Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[linux-block.git] / arch / x86 / kernel / kprobes / core.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 33 * Added function return probes functionality
d6be29b8 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 35 * kprobe-booster and kretprobe-booster for i386.
da07ab03 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 37 * and kretprobe-booster for x86-64
d6be29b8 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4 41 */
1da177e4
LT
42#include <linux/kprobes.h>
43#include <linux/ptrace.h>
1da177e4
LT
44#include <linux/string.h>
45#include <linux/slab.h>
b506a9d0 46#include <linux/hardirq.h>
1da177e4 47#include <linux/preempt.h>
744c193e 48#include <linux/extable.h>
1eeb66a1 49#include <linux/kdebug.h>
b46b3d70 50#include <linux/kallsyms.h>
c0f7ac3a 51#include <linux/ftrace.h>
87aaff2a 52#include <linux/frame.h>
9f7d416c 53#include <linux/kasan.h>
9ec4b1f3 54
35de5b06 55#include <asm/text-patching.h>
8533bbe9
MH
56#include <asm/cacheflush.h>
57#include <asm/desc.h>
1da177e4 58#include <asm/pgtable.h>
7c0f6ba6 59#include <linux/uaccess.h>
19d36ccd 60#include <asm/alternative.h>
b46b3d70 61#include <asm/insn.h>
62edab90 62#include <asm/debugreg.h>
1da177e4 63
f684199f 64#include "common.h"
3f33ab1c 65
1da177e4
LT
66void jprobe_return_end(void);
67
e7a510f9
AM
68DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
69DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 70
98272ed0 71#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
72
73#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
74 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
75 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
76 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
77 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
78 << (row % 32))
79 /*
80 * Undefined/reserved opcodes, conditional jump, Opcode Extension
81 * Groups, and some special opcodes can not boost.
7115e3fc
LT
82 * This is non-const and volatile to keep gcc from statically
83 * optimizing it out, as variable_test_bit makes gcc think only
f684199f 84 * *(unsigned long*) is used.
8533bbe9 85 */
7115e3fc 86static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
b7e37567 90 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
8533bbe9
MH
91 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
92 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
96 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
97 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
102 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
103 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
104 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
105 /* ----------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
8533bbe9
MH
108#undef W
109
f438d914
MH
110struct kretprobe_blackpoint kretprobe_blacklist[] = {
111 {"__switch_to", }, /* This function switches only current task, but
112 doesn't switch kernel stack.*/
113 {NULL, NULL} /* Terminator */
114};
3f33ab1c 115
f438d914
MH
116const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
117
9326638c
MH
118static nokprobe_inline void
119__synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 120{
c0f7ac3a
MH
121 struct __arch_relative_insn {
122 u8 op;
aa470140 123 s32 raddr;
f684199f 124 } __packed *insn;
c0f7ac3a
MH
125
126 insn = (struct __arch_relative_insn *)from;
127 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
128 insn->op = op;
129}
130
131/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
9326638c 132void synthesize_reljump(void *from, void *to)
c0f7ac3a
MH
133{
134 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140 135}
9326638c 136NOKPROBE_SYMBOL(synthesize_reljump);
aa470140 137
3f33ab1c 138/* Insert a call instruction at address 'from', which calls address 'to'.*/
9326638c 139void synthesize_relcall(void *from, void *to)
3f33ab1c
MH
140{
141 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
142}
9326638c 143NOKPROBE_SYMBOL(synthesize_relcall);
3f33ab1c 144
9930927f 145/*
567a9fd8 146 * Skip the prefixes of the instruction.
9930927f 147 */
9326638c 148static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
9930927f 149{
567a9fd8
MH
150 insn_attr_t attr;
151
152 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 while (inat_is_legacy_prefix(attr)) {
154 insn++;
155 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
156 }
9930927f 157#ifdef CONFIG_X86_64
567a9fd8
MH
158 if (inat_is_rex_prefix(attr))
159 insn++;
9930927f 160#endif
567a9fd8 161 return insn;
9930927f 162}
9326638c 163NOKPROBE_SYMBOL(skip_prefixes);
9930927f 164
aa470140 165/*
d6be29b8
MH
166 * Returns non-zero if opcode is boostable.
