. */
1005 alternatives_enable_smp();
1006
1007 per_cpu(current_task, cpu) = idle;
c9a1ff31 1008 cpu_init_stack_canary(cpu, idle);
3f85483b 1009
66c7ceb4
TG
1010 /* Initialize the interrupt stack(s) */
1011 ret = irq_init_percpu_irqstack(cpu);
1012 if (ret)
1013 return ret;
1014
3f85483b
BO
1015#ifdef CONFIG_X86_32
1016 /* Stack for startup_32 can be just as for start_secondary onwards */
cd493a6d 1017 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
3f85483b 1018#else
3f85483b
BO
1019 initial_gs = per_cpu_offset(cpu);
1020#endif
66c7ceb4 1021 return 0;
3f85483b
BO
1022}
1023
cb3c8b90
GOC
1024/*
1025 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1f5bcabf
IM
1027 * Returns zero if CPU booted OK, else error code from
1028 * ->wakeup_secondary_cpu.
cb3c8b90 1029 */
10e66760
VK
1030static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031 int *cpu0_nmi_registered)
cb3c8b90 1032{
48927bbb 1033 /* start_ip had better be page-aligned! */
f37240f1 1034 unsigned long start_ip = real_mode_header->trampoline_start;
48927bbb 1035
cb3c8b90 1036 unsigned long boot_error = 0;
ce4b1b16 1037 unsigned long timeout;
cb3c8b90 1038
b9b1a9c3 1039 idle->thread.sp = (unsigned long)task_pt_regs(idle);
69218e47 1040 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
3e970473 1041 initial_code = (unsigned long)start_secondary;
b32f96c7 1042 initial_stack = idle->thread.sp;
cb3c8b90 1043
613e396b 1044 /* Enable the espfix hack for this CPU */
20d5e4a9 1045 init_espfix_ap(cpu);
20d5e4a9 1046
2eaad1fd
MT
1047 /* So we see what's up */
1048 announce_cpu(cpu, apicid);
cb3c8b90
GOC
1049
1050 /*
1051 * This grunge runs the startup process for
1052 * the targeted processor.
1053 */
1054
e348caef 1055 if (x86_platform.legacy.warm_reset) {
cb3c8b90 1056
cfc1b9a6 1057 pr_debug("Setting warm reset code and vector.\n");
cb3c8b90 1058
34d05591
JS
1059 smpboot_setup_warm_reset_vector(start_ip);
1060 /*
1061 * Be paranoid about clearing APIC errors.
db96b0a0 1062 */
cff9ab2b 1063 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
db96b0a0
CG
1064 apic_write(APIC_ESR, 0);
1065 apic_read(APIC_ESR);
1066 }
34d05591 1067 }
cb3c8b90 1068
ce4b1b16
IM
1069 /*
1070 * AP might wait on cpu_callout_mask in cpu_init() with
1071 * cpu_initialized_mask set if previous attempt to online
1072 * it timed-out. Clear cpu_initialized_mask so that after
1073 * INIT/SIPI it could start with a clean state.
1074 */
1075 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076 smp_mb();
1077
cb3c8b90 1078 /*
e1c467e6
FY
1079 * Wake up a CPU in difference cases:
1080 * - Use the method in the APIC driver if it's defined
1081 * Otherwise,
1082 * - Use an INIT boot APIC message for APs or NMI for BSP.
cb3c8b90 1083 */
1f5bcabf
IM
1084 if (apic->wakeup_secondary_cpu)
1085 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086 else
e1c467e6 1087 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
10e66760 1088 cpu0_nmi_registered);
cb3c8b90
GOC
1089
1090 if (!boot_error) {
1091 /*
6e38f1e7 1092 * Wait 10s total for first sign of life from AP
cb3c8b90 1093 */
ce4b1b16
IM
1094 boot_error = -1;
1095 timeout = jiffies + 10*HZ;
1096 while (time_before(jiffies, timeout)) {
1097 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098 /*
1099 * Tell AP to proceed with initialization
1100 */
1101 cpumask_set_cpu(cpu, cpu_callout_mask);
1102 boot_error = 0;
1103 break;
1104 }
ce4b1b16
IM
1105 schedule();
1106 }
1107 }
cb3c8b90 1108
ce4b1b16 1109 if (!boot_error) {
cb3c8b90 1110 /*
ce4b1b16 1111 * Wait till AP completes initial initialization
cb3c8b90 1112 */
ce4b1b16 1113 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
68f202e4
SS
1114 /*
1115 * Allow other tasks to run while we wait for the
1116 * AP to come online. This also gives a chance
1117 * for the MTRR work(triggered by the AP coming online)
1118 * to be completed in the stop machine context.
1119 */
1120 schedule();
cb3c8b90 1121 }
cb3c8b90
GOC
1122 }
1123
e348caef 1124 if (x86_platform.legacy.warm_reset) {
02421f98
YL
1125 /*
1126 * Cleanup possible dangling ends...
