x86/speculation: Prevent stale SPEC_CTRL msr content
[linux-block.git] / arch / x86 / kernel / process.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c767a54b
JP
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
61c4628b
SS
4#include <linux/errno.h>
5#include <linux/kernel.h>
6#include <linux/mm.h>
7#include <linux/smp.h>
389d1fb1 8#include <linux/prctl.h>
61c4628b
SS
9#include <linux/slab.h>
10#include <linux/sched.h>
4c822698 11#include <linux/sched/idle.h>
b17b0153 12#include <linux/sched/debug.h>
29930025 13#include <linux/sched/task.h>
68db0cf1 14#include <linux/sched/task_stack.h>
186f4360
PG
15#include <linux/init.h>
16#include <linux/export.h>
7f424a8b 17#include <linux/pm.h>
162a688e 18#include <linux/tick.h>
9d62dcdf 19#include <linux/random.h>
7c68af6e 20#include <linux/user-return-notifier.h>
814e2c84
AI
21#include <linux/dmi.h>
22#include <linux/utsname.h>
90e24014 23#include <linux/stackprotector.h>
90e24014 24#include <linux/cpuidle.h>
61613521 25#include <trace/events/power.h>
24f1e32c 26#include <linux/hw_breakpoint.h>
93789b32 27#include <asm/cpu.h>
d3ec5cae 28#include <asm/apic.h>
2c1b284e 29#include <asm/syscalls.h>
7c0f6ba6 30#include <linux/uaccess.h>
b253149b 31#include <asm/mwait.h>
78f7f1e5 32#include <asm/fpu/internal.h>
66cb5917 33#include <asm/debugreg.h>
90e24014 34#include <asm/nmi.h>
375074cc 35#include <asm/tlbflush.h>
8838eb6c 36#include <asm/mce.h>
9fda6a06 37#include <asm/vm86.h>
7b32aead 38#include <asm/switch_to.h>
b7ffc44d 39#include <asm/desc.h>
e9ea1e7f 40#include <asm/prctl.h>
885f82bf 41#include <asm/spec-ctrl.h>
90e24014 42
ff16701a
TG
43#include "process.h"
44
45046892
TG
45/*
46 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
47 * no more per-task TSS's. The TSS size is kept cacheline-aligned
48 * so they are allowed to end up in the .data..cacheline_aligned
49 * section. Since TSS's are completely CPU-local, we want them
50 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
51 */
2fd9c41a 52__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
d0a0de21 53 .x86_tss = {
20bb8344
AL
54 /*
55 * .sp0 is only used when entering ring 0 from a lower
56 * privilege level. Since the init task never runs anything
57 * but ring 0 code, there is no need for a valid value here.
58 * Poison it.
59 */
60 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
9aaefe7b 61
9aaefe7b
AL
62 /*
63 * .sp1 is cpu_current_top_of_stack. The init task never
64 * runs user code, but cpu_current_top_of_stack should still
65 * be well defined before the first context switch.
66 */
67 .sp1 = TOP_OF_INIT_STACK,
9aaefe7b 68
d0a0de21
AL
69#ifdef CONFIG_X86_32
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
73#endif
74 },
75#ifdef CONFIG_X86_32
76 /*
77 * Note that the .io_bitmap member must be extra-big. This is because
78 * the CPU will access an additional byte beyond the end of the IO
79 * permission bitmap. The extra byte must be all 1 bits, and must
80 * be within the limit.
81 */
82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
83#endif
84};
c482feef 85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
45046892 86
b7ceaec1
AL
87DEFINE_PER_CPU(bool, __tss_limit_invalid);
88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
b7ffc44d 89
55ccf3fe
SS
90/*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
61c4628b
SS
94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95{
5aaeb5c0 96 memcpy(dst, src, arch_task_struct_size);
2459ee86
AL
97#ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99#endif
f1853505 100
c69e098b 101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
61c4628b 102}
7f424a8b 103
389d1fb1
JF
104/*
105 * Free current thread data structures etc..