167 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 168 */
7ec8a97a 169int can_boost(kprobe_opcode_t *opcodes)
aa470140 170{
aa470140
MH
171 kprobe_opcode_t opcode;
172 kprobe_opcode_t *orig_opcodes = opcodes;
173
cde5edbd 174 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
175 return 0; /* Page fault may occur on this address. */
176
aa470140
MH
177retry:
178 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
179 return 0;
180 opcode = *(opcodes++);
181
182 /* 2nd-byte opcode */
183 if (opcode == 0x0f) {
184 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
185 return 0;
8533bbe9
MH
186 return test_bit(*opcodes,
187 (unsigned long *)twobyte_is_boostable);
aa470140
MH
188 }
189
190 switch (opcode & 0xf0) {
d6be29b8 191#ifdef CONFIG_X86_64
aa470140
MH
192 case 0x40:
193 goto retry; /* REX prefix is boostable */
d6be29b8 194#endif
aa470140
MH
195 case 0x60:
196 if (0x63 < opcode && opcode < 0x67)
197 goto retry; /* prefixes */
198 /* can't boost Address-size override and bound */
199 return (opcode != 0x62 && opcode != 0x67);
200 case 0x70:
201 return 0; /* can't boost conditional jump */
202 case 0xc0:
203 /* can't boost software-interruptions */
204 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
205 case 0xd0:
206 /* can boost AA* and XLAT */
207 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
208 case 0xe0:
209 /* can boost in/out and absolute jmps */
210 return ((opcode & 0x04) || opcode == 0xea);
211 case 0xf0:
212 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
213 goto retry; /* lock/rep(ne) prefix */
214 /* clear and set flags are boostable */
215 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
216 default:
217 /* segment override prefixes are boostable */
218 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
219 goto retry; /* prefixes */
220 /* CS override prefix and call are not boostable */
221 return (opcode != 0x2e && opcode != 0x9a);
222 }
223}
224
3f33ab1c
MH
225static unsigned long
226__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
227{
228 struct kprobe *kp;
650b7b23 229 unsigned long faddr;
86b4ce31 230
b46b3d70 231 kp = get_kprobe((void *)addr);
650b7b23 232 faddr = ftrace_location(addr);
2a6730c8
PM
233 /*
234 * Addresses inside the ftrace location are refused by
235 * arch_check_ftrace_location(). Something went terribly wrong
236 * if such an address is checked here.
237 */
238 if (WARN_ON(faddr && faddr != addr))
239 return 0UL;
650b7b23
PM
240 /*
241 * Use the current code if it is not modified by Kprobe
242 * and it cannot be modified by ftrace.
243 */
244 if (!kp && !faddr)
86b4ce31 245 return addr;
b46b3d70
MH
246
247 /*
650b7b23
PM
248 * Basically, kp->ainsn.insn has an original instruction.
249 * However, RIP-relative instruction can not do single-stepping
250 * at different place, __copy_instruction() tweaks the displacement of
251 * that instruction. In that case, we can't recover the instruction
252 * from the kp->ainsn.insn.
253 *
254 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
255 * of the first byte of the probed instruction, which is overwritten
256 * by int3. And the instruction at kp->addr is not modified by kprobes
257 * except for the first byte, we can recover the original instruction
258 * from it and kp->opcode.
b46b3d70 259 *
650b7b23
PM
260 * In case of Kprobes using ftrace, we do not have a copy of
261 * the original instruction. In fact, the ftrace location might
262 * be modified at anytime and even could be in an inconsistent state.
263 * Fortunately, we know that the original code is the ideal 5-byte
264 * long NOP.
b46b3d70 265 */
650b7b23
PM
266 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
267 if (faddr)
268 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
269 else
270 buf[0] = kp->opcode;
86b4ce31
MH
271 return (unsigned long)buf;
272}
273
86b4ce31
MH
274/*
275 * Recover the probed instruction at addr for further analysis.
276 * Caller must lock kprobes by kprobe_mutex, or disable preemption
277 * for preventing to release referencing kprobes.
2a6730c8 278 * Returns zero if the instruction can not get recovered.
86b4ce31 279 */
3f33ab1c 280unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
281{
282 unsigned long __addr;
283
284 __addr = __recover_optprobed_insn(buf, addr);
285 if (__addr != addr)
286 return __addr;
287
288 return __recover_probed_insn(buf, addr);
b46b3d70
MH
289}
290
b46b3d70 291/* Check if paddr is at an instruction boundary */
7ec8a97a 292static int can_probe(unsigned long paddr)
b46b3d70 293{
86b4ce31 294 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
295 struct insn insn;
296 kprobe_opcode_t buf[MAX_INSN_SIZE];
297
6abded71 298 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
299 return 0;
300
301 /* Decode instructions */
302 addr = paddr - offset;
303 while (addr < paddr) {
b46b3d70
MH
304 /*
305 * Check if the instruction has been modified by another
306 * kprobe, in which case we replace the breakpoint by the
307 * original instruction in our buffer.
86b4ce31
MH
308 * Also, jump optimization will change the breakpoint to
309 * relative-jump. Since the relative-jump itself is
310 * normally used, we just go through if there is no kprobe.
b46b3d70 311 */
86b4ce31 312 __addr = recover_probed_instruction(buf, addr);
2a6730c8
PM
313 if (!__addr)
314 return 0;
6ba48ff4 315 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
b46b3d70 316 insn_get_length(&insn);
86b4ce31
MH
317
318 /*
319 * Another debugging subsystem might insert this breakpoint.
320 * In that case, we can't recover it.