1127 */
1128 smpboot_restore_warm_reset_vector();
1129 }
e1c467e6 1130
cb3c8b90
GOC
1131 return boot_error;
1132}
1133
148f9bb8 1134int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
cb3c8b90 1135{
a21769a4 1136 int apicid = apic->cpu_present_to_apicid(cpu);
10e66760 1137 int cpu0_nmi_registered = 0;
cb3c8b90 1138 unsigned long flags;
10e66760 1139 int err, ret = 0;
cb3c8b90 1140
7a10e2a9 1141 lockdep_assert_irqs_enabled();
cb3c8b90 1142
cfc1b9a6 1143 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
cb3c8b90 1144
30106c17 1145 if (apicid == BAD_APICID ||
c284b42a 1146 !physid_isset(apicid, phys_cpu_present_map) ||
fa63030e 1147 !apic->apic_id_valid(apicid)) {
c767a54b 1148 pr_err("%s: bad cpu %d\n", __func__, cpu);
cb3c8b90
GOC
1149 return -EINVAL;
1150 }
1151
1152 /*
1153 * Already booted CPU?
1154 */
c2d1cec1 1155 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
cfc1b9a6 1156 pr_debug("do_boot_cpu %d Already started\n", cpu);
cb3c8b90
GOC
1157 return -ENOSYS;
1158 }
1159
1160 /*
1161 * Save current MTRR state in case it was changed since early boot
1162 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163 */
1164 mtrr_save_state();
1165
2a442c9c
PM
1166 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1167 err = cpu_check_up_prepare(cpu);
1168 if (err && err != -EBUSY)
1169 return err;
cb3c8b90 1170
644c1541 1171 /* the FPU context is blank, nobody can own it */
317b622c 1172 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
644c1541 1173
66c7ceb4
TG
1174 err = common_cpu_up(cpu, tidle);
1175 if (err)
1176 return err;
3f85483b 1177
10e66760 1178 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
61165d7a 1179 if (err) {
feef1e8e 1180 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
10e66760
VK
1181 ret = -EIO;
1182 goto unreg_nmi;
cb3c8b90
GOC
1183 }
1184
1185 /*
1186 * Check TSC synchronization with the AP (keep irqs disabled
1187 * while doing so):
1188 */
1189 local_irq_save(flags);
1190 check_tsc_sync_source(cpu);
1191 local_irq_restore(flags);
1192
7c04e64a 1193 while (!cpu_online(cpu)) {
cb3c8b90
GOC
1194 cpu_relax();
1195 touch_nmi_watchdog();
1196 }
1197
10e66760
VK
1198unreg_nmi:
1199 /*
1200 * Clean up the nmi handler. Do this after the callin and callout sync
1201 * to avoid impact of possible long unregister time.
1202 */
1203 if (cpu0_nmi_registered)
1204 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205
1206 return ret;
cb3c8b90
GOC
1207}
1208
7167d08e
HK
1209/**
1210 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211 */
1212void arch_disable_smp_support(void)
1213{
1214 disable_ioapic_support();
1215}
1216
8aef135c
GOC
1217/*
1218 * Fall back to non SMP mode after errors.
1219 *
1220 * RED-PEN audit/test this more. I bet there is more state messed up here.
1221 */
1222static __init void disable_smp(void)
1223{
613c25ef
TG
1224 pr_info("SMP disabled\n");
1225
ef4c59a4
TG
1226 disable_ioapic_support();
1227
4f062896
RR
1228 init_cpu_present(cpumask_of(0));
1229 init_cpu_possible(cpumask_of(0));
0f385d1d 1230
8aef135c 1231 if (smp_found_config)
b6df1b8b 1232 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
8aef135c 1233 else
b6df1b8b 1234 physid_set_mask_of_physid(0, &phys_cpu_present_map);
7d79a7bd
BG
1235 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236 cpumask_set_cpu(0, topology_core_cpumask(0));
2e4c54da 1237 cpumask_set_cpu(0, topology_die_cpumask(0));
8aef135c
GOC
1238}
1239
1240/*
1241 * Various sanity checks.
1242 */
4f45ed9f 1243static void __init smp_sanity_check(void)
8aef135c 1244{
ac23d4ee 1245 preempt_disable();
a58f03b0 1246
1ff2f20d 1247#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
a58f03b0
YL
1248 if (def_to_bigsmp && nr_cpu_ids > 8) {
1249 unsigned int cpu;
1250 unsigned nr;
1251
c767a54b
JP
1252 pr_warn("More than 8 CPUs detected - skipping them\n"
1253 "Use CONFIG_X86_BIGSMP\n");
a58f03b0
YL
1254
1255 nr = 0;
1256 for_each_present_cpu(cpu) {
1257 if (nr >= 8)
c2d1cec1 1258 set_cpu_present(cpu, false);
a58f03b0
YL
1259 nr++;
1260 }
1261
1262 nr = 0;
1263 for_each_possible_cpu(cpu) {
1264 if (nr >= 8)
c2d1cec1 1265 set_cpu_possible(cpu, false);
a58f03b0
YL
1266 nr++;
1267 }
1268
1269 nr_cpu_ids = 8;
1270 }
1271#endif
1272
8aef135c 1273 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
c767a54b 1274 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
55c395b4
MT
1275 hard_smp_processor_id());
1276
8aef135c
GOC
1277 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278 }
1279
8aef135c
GOC
1280 /*
1281 * Should not be necessary because the MP table should list the boot
1282 * CPU too, but we do it for the sake of robustness anyway.