106 */
e6464694 107void exit_thread(struct task_struct *tsk)
389d1fb1 108{
e6464694 109 struct thread_struct *t = &tsk->thread;
250981e6 110 unsigned long *bp = t->io_bitmap_ptr;
ca6787ba 111 struct fpu *fpu = &t->fpu;
389d1fb1 112
250981e6 113 if (bp) {
c482feef 114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
389d1fb1 115
389d1fb1
JF
116 t->io_bitmap_ptr = NULL;
117 clear_thread_flag(TIF_IO_BITMAP);
118 /*
119 * Careful, clear this in the TSS too:
120 */
121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 t->io_bitmap_max = 0;
123 put_cpu();
250981e6 124 kfree(bp);
389d1fb1 125 }
1dcc8d7b 126
9fda6a06
BG
127 free_vm86(t);
128
50338615 129 fpu__drop(fpu);
389d1fb1
JF
130}
131
132void flush_thread(void)
133{
134 struct task_struct *tsk = current;
135
24f1e32c 136 flush_ptrace_hw_breakpoint(tsk);
389d1fb1 137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110d7f75 138
04c8e01d 139 fpu__clear(&tsk->thread.fpu);
389d1fb1
JF
140}
141
389d1fb1
JF
142void disable_TSC(void)
143{
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
5a920155 150 cr4_set_bits(X86_CR4_TSD);
389d1fb1
JF
151 preempt_enable();
152}
153
389d1fb1
JF
154static void enable_TSC(void)
155{
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
158 /*
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
161 */
5a920155 162 cr4_clear_bits(X86_CR4_TSD);
389d1fb1
JF
163 preempt_enable();
164}
165
166int get_tsc_mode(unsigned long adr)
167{
168 unsigned int val;
169
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
174
175 return put_user(val, (unsigned int __user *)adr);
176}
177
178int set_tsc_mode(unsigned int val)
179{
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
186
187 return 0;
188}
189
e9ea1e7f
KH
190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192static void set_cpuid_faulting(bool on)
193{
194 u64 msrval;
195
196 msrval = this_cpu_read(msr_misc_features_shadow);
197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 this_cpu_write(msr_misc_features_shadow, msrval);
200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201}
202
203static void disable_cpuid(void)
204{
205 preempt_disable();
206 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 /*
208 * Must flip the CPU state synchronously with
209 * TIF_NOCPUID in the current running context.
210 */
211 set_cpuid_faulting(true);
212 }
213 preempt_enable();
214}
215
216static void enable_cpuid(void)
217{
218 preempt_disable();
219 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 /*
221 * Must flip the CPU state synchronously with
222 * TIF_NOCPUID in the current running context.
223 */
224 set_cpuid_faulting(false);
225 }
226 preempt_enable();
227}
228
229static int get_cpuid_mode(void)
230{
231 return !test_thread_flag(TIF_NOCPUID);
232}
233
234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235{
236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 return -ENODEV;
238
239 if (cpuid_enabled)
240 enable_cpuid();
241 else
242 disable_cpuid();
243
244 return 0;
245}
246
247/*
248 * Called immediately after a successful exec.
249 */
250void arch_setup_new_exec(void)
251{
252 /* If cpuid was previously disabled for this task, re-enable it. */
253 if (test_thread_flag(TIF_NOCPUID))
254 enable_cpuid();
255}
256
ff16701a 257static inline void switch_to_bitmap(struct thread_struct *prev,
af8b3cd3
KH
258 struct thread_struct *next,
259 unsigned long tifp, unsigned long tifn)
260{
ff16701a
TG
261 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
262
af8b3cd3
KH
263 if (tifn & _TIF_IO_BITMAP) {
264 /*
265 * Copy the relevant range of the IO bitmap.