321 */
322 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
323 return 0;
b46b3d70
MH
324 addr += insn.length;
325 }
326
327 return (addr == paddr);
328}
329
1da177e4 330/*
d6be29b8 331 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 332 */
7ec8a97a 333static int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 334{
567a9fd8
MH
335 /* Skip prefixes */
336 insn = skip_prefixes(insn);
337
1da177e4
LT
338 switch (*insn) {
339 case 0xfa: /* cli */
340 case 0xfb: /* sti */
341 case 0xcf: /* iret/iretd */
342 case 0x9d: /* popf/popfd */
343 return 1;
344 }
9930927f 345
1da177e4
LT
346 return 0;
347}
348
349/*
c0f7ac3a
MH
350 * Copy an instruction and adjust the displacement if the instruction
351 * uses the %rip-relative addressing mode.
aa470140 352 * If it does, Return the address of the 32-bit displacement word.
1da177e4 353 * If not, return null.
31f80e45 354 * Only applicable to 64-bit x86.
1da177e4 355 */
7ec8a97a 356int __copy_instruction(u8 *dest, u8 *src)
1da177e4 357{
89ae465b 358 struct insn insn;
c0f7ac3a 359 kprobe_opcode_t buf[MAX_INSN_SIZE];
c80e5c0c 360 int length;
6ba48ff4
DH
361 unsigned long recovered_insn =
362 recover_probed_instruction(buf, (unsigned long)src);
86b4ce31 363
2a6730c8
PM
364 if (!recovered_insn)
365 return 0;
6ba48ff4 366 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
c0f7ac3a 367 insn_get_length(&insn);
c80e5c0c
ES
368 length = insn.length;
369
86b4ce31 370 /* Another subsystem puts a breakpoint, failed to recover */
46484688 371 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
86b4ce31 372 return 0;
c80e5c0c 373 memcpy(dest, insn.kaddr, length);
c0f7ac3a
MH
374
375#ifdef CONFIG_X86_64
89ae465b
MH
376 if (insn_rip_relative(&insn)) {
377 s64 newdisp;
378 u8 *disp;
c80e5c0c 379 kernel_insn_init(&insn, dest, length);
89ae465b
MH
380 insn_get_displacement(&insn);
381 /*
382 * The copied instruction uses the %rip-relative addressing
383 * mode. Adjust the displacement for the difference between
384 * the original location of this instruction and the location
385 * of the copy that will actually be run. The tricky bit here
386 * is making sure that the sign extension happens correctly in
387 * this calculation, since we need a signed 32-bit result to
388 * be sign-extended to 64 bits when it's added to the %rip
389 * value and yield the same 64-bit result that the sign-
390 * extension of the original signed 32-bit displacement would
391 * have given.
392 */
46484688 393 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
8101376d
MH
394 if ((s64) (s32) newdisp != newdisp) {
395 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
396 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
397 return 0;
398 }
c0f7ac3a 399 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 400 *(s32 *) disp = (s32) newdisp;
1da177e4 401 }
d6be29b8 402#endif
c80e5c0c 403 return length;
31f80e45 404}
1da177e4 405
7ec8a97a 406static int arch_copy_kprobe(struct kprobe *p)
1da177e4 407{
003002e0
MH
408 int ret;
409
46484688 410 /* Copy an instruction with recovering if other optprobe modifies it.*/
003002e0
MH
411 ret = __copy_instruction(p->ainsn.insn, p->addr);
412 if (!ret)
413 return -EINVAL;
46484688 414
c0f7ac3a 415 /*
46484688
MH
416 * __copy_instruction can modify the displacement of the instruction,
417 * but it doesn't affect boostable check.
c0f7ac3a 418 */
46484688 419 if (can_boost(p->ainsn.insn))
aa470140 420 p->ainsn.boostable = 0;
8533bbe9 421 else
aa470140 422 p->ainsn.boostable = -1;
8533bbe9 423
9a556ab9
MH
424 /* Check whether the instruction modifies Interrupt Flag or not */
425 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
426
46484688
MH
427 /* Also, displacement change doesn't affect the first byte */
428 p->opcode = p->ainsn.insn[0];
003002e0
MH
429
430 return 0;
1da177e4
LT
431}
432
7ec8a97a 433int arch_prepare_kprobe(struct kprobe *p)
8533bbe9 434{
4554dbcb
MH
435 if (alternatives_text_reserved(p->addr, p->addr))
436 return -EINVAL;
437
b46b3d70
MH
438 if (!can_probe((unsigned long)p->addr))
439 return -EILSEQ;
8533bbe9
MH
440 /* insn: must be on special executable page on x86. */
441 p->ainsn.insn = get_insn_slot();
442 if (!p->ainsn.insn)
443 return -ENOMEM;
003002e0
MH
444
445 return arch_copy_kprobe(p);
8533bbe9
MH
446}
447
7ec8a97a 448void arch_arm_kprobe(struct kprobe *p)
1da177e4 449{
19d36ccd 450 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
451}
452
7ec8a97a 453void arch_disarm_kprobe(struct kprobe *p)
1da177e4 454{
19d36ccd 455 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
456}
457
7ec8a97a 458void arch_remove_kprobe(struct kprobe *p)
7e1048b1 459{
12941560
MH
460 if (p->ainsn.insn) {
461 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
462 p->ainsn.insn = NULL;
463 }
1da177e4
LT
464}
465
9326638c
MH