1283 */
a27a6210 1284 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
c767a54b
JP
1285 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286 boot_cpu_physical_apicid);
8aef135c
GOC
1287 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 }
ac23d4ee 1289 preempt_enable();
8aef135c
GOC
1290}
1291
1292static void __init smp_cpu_index_default(void)
1293{
1294 int i;
1295 struct cpuinfo_x86 *c;
1296
7c04e64a 1297 for_each_possible_cpu(i) {
8aef135c
GOC
1298 c = &cpu_data(i);
1299 /* mark all to hotplug */
9628937d 1300 c->cpu_index = nr_cpu_ids;
8aef135c
GOC
1301 }
1302}
1303
4b1244b4
DL
1304static void __init smp_get_logical_apicid(void)
1305{
1306 if (x2apic_mode)
1307 cpu0_logical_apicid = apic_read(APIC_LDR);
1308 else
1309 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310}
1311
8aef135c 1312/*
935356ce
DL
1313 * Prepare for SMP bootup.
1314 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315 * for common interface support.
8aef135c
GOC
1316 */
1317void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318{
7ad728f9
RR
1319 unsigned int i;
1320
8aef135c 1321 smp_cpu_index_default();
792363d2 1322
8aef135c
GOC
1323 /*
1324 * Setup boot CPU information
1325 */
30106c17 1326 smp_store_boot_cpu_info(); /* Final full version of the data */
792363d2
YL
1327 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328 mb();
bd22a2f1 1329
7ad728f9 1330 for_each_possible_cpu(i) {
79f55997
LZ
1331 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
2e4c54da 1333 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
b3d7336d 1334 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
7ad728f9 1335 }
8f37961c
TC
1336
1337 /*
1338 * Set 'default' x86 topology, this matches default_topology() in that
1339 * it has NUMA nodes as a topology level. See also
1340 * native_smp_cpus_done().
1341 *
1342 * Must be done before set_cpus_sibling_map() is ran.
1343 */
1344 set_sched_topology(x86_topology);
1345
8aef135c 1346 set_cpu_sibling_map(0);
41ea6672 1347 init_freq_invariance(false, false);
4f45ed9f
DL
1348 smp_sanity_check();
1349
1350 switch (apic_intr_mode) {
1351 case APIC_PIC:
1352 case APIC_VIRTUAL_WIRE_NO_CONFIG:
613c25ef
TG
1353 disable_smp();
1354 return;
4f45ed9f 1355 case APIC_SYMMETRIC_IO_NO_ROUTING:
613c25ef 1356 disable_smp();
a2510d15
DL
1357 /* Setup local timer */
1358 x86_init.timers.setup_percpu_clockev();
250a1ac6 1359 return;
4f45ed9f
DL
1360 case APIC_VIRTUAL_WIRE:
1361 case APIC_SYMMETRIC_IO:
613c25ef 1362 break;
8aef135c
GOC
1363 }
1364
a2510d15
DL
1365 /* Setup local timer */
1366 x86_init.timers.setup_percpu_clockev();
8aef135c 1367
4b1244b4 1368 smp_get_logical_apicid();
ef4c59a4 1369
d54ff31d 1370 pr_info("CPU0: ");
8aef135c 1371 print_cpu_info(&cpu_data(0));
c4bd1fda 1372
9ec808a0 1373 uv_system_init();
d0af9eed
SS
1374
1375 set_mtrr_aps_delayed_init();
1a744cb3
LB
1376
1377 smp_quirk_init_udelay();
1f50ddb4
TG
1378
1379 speculative_store_bypass_ht_init();
8aef135c 1380}
d0af9eed 1381
56555855 1382void arch_thaw_secondary_cpus_begin(void)
d0af9eed
SS
1383{
1384 set_mtrr_aps_delayed_init();
1385}
1386
56555855 1387void arch_thaw_secondary_cpus_end(void)
d0af9eed
SS
1388{
1389 mtrr_aps_init();
1390}
1391
a8db8453
GOC
1392/*
1393 * Early setup to make printk work.
1394 */
1395void __init native_smp_prepare_boot_cpu(void)
1396{
1397 int me = smp_processor_id();
552be871 1398 switch_to_new_gdt(me);
c2d1cec1
MT
1399 /* already set me in cpu_online_mask in boot_cpu_init() */
1400 cpumask_set_cpu(me, cpu_callout_mask);
2a442c9c 1401 cpu_set_state_online(me);
090d54bc 1402 native_pv_lock_init();
a8db8453
GOC
1403}
1404
63e708f8 1405void __init calculate_max_logical_packages(void)
83f7eb9c 1406{
b4c0a732
PB
1407 int ncpus;
1408
b4c0a732
PB
1409 /*
1410 * Today neither Intel nor AMD support heterogenous systems so
1411 * extrapolate the boot cpu's data to all packages.
