treewide: Add SPDX license identifier for missed files
[linux-block.git] / arch / x86 / kernel / nmi.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1d48922c
DZ
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
9c48f1c6 5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
1d48922c
DZ
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11/*
12 * Handle hardware traps and faults.
13 */
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/kdebug.h>
b17b0153 17#include <linux/sched/debug.h>
1d48922c 18#include <linux/nmi.h>
2ab00456 19#include <linux/debugfs.h>
c9126b2e
DZ
20#include <linux/delay.h>
21#include <linux/hardirq.h>
c361db5c 22#include <linux/ratelimit.h>
c9126b2e 23#include <linux/slab.h>
69c60c88 24#include <linux/export.h>
2a594d4c 25#include <linux/atomic.h>
e6017571 26#include <linux/sched/clock.h>
1d48922c
DZ
27
28#if defined(CONFIG_EDAC)
29#include <linux/edac.h>
30#endif
31
2a594d4c 32#include <asm/cpu_entry_area.h>
1d48922c
DZ
33#include <asm/traps.h>
34#include <asm/mach_traps.h>
c9126b2e 35#include <asm/nmi.h>
6fd36ba0 36#include <asm/x86_init.h>
b279d67d 37#include <asm/reboot.h>
8e2a7f5b 38#include <asm/cache.h>
04dcbdb8 39#include <asm/nospec-branch.h>
c9126b2e 40
0c4df02d
DH
41#define CREATE_TRACE_POINTS
42#include <trace/events/nmi.h>
43
c9126b2e 44struct nmi_desc {
c455fd92 45 raw_spinlock_t lock;
c9126b2e
DZ
46 struct list_head head;
47};
48
49static struct nmi_desc nmi_desc[NMI_MAX] =
50{
51 {
c455fd92 52 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
c9126b2e
DZ
53 .head = LIST_HEAD_INIT(nmi_desc[0].head),
54 },
55 {
c455fd92 56 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
c9126b2e
DZ
57 .head = LIST_HEAD_INIT(nmi_desc[1].head),
58 },
553222f3 59 {
c455fd92 60 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
553222f3
DZ
61 .head = LIST_HEAD_INIT(nmi_desc[2].head),
62 },
63 {
c455fd92 64 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
553222f3
DZ
65 .head = LIST_HEAD_INIT(nmi_desc[3].head),
66 },
c9126b2e
DZ
67
68};
1d48922c 69
efc3aac5
DZ
70struct nmi_stats {
71 unsigned int normal;
72 unsigned int unknown;
73 unsigned int external;
74 unsigned int swallow;
75};
76
77static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
78
8e2a7f5b 79static int ignore_nmis __read_mostly;
1d48922c
DZ
80
81int unknown_nmi_panic;
82/*
83 * Prevent NMI reason port (0x61) being accessed simultaneously, can
84 * only be used in NMI handler.
85 */
86static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
87
88static int __init setup_unknown_nmi_panic(char *str)
89{
90 unknown_nmi_panic = 1;
91 return 1;
92}
93__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
94
c9126b2e
DZ
95#define nmi_to_desc(type) (&nmi_desc[type])
96
2ab00456 97static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
e90c7853 98
2ab00456
DH
99static int __init nmi_warning_debugfs(void)
100{
101 debugfs_create_u64("nmi_longest_ns", 0644,
102 arch_debugfs_dir, &nmi_longest_ns);
103 return 0;
104}
105fs_initcall(nmi_warning_debugfs);
106
e90c7853
PZ
107static void nmi_max_handler(struct irq_work *w)
108{
109 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
110 int remainder_ns, decimal_msecs;
6aa7de05 111 u64 whole_msecs = READ_ONCE(a->max_duration);
e90c7853
PZ
112
113 remainder_ns = do_div(whole_msecs, (1000 * 1000));
114 decimal_msecs = remainder_ns / 1000;
115
116 printk_ratelimited(KERN_INFO
117 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
118 a->handler, whole_msecs, decimal_msecs);
119}
120
bf9f2ee2 121static int nmi_handle(unsigned int type, struct pt_regs *regs)
c9126b2e
DZ
122{
123 struct nmi_desc *desc = nmi_to_desc(type);
124 struct nmiaction *a;
125 int handled=0;
126
127 rcu_read_lock();
128
129 /*
130 * NMIs are edge-triggered, which means if you have enough
131 * of them concurrently, you can lose some because only one
132 * can be latched at any given time. Walk the whole list
133 * to handle those situations.