466static nokprobe_inline void
467save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 468{
e7a510f9
AM
469 kcb->prev_kprobe.kp = kprobe_running();
470 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
471 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
472 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
473}
474
9326638c
MH
475static nokprobe_inline void
476restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 477{
b76834bc 478 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 479 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
480 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
481 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
482}
483
9326638c
MH
484static nokprobe_inline void
485set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
486 struct kprobe_ctlblk *kcb)
aa3d7e3d 487{
b76834bc 488 __this_cpu_write(current_kprobe, p);
8533bbe9 489 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 490 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
9a556ab9 491 if (p->ainsn.if_modifier)
053de044 492 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
493}
494
9326638c 495static nokprobe_inline void clear_btf(void)
1ecc798c 496{
ea8e61b7
PZ
497 if (test_thread_flag(TIF_BLOCKSTEP)) {
498 unsigned long debugctl = get_debugctlmsr();
499
500 debugctl &= ~DEBUGCTLMSR_BTF;
501 update_debugctlmsr(debugctl);
502 }
1ecc798c
RM
503}
504
9326638c 505static nokprobe_inline void restore_btf(void)
1ecc798c 506{
ea8e61b7
PZ
507 if (test_thread_flag(TIF_BLOCKSTEP)) {
508 unsigned long debugctl = get_debugctlmsr();
509
510 debugctl |= DEBUGCTLMSR_BTF;
511 update_debugctlmsr(debugctl);
512 }
1ecc798c
RM
513}
514
9326638c 515void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 516{
8533bbe9 517 unsigned long *sara = stack_addr(regs);
ba8af12f 518
4c4308cb 519 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 520
4c4308cb
CH
521 /* Replace the return addr with trampoline addr */
522 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 523}
9326638c 524NOKPROBE_SYMBOL(arch_prepare_kretprobe);
f315decb 525
9326638c
MH
526static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
527 struct kprobe_ctlblk *kcb, int reenter)
f315decb 528{
c0f7ac3a
MH
529 if (setup_detour_execution(p, regs, reenter))
530 return;
531
615d0ebb 532#if !defined(CONFIG_PREEMPT)
f315decb
AS
533 if (p->ainsn.boostable == 1 && !p->post_handler) {
534 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
535 if (!reenter)
536 reset_current_kprobe();
537 /*
538 * Reentering boosted probe doesn't reset current_kprobe,
539 * nor set current_kprobe, because it doesn't use single
540 * stepping.
541 */
f315decb
AS
542 regs->ip = (unsigned long)p->ainsn.insn;
543 preempt_enable_no_resched();
544 return;
545 }
546#endif
0f94eb63
MH
547 if (reenter) {
548 save_previous_kprobe(kcb);
549 set_current_kprobe(p, regs, kcb);
550 kcb->kprobe_status = KPROBE_REENTER;
551 } else
552 kcb->kprobe_status = KPROBE_HIT_SS;
553 /* Prepare real single stepping */
554 clear_btf();
555 regs->flags |= X86_EFLAGS_TF;
556 regs->flags &= ~X86_EFLAGS_IF;
557 /* single step inline if the instruction is an int3 */
558 if (p->opcode == BREAKPOINT_INSTRUCTION)
559 regs->ip = (unsigned long)p->addr;
560 else
561 regs->ip = (unsigned long)p->ainsn.insn;
f315decb 562}
9326638c 563NOKPROBE_SYMBOL(setup_singlestep);
f315decb 564
40102d4a
HH
565/*
566 * We have reentered the kprobe_handler(), since another probe was hit while
567 * within the handler. We save the original kprobes variables and just single
568 * step on the instruction of the new probe without calling any user handlers.
569 */
9326638c
MH
570static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
571 struct kprobe_ctlblk *kcb)
40102d4a 572{
f315decb
AS
573 switch (kcb->kprobe_status) {
574 case KPROBE_HIT_SSDONE:
f315decb 575 case KPROBE_HIT_ACTIVE:
6a5022a5 576 case KPROBE_HIT_SS:
fb8830e7 577 kprobes_inc_nmissed_count(p);
0f94eb63 578 setup_singlestep(p, regs, kcb, 1);
f315decb 579 break;
6a5022a5 580 case KPROBE_REENTER:
e9afe9e1
MH
581 /* A probe has been hit in the codepath leading up to, or just
582 * after, single-stepping of a probed instruction. This entire
583 * codepath should strictly reside in .kprobes.text section.
584 * Raise a BUG or we'll continue in an endless reentering loop
585 * and eventually a stack overflow.
586 */
587 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
588 p->addr);
589 dump_kprobe(p);
590 BUG();
f315decb
AS
591 default:
592 /* impossible cases */
593 WARN_ON(1);
fb8830e7 594 return 0;
59e87cdc 595 }
f315decb 596
59e87cdc 597 return 1;
40102d4a 598}
9326638c 599NOKPROBE_SYMBOL(reenter_kprobe);
73649dab 600
8533bbe9
MH
601/*
602 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 603 * remain disabled throughout this function.
