Merge tag 'usb-ci-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/peter...
[linux-block.git] / arch / x86 / kernel / machine_kexec_64.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
5234f5eb 2/*
835c34a1 3 * handle transition of Linux booting another kernel
5234f5eb 4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5234f5eb
EB
5 */
6
12db5562
VG
7#define pr_fmt(fmt) "kexec: " fmt
8
5234f5eb
EB
9#include <linux/mm.h>
10#include <linux/kexec.h>
5234f5eb 11#include <linux/string.h>
5a0e3ad6 12#include <linux/gfp.h>
5234f5eb 13#include <linux/reboot.h>
fd59d231 14#include <linux/numa.h>
f43fdad8 15#include <linux/ftrace.h>
fef3a7a1 16#include <linux/io.h>
fee7b0d8 17#include <linux/suspend.h>
d6472302 18#include <linux/vmalloc.h>
6bbeb276 19#include <linux/efi.h>
f43fdad8 20
9ebdc79f 21#include <asm/init.h>
5234f5eb
EB
22#include <asm/tlbflush.h>
23#include <asm/mmu_context.h>
8643e28d 24#include <asm/io_apic.h>
17f557e5 25#include <asm/debugreg.h>
27f48d3e 26#include <asm/kexec-bzimage64.h>
4545c898 27#include <asm/setup.h>
d1163651 28#include <asm/set_memory.h>
8bf27556 29
6bbeb276
KS
30#ifdef CONFIG_ACPI
31/*
32 * Used while adding mapping for ACPI tables.
33 * Can be reused when other iomem regions need be mapped
34 */
35struct init_pgtable_data {
36 struct x86_mapping_info *info;
37 pgd_t *level4p;
38};
39
40static int mem_region_callback(struct resource *res, void *arg)
41{
42 struct init_pgtable_data *data = arg;
43 unsigned long mstart, mend;
44
45 mstart = res->start;
46 mend = mstart + resource_size(res) - 1;
47
48 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
49}
50
51static int
52map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53{
6bbeb276 54 struct init_pgtable_data data;
5a949b38
KS
55 unsigned long flags;
56 int ret;
6bbeb276
KS
57
58 data.info = info;
59 data.level4p = level4p;
60 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
5a949b38
KS
61
62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 &data, mem_region_callback);
64 if (ret && ret != -EINVAL)
65 return ret;
66
67 /* ACPI tables could be located in ACPI Non-volatile Storage region */
68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 &data, mem_region_callback);
70 if (ret && ret != -EINVAL)
71 return ret;
72
73 return 0;
6bbeb276
KS
74}
75#else
76static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77#endif
78
74ca317c 79#ifdef CONFIG_KEXEC_FILE
9ec4ecef 80const struct kexec_file_ops * const kexec_file_loaders[] = {
27f48d3e 81 &kexec_bzImage64_ops,
9ec4ecef 82 NULL
cb105258 83};
74ca317c 84#endif
cb105258 85
6bbeb276
KS
86static int
87map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88{
89#ifdef CONFIG_EFI
90 unsigned long mstart, mend;
91
92 if (!efi_enabled(EFI_BOOT))
93 return 0;
94
95 mstart = (boot_params.efi_info.efi_systab |
96 ((u64)boot_params.efi_info.efi_systab_hi<<32));
97
98 if (efi_enabled(EFI_64BIT))
99 mend = mstart + sizeof(efi_system_table_64_t);
100 else
101 mend = mstart + sizeof(efi_system_table_32_t);
102
103 if (!mstart)
104 return 0;
105
106 return kernel_ident_mapping_init(info, level4p, mstart, mend);
107#endif
108 return 0;
109}
110
f5deb796
HY
111static void free_transition_pgtable(struct kimage *image)
112{
7f689041 113 free_page((unsigned long)image->arch.p4d);
a466ef76 114 image->arch.p4d = NULL;
f5deb796 115 free_page((unsigned long)image->arch.pud);
a466ef76 116 image->arch.pud = NULL;
f5deb796 117 free_page((unsigned long)image->arch.pmd);
a466ef76 118 image->arch.pmd = NULL;
f5deb796 119 free_page((unsigned long)image->arch.pte);
a466ef76 120 image->arch.pte = NULL;
f5deb796
HY
121}
122