1412 */
947134d9 1413 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
aa02ef09 1414 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
b4c0a732 1415 pr_info("Max logical packages: %u\n", __max_logical_packages);
63e708f8
PB
1416}
1417
1418void __init native_smp_cpus_done(unsigned int max_cpus)
1419{
1420 pr_debug("Boot done\n");
1421
1422 calculate_max_logical_packages();
83f7eb9c 1423
8f37961c
TC
1424 if (x86_has_numa_in_package)
1425 set_sched_topology(x86_numa_in_package_topology);
1426
99e8b9ca 1427 nmi_selftest();
83f7eb9c 1428 impress_friends();
d0af9eed 1429 mtrr_aps_init();
83f7eb9c
GOC
1430}
1431
3b11ce7f
MT
1432static int __initdata setup_possible_cpus = -1;
1433static int __init _setup_possible_cpus(char *str)
1434{
1435 get_option(&str, &setup_possible_cpus);
1436 return 0;
1437}
1438early_param("possible_cpus", _setup_possible_cpus);
1439
1440
68a1c3f8 1441/*
4f062896 1442 * cpu_possible_mask should be static, it cannot change as cpu's
68a1c3f8 1443 * are onlined, or offlined. The reason is per-cpu data-structures
4d1d0977 1444 * are allocated by some modules at init time, and don't expect to
68a1c3f8 1445 * do this dynamically on cpu arrival/departure.
4f062896 1446 * cpu_present_mask on the other hand can change dynamically.
68a1c3f8
GC
1447 * In case when cpu_hotplug is not compiled, then we resort to current
1448 * behaviour, which is cpu_possible == cpu_present.
1449 * - Ashok Raj
1450 *
1451 * Three ways to find out the number of additional hotplug CPUs:
1452 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
3b11ce7f 1453 * - The user can overwrite it with possible_cpus=NUM
68a1c3f8
GC
1454 * - Otherwise don't reserve additional CPUs.
1455 * We do this because additional CPUs waste a lot of memory.
1456 * -AK
1457 */
1458__init void prefill_possible_map(void)
1459{
cb48bb59 1460 int i, possible;
68a1c3f8 1461
2a51fe08
PB
1462 /* No boot processor was found in mptable or ACPI MADT */
1463 if (!num_processors) {
ff856051
VS
1464 if (boot_cpu_has(X86_FEATURE_APIC)) {
1465 int apicid = boot_cpu_physical_apicid;
1466 int cpu = hard_smp_processor_id();
2a51fe08 1467
ff856051 1468 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
2a51fe08 1469
ff856051
VS
1470 /* Make sure boot cpu is enumerated */
1471 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472 apic->apic_id_valid(apicid))
1473 generic_processor_info(apicid, boot_cpu_apic_version);
1474 }
2a51fe08
PB
1475
1476 if (!num_processors)
1477 num_processors = 1;
1478 }
329513a3 1479
5f2eb550
JB
1480 i = setup_max_cpus ?: 1;
1481 if (setup_possible_cpus == -1) {
1482 possible = num_processors;
1483#ifdef CONFIG_HOTPLUG_CPU
1484 if (setup_max_cpus)
1485 possible += disabled_cpus;
1486#else
1487 if (possible > i)
1488 possible = i;
1489#endif
1490 } else
3b11ce7f
MT
1491 possible = setup_possible_cpus;
1492
730cf272
MT
1493 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494
2b633e3f
YL
1495 /* nr_cpu_ids could be reduced via nr_cpus= */
1496 if (possible > nr_cpu_ids) {
9b130ad5 1497 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
2b633e3f
YL
1498 possible, nr_cpu_ids);
1499 possible = nr_cpu_ids;
3b11ce7f 1500 }
68a1c3f8 1501
5f2eb550
JB
1502#ifdef CONFIG_HOTPLUG_CPU
1503 if (!setup_max_cpus)
1504#endif
1505 if (possible > i) {
c767a54b 1506 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
5f2eb550
JB
1507 possible, setup_max_cpus);
1508 possible = i;
1509 }
1510
427d77a3
TG
1511 nr_cpu_ids = possible;
1512
c767a54b 1513 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
68a1c3f8
GC
1514 possible, max_t(int, possible - num_processors, 0));
1515
427d77a3
TG
1516 reset_cpu_possible_mask();
1517
68a1c3f8 1518 for (i = 0; i < possible; i++)
c2d1cec1 1519 set_cpu_possible(i, true);
68a1c3f8 1520}
69c18c15 1521
14adf855
CE
1522#ifdef CONFIG_HOTPLUG_CPU
1523
70b8301f
AK
1524/* Recompute SMT state for all CPUs on offline */
1525static void recompute_smt_state(void)
1526{
1527 int max_threads, cpu;
1528
1529 max_threads = 0;
1530 for_each_online_cpu (cpu) {
1531 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532
1533 if (threads > max_threads)
1534 max_threads = threads;
1535 }