8533bbe9 604 */
9326638c 605int kprobe_int3_handler(struct pt_regs *regs)
1da177e4 606{
8533bbe9 607 kprobe_opcode_t *addr;
f315decb 608 struct kprobe *p;
d217d545
AM
609 struct kprobe_ctlblk *kcb;
610
f39b6f0e 611 if (user_mode(regs))
0cdd192c
AL
612 return 0;
613
8533bbe9 614 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
615 /*
616 * We don't want to be preempted for the entire
f315decb
AS
617 * duration of kprobe processing. We conditionally
618 * re-enable preemption at the end of this function,
619 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
620 */
621 preempt_disable();
1da177e4 622
f315decb 623 kcb = get_kprobe_ctlblk();
b9760156 624 p = get_kprobe(addr);
f315decb 625
b9760156 626 if (p) {
b9760156 627 if (kprobe_running()) {
f315decb
AS
628 if (reenter_kprobe(p, regs, kcb))
629 return 1;
1da177e4 630 } else {
b9760156
HH
631 set_current_kprobe(p, regs, kcb);
632 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 633
1da177e4 634 /*
f315decb
AS
635 * If we have no pre-handler or it returned 0, we
636 * continue with normal processing. If we have a
637 * pre-handler and it returned non-zero, it prepped
638 * for calling the break_handler below on re-entry
639 * for jprobe processing, so get out doing nothing
640 * more here.
1da177e4 641 */
f315decb 642 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 643 setup_singlestep(p, regs, kcb, 0);
f315decb 644 return 1;
b9760156 645 }
829e9245
MH
646 } else if (*addr != BREAKPOINT_INSTRUCTION) {
647 /*
648 * The breakpoint instruction was removed right
649 * after we hit it. Another cpu has removed
650 * either a probepoint or a debugger breakpoint
651 * at this address. In either case, no further
652 * handling of this interrupt is appropriate.
653 * Back up over the (now missing) int3 and run
654 * the original instruction.
655 */
656 regs->ip = (unsigned long)addr;
657 preempt_enable_no_resched();
658 return 1;
f315decb 659 } else if (kprobe_running()) {
b76834bc 660 p = __this_cpu_read(current_kprobe);
f315decb 661 if (p->break_handler && p->break_handler(p, regs)) {
e7dbfe34
MH
662 if (!skip_singlestep(p, regs, kcb))
663 setup_singlestep(p, regs, kcb, 0);
f315decb 664 return 1;
1da177e4 665 }
f315decb 666 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 667
d217d545 668 preempt_enable_no_resched();
f315decb 669 return 0;
1da177e4 670}
9326638c 671NOKPROBE_SYMBOL(kprobe_int3_handler);
1da177e4 672
73649dab 673/*
da07ab03
MH
674 * When a retprobed function returns, this code saves registers and
675 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 676 */
c1c355ce
JP
677asm(
678 ".global kretprobe_trampoline\n"
679 ".type kretprobe_trampoline, @function\n"
680 "kretprobe_trampoline:\n"
d6be29b8 681#ifdef CONFIG_X86_64
c1c355ce
JP
682 /* We don't bother saving the ss register */
683 " pushq %rsp\n"
684 " pushfq\n"
685 SAVE_REGS_STRING
686 " movq %rsp, %rdi\n"
687 " call trampoline_handler\n"
688 /* Replace saved sp with true return address. */
689 " movq %rax, 152(%rsp)\n"
690 RESTORE_REGS_STRING
691 " popfq\n"
d6be29b8 692#else
c1c355ce
JP
693 " pushf\n"
694 SAVE_REGS_STRING
695 " movl %esp, %eax\n"
696 " call trampoline_handler\n"
697 /* Move flags to cs */
698 " movl 56(%esp), %edx\n"
699 " movl %edx, 52(%esp)\n"
700 /* Replace saved flags with true return address. */
701 " movl %eax, 56(%esp)\n"
702 RESTORE_REGS_STRING
703 " popf\n"
d6be29b8 704#endif
c1c355ce
JP
705 " ret\n"
706 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
707);
9326638c 708NOKPROBE_SYMBOL(kretprobe_trampoline);
87aaff2a 709STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
73649dab
RL
710
711/*
da07ab03 712 * Called from kretprobe_trampoline
73649dab 713 */
9326638c 714__visible __used void *trampoline_handler(struct pt_regs *regs)
73649dab 715{
62c27be0 716 struct kretprobe_instance *ri = NULL;
99219a3f 717 struct hlist_head *head, empty_rp;
b67bfe0d 718 struct hlist_node *tmp;
991a51d8 719 unsigned long flags, orig_ret_address = 0;
d6be29b8 720 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 721 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 722
99219a3f 723 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 724 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 725 /* fixup registers */
d6be29b8 726#ifdef CONFIG_X86_64
da07ab03 727 regs->cs = __KERNEL_CS;
d6be29b8
MH
728#else
729 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 730 regs->gs = 0;
d6be29b8 731#endif
da07ab03 732 regs->ip = trampoline_address;
8533bbe9 733 regs->orig_ax = ~0UL;
73649dab 734
ba8af12f
RL
735 /*
736 * It is possible to have multiple instances associated with a given
8533bbe9 737 * task either because multiple functions in the call path have
025dfdaf 738 * return probes installed on them, and/or more than one
ba8af12f
RL
739 * return probe was registered for a target function.
