Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-block.git] / arch / x86 / kernel / kprobes / core.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 33 * Added function return probes functionality
d6be29b8 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 35 * kprobe-booster and kretprobe-booster for i386.
da07ab03 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 37 * and kretprobe-booster for x86-64
d6be29b8 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4 41 */
1da177e4
LT
42#include <linux/kprobes.h>
43#include <linux/ptrace.h>
1da177e4
LT
44#include <linux/string.h>
45#include <linux/slab.h>
b506a9d0 46#include <linux/hardirq.h>
1da177e4 47#include <linux/preempt.h>
c28f8966 48#include <linux/module.h>
1eeb66a1 49#include <linux/kdebug.h>
b46b3d70 50#include <linux/kallsyms.h>
c0f7ac3a 51#include <linux/ftrace.h>
9ec4b1f3 52
8533bbe9
MH
53#include <asm/cacheflush.h>
54#include <asm/desc.h>
1da177e4 55#include <asm/pgtable.h>
c28f8966 56#include <asm/uaccess.h>
19d36ccd 57#include <asm/alternative.h>
b46b3d70 58#include <asm/insn.h>
62edab90 59#include <asm/debugreg.h>
1da177e4 60
f684199f 61#include "common.h"
3f33ab1c 62
1da177e4
LT
63void jprobe_return_end(void);
64
e7a510f9
AM
65DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 67
98272ed0 68#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
69
70#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
75 << (row % 32))
76 /*
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
7115e3fc
LT
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
f684199f 81 * *(unsigned long*) is used.
8533bbe9 82 */
7115e3fc 83static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
b7e37567 87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
8533bbe9
MH
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104};
8533bbe9
MH
105#undef W
106
f438d914
MH
107struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL, NULL} /* Terminator */
111};
3f33ab1c 112
f438d914
MH
113const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114
9326638c
MH
115static nokprobe_inline void
116__synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 117{
c0f7ac3a
MH
118 struct __arch_relative_insn {
119 u8 op;
aa470140 120 s32 raddr;
f684199f 121 } __packed *insn;
c0f7ac3a
MH
122
123 insn = (struct __arch_relative_insn *)from;
124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 insn->op = op;
126}
127
128/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
9326638c 129void synthesize_reljump(void *from, void *to)
c0f7ac3a
MH
130{
131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140 132}
9326638c 133NOKPROBE_SYMBOL(synthesize_reljump);
aa470140 134
3f33ab1c 135/* Insert a call instruction at address 'from', which calls address 'to'.*/
9326638c 136void synthesize_relcall(void *from, void *to)
3f33ab1c
MH
137{
138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
139}
9326638c 140NOKPROBE_SYMBOL(synthesize_relcall);
3f33ab1c 141
9930927f 142/*
567a9fd8 143 * Skip the prefixes of the instruction.
9930927f 144 */
9326638c 145static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
9930927f 146{
567a9fd8
MH
147 insn_attr_t attr;
148
149 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 while (inat_is_legacy_prefix(attr)) {
151 insn++;
152 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 }
9930927f 154#ifdef CONFIG_X86_64
567a9fd8
MH
155 if (inat_is_rex_prefix(attr))
156 insn++;
9930927f 157#endif
567a9fd8 158 return insn;
9930927f 159}
9326638c 160NOKPROBE_SYMBOL(skip_prefixes);
9930927f 161
aa470140 162/*
d6be29b8
MH
163 * Returns non-zero if opcode is boostable.