266 * Normally this is 128 bytes or less:
267 */
268 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
269 max(prev->io_bitmap_max, next->io_bitmap_max));
270 /*
271 * Make sure that the TSS limit is correct for the CPU
272 * to notice the IO bitmap.
273 */
274 refresh_tss_limit();
275 } else if (tifp & _TIF_IO_BITMAP) {
276 /*
277 * Clear any possible leftover bits:
278 */
279 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
280 }
281}
282
1f50ddb4
TG
283#ifdef CONFIG_SMP
284
285struct ssb_state {
286 struct ssb_state *shared_state;
287 raw_spinlock_t lock;
288 unsigned int disable_state;
289 unsigned long local_state;
290};
291
292#define LSTATE_SSB 0
293
294static DEFINE_PER_CPU(struct ssb_state, ssb_state);
295
296void speculative_store_bypass_ht_init(void)
885f82bf 297{
1f50ddb4
TG
298 struct ssb_state *st = this_cpu_ptr(&ssb_state);
299 unsigned int this_cpu = smp_processor_id();
300 unsigned int cpu;
301
302 st->local_state = 0;
303
304 /*
305 * Shared state setup happens once on the first bringup
306 * of the CPU. It's not destroyed on CPU hotunplug.
307 */
308 if (st->shared_state)
309 return;
310
311 raw_spin_lock_init(&st->lock);
312
313 /*
314 * Go over HT siblings and check whether one of them has set up the
315 * shared state pointer already.
316 */
317 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
318 if (cpu == this_cpu)
319 continue;
320
321 if (!per_cpu(ssb_state, cpu).shared_state)
322 continue;
323
324 /* Link it to the state of the sibling: */
325 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
326 return;
327 }
328
329 /*
330 * First HT sibling to come up on the core. Link shared state of
331 * the first HT sibling to itself. The siblings on the same core
332 * which come up later will see the shared state pointer and link
333 * themself to the state of this CPU.
334 */
335 st->shared_state = st;
336}
885f82bf 337
1f50ddb4
TG
338/*
339 * Logic is: First HT sibling enables SSBD for both siblings in the core
340 * and last sibling to disable it, disables it for the whole core. This how
341 * MSR_SPEC_CTRL works in "hardware":
342 *
343 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
344 */
345static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
346{
347 struct ssb_state *st = this_cpu_ptr(&ssb_state);
348 u64 msr = x86_amd_ls_cfg_base;
349
350 if (!static_cpu_has(X86_FEATURE_ZEN)) {
351 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
885f82bf 352 wrmsrl(MSR_AMD64_LS_CFG, msr);
1f50ddb4
TG
353 return;
354 }
355
356 if (tifn & _TIF_SSBD) {
357 /*
358 * Since this can race with prctl(), block reentry on the
359 * same CPU.
360 */
361 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
362 return;
363
364 msr |= x86_amd_ls_cfg_ssbd_mask;
365
366 raw_spin_lock(&st->shared_state->lock);
367 /* First sibling enables SSBD: */
368 if (!st->shared_state->disable_state)
369 wrmsrl(MSR_AMD64_LS_CFG, msr);
370 st->shared_state->disable_state++;
371 raw_spin_unlock(&st->shared_state->lock);
885f82bf 372 } else {
1f50ddb4
TG
373 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
374 return;
375
376 raw_spin_lock(&st->shared_state->lock);
377 st->shared_state->disable_state--;
378 if (!st->shared_state->disable_state)
379 wrmsrl(MSR_AMD64_LS_CFG, msr);
380 raw_spin_unlock(&st->shared_state->lock);
885f82bf
TG
381 }
382}
1f50ddb4
TG
383#else
384static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
385{
386 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
387
388 wrmsrl(MSR_AMD64_LS_CFG, msr);
389}
390#endif
391
11fb0683
TL
392static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
393{
394 /*
395 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
396 * so ssbd_tif_to_spec_ctrl() just works.