740 *
741 * We can handle this because:
8533bbe9 742 * - instances are always pushed into the head of the list
ba8af12f 743 * - when multiple return probes are registered for the same
8533bbe9
MH
744 * function, the (chronologically) first instance's ret_addr
745 * will be the real return address, and all the rest will
746 * point to kretprobe_trampoline.
ba8af12f 747 */
b67bfe0d 748 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
62c27be0 749 if (ri->task != current)
ba8af12f 750 /* another task is sharing our hash bucket */
62c27be0 751 continue;
ba8af12f 752
737480a0
KS
753 orig_ret_address = (unsigned long)ri->ret_addr;
754
755 if (orig_ret_address != trampoline_address)
756 /*
757 * This is the real return address. Any other
758 * instances associated with this task are for
759 * other calls deeper on the call stack
760 */
761 break;
762 }
763
764 kretprobe_assert(ri, orig_ret_address, trampoline_address);
765
766 correct_ret_addr = ri->ret_addr;
b67bfe0d 767 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737480a0
KS
768 if (ri->task != current)
769 /* another task is sharing our hash bucket */
770 continue;
771
772 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 773 if (ri->rp && ri->rp->handler) {
b76834bc 774 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 775 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 776 ri->ret_addr = correct_ret_addr;
ba8af12f 777 ri->rp->handler(ri, regs);
b76834bc 778 __this_cpu_write(current_kprobe, NULL);
da07ab03 779 }
ba8af12f 780
99219a3f 781 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
782
783 if (orig_ret_address != trampoline_address)
784 /*
785 * This is the real return address. Any other
786 * instances associated with this task are for
787 * other calls deeper on the call stack
788 */
789 break;
73649dab 790 }
ba8af12f 791
ef53d9c5 792 kretprobe_hash_unlock(current, &flags);
ba8af12f 793
b67bfe0d 794 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
99219a3f 795 hlist_del(&ri->hlist);
796 kfree(ri);
797 }
da07ab03 798 return (void *)orig_ret_address;
73649dab 799}
9326638c 800NOKPROBE_SYMBOL(trampoline_handler);
73649dab 801
1da177e4
LT
802/*
803 * Called after single-stepping. p->addr is the address of the
804 * instruction whose first byte has been replaced by the "int 3"
805 * instruction. To avoid the SMP problems that can occur when we
806 * temporarily put back the original opcode to single-step, we
807 * single-stepped a copy of the instruction. The address of this
808 * copy is p->ainsn.insn.
809 *
810 * This function prepares to return from the post-single-step
811 * interrupt. We have to fix up the stack as follows:
812 *
813 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 814 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
815 * it relative to the original instruction.
816 *
817 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 818 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
819 *
820 * 2) If the single-stepped instruction was a call, the return address
821 * that is atop the stack is the address following the copied instruction.
822 * We need to make it the address following the original instruction.
aa470140
MH
823 *
824 * If this is the first time we've single-stepped the instruction at
825 * this probepoint, and the instruction is boostable, boost it: add a
826 * jump instruction after the copied instruction, that jumps to the next
827 * instruction after the probepoint.
1da177e4 828 */
9326638c
MH
829static void resume_execution(struct kprobe *p, struct pt_regs *regs,
830 struct kprobe_ctlblk *kcb)
1da177e4 831{
8533bbe9
MH
832 unsigned long *tos = stack_addr(regs);
833 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
834 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
835 kprobe_opcode_t *insn = p->ainsn.insn;
836
567a9fd8
MH
837 /* Skip prefixes */
838 insn = skip_prefixes(insn);
1da177e4 839
053de044 840 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 841 switch (*insn) {
0b0122fa 842 case 0x9c: /* pushfl */
053de044 843 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 844 *tos |= kcb->kprobe_old_flags;
1da177e4 845 break;
0b0122fa
MH
846 case 0xc2: /* iret/ret/lret */
847 case 0xc3:
0b9e2cac 848 case 0xca:
0b0122fa
MH
849 case 0xcb:
850 case 0xcf:
851 case 0xea: /* jmp absolute -- ip is correct */
852 /* ip is already adjusted, no more changes required */
aa470140 853 p->ainsn.boostable = 1;
0b0122fa
MH
854 goto no_change;
855 case 0xe8: /* call relative - Fix return addr */
8533bbe9 856 *tos = orig_ip + (*tos - copy_ip);
1da177e4 857 break;
e7b5e11e 858#ifdef CONFIG_X86_32
d6be29b8
MH
859 case 0x9a: /* call absolute -- same as call absolute, indirect */
860 *tos = orig_ip + (*tos - copy_ip);
861 goto no_change;
862#endif
1da177e4 863 case 0xff:
dc49e344 864 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
865 /*
866 * call absolute, indirect
867 * Fix return addr; ip is correct.