1536 __max_smt_threads = max_threads;
1537}
1538
14adf855
CE
1539static void remove_siblinginfo(int cpu)
1540{
1541 int sibling;
1542 struct cpuinfo_x86 *c = &cpu_data(cpu);
1543
7d79a7bd
BG
1544 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
14adf855
CE
1546 /*/
1547 * last thread sibling in this cpu core going down
1548 */
7d79a7bd 1549 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
14adf855
CE
1550 cpu_data(sibling).booted_cores--;
1551 }
1552
2e4c54da
LB
1553 for_each_cpu(sibling, topology_die_cpumask(cpu))
1554 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
7d79a7bd
BG
1555 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
03bd4e1f
WL
1557 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559 cpumask_clear(cpu_llc_shared_mask(cpu));
7d79a7bd
BG
1560 cpumask_clear(topology_sibling_cpumask(cpu));
1561 cpumask_clear(topology_core_cpumask(cpu));
2e4c54da 1562 cpumask_clear(topology_die_cpumask(cpu));
14adf855 1563 c->cpu_core_id = 0;
45967493 1564 c->booted_cores = 0;
c2d1cec1 1565 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
70b8301f 1566 recompute_smt_state();
14adf855
CE
1567}
1568
4daa832d 1569static void remove_cpu_from_maps(int cpu)
69c18c15 1570{
c2d1cec1
MT
1571 set_cpu_online(cpu, false);
1572 cpumask_clear_cpu(cpu, cpu_callout_mask);
1573 cpumask_clear_cpu(cpu, cpu_callin_mask);
69c18c15 1574 /* was set by cpu_init() */
c2d1cec1 1575 cpumask_clear_cpu(cpu, cpu_initialized_mask);
23ca4bba 1576 numa_remove_cpu(cpu);
69c18c15
GC
1577}
1578
8227dce7 1579void cpu_disable_common(void)
69c18c15
GC
1580{
1581 int cpu = smp_processor_id();
69c18c15 1582
69c18c15
GC
1583 remove_siblinginfo(cpu);
1584
1585 /* It's now safe to remove this processor from the online map */
d388e5fd 1586 lock_vector_lock();
69c18c15 1587 remove_cpu_from_maps(cpu);
d388e5fd 1588 unlock_vector_lock();
d7b381bb 1589 fixup_irqs();
0fa115da 1590 lapic_offline();
8227dce7
AN
1591}
1592
1593int native_cpu_disable(void)
1594{
da6139e4
PB
1595 int ret;
1596
2cffad7b 1597 ret = lapic_can_unplug_cpu();
da6139e4
PB
1598 if (ret)
1599 return ret;
1600
8227dce7 1601 cpu_disable_common();
2ed53c0d 1602
52d6b926
AR
1603 /*
1604 * Disable the local APIC. Otherwise IPI broadcasts will reach
1605 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606 * messages.
1607 *
1608 * Disabling the APIC must happen after cpu_disable_common()
1609 * which invokes fixup_irqs().
1610 *
1611 * Disabling the APIC preserves already set bits in IRR, but
1612 * an interrupt arriving after disabling the local APIC does not
1613 * set the corresponding IRR bit.
1614 *
1615 * fixup_irqs() scans IRR for set bits so it can raise a not
1616 * yet handled interrupt on the new destination CPU via an IPI
1617 * but obviously it can't do so for IRR bits which are not set.
1618 * IOW, interrupts arriving after disabling the local APIC will
1619 * be lost.
1620 */
1621 apic_soft_disable();
1622
69c18c15
GC
1623 return 0;
1624}
1625
2a442c9c 1626int common_cpu_die(unsigned int cpu)
54279552 1627{
2a442c9c 1628 int ret = 0;
54279552 1629
69c18c15 1630 /* We don't do anything here: idle task is faking death itself. */
54279552 1631
2ed53c0d 1632 /* They ack this in play_dead() by setting CPU_DEAD */
2a442c9c 1633 if (cpu_wait_death(cpu, 5)) {
2ed53c0d
LT
1634 if (system_state == SYSTEM_RUNNING)
1635 pr_info("CPU %u is now offline\n", cpu);
1636 } else {
1637 pr_err("CPU %u didn't die...\n", cpu);
2a442c9c 1638 ret = -1;
69c18c15 1639 }
2a442c9c
PM
1640
1641 return ret;
1642}
1643
1644void native_cpu_die(unsigned int cpu)
1645{
1646 common_cpu_die(cpu);
69c18c15 1647}
a21f5d88
AN
1648
1649void play_dead_common(void)
1650{
1651 idle_task_exit();
a21f5d88 1652
a21f5d88 1653 /* Ack it */
2a442c9c 1654 (void)cpu_report_death();
a21f5d88
AN
1655
1656 /*
1657 * With physical CPU hotplug, we should halt the cpu
1658 */
1659 local_irq_disable();
1660}
1661
e1c467e6
FY
1662static bool wakeup_cpu0(void)
1663{
1664 if (smp_processor_id() == 0 && enable_start_cpu0)
1665 return true;
1666
1667 return false;
1668}
1669
ea530692
PA
1670/*
1671 * We need to flush the caches before going to sleep, lest we have
1672 * dirty data in our caches when we come back up.