134 */
2ab00456 135 list_for_each_entry_rcu(a, &desc->head, list) {
e90c7853
PZ
136 int thishandled;
137 u64 delta;
2ab00456 138
e90c7853 139 delta = sched_clock();
0c4df02d
DH
140 thishandled = a->handler(type, regs);
141 handled += thishandled;
e90c7853 142 delta = sched_clock() - delta;
0c4df02d 143 trace_nmi_handler(a->handler, (int)delta, thishandled);
2ab00456 144
e90c7853 145 if (delta < nmi_longest_ns || delta < a->max_duration)
2ab00456
DH
146 continue;
147
e90c7853
PZ
148 a->max_duration = delta;
149 irq_work_queue(&a->irq_work);
2ab00456 150 }
c9126b2e 151
c9126b2e
DZ
152 rcu_read_unlock();
153
154 /* return total number of NMI events handled */
155 return handled;
156}
9326638c 157NOKPROBE_SYMBOL(nmi_handle);
c9126b2e 158
72b3fb24 159int __register_nmi_handler(unsigned int type, struct nmiaction *action)
c9126b2e
DZ
160{
161 struct nmi_desc *desc = nmi_to_desc(type);
162 unsigned long flags;
163
72b3fb24
LZ
164 if (!action->handler)
165 return -EINVAL;
166
e90c7853
PZ
167 init_irq_work(&action->irq_work, nmi_max_handler);
168
c455fd92 169 raw_spin_lock_irqsave(&desc->lock, flags);
c9126b2e 170
b227e233 171 /*
0d443b70
MT
172 * Indicate if there are multiple registrations on the
173 * internal NMI handler call chains (SERR and IO_CHECK).
b227e233 174 */
553222f3
DZ
175 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
176 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
b227e233 177
c9126b2e
DZ
178 /*
179 * some handlers need to be executed first otherwise a fake
180 * event confuses some handlers (kdump uses this flag)
181 */
182 if (action->flags & NMI_FLAG_FIRST)
183 list_add_rcu(&action->list, &desc->head);
184 else
185 list_add_tail_rcu(&action->list, &desc->head);
186
c455fd92 187 raw_spin_unlock_irqrestore(&desc->lock, flags);
c9126b2e
DZ
188 return 0;
189}
72b3fb24 190EXPORT_SYMBOL(__register_nmi_handler);
c9126b2e 191
72b3fb24 192void unregister_nmi_handler(unsigned int type, const char *name)
c9126b2e
DZ
193{
194 struct nmi_desc *desc = nmi_to_desc(type);
195 struct nmiaction *n;
196 unsigned long flags;
197
c455fd92 198 raw_spin_lock_irqsave(&desc->lock, flags);
c9126b2e
DZ
199
200 list_for_each_entry_rcu(n, &desc->head, list) {
201 /*
202 * the name passed in to describe the nmi handler
203 * is used as the lookup key
204 */
205 if (!strcmp(n->name, name)) {
206 WARN(in_nmi(),
207 "Trying to free NMI (%s) from NMI context!\n", n->name);
208 list_del_rcu(&n->list);
209 break;
210 }
211 }
212
c455fd92 213 raw_spin_unlock_irqrestore(&desc->lock, flags);
c9126b2e 214 synchronize_rcu();
c9126b2e 215}
c9126b2e
DZ
216EXPORT_SYMBOL_GPL(unregister_nmi_handler);
217
9326638c 218static void
1d48922c
DZ
219pci_serr_error(unsigned char reason, struct pt_regs *regs)
220{
553222f3 221 /* check to see if anyone registered against these types of errors */
bf9f2ee2 222 if (nmi_handle(NMI_SERR, regs))
553222f3
DZ
223 return;
224
1d48922c
DZ
225 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
226 reason, smp_processor_id());
227
1d48922c 228 if (panic_on_unrecovered_nmi)
58c5661f 229 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
230
231 pr_emerg("Dazed and confused, but trying to continue\n");
232
233 /* Clear and disable the PCI SERR error line. */
234 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
235 outb(reason, NMI_REASON_PORT);
236}
9326638c 237NOKPROBE_SYMBOL(pci_serr_error);
1d48922c 238
9326638c 239static void
1d48922c
DZ
240io_check_error(unsigned char reason, struct pt_regs *regs)
241{
242 unsigned long i;
243
553222f3 244 /* check to see if anyone registered against these types of errors */
bf9f2ee2 245 if (nmi_handle(NMI_IO_CHECK, regs))
553222f3
DZ
246 return;
247
1d48922c
DZ
248 pr_emerg(
249 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
250 reason, smp_processor_id());
57da8b96 251 show_regs(regs);
1d48922c 252
1717f209 253 if (panic_on_io_nmi) {
58c5661f 254 nmi_panic(regs, "NMI IOCK error: Not continuing");
1717f209
HK
255
256 /*
257 * If we end up here, it means we have received an NMI while
258 * processing panic(). Simply return without delaying and
259 * re-enabling NMIs.