397 */
398 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
399}
400
01daf568
TC
401/*
402 * Update the MSRs managing speculation control, during context switch.
403 *
404 * tifp: Previous task's thread flags
405 * tifn: Next task's thread flags
406 */
407static __always_inline void __speculation_ctrl_update(unsigned long tifp,
408 unsigned long tifn)
1f50ddb4 409{
5bfbe3ad 410 unsigned long tif_diff = tifp ^ tifn;
01daf568
TC
411 u64 msr = x86_spec_ctrl_base;
412 bool updmsr = false;
413
5bfbe3ad
TC
414 /*
415 * If TIF_SSBD is different, select the proper mitigation
416 * method. Note that if SSBD mitigation is disabled or permanentely
417 * enabled this branch can't be taken because nothing can set
418 * TIF_SSBD.
419 */
420 if (tif_diff & _TIF_SSBD) {
01daf568
TC
421 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
422 amd_set_ssb_virt_state(tifn);
423 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
424 amd_set_core_ssb_state(tifn);
425 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
426 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
427 msr |= ssbd_tif_to_spec_ctrl(tifn);
428 updmsr = true;
429 }
430 }
1f50ddb4 431
5bfbe3ad
TC
432 /*
433 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
434 * otherwise avoid the MSR write.
435 */
436 if (IS_ENABLED(CONFIG_SMP) &&
437 static_branch_unlikely(&switch_to_cond_stibp)) {
438 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
439 msr |= stibp_tif_to_spec_ctrl(tifn);
440 }
441
01daf568
TC
442 if (updmsr)
443 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
1f50ddb4 444}
885f82bf 445
6d991ba5
TG
446static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
447{
448 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
449 if (task_spec_ssb_disable(tsk))
450 set_tsk_thread_flag(tsk, TIF_SSBD);
451 else
452 clear_tsk_thread_flag(tsk, TIF_SSBD);
453 }
454 /* Return the updated threadinfo flags*/
455 return task_thread_info(tsk)->flags;
456}
457
26c4d75b 458void speculation_ctrl_update(unsigned long tif)
885f82bf 459{
01daf568 460 /* Forced update. Make sure all relevant TIF flags are different */
1f50ddb4 461 preempt_disable();
01daf568 462 __speculation_ctrl_update(~tif, tif);
1f50ddb4 463 preempt_enable();
885f82bf
TG
464}
465
6d991ba5
TG
466/* Called from seccomp/prctl update */
467void speculation_ctrl_update_current(void)
468{
469 preempt_disable();
470 speculation_ctrl_update(speculation_ctrl_update_tif(current));
471 preempt_enable();
472}
473
ff16701a 474void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
389d1fb1
JF
475{
476 struct thread_struct *prev, *next;
af8b3cd3 477 unsigned long tifp, tifn;
389d1fb1
JF
478
479 prev = &prev_p->thread;
480 next = &next_p->thread;
481
af8b3cd3
KH
482 tifn = READ_ONCE(task_thread_info(next_p)->flags);
483 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
ff16701a 484 switch_to_bitmap(prev, next, tifp, tifn);
af8b3cd3
KH
485
486 propagate_user_return_notify(prev_p, next_p);
487
b9894a2f
KH
488 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
489 arch_has_block_step()) {
490 unsigned long debugctl, msk;
ea8e61b7 491
b9894a2f 492 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
ea8e61b7 493 debugctl &= ~DEBUGCTLMSR_BTF;
b9894a2f
KH
494 msk = tifn & _TIF_BLOCKSTEP;
495 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
496 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
ea8e61b7 497 }
389d1fb1 498
5a920155 499 if ((tifp ^ tifn) & _TIF_NOTSC)
9d0b6232 500 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
e9ea1e7f
KH
501
502 if ((tifp ^ tifn) & _TIF_NOCPUID)
503 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
885f82bf 504
6d991ba5
TG
505 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
506 __speculation_ctrl_update(tifp, tifn);
507 } else {
508 speculation_ctrl_update_tif(prev_p);
509 tifn = speculation_ctrl_update_tif(next_p);
510
511 /* Enforce MSR update to ensure consistent state */
512 __speculation_ctrl_update(~tifn, tifn);
513 }
389d1fb1
JF
514}
515
00dba564
TG
516/*
517 * Idle related variables and functions
518 */
d1896049 519unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
00dba564
TG
520EXPORT_SYMBOL(boot_option_idle_override);
521
a476bda3 522static void (*x86_idle)(void);
00dba564 523
90e24014
RW
524#ifndef CONFIG_SMP
525static inline void play_dead(void)
526{
527 BUG();
528}
529#endif
530
7d1a9417
TG
531void arch_cpu_idle_enter(void)
532{
6a369583 533 tsc_verify_tsc_adjust(false);
7d1a9417 534 local_touch_nmi();
7d1a9417 535}
90e24014 536
7d1a9417
TG
537void arch_cpu_idle_dead(void)
538{
539 play_dead();
540}
90e24014 541
7d1a9417
TG
542/*
543 * Called from the generic idle code.