1673 */
1674static inline void mwait_play_dead(void)
1675{
1676 unsigned int eax, ebx, ecx, edx;
1677 unsigned int highest_cstate = 0;
1678 unsigned int highest_subcstate = 0;
ce5f6824 1679 void *mwait_ptr;
576cfb40 1680 int i;
ea530692 1681
0b13bec7
PW
1682 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1683 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
da6fa7ef 1684 return;
69fb3676 1685 if (!this_cpu_has(X86_FEATURE_MWAIT))
ea530692 1686 return;
840d2830 1687 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
ce5f6824 1688 return;
7b543a53 1689 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
ea530692
PA
1690 return;
1691
1692 eax = CPUID_MWAIT_LEAF;
1693 ecx = 0;
1694 native_cpuid(&eax, &ebx, &ecx, &edx);
1695
1696 /*
1697 * eax will be 0 if EDX enumeration is not valid.
1698 * Initialized below to cstate, sub_cstate value when EDX is valid.
1699 */
1700 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1701 eax = 0;
1702 } else {
1703 edx >>= MWAIT_SUBSTATE_SIZE;
1704 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1705 if (edx & MWAIT_SUBSTATE_MASK) {
1706 highest_cstate = i;
1707 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1708 }
1709 }
1710 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1711 (highest_subcstate - 1);
1712 }
1713
ce5f6824
PA
1714 /*
1715 * This should be a memory location in a cache line which is
1716 * unlikely to be touched by other processors. The actual
1717 * content is immaterial as it is not actually modified in any way.
1718 */
1719 mwait_ptr = &current_thread_info()->flags;
1720
a68e5c94
PA
1721 wbinvd();
1722
ea530692 1723 while (1) {
ce5f6824
PA
1724 /*
1725 * The CLFLUSH is a workaround for erratum AAI65 for
1726 * the Xeon 7400 series. It's not clear it is actually
1727 * needed, but it should be harmless in either case.
1728 * The WBINVD is insufficient due to the spurious-wakeup
1729 * case where we return around the loop.
1730 */
7d590cca 1731 mb();
ce5f6824 1732 clflush(mwait_ptr);
7d590cca 1733 mb();
ce5f6824 1734 __monitor(mwait_ptr, 0, 0);
ea530692
PA
1735 mb();
1736 __mwait(eax, 0);
e1c467e6
FY
1737 /*
1738 * If NMI wants to wake up CPU0, start CPU0.
1739 */
1740 if (wakeup_cpu0())
1741 start_cpu0();
ea530692
PA
1742 }
1743}
1744
406f992e 1745void hlt_play_dead(void)
ea530692 1746{
7b543a53 1747 if (__this_cpu_read(cpu_info.x86) >= 4)
a68e5c94
PA
1748 wbinvd();
1749
ea530692 1750 while (1) {
ea530692 1751 native_halt();
e1c467e6
FY
1752 /*
1753 * If NMI wants to wake up CPU0, start CPU0.
1754 */
1755 if (wakeup_cpu0())
1756 start_cpu0();
ea530692
PA
1757 }
1758}
1759
a21f5d88
AN
1760void native_play_dead(void)
1761{
1762 play_dead_common();
86886e55 1763 tboot_shutdown(TB_SHUTDOWN_WFS);
ea530692
PA
1764
1765 mwait_play_dead(); /* Only returns on failure */
1a022e3f
BO
1766 if (cpuidle_play_dead())
1767 hlt_play_dead();
a21f5d88
AN
1768}
1769
69c18c15 1770#else /* ... !CONFIG_HOTPLUG_CPU */
93be71b6 1771int native_cpu_disable(void)
69c18c15
GC
1772{
1773 return -ENOSYS;
1774}
1775
93be71b6 1776void native_cpu_die(unsigned int cpu)
69c18c15
GC
1777{
1778 /* We said "no" in __cpu_disable */
1779 BUG();
1780}
a21f5d88
AN
1781
1782void native_play_dead(void)
1783{
1784 BUG();
1785}
1786
68a1c3f8 1787#endif
1567c3e3 1788
e2b0d619 1789#ifdef CONFIG_X86_64
1567c3e3
GG
1790/*
1791 * APERF/MPERF frequency ratio computation.
1792 *
1793 * The scheduler wants to do frequency invariant accounting and needs a <1
1794 * ratio to account for the 'current' frequency, corresponding to
1795 * freq_curr / freq_max.
1796 *
1797 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1798 * our P-state setting is little more than a request/hint, we need to observe
1799 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1800 * interval after discarding idle time. This is given by:
1801 *
1802 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1803 *
1804 * where freq_base is the max non-turbo P-state.
1805 *
1806 * The freq_max term has to be set to a somewhat arbitrary value, because we
1807 * can't know which turbo states will be available at a given point in time:
1808 * it all depends on the thermal headroom of the entire package. We set it to
1809 * the turbo level with 4 cores active.
1810 *
1811 * Benchmarks show that's a good compromise between the 1C turbo ratio
1812 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1813 * which would ignore the entire turbo range (a conspicuous part, making
1814 * freq_curr/freq_max always maxed out).
1815 *
eacf0474
GG
1816 * An exception to the heuristic above is the Atom uarch, where we choose the
1817 * highest turbo level for freq_max since Atom's are generally oriented towards
1818 * power efficiency.