260 */
261 return;
262 }
1d48922c
DZ
263
264 /* Re-enable the IOCK line, wait for a few seconds */
265 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
266 outb(reason, NMI_REASON_PORT);
267
268 i = 20000;
269 while (--i) {
270 touch_nmi_watchdog();
271 udelay(100);
272 }
273
274 reason &= ~NMI_REASON_CLEAR_IOCHK;
275 outb(reason, NMI_REASON_PORT);
276}
9326638c 277NOKPROBE_SYMBOL(io_check_error);
1d48922c 278
9326638c 279static void
1d48922c
DZ
280unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
281{
9c48f1c6
DZ
282 int handled;
283
b227e233
DZ
284 /*
285 * Use 'false' as back-to-back NMIs are dealt with one level up.
286 * Of course this makes having multiple 'unknown' handlers useless
287 * as only the first one is ever run (unless it can actually determine
288 * if it caused the NMI)
289 */
bf9f2ee2 290 handled = nmi_handle(NMI_UNKNOWN, regs);
efc3aac5
DZ
291 if (handled) {
292 __this_cpu_add(nmi_stats.unknown, handled);
1d48922c 293 return;
efc3aac5
DZ
294 }
295
296 __this_cpu_add(nmi_stats.unknown, 1);
297
1d48922c
DZ
298 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
299 reason, smp_processor_id());
300
301 pr_emerg("Do you have a strange power saving mode enabled?\n");
302 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
58c5661f 303 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
304
305 pr_emerg("Dazed and confused, but trying to continue\n");
306}
9326638c 307NOKPROBE_SYMBOL(unknown_nmi_error);
1d48922c 308
b227e233
DZ
309static DEFINE_PER_CPU(bool, swallow_nmi);
310static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
311
9326638c 312static void default_do_nmi(struct pt_regs *regs)
1d48922c
DZ
313{
314 unsigned char reason = 0;
9c48f1c6 315 int handled;
b227e233 316 bool b2b = false;
1d48922c
DZ
317
318 /*
319 * CPU-specific NMI must be processed before non-CPU-specific
320 * NMI, otherwise we may lose it, because the CPU-specific
321 * NMI can not be detected/processed on other CPUs.
322 */
b227e233
DZ
323
324 /*
325 * Back-to-back NMIs are interesting because they can either
326 * be two NMI or more than two NMIs (any thing over two is dropped
327 * due to NMI being edge-triggered). If this is the second half
328 * of the back-to-back NMI, assume we dropped things and process
329 * more handlers. Otherwise reset the 'swallow' NMI behaviour
330 */
331 if (regs->ip == __this_cpu_read(last_nmi_rip))
332 b2b = true;
333 else
334 __this_cpu_write(swallow_nmi, false);
335
336 __this_cpu_write(last_nmi_rip, regs->ip);
337
bf9f2ee2 338 handled = nmi_handle(NMI_LOCAL, regs);
efc3aac5 339 __this_cpu_add(nmi_stats.normal, handled);
b227e233
DZ
340 if (handled) {
341 /*
342 * There are cases when a NMI handler handles multiple
343 * events in the current NMI. One of these events may
344 * be queued for in the next NMI. Because the event is
345 * already handled, the next NMI will result in an unknown
346 * NMI. Instead lets flag this for a potential NMI to
347 * swallow.
348 */
349 if (handled > 1)
350 __this_cpu_write(swallow_nmi, true);
1d48922c 351 return;
b227e233 352 }
1d48922c 353
b279d67d
HK
354 /*
355 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
356 *
357 * Another CPU may be processing panic routines while holding
358 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
359 * and if so, call its callback directly. If there is no CPU preparing
360 * crash dump, we simply loop here.