544 */
545void arch_cpu_idle(void)
546{
16f8b05a 547 x86_idle();
90e24014
RW
548}
549
00dba564 550/*
7d1a9417 551 * We use this if we don't have any better idle routine..
00dba564 552 */
6727ad9e 553void __cpuidle default_idle(void)
00dba564 554{
4d0e42cc 555 trace_cpu_idle_rcuidle(1, smp_processor_id());
7d1a9417 556 safe_halt();
4d0e42cc 557 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
00dba564 558}
60b8b1de 559#ifdef CONFIG_APM_MODULE
00dba564
TG
560EXPORT_SYMBOL(default_idle);
561#endif
562
6a377ddc
LB
563#ifdef CONFIG_XEN
564bool xen_set_default_idle(void)
e5fd47bf 565{
a476bda3 566 bool ret = !!x86_idle;
e5fd47bf 567
a476bda3 568 x86_idle = default_idle;
e5fd47bf
KRW
569
570 return ret;
571}
6a377ddc 572#endif
bba4ed01 573
d3ec5cae
IV
574void stop_this_cpu(void *dummy)
575{
576 local_irq_disable();
577 /*
578 * Remove this CPU:
579 */
4f062896 580 set_cpu_online(smp_processor_id(), false);
d3ec5cae 581 disable_local_APIC();
8838eb6c 582 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
d3ec5cae 583
f23d74f6
TL
584 /*
585 * Use wbinvd on processors that support SME. This provides support
586 * for performing a successful kexec when going from SME inactive
587 * to SME active (or vice-versa). The cache must be cleared so that
588 * if there are entries with the same physical address, both with and
589 * without the encryption bit, they don't race each other when flushed
590 * and potentially end up with the wrong entry being committed to
591 * memory.
592 */
593 if (boot_cpu_has(X86_FEATURE_SME))
594 native_wbinvd();
bba4ed01
TL
595 for (;;) {
596 /*
f23d74f6
TL
597 * Use native_halt() so that memory contents don't change
598 * (stack usage and variables) after possibly issuing the
599 * native_wbinvd() above.
bba4ed01 600 */
f23d74f6 601 native_halt();
bba4ed01 602 }
7f424a8b
PZ
603}
604
aa276e1c 605/*
07c94a38
BP
606 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
607 * states (local apic timer and TSC stop).
aa276e1c 608 */
02c68a02 609static void amd_e400_idle(void)
aa276e1c 610{
07c94a38
BP
611 /*
612 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
613 * gets set after static_cpu_has() places have been converted via
614 * alternatives.
615 */
616 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
617 default_idle();
618 return;
aa276e1c
TG
619 }
620
07c94a38 621 tick_broadcast_enter();
aa276e1c 622
07c94a38 623 default_idle();
0beefa20 624
07c94a38
BP
625 /*
626 * The switch back from broadcast mode needs to be called with
627 * interrupts disabled.