123static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124{
85784d16
LJ
125 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126 unsigned long vaddr, paddr;
127 int result = -ENOMEM;
7f689041 128 p4d_t *p4d;
f5deb796
HY
129 pud_t *pud;
130 pmd_t *pmd;
131 pte_t *pte;
f5deb796
HY
132
133 vaddr = (unsigned long)relocate_kernel;
134 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135 pgd += pgd_index(vaddr);
136 if (!pgd_present(*pgd)) {
7f689041
KS
137 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138 if (!p4d)
139 goto err;
140 image->arch.p4d = p4d;
141 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142 }
143 p4d = p4d_offset(pgd, vaddr);
144 if (!p4d_present(*p4d)) {
f5deb796
HY
145 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146 if (!pud)
147 goto err;
148 image->arch.pud = pud;
7f689041 149 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
f5deb796 150 }
7f689041 151 pud = pud_offset(p4d, vaddr);
f5deb796
HY
152 if (!pud_present(*pud)) {
153 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154 if (!pmd)
155 goto err;
156 image->arch.pmd = pmd;
157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158 }
159 pmd = pmd_offset(pud, vaddr);
160 if (!pmd_present(*pmd)) {
161 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162 if (!pte)
163 goto err;
164 image->arch.pte = pte;
165 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166 }
167 pte = pte_offset_kernel(pmd, vaddr);
85784d16
LJ
168
169 if (sev_active())
170 prot = PAGE_KERNEL_EXEC;
171
172 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
f5deb796
HY
173 return 0;
174err:
f5deb796
HY
175 return result;
176}
177
9ebdc79f
YL
178static void *alloc_pgt_page(void *data)
179{
180 struct kimage *image = (struct kimage *)data;
181 struct page *page;
182 void *p = NULL;
183
184 page = kimage_alloc_control_pages(image, 0);
185 if (page) {
186 p = page_address(page);
187 clear_page(p);
188 }
189
190 return p;
191}
192
5234f5eb
EB
193static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194{
9ebdc79f
YL
195 struct x86_mapping_info info = {
196 .alloc_pgt_page = alloc_pgt_page,
197 .context = image,
66aad4fd 198 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
bba4ed01 199 .kernpg_flag = _KERNPG_TABLE_NOENC,
9ebdc79f 200 };
084d1283 201 unsigned long mstart, mend;
8bf27556 202 pgd_t *level4p;
f5deb796 203 int result;
084d1283
YL
204 int i;
205
8bf27556 206 level4p = (pgd_t *)__va(start_pgtable);
9ebdc79f 207 clear_page(level4p);
8638100c 208
85784d16
LJ
209 if (sev_active()) {
210 info.page_flag |= _PAGE_ENC;
211 info.kernpg_flag |= _PAGE_ENC;
212 }
213
8638100c
XP
214 if (direct_gbpages)
215 info.direct_gbpages = true;
216
0e691cf8
YL
217 for (i = 0; i < nr_pfn_mapped; i++) {
218 mstart = pfn_mapped[i].start << PAGE_SHIFT;
219 mend = pfn_mapped[i].end << PAGE_SHIFT;
220
221 result = kernel_ident_mapping_init(&info,
222 level4p, mstart, mend);
223 if (result)
224 return result;
225 }
084d1283 226
53594547 227 /*
084d1283
YL
228 * segments's mem ranges could be outside 0 ~ max_pfn,
229 * for example when jump back to original kernel from kexeced kernel.
230 * or first kernel is booted with user mem map, and second kernel
231 * could be loaded out of that range.
53594547 232 */
084d1283
YL
233 for (i = 0; i < image->nr_segments; i++) {
234 mstart = image->segment[i].mem;
235 mend = mstart + image->segment[i].memsz;
236
9ebdc79f
YL
237 result = kernel_ident_mapping_init(&info,
238 level4p, mstart, mend);
084d1283
YL
239
240 if (result)
241 return result;
242 }
243
6bbeb276
KS
244 /*
245 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246 * not covered by pfn_mapped.