868 * But this is not boostable
869 */
870 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 871 goto no_change;
8533bbe9
MH
872 } else if (((insn[1] & 0x31) == 0x20) ||
873 ((insn[1] & 0x31) == 0x21)) {
874 /*
875 * jmp near and far, absolute indirect
876 * ip is correct. And this is boostable
877 */
aa470140 878 p->ainsn.boostable = 1;
0b0122fa 879 goto no_change;
1da177e4 880 }
1da177e4
LT
881 default:
882 break;
883 }
884
aa470140 885 if (p->ainsn.boostable == 0) {
8533bbe9
MH
886 if ((regs->ip > copy_ip) &&
887 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
888 /*
889 * These instructions can be executed directly if it
890 * jumps back to correct address.
891 */
c0f7ac3a
MH
892 synthesize_reljump((void *)regs->ip,
893 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
894 p->ainsn.boostable = 1;
895 } else {
896 p->ainsn.boostable = -1;
897 }
898 }
899
8533bbe9 900 regs->ip += orig_ip - copy_ip;
65ea5b03 901
0b0122fa 902no_change:
1ecc798c 903 restore_btf();
1da177e4 904}
9326638c 905NOKPROBE_SYMBOL(resume_execution);
1da177e4 906
8533bbe9
MH
907/*
908 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 909 * remain disabled throughout this function.
8533bbe9 910 */
9326638c 911int kprobe_debug_handler(struct pt_regs *regs)
1da177e4 912{
e7a510f9
AM
913 struct kprobe *cur = kprobe_running();
914 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
915
916 if (!cur)
1da177e4
LT
917 return 0;
918
acb5b8a2
YL
919 resume_execution(cur, regs, kcb);
920 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 921
e7a510f9
AM
922 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
923 kcb->kprobe_status = KPROBE_HIT_SSDONE;
924 cur->post_handler(cur, regs, 0);
aa3d7e3d 925 }
1da177e4 926
8533bbe9 927 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
928 if (kcb->kprobe_status == KPROBE_REENTER) {
929 restore_previous_kprobe(kcb);
aa3d7e3d 930 goto out;
aa3d7e3d 931 }
e7a510f9 932 reset_current_kprobe();
aa3d7e3d 933out:
1da177e4
LT
934 preempt_enable_no_resched();
935
936 /*
65ea5b03 937 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
938 * will have TF set, in which case, continue the remaining processing
939 * of do_debug, as if this is not a probe hit.
940 */
053de044 941 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
942 return 0;
943
944 return 1;
945}
9326638c 946NOKPROBE_SYMBOL(kprobe_debug_handler);
1da177e4 947
9326638c 948int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 949{
e7a510f9
AM
950 struct kprobe *cur = kprobe_running();
951 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
952
6381c24c
MH
953 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
954 /* This must happen on single-stepping */
955 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
956 kcb->kprobe_status != KPROBE_REENTER);
c28f8966
PP
957 /*
958 * We are here because the instruction being single
959 * stepped caused a page fault. We reset the current
65ea5b03 960 * kprobe and the ip points back to the probe address
c28f8966
PP
961 * and allow the page fault handler to continue as a
962 * normal page fault.
963 */
65ea5b03 964 regs->ip = (unsigned long)cur->addr;
dcfc4724
MH
965 /*
966 * Trap flag (TF) has been set here because this fault
967 * happened where the single stepping will be done.
968 * So clear it by resetting the current kprobe:
969 */
970 regs->flags &= ~X86_EFLAGS_TF;
971
972 /*
973 * If the TF flag was set before the kprobe hit,
974 * don't touch it:
975 */
8533bbe9 976 regs->flags |= kcb->kprobe_old_flags;
dcfc4724 977
c28f8966
PP
978 if (kcb->kprobe_status == KPROBE_REENTER)
979 restore_previous_kprobe(kcb);
980 else
981 reset_current_kprobe();
1da177e4 982 preempt_enable_no_resched();
6381c24c
MH
983 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
984 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
c28f8966
PP
985 /*
986 * We increment the nmissed count for accounting,
8533bbe9 987 * we can also use npre/npostfault count for accounting
c28f8966
PP
988 * these specific fault cases.
989 */
990 kprobes_inc_nmissed_count(cur);
991
992 /*
993 * We come here because instructions in the pre/post
994 * handler caused the page_fault, this could happen
995 * if handler tries to access user space by
996 * copy_from_user(), get_user() etc. Let the
997 * user-specified handler try to fix it first.
998 */
999 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1000 return 1;
1001
1002 /*
1003 * In case the user-specified fault handler returned
1004 * zero, try to fix up.
1005 */
548acf19 1006 if (fixup_exception(regs, trapnr))
d6be29b8 1007 return 1;
6d48583b 1008
c28f8966 1009 /*
8533bbe9 1010 * fixup routine could not handle it,
c28f8966
PP
1011 * Let do_page_fault() fix it.
1012 */
1da177e4 1013 }
6381c24c 1014
1da177e4
LT
1015 return 0;
1016}
9326638c 1017NOKPROBE_SYMBOL(kprobe_fault_handler);
1da177e4
LT
1018
1019/*
1020 * Wrapper routine for handling exceptions.