628 */
629 local_irq_disable();
630 tick_broadcast_exit();
631 local_irq_enable();
aa276e1c
TG
632}
633
b253149b
LB
634/*
635 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
636 * We can't rely on cpuidle installing MWAIT, because it will not load
637 * on systems that support only C1 -- so the boot default must be MWAIT.
638 *
639 * Some AMD machines are the opposite, they depend on using HALT.
640 *
641 * So for default C1, which is used during boot until cpuidle loads,
642 * use MWAIT-C1 on Intel HW that has it, else use HALT.
643 */
644static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
645{
646 if (c->x86_vendor != X86_VENDOR_INTEL)
647 return 0;
648
08e237fa 649 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
b253149b
LB
650 return 0;
651
652 return 1;
653}
654
655/*
0fb0328d
HR
656 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
657 * with interrupts enabled and no flags, which is backwards compatible with the
658 * original MWAIT implementation.
b253149b 659 */
6727ad9e 660static __cpuidle void mwait_idle(void)
b253149b 661{
f8e617f4 662 if (!current_set_polling_and_test()) {
e43d0189 663 trace_cpu_idle_rcuidle(1, smp_processor_id());
f8e617f4 664 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
ca59809f 665 mb(); /* quirk */
b253149b 666 clflush((void *)&current_thread_info()->flags);
ca59809f 667 mb(); /* quirk */
f8e617f4 668 }
b253149b
LB
669
670 __monitor((void *)&current_thread_info()->flags, 0, 0);
b253149b
LB
671 if (!need_resched())
672 __sti_mwait(0, 0);
673 else
674 local_irq_enable();
e43d0189 675 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
f8e617f4 676 } else {
b253149b 677 local_irq_enable();
f8e617f4
MG
678 }
679 __current_clr_polling();
b253149b
LB
680}
681
148f9bb8 682void select_idle_routine(const struct cpuinfo_x86 *c)
7f424a8b 683{
3e5095d1 684#ifdef CONFIG_SMP
7d1a9417 685 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
c767a54b 686 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
7f424a8b 687#endif
7d1a9417 688 if (x86_idle || boot_option_idle_override == IDLE_POLL)
6ddd2a27
TG
689 return;
690
3344ed30 691 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
c767a54b 692 pr_info("using AMD E400 aware idle routine\n");
a476bda3 693 x86_idle = amd_e400_idle;
b253149b
LB
694 } else if (prefer_mwait_c1_over_halt(c)) {
695 pr_info("using mwait in idle threads\n");
696 x86_idle = mwait_idle;
6ddd2a27 697 } else
a476bda3 698 x86_idle = default_idle;
7f424a8b
PZ
699}
700
07c94a38 701void amd_e400_c1e_apic_setup(void)
30e1e6d1 702{
07c94a38
BP
703 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
704 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
705 local_irq_disable();
706 tick_broadcast_force();
707 local_irq_enable();
708 }
30e1e6d1
RR
709}
710
e7ff3a47
TG
711void __init arch_post_acpi_subsys_init(void)
712{
713 u32 lo, hi;
714
715 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
716 return;
717
718 /*
719 * AMD E400 detection needs to happen after ACPI has been enabled. If
720 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
721 * MSR_K8_INT_PENDING_MSG.
722 */
723 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
724 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
725 return;
726
727 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
728
729 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
730 mark_tsc_unstable("TSC halt in AMD C1E");
731 pr_info("System has AMD C1E enabled\n");
732}
733
7f424a8b
PZ
734static int __init idle_setup(char *str)
735{
ab6bc3e3
CG
736 if (!str)
737 return -EINVAL;
738
7f424a8b 739 if (!strcmp(str, "poll")) {
c767a54b 740 pr_info("using polling idle threads\n");
d1896049 741 boot_option_idle_override = IDLE_POLL;
7d1a9417 742 cpu_idle_poll_ctrl(true);
d1896049 743 } else if (!strcmp(str, "halt")) {
c1e3b377
ZY
744 /*
745 * When the boot option of idle=halt is added, halt is
746 * forced to be used for CPU idle. In such case CPU C2/C3
747 * won't be used again.