247 */
248 result = map_efi_systab(&info, level4p);
249 if (result)
250 return result;
251
252 result = map_acpi_tables(&info, level4p);
253 if (result)
254 return result;
255
f5deb796 256 return init_transition_pgtable(image, level4p);
5234f5eb
EB
257}
258
259static void set_idt(void *newidt, u16 limit)
260{
36c4fd23 261 struct desc_ptr curidt;
5234f5eb
EB
262
263 /* x86-64 supports unaliged loads & stores */
36c4fd23
EB
264 curidt.size = limit;
265 curidt.address = (unsigned long)newidt;
5234f5eb
EB
266
267 __asm__ __volatile__ (
36c4fd23
EB
268 "lidtq %0\n"
269 : : "m" (curidt)
5234f5eb
EB
270 );
271};
272
273
274static void set_gdt(void *newgdt, u16 limit)
275{
36c4fd23 276 struct desc_ptr curgdt;
5234f5eb
EB
277
278 /* x86-64 supports unaligned loads & stores */
36c4fd23
EB
279 curgdt.size = limit;
280 curgdt.address = (unsigned long)newgdt;
5234f5eb
EB
281
282 __asm__ __volatile__ (
36c4fd23
EB
283 "lgdtq %0\n"
284 : : "m" (curgdt)
5234f5eb
EB
285 );
286};
287
288static void load_segments(void)
289{
290 __asm__ __volatile__ (
36c4fd23
EB
291 "\tmovl %0,%%ds\n"
292 "\tmovl %0,%%es\n"
293 "\tmovl %0,%%ss\n"
294 "\tmovl %0,%%fs\n"
295 "\tmovl %0,%%gs\n"
2ec5e3a8 296 : : "a" (__KERNEL_DS) : "memory"
5234f5eb 297 );
5234f5eb
EB
298}
299
5234f5eb
EB
300int machine_kexec_prepare(struct kimage *image)
301{
4bfaaef0 302 unsigned long start_pgtable;
5234f5eb
EB
303 int result;
304
305 /* Calculate the offsets */
72414d3f 306 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
5234f5eb
EB
307
308 /* Setup the identity mapped 64bit page table */
309 result = init_pgtable(image, start_pgtable);
72414d3f 310 if (result)
5234f5eb 311 return result;
5234f5eb 312
5234f5eb
EB
313 return 0;
314}
315
316void machine_kexec_cleanup(struct kimage *image)
317{
f5deb796 318 free_transition_pgtable(image);
5234f5eb
EB
319}
320
321/*
322 * Do not allocate memory (or fail in any way) in machine_kexec().
323 * We are past the point of no return, committed to rebooting now.
324 */
3ab83521 325void machine_kexec(struct kimage *image)
5234f5eb 326{
4bfaaef0
MD
327 unsigned long page_list[PAGES_NR];
328 void *control_page;
fee7b0d8 329 int save_ftrace_enabled;
5234f5eb 330
fee7b0d8 331#ifdef CONFIG_KEXEC_JUMP
6407df5c 332 if (image->preserve_context)
fee7b0d8
HY
333 save_processor_state();
334#endif
335
336 save_ftrace_enabled = __ftrace_enabled_save();
f43fdad8 337
5234f5eb
EB
338 /* Interrupts aren't acceptable while we reboot */
339 local_irq_disable();
17f557e5 340 hw_breakpoint_disable();
5234f5eb 341
fee7b0d8
HY
342 if (image->preserve_context) {
343#ifdef CONFIG_X86_IO_APIC
344 /*
345 * We need to put APICs in legacy mode so that we can
346 * get timer interrupts in second kernel. kexec/kdump
50374b96
BH
347 * paths already have calls to restore_boot_irq_mode()
348 * in one form or other. kexec jump path also need one.
fee7b0d8 349 */
3c9e76db
BH
350 clear_IO_APIC();
351 restore_boot_irq_mode();
fee7b0d8
HY
352#endif
353 }
354
4bfaaef0 355 control_page = page_address(image->control_code_page) + PAGE_SIZE;
fee7b0d8 356 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
4bfaaef0 357
e3ebadd9 358 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
fee7b0d8 359 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
4bfaaef0
MD
360 page_list[PA_TABLE_PAGE] =
361 (unsigned long)__pa(page_address(image->control_code_page));
5234f5eb 362
fee7b0d8
HY
363 if (image->type == KEXEC_TYPE_DEFAULT)
364 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
365 << PAGE_SHIFT);
366
fef3a7a1
HY
367 /*
368 * The segment registers are funny things, they have both a
2a8a3d5b
EB
369 * visible and an invisible part. Whenever the visible part is
370 * set to a specific selector, the invisible part is loaded
371 * with from a table in memory. At no other time is the
372 * descriptor table in memory accessed.