1819 *
1567c3e3
GG
1820 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1821 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1822 */
1823
1824DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1825
1826static DEFINE_PER_CPU(u64, arch_prev_aperf);
1827static DEFINE_PER_CPU(u64, arch_prev_mperf);
918229cd 1828static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1567c3e3
GG
1829static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1830
918229cd
GG
1831void arch_set_max_freq_ratio(bool turbo_disabled)
1832{
1833 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1834 arch_turbo_freq_ratio;
1835}
1836
1567c3e3
GG
1837static bool turbo_disabled(void)
1838{
1839 u64 misc_en;
1840 int err;
1841
1842 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1843 if (err)
1844 return false;
1845
1846 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1847}
1848
298c6f99
GG
1849static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1850{
1851 int err;
1852
1853 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1854 if (err)
1855 return false;
1856
1857 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1858 if (err)
1859 return false;
1860
1861 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1862 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1863
1864 return true;
1865}
1866
1567c3e3
GG
1867#include <asm/cpu_device_id.h>
1868#include <asm/intel-family.h>
1869
2fa9a3cf
BP
1870#define X86_MATCH(model) \
1871 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1872 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1567c3e3
GG
1873
1874static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
2fa9a3cf
BP
1875 X86_MATCH(XEON_PHI_KNL),
1876 X86_MATCH(XEON_PHI_KNM),
1567c3e3
GG
1877 {}
1878};
1879
1880static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
2fa9a3cf 1881 X86_MATCH(SKYLAKE_X),
1567c3e3
GG
1882 {}
1883};
1884
1885static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
2fa9a3cf
BP
1886 X86_MATCH(ATOM_GOLDMONT),
1887 X86_MATCH(ATOM_GOLDMONT_D),
1888 X86_MATCH(ATOM_GOLDMONT_PLUS),
1567c3e3
GG
1889 {}
1890};
1891
8bea0dfb
GG
1892static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1893 int num_delta_fratio)
1894{
1895 int fratio, delta_fratio, found;
1896 int err, i;
1897 u64 msr;
1898
8bea0dfb
GG
1899 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1900 if (err)
1901 return false;
1902
1903 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1904
1905 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1906 if (err)
1907 return false;
1908
1909 fratio = (msr >> 8) & 0xFF;
1910 i = 16;
1911 found = 0;
1912 do {
1913 if (found >= num_delta_fratio) {
1914 *turbo_freq = fratio;
1915 return true;
1916 }
1917
1918 delta_fratio = (msr >> (i + 5)) & 0x7;
1919
1920 if (delta_fratio) {
1921 found += 1;
1922 fratio -= delta_fratio;
1923 }
1924
1925 i += 8;
1926 } while (i < 64);
1927
1928 return true;
1929}
1930
2a0abc59
GG
1931static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1932{
1933 u64 ratios, counts;
1934 u32 group_size;
1935 int err, i;
1936
1937 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1938 if (err)
1939 return false;
1940
1941 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1942
1943 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1944 if (err)
1945 return false;
1946
1947 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1948 if (err)
1949 return false;
1950
1951 for (i = 0; i < 64; i += 8) {
1952 group_size = (counts >> i) & 0xFF;
1953 if (group_size >= size) {
1954 *turbo_freq = (ratios >> i) & 0xFF;
1955 return true;
1956 }
1957 }
1958
1959 return false;
1960}
1961
1962static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1567c3e3 1963{
23ccee22 1964 u64 msr;
1567c3e3
GG
1965 int err;
1966
2a0abc59 1967 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1567c3e3
GG
1968 if (err)
1969 return false;
1970
23ccee22 1971 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1567c3e3
GG
1972 if (err)
1973 return false;
1974
23ccee22
GG
1975 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1976 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1977
1978 /* The CPU may have less than 4 cores */
1979 if (!*turbo_freq)
1980 *turbo_freq = msr & 0xFF; /* 1C turbo */
1567c3e3 1981
1567c3e3
GG
1982 return true;
1983}
1984
1985static bool intel_set_max_freq_ratio(void)
1986{
918229cd 1987 u64 base_freq, turbo_freq;
f4291df1 1988 u64 turbo_ratio;
2a0abc59 1989
298c6f99
GG
1990 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1991 goto out;
1992
eacf0474
GG
1993 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1994 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995 goto out;
1996
db441bd9
GG
1997 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1998 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
8bea0dfb
GG
1999 goto out;
2000
2a0abc59
GG
2001 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2002 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2003 goto out;
2004
2005 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2006 goto out;
1567c3e3
GG
2007
2008 return false;
2a0abc59
GG
2009
2010out:
9a6c2c3c
GG
2011 /*
2012 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2013 * but then fill all MSR's with zeroes.
51beea88
GG
2014 * Some CPUs have turbo boost but don't declare any turbo ratio
2015 * in MSR_TURBO_RATIO_LIMIT.