748 * To continue to load the CPU idle driver, don't touch
749 * the boot_option_idle_override.
750 */
a476bda3 751 x86_idle = default_idle;
d1896049 752 boot_option_idle_override = IDLE_HALT;
da5e09a1
ZY
753 } else if (!strcmp(str, "nomwait")) {
754 /*
755 * If the boot option of "idle=nomwait" is added,
756 * it means that mwait will be disabled for CPU C2/C3
757 * states. In such case it won't touch the variable
758 * of boot_option_idle_override.
759 */
d1896049 760 boot_option_idle_override = IDLE_NOMWAIT;
c1e3b377 761 } else
7f424a8b
PZ
762 return -1;
763
7f424a8b
PZ
764 return 0;
765}
766early_param("idle", idle_setup);
767
9d62dcdf
AW
768unsigned long arch_align_stack(unsigned long sp)
769{
770 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
771 sp -= get_random_int() % 8192;
772 return sp & ~0xf;
773}
774
775unsigned long arch_randomize_brk(struct mm_struct *mm)
776{
9c6f0902 777 return randomize_page(mm->brk, 0x02000000);
9d62dcdf
AW
778}
779
7ba78053
TG
780/*
781 * Called from fs/proc with a reference on @p to find the function
782 * which called into schedule(). This needs to be done carefully
783 * because the task might wake up and we might look at a stack
784 * changing under us.
785 */
786unsigned long get_wchan(struct task_struct *p)
787{
74327a3e 788 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
7ba78053
TG
789 int count = 0;
790
791 if (!p || p == current || p->state == TASK_RUNNING)
792 return 0;
793
74327a3e
AL
794 if (!try_get_task_stack(p))
795 return 0;
796
7ba78053
TG
797 start = (unsigned long)task_stack_page(p);
798 if (!start)
74327a3e 799 goto out;
7ba78053
TG
800
801 /*
802 * Layout of the stack page:
803 *
804 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
805 * PADDING
806 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
807 * stack
15f4eae7 808 * ----------- bottom = start
7ba78053
TG
809 *
810 * The tasks stack pointer points at the location where the
811 * framepointer is stored. The data on the stack is:
812 * ... IP FP ... IP FP
813 *
814 * We need to read FP and IP, so we need to adjust the upper
815 * bound by another unsigned long.
816 */
817 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
818 top -= 2 * sizeof(unsigned long);
15f4eae7 819 bottom = start;
7ba78053
TG
820
821 sp = READ_ONCE(p->thread.sp);
822 if (sp < bottom || sp > top)
74327a3e 823 goto out;
7ba78053 824
7b32aead 825 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
7ba78053
TG
826 do {
827 if (fp < bottom || fp > top)
74327a3e 828 goto out;
f7d27c35 829 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
74327a3e
AL
830 if (!in_sched_functions(ip)) {
831 ret = ip;
832 goto out;
833 }
f7d27c35 834 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
7ba78053 835 } while (count++ < 16 && p->state != TASK_RUNNING);
74327a3e
AL
836
837out:
838 put_task_stack(p);
839 return ret;
7ba78053 840}
b0b9b014
KH
841
842long do_arch_prctl_common(struct task_struct *task, int option,
843 unsigned long cpuid_enabled)
844{
e9ea1e7f
KH
845 switch (option) {
846 case ARCH_GET_CPUID:
847 return get_cpuid_mode();
848 case ARCH_SET_CPUID:
849 return set_cpuid_mode(task, cpuid_enabled);
850 }
851
b0b9b014
KH
852 return -EINVAL;
853}