5234f5eb
EB
373 *
374 * I take advantage of this here by force loading the
375 * segments, before I zap the gdt with an invalid value.
376 */
377 load_segments();
fef3a7a1
HY
378 /*
379 * The gdt & idt are now invalid.
5234f5eb
EB
380 * If you want to load them you must set up your own idt & gdt.
381 */
fef3a7a1
HY
382 set_gdt(phys_to_virt(0), 0);
383 set_idt(phys_to_virt(0), 0);
4bfaaef0 384
5234f5eb 385 /* now call it */
fee7b0d8
HY
386 image->start = relocate_kernel((unsigned long)image->head,
387 (unsigned long)page_list,
388 image->start,
4e237903
TL
389 image->preserve_context,
390 sme_active());
fee7b0d8
HY
391
392#ifdef CONFIG_KEXEC_JUMP
6407df5c 393 if (image->preserve_context)
fee7b0d8
HY
394 restore_processor_state();
395#endif
396
397 __ftrace_enabled_restore(save_ftrace_enabled);
5234f5eb 398}
2c8c0e6b 399
cb105258
VG
400/* arch-dependent functionality related to kexec file-based syscall */
401
74ca317c 402#ifdef CONFIG_KEXEC_FILE
cb105258
VG
403void *arch_kexec_kernel_image_load(struct kimage *image)
404{
dd5f7260
VG
405 vfree(image->arch.elf_headers);
406 image->arch.elf_headers = NULL;
407
cb105258
VG
408 if (!image->fops || !image->fops->load)
409 return ERR_PTR(-ENOEXEC);
410
411 return image->fops->load(image, image->kernel_buf,
412 image->kernel_buf_len, image->initrd_buf,
413 image->initrd_buf_len, image->cmdline_buf,
414 image->cmdline_buf_len);
415}
416
12db5562
VG
417/*
418 * Apply purgatory relocations.
419 *
8aec395b
PR
420 * @pi: Purgatory to be relocated.
421 * @section: Section relocations applying to.
422 * @relsec: Section containing RELAs.
423 * @symtabsec: Corresponding symtab.
12db5562
VG
424 *
425 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
426 */
8aec395b
PR
427int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
428 Elf_Shdr *section, const Elf_Shdr *relsec,
429 const Elf_Shdr *symtabsec)
12db5562
VG
430{
431 unsigned int i;
432 Elf64_Rela *rel;
433 Elf64_Sym *sym;
434 void *location;
12db5562
VG
435 unsigned long address, sec_base, value;
436 const char *strtab, *name, *shstrtab;
8aec395b 437 const Elf_Shdr *sechdrs;
12db5562 438
8aec395b
PR
439 /* String & section header string table */
440 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
441 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
442 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
12db5562 443
8aec395b 444 rel = (void *)pi->ehdr + relsec->sh_offset;
12db5562 445
8aec395b
PR
446 pr_debug("Applying relocate section %s to %u\n",
447 shstrtab + relsec->sh_name, relsec->sh_info);
12db5562 448
8aec395b 449 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
12db5562
VG
450
451 /*
452 * rel[i].r_offset contains byte offset from beginning
453 * of section to the storage unit affected.
454 *
8da0b724
PR
455 * This is location to update. This is temporary buffer
456 * where section is currently loaded. This will finally be
457 * loaded to a different address later, pointed to by
12db5562
VG
458 * ->sh_addr. kexec takes care of moving it
459 * (kexec_load_segment()).
460 */
8da0b724
PR
461 location = pi->purgatory_buf;
462 location += section->sh_offset;
463 location += rel[i].r_offset;
12db5562
VG
464
465 /* Final address of the location */
466 address = section->sh_addr + rel[i].r_offset;
467
468 /*
469 * rel[i].r_info contains information about symbol table index
470 * w.r.t which relocation must be made and type of relocation
471 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
472 * these respectively.