361 */
362 while (!raw_spin_trylock(&nmi_reason_lock)) {
363 run_crash_ipi_callback(regs);
364 cpu_relax();
365 }
366
064a59b6 367 reason = x86_platform.get_nmi_reason();
1d48922c
DZ
368
369 if (reason & NMI_REASON_MASK) {
370 if (reason & NMI_REASON_SERR)
371 pci_serr_error(reason, regs);
372 else if (reason & NMI_REASON_IOCHK)
373 io_check_error(reason, regs);
374#ifdef CONFIG_X86_32
375 /*
376 * Reassert NMI in case it became active
377 * meanwhile as it's edge-triggered:
378 */
379 reassert_nmi();
380#endif
efc3aac5 381 __this_cpu_add(nmi_stats.external, 1);
1d48922c
DZ
382 raw_spin_unlock(&nmi_reason_lock);
383 return;
384 }
385 raw_spin_unlock(&nmi_reason_lock);
386
b227e233
DZ
387 /*
388 * Only one NMI can be latched at a time. To handle
389 * this we may process multiple nmi handlers at once to
390 * cover the case where an NMI is dropped. The downside
391 * to this approach is we may process an NMI prematurely,
392 * while its real NMI is sitting latched. This will cause
393 * an unknown NMI on the next run of the NMI processing.
394 *
395 * We tried to flag that condition above, by setting the
396 * swallow_nmi flag when we process more than one event.
397 * This condition is also only present on the second half
398 * of a back-to-back NMI, so we flag that condition too.
399 *
400 * If both are true, we assume we already processed this
401 * NMI previously and we swallow it. Otherwise we reset
402 * the logic.
403 *
404 * There are scenarios where we may accidentally swallow
405 * a 'real' unknown NMI. For example, while processing
406 * a perf NMI another perf NMI comes in along with a
407 * 'real' unknown NMI. These two NMIs get combined into
408 * one (as descibed above). When the next NMI gets
409 * processed, it will be flagged by perf as handled, but
410 * noone will know that there was a 'real' unknown NMI sent
411 * also. As a result it gets swallowed. Or if the first
412 * perf NMI returns two events handled then the second
413 * NMI will get eaten by the logic below, again losing a
414 * 'real' unknown NMI. But this is the best we can do
415 * for now.
416 */
417 if (b2b && __this_cpu_read(swallow_nmi))
efc3aac5 418 __this_cpu_add(nmi_stats.swallow, 1);
b227e233
DZ
419 else
420 unknown_nmi_error(reason, regs);
1d48922c 421}
9326638c 422NOKPROBE_SYMBOL(default_do_nmi);
1d48922c 423
ccd49c23 424/*
0b22930e
AL
425 * NMIs can page fault or hit breakpoints which will cause it to lose
426 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
9d050416
AL
427 *
428 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
429 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
430 * if the outer NMI came from kernel mode, but we can still nest if the
431 * outer NMI came from user mode.
432 *
433 * To handle these nested NMIs, we have three states:
ccd49c23
SR
434 *
435 * 1) not running
436 * 2) executing
437 * 3) latched
438 *
439 * When no NMI is in progress, it is in the "not running" state.
440 * When an NMI comes in, it goes into the "executing" state.
441 * Normally, if another NMI is triggered, it does not interrupt
442 * the running NMI and the HW will simply latch it so that when
443 * the first NMI finishes, it will restart the second NMI.
444 * (Note, the latch is binary, thus multiple NMIs triggering,
445 * when one is running, are ignored. Only one NMI is restarted.)
446 *
9d050416
AL
447 * If an NMI executes an iret, another NMI can preempt it. We do not
448 * want to allow this new NMI to run, but we want to execute it when the
449 * first one finishes. We set the state to "latched", and the exit of
450 * the first NMI will perform a dec_return, if the result is zero
451 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
452 * dec_return would have set the state to NMI_EXECUTING (what we want it
453 * to be when we are running). In this case, we simply jump back to
454 * rerun the NMI handler again, and restart the 'latched' NMI.
c7d65a78
SR
455 *
456 * No trap (breakpoint or page fault) should be hit before nmi_restart,
457 * thus there is no race between the first check of state for NOT_RUNNING
458 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
459 * at this point.