9a6c2c3c 2016 */
51beea88
GG
2017 if (!base_freq || !turbo_freq) {
2018 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
9a6c2c3c
GG
2019 return false;
2020 }
2021
f4291df1
GG
2022 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2023 if (!turbo_ratio) {
2024 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2025 return false;
2026 }
2027
2028 arch_turbo_freq_ratio = turbo_ratio;
918229cd 2029 arch_set_max_freq_ratio(turbo_disabled());
f4291df1 2030
2a0abc59 2031 return true;
1567c3e3
GG
2032}
2033
41ea6672
NF
2034#ifdef CONFIG_ACPI_CPPC_LIB
2035static bool amd_set_max_freq_ratio(void)
2036{
2037 struct cppc_perf_caps perf_caps;
2038 u64 highest_perf, nominal_perf;
2039 u64 perf_ratio;
2040 int rc;
2041
2042 rc = cppc_get_perf_caps(0, &perf_caps);
2043 if (rc) {
2044 pr_debug("Could not retrieve perf counters (%d)\n", rc);
2045 return false;
2046 }
2047
2048 highest_perf = perf_caps.highest_perf;
2049 nominal_perf = perf_caps.nominal_perf;
2050
2051 if (!highest_perf || !nominal_perf) {
2052 pr_debug("Could not retrieve highest or nominal performance\n");
2053 return false;
2054 }
2055
2056 perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
976df7e5
GG
2057 /* midpoint between max_boost and max_P */
2058 perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
41ea6672
NF
2059 if (!perf_ratio) {
2060 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2061 return false;
2062 }
2063
2064 arch_turbo_freq_ratio = perf_ratio;
2065 arch_set_max_freq_ratio(false);
2066
2067 return true;
2068}
2069#else
2070static bool amd_set_max_freq_ratio(void)
2071{
2072 return false;
2073}
2074#endif
2075
b56e7d45 2076static void init_counter_refs(void)
1567c3e3
GG
2077{
2078 u64 aperf, mperf;
2079
2080 rdmsrl(MSR_IA32_APERF, aperf);
2081 rdmsrl(MSR_IA32_MPERF, mperf);
2082
2083 this_cpu_write(arch_prev_aperf, aperf);
2084 this_cpu_write(arch_prev_mperf, mperf);
2085}
2086
41ea6672 2087static void init_freq_invariance(bool secondary, bool cppc_ready)
1567c3e3
GG
2088{
2089 bool ret = false;
2090
b56e7d45 2091 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
1567c3e3
GG
2092 return;
2093
b56e7d45
PZI
2094 if (secondary) {
2095 if (static_branch_likely(&arch_scale_freq_key)) {
2096 init_counter_refs();
2097 }
2098 return;
2099 }
2100
1567c3e3
GG
2101 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2102 ret = intel_set_max_freq_ratio();
41ea6672
NF
2103 else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2104 if (!cppc_ready) {
2105 return;
2106 }
2107 ret = amd_set_max_freq_ratio();
2108 }
1567c3e3
GG
2109
2110 if (ret) {
b56e7d45 2111 init_counter_refs();
1567c3e3 2112 static_branch_enable(&arch_scale_freq_key);
3149cd55 2113 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
1567c3e3
GG
2114 } else {
2115 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2116 }
2117}
2118
41ea6672
NF
2119#ifdef CONFIG_ACPI_CPPC_LIB
2120static DEFINE_MUTEX(freq_invariance_lock);
2121
2122void init_freq_invariance_cppc(void)
2123{
2124 static bool secondary;
2125
2126 mutex_lock(&freq_invariance_lock);
2127
2128 init_freq_invariance(secondary, true);
2129 secondary = true;
2130
2131 mutex_unlock(&freq_invariance_lock);
2132}
2133#endif
2134
e2b0d619
GG
2135static void disable_freq_invariance_workfn(struct work_struct *work)
2136{
2137 static_branch_disable(&arch_scale_freq_key);
2138}
2139
2140static DECLARE_WORK(disable_freq_invariance_work,
2141 disable_freq_invariance_workfn);
2142
1567c3e3
GG
2143DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2144
2145void arch_scale_freq_tick(void)
2146{
e2b0d619 2147 u64 freq_scale = SCHED_CAPACITY_SCALE;
1567c3e3
GG
2148 u64 aperf, mperf;
2149 u64 acnt, mcnt;
2150
2151 if (!arch_scale_freq_invariant())
2152 return;
2153
2154 rdmsrl(MSR_IA32_APERF, aperf);
2155 rdmsrl(MSR_IA32_MPERF, mperf);
2156
2157 acnt = aperf - this_cpu_read(arch_prev_aperf);
2158 mcnt = mperf - this_cpu_read(arch_prev_mperf);
1567c3e3
GG
2159
2160 this_cpu_write(arch_prev_aperf, aperf);
2161 this_cpu_write(arch_prev_mperf, mperf);
2162
e2b0d619
GG
2163 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2164 goto error;
2165
2166 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2167 goto error;
1567c3e3
GG
2168
2169 freq_scale = div64_u64(acnt, mcnt);
e2b0d619
GG
2170 if (!freq_scale)
2171 goto error;
1567c3e3
GG
2172
2173 if (freq_scale > SCHED_CAPACITY_SCALE)
2174 freq_scale = SCHED_CAPACITY_SCALE;
2175
2176 this_cpu_write(arch_freq_scale, freq_scale);
e2b0d619
GG
2177 return;
2178
2179error:
2180 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2181 schedule_work(&disable_freq_invariance_work);
2182}
2183#else
41ea6672 2184static inline void init_freq_invariance(bool secondary, bool cppc_ready)
e2b0d619 2185{
1567c3e3 2186}
e2b0d619 2187#endif /* CONFIG_X86_64 */