164 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 165 */
7ec8a97a 166int can_boost(kprobe_opcode_t *opcodes)
aa470140 167{
aa470140
MH
168 kprobe_opcode_t opcode;
169 kprobe_opcode_t *orig_opcodes = opcodes;
170
cde5edbd 171 if (search_exception_tables((unsigned long)opcodes))
30390880
MH
172 return 0; /* Page fault may occur on this address. */
173
aa470140
MH
174retry:
175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 return 0;
177 opcode = *(opcodes++);
178
179 /* 2nd-byte opcode */
180 if (opcode == 0x0f) {
181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 return 0;
8533bbe9
MH
183 return test_bit(*opcodes,
184 (unsigned long *)twobyte_is_boostable);
aa470140
MH
185 }
186
187 switch (opcode & 0xf0) {
d6be29b8 188#ifdef CONFIG_X86_64
aa470140
MH
189 case 0x40:
190 goto retry; /* REX prefix is boostable */
d6be29b8 191#endif
aa470140
MH
192 case 0x60:
193 if (0x63 < opcode && opcode < 0x67)
194 goto retry; /* prefixes */
195 /* can't boost Address-size override and bound */
196 return (opcode != 0x62 && opcode != 0x67);
197 case 0x70:
198 return 0; /* can't boost conditional jump */
199 case 0xc0:
200 /* can't boost software-interruptions */
201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 case 0xd0:
203 /* can boost AA* and XLAT */
204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 case 0xe0:
206 /* can boost in/out and absolute jmps */
207 return ((opcode & 0x04) || opcode == 0xea);
208 case 0xf0:
209 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 goto retry; /* lock/rep(ne) prefix */
211 /* clear and set flags are boostable */
212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 default:
214 /* segment override prefixes are boostable */
215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 goto retry; /* prefixes */
217 /* CS override prefix and call are not boostable */
218 return (opcode != 0x2e && opcode != 0x9a);
219 }
220}
221
3f33ab1c
MH
222static unsigned long
223__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
224{
225 struct kprobe *kp;
650b7b23 226 unsigned long faddr;
86b4ce31 227
b46b3d70 228 kp = get_kprobe((void *)addr);
650b7b23 229 faddr = ftrace_location(addr);
2a6730c8
PM
230 /*
231 * Addresses inside the ftrace location are refused by
232 * arch_check_ftrace_location(). Something went terribly wrong
233 * if such an address is checked here.
234 */
235 if (WARN_ON(faddr && faddr != addr))
236 return 0UL;
650b7b23
PM
237 /*
238 * Use the current code if it is not modified by Kprobe
239 * and it cannot be modified by ftrace.
240 */
241 if (!kp && !faddr)
86b4ce31 242 return addr;
b46b3d70
MH
243
244 /*
650b7b23
PM
245 * Basically, kp->ainsn.insn has an original instruction.
246 * However, RIP-relative instruction can not do single-stepping
247 * at different place, __copy_instruction() tweaks the displacement of
248 * that instruction. In that case, we can't recover the instruction
249 * from the kp->ainsn.insn.
250 *
251 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
252 * of the first byte of the probed instruction, which is overwritten
253 * by int3. And the instruction at kp->addr is not modified by kprobes
254 * except for the first byte, we can recover the original instruction
255 * from it and kp->opcode.
b46b3d70 256 *
650b7b23
PM
257 * In case of Kprobes using ftrace, we do not have a copy of
258 * the original instruction. In fact, the ftrace location might
259 * be modified at anytime and even could be in an inconsistent state.
260 * Fortunately, we know that the original code is the ideal 5-byte
261 * long NOP.
b46b3d70 262 */
650b7b23
PM
263 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
264 if (faddr)
265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 else
267 buf[0] = kp->opcode;
86b4ce31
MH
268 return (unsigned long)buf;
269}
270
86b4ce31
MH
271/*
272 * Recover the probed instruction at addr for further analysis.
273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
274 * for preventing to release referencing kprobes.
2a6730c8 275 * Returns zero if the instruction can not get recovered.
86b4ce31 276 */
3f33ab1c 277unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
278{
279 unsigned long __addr;
280
281 __addr = __recover_optprobed_insn(buf, addr);
282 if (__addr != addr)
283 return __addr;
284
285 return __recover_probed_insn(buf, addr);
b46b3d70
MH
286}
287
b46b3d70 288/* Check if paddr is at an instruction boundary */
7ec8a97a 289static int can_probe(unsigned long paddr)
b46b3d70 290{
86b4ce31 291 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
292 struct insn insn;
293 kprobe_opcode_t buf[MAX_INSN_SIZE];
294
6abded71 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
296 return 0;
297
298 /* Decode instructions */
299 addr = paddr - offset;
300 while (addr < paddr) {
b46b3d70
MH
301 /*
302 * Check if the instruction has been modified by another
303 * kprobe, in which case we replace the breakpoint by the
304 * original instruction in our buffer.