473 */
8aec395b
PR
474 sym = (void *)pi->ehdr + symtabsec->sh_offset;
475 sym += ELF64_R_SYM(rel[i].r_info);
12db5562
VG
476
477 if (sym->st_name)
478 name = strtab + sym->st_name;
479 else
480 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
481
482 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
483 name, sym->st_info, sym->st_shndx, sym->st_value,
484 sym->st_size);
485
486 if (sym->st_shndx == SHN_UNDEF) {
487 pr_err("Undefined symbol: %s\n", name);
488 return -ENOEXEC;
489 }
490
491 if (sym->st_shndx == SHN_COMMON) {
492 pr_err("symbol '%s' in common section\n", name);
493 return -ENOEXEC;
494 }
495
496 if (sym->st_shndx == SHN_ABS)
497 sec_base = 0;
8aec395b 498 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
12db5562
VG
499 pr_err("Invalid section %d for symbol %s\n",
500 sym->st_shndx, name);
501 return -ENOEXEC;
502 } else
8aec395b 503 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
12db5562
VG
504
505 value = sym->st_value;
506 value += sec_base;
507 value += rel[i].r_addend;
508
509 switch (ELF64_R_TYPE(rel[i].r_info)) {
510 case R_X86_64_NONE:
511 break;
512 case R_X86_64_64:
513 *(u64 *)location = value;
514 break;
515 case R_X86_64_32:
516 *(u32 *)location = value;
517 if (value != *(u32 *)location)
518 goto overflow;
519 break;
520 case R_X86_64_32S:
521 *(s32 *)location = value;
522 if ((s64)value != *(s32 *)location)
523 goto overflow;
524 break;
525 case R_X86_64_PC32:
b21ebf2f 526 case R_X86_64_PLT32:
12db5562
VG
527 value -= (u64)address;
528 *(u32 *)location = value;
529 break;
530 default:
531 pr_err("Unknown rela relocation: %llu\n",
532 ELF64_R_TYPE(rel[i].r_info));
533 return -ENOEXEC;
534 }
535 }
536 return 0;
537
538overflow:
539 pr_err("Overflow in relocation type %d value 0x%lx\n",
540 (int)ELF64_R_TYPE(rel[i].r_info), value);
541 return -ENOEXEC;
542}
74ca317c 543#endif /* CONFIG_KEXEC_FILE */
1e5768ae
XP
544
545static int
546kexec_mark_range(unsigned long start, unsigned long end, bool protect)
547{
548 struct page *page;
549 unsigned int nr_pages;
550
551 /*
552 * For physical range: [start, end]. We must skip the unassigned
553 * crashk resource with zero-valued "end" member.
554 */
555 if (!end || start > end)
556 return 0;
557
558 page = pfn_to_page(start >> PAGE_SHIFT);
559 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
560 if (protect)
561 return set_pages_ro(page, nr_pages);
562 else
563 return set_pages_rw(page, nr_pages);
564}
565
566static void kexec_mark_crashkres(bool protect)
567{
568 unsigned long control;
569
570 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
571
572 /* Don't touch the control code page used in crash_kexec().*/
573 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
574 /* Control code page is located in the 2nd page. */
575 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
576 control += KEXEC_CONTROL_PAGE_SIZE;
577 kexec_mark_range(control, crashk_res.end, protect);
578}
579
580void arch_kexec_protect_crashkres(void)
581{
582 kexec_mark_crashkres(true);
583}
584
585void arch_kexec_unprotect_crashkres(void)
586{
587 kexec_mark_crashkres(false);
588}
bba4ed01 589
1a79c1b8
LJ
590/*
591 * During a traditional boot under SME, SME will encrypt the kernel,
592 * so the SME kexec kernel also needs to be un-encrypted in order to
593 * replicate a normal SME boot.
594 *
595 * During a traditional boot under SEV, the kernel has already been
596 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
597 * order to replicate a normal SEV boot.
598 */
bba4ed01
TL
599int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
600{
1a79c1b8
LJ
601 if (sev_active())
602 return 0;
603
bba4ed01
TL
604 /*
605 * If SME is active we need to be sure that kexec pages are
606 * not encrypted because when we boot to the new kernel the
607 * pages won't be accessed encrypted (initially).
608 */
609 return set_memory_decrypted((unsigned long)vaddr, pages);
610}
611
612void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
613{
1a79c1b8
LJ
614 if (sev_active())
615 return;
616
bba4ed01
TL
617 /*
618 * If SME is active we need to reset the pages back to being
619 * an encrypted mapping before freeing them.
620 */
621 set_memory_encrypted((unsigned long)vaddr, pages);
622}