70fb74a5
SR
460 *
461 * In case the NMI takes a page fault, we need to save off the CR2
462 * because the NMI could have preempted another page fault and corrupt
463 * the CR2 that is about to be read. As nested NMIs must be restarted
464 * and they can not take breakpoints or page faults, the update of the
465 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
466 * Otherwise, there would be a race of another nested NMI coming in
467 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
ccd49c23
SR
468 */
469enum nmi_states {
c7d65a78 470 NMI_NOT_RUNNING = 0,
ccd49c23
SR
471 NMI_EXECUTING,
472 NMI_LATCHED,
473};
474static DEFINE_PER_CPU(enum nmi_states, nmi_state);
70fb74a5 475static DEFINE_PER_CPU(unsigned long, nmi_cr2);
ccd49c23 476
9d050416 477#ifdef CONFIG_X86_64
ccd49c23 478/*
9d050416
AL
479 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
480 * some care, the inner breakpoint will clobber the outer breakpoint's
481 * stack.
ccd49c23 482 *
9d050416
AL
483 * If a breakpoint is being processed, and the debug stack is being
484 * used, if an NMI comes in and also hits a breakpoint, the stack
485 * pointer will be set to the same fixed address as the breakpoint that
486 * was interrupted, causing that stack to be corrupted. To handle this
487 * case, check if the stack that was interrupted is the debug stack, and
488 * if so, change the IDT so that new breakpoints will use the current
489 * stack and not switch to the fixed address. On return of the NMI,
490 * switch back to the original IDT.
ccd49c23
SR
491 */
492static DEFINE_PER_CPU(int, update_debug_stack);
2a594d4c
TG
493
494static bool notrace is_debug_stack(unsigned long addr)
495{
496 struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
497 unsigned long top = CEA_ESTACK_TOP(cs, DB);
498 unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
499
500 if (__this_cpu_read(debug_stack_usage))
501 return true;
502 /*
503 * Note, this covers the guard page between DB and DB1 as well to
504 * avoid two checks. But by all means @addr can never point into
505 * the guard page.
506 */
507 return addr >= bot && addr < top;
508}
509NOKPROBE_SYMBOL(is_debug_stack);
9d050416 510#endif
228bdaa9 511
9d050416
AL
512dotraplinkage notrace void
513do_nmi(struct pt_regs *regs, long error_code)
ccd49c23 514{
9d050416
AL
515 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
516 this_cpu_write(nmi_state, NMI_LATCHED);
517 return;
518 }
519 this_cpu_write(nmi_state, NMI_EXECUTING);
520 this_cpu_write(nmi_cr2, read_cr2());
521nmi_restart:
522
523#ifdef CONFIG_X86_64
228bdaa9
SR
524 /*
525 * If we interrupted a breakpoint, it is possible that
526 * the nmi handler will have breakpoints too. We need to
527 * change the IDT such that breakpoints that happen here
528 * continue to use the NMI stack.
529 */
530 if (unlikely(is_debug_stack(regs->sp))) {
531 debug_stack_set_zero();
c0525a69 532 this_cpu_write(update_debug_stack, 1);
228bdaa9 533 }
ccd49c23
SR
534#endif
535
1d48922c
DZ
536 nmi_enter();
537
538 inc_irq_stat(__nmi_count);
539
540 if (!ignore_nmis)
541 default_do_nmi(regs);
542
543 nmi_exit();
228bdaa9 544
9d050416
AL
545#ifdef CONFIG_X86_64
546 if (unlikely(this_cpu_read(update_debug_stack))) {
547 debug_stack_reset();
548 this_cpu_write(update_debug_stack, 0);
549 }
550#endif
551
552 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
553 write_cr2(this_cpu_read(nmi_cr2));
554 if (this_cpu_dec_return(nmi_state))
555 goto nmi_restart;
04dcbdb8
TG
556
557 if (user_mode(regs))
558 mds_user_clear_cpu_buffers();
1d48922c 559}
9326638c 560NOKPROBE_SYMBOL(do_nmi);
1d48922c
DZ
561
562void stop_nmi(void)
563{
564 ignore_nmis++;
565}
566
567void restart_nmi(void)
568{
569 ignore_nmis--;
570}
b227e233
DZ
571
572/* reset the back-to-back NMI logic */
573void local_touch_nmi(void)
574{
575 __this_cpu_write(last_nmi_rip, 0);
576}
29c6fb7b 577EXPORT_SYMBOL_GPL(local_touch_nmi);