1021 */
9326638c
MH
1022int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1023 void *data)
1da177e4 1024{
ade1af77 1025 struct die_args *args = data;
66ff2d06
AM
1026 int ret = NOTIFY_DONE;
1027
f39b6f0e 1028 if (args->regs && user_mode(args->regs))
2326c770 1029 return ret;
1030
6f6343f5 1031 if (val == DIE_GPF) {
b506a9d0
QB
1032 /*
1033 * To be potentially processing a kprobe fault and to
1034 * trust the result from kprobe_running(), we have
1035 * be non-preemptible.
1036 */
1037 if (!preemptible() && kprobe_running() &&
1da177e4 1038 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 1039 ret = NOTIFY_STOP;
1da177e4 1040 }
66ff2d06 1041 return ret;
1da177e4 1042}
9326638c 1043NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1da177e4 1044
9326638c 1045int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1046{
1047 struct jprobe *jp = container_of(p, struct jprobe, kp);
1048 unsigned long addr;
e7a510f9 1049 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1050
e7a510f9 1051 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1052 kcb->jprobe_saved_sp = stack_addr(regs);
1053 addr = (unsigned long)(kcb->jprobe_saved_sp);
1054
1da177e4
LT
1055 /*
1056 * As Linus pointed out, gcc assumes that the callee
1057 * owns the argument space and could overwrite it, e.g.
1058 * tailcall optimization. So, to be absolutely safe
1059 * we also save and restore enough stack bytes to cover
1060 * the argument area.
9254139a
DV
1061 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1062 * raw stack chunk with redzones:
1da177e4 1063 */
9254139a 1064 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
053de044 1065 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1066 trace_hardirqs_off();
65ea5b03 1067 regs->ip = (unsigned long)(jp->entry);
237d28db
SRRH
1068
1069 /*
1070 * jprobes use jprobe_return() which skips the normal return
1071 * path of the function, and this messes up the accounting of the
1072 * function graph tracer to get messed up.
1073 *
1074 * Pause function graph tracing while performing the jprobe function.
1075 */
1076 pause_graph_tracing();
1da177e4
LT
1077 return 1;
1078}
9326638c 1079NOKPROBE_SYMBOL(setjmp_pre_handler);
1da177e4 1080
9326638c 1081void jprobe_return(void)
1da177e4 1082{
e7a510f9
AM
1083 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084
9f7d416c
DV
1085 /* Unpoison stack redzones in the frames we are going to jump over. */
1086 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1087
d6be29b8
MH
1088 asm volatile (
1089#ifdef CONFIG_X86_64
1090 " xchg %%rbx,%%rsp \n"
1091#else
1092 " xchgl %%ebx,%%esp \n"
1093#endif
1094 " int3 \n"
1095 " .globl jprobe_return_end\n"
1096 " jprobe_return_end: \n"
1097 " nop \n"::"b"
1098 (kcb->jprobe_saved_sp):"memory");
1da177e4 1099}
9326638c
MH
1100NOKPROBE_SYMBOL(jprobe_return);
1101NOKPROBE_SYMBOL(jprobe_return_end);
1da177e4 1102
9326638c 1103int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1104{
e7a510f9 1105 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1106 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4 1107 struct jprobe *jp = container_of(p, struct jprobe, kp);
237d28db 1108 void *saved_sp = kcb->jprobe_saved_sp;
1da177e4 1109
d6be29b8
MH
1110 if ((addr > (u8 *) jprobe_return) &&
1111 (addr < (u8 *) jprobe_return_end)) {
237d28db 1112 if (stack_addr(regs) != saved_sp) {
29b6cd79 1113 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1114 printk(KERN_ERR
1115 "current sp %p does not match saved sp %p\n",
237d28db 1116 stack_addr(regs), saved_sp);
d6be29b8 1117 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
57da8b96 1118 show_regs(saved_regs);
d6be29b8 1119 printk(KERN_ERR "Current registers\n");
57da8b96 1120 show_regs(regs);
1da177e4
LT
1121 BUG();
1122 }
237d28db
SRRH
1123 /* It's OK to start function graph tracing again */
1124 unpause_graph_tracing();
e7a510f9 1125 *regs = kcb->jprobe_saved_regs;
9254139a 1126 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
d217d545 1127 preempt_enable_no_resched();
1da177e4
LT
1128 return 1;
1129 }
1130 return 0;
1131}
9326638c 1132NOKPROBE_SYMBOL(longjmp_break_handler);
ba8af12f 1133
be8f2743
MH
1134bool arch_within_kprobe_blacklist(unsigned long addr)
1135{
1136 return (addr >= (unsigned long)__kprobes_text_start &&
1137 addr < (unsigned long)__kprobes_text_end) ||
1138 (addr >= (unsigned long)__entry_text_start &&
1139 addr < (unsigned long)__entry_text_end);
1140}
1141
6772926b 1142int __init arch_init_kprobes(void)
ba8af12f 1143{
a7b0133e 1144 return 0;
ba8af12f 1145}
bf8f6e5b 1146
7ec8a97a 1147int arch_trampoline_kprobe(struct kprobe *p)
bf8f6e5b 1148{
bf8f6e5b
AM
1149 return 0;
1150}