86b4ce31
MH
305 * Also, jump optimization will change the breakpoint to
306 * relative-jump. Since the relative-jump itself is
307 * normally used, we just go through if there is no kprobe.
b46b3d70 308 */
86b4ce31 309 __addr = recover_probed_instruction(buf, addr);
2a6730c8
PM
310 if (!__addr)
311 return 0;
6ba48ff4 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
b46b3d70 313 insn_get_length(&insn);
86b4ce31
MH
314
315 /*
316 * Another debugging subsystem might insert this breakpoint.
317 * In that case, we can't recover it.
318 */
319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 return 0;
b46b3d70
MH
321 addr += insn.length;
322 }
323
324 return (addr == paddr);
325}
326
1da177e4 327/*
d6be29b8 328 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 329 */
7ec8a97a 330static int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 331{
567a9fd8
MH
332 /* Skip prefixes */
333 insn = skip_prefixes(insn);
334
1da177e4
LT
335 switch (*insn) {
336 case 0xfa: /* cli */
337 case 0xfb: /* sti */
338 case 0xcf: /* iret/iretd */
339 case 0x9d: /* popf/popfd */
340 return 1;
341 }
9930927f 342
1da177e4
LT
343 return 0;
344}
345
346/*
c0f7ac3a
MH
347 * Copy an instruction and adjust the displacement if the instruction
348 * uses the %rip-relative addressing mode.
aa470140 349 * If it does, Return the address of the 32-bit displacement word.
1da177e4 350 * If not, return null.
31f80e45 351 * Only applicable to 64-bit x86.
1da177e4 352 */
7ec8a97a 353int __copy_instruction(u8 *dest, u8 *src)
1da177e4 354{
89ae465b 355 struct insn insn;
c0f7ac3a 356 kprobe_opcode_t buf[MAX_INSN_SIZE];
c80e5c0c 357 int length;
6ba48ff4
DH
358 unsigned long recovered_insn =
359 recover_probed_instruction(buf, (unsigned long)src);
86b4ce31 360
2a6730c8
PM
361 if (!recovered_insn)
362 return 0;
6ba48ff4 363 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
c0f7ac3a 364 insn_get_length(&insn);
c80e5c0c
ES
365 length = insn.length;
366
86b4ce31 367 /* Another subsystem puts a breakpoint, failed to recover */
46484688 368 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
86b4ce31 369 return 0;
c80e5c0c 370 memcpy(dest, insn.kaddr, length);
c0f7ac3a
MH
371
372#ifdef CONFIG_X86_64
89ae465b
MH
373 if (insn_rip_relative(&insn)) {
374 s64 newdisp;
375 u8 *disp;
c80e5c0c 376 kernel_insn_init(&insn, dest, length);
89ae465b
MH
377 insn_get_displacement(&insn);
378 /*
379 * The copied instruction uses the %rip-relative addressing
380 * mode. Adjust the displacement for the difference between
381 * the original location of this instruction and the location
382 * of the copy that will actually be run. The tricky bit here
383 * is making sure that the sign extension happens correctly in
384 * this calculation, since we need a signed 32-bit result to
385 * be sign-extended to 64 bits when it's added to the %rip
386 * value and yield the same 64-bit result that the sign-
387 * extension of the original signed 32-bit displacement would
388 * have given.
389 */
46484688 390 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
8101376d
MH
391 if ((s64) (s32) newdisp != newdisp) {
392 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
393 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
394 return 0;
395 }
c0f7ac3a 396 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 397 *(s32 *) disp = (s32) newdisp;
1da177e4 398 }
d6be29b8 399#endif
c80e5c0c 400 return length;
31f80e45 401}
1da177e4 402
7ec8a97a 403static int arch_copy_kprobe(struct kprobe *p)
1da177e4 404{
003002e0
MH
405 int ret;
406
46484688 407 /* Copy an instruction with recovering if other optprobe modifies it.*/
003002e0
MH
408 ret = __copy_instruction(p->ainsn.insn, p->addr);
409 if (!ret)
410 return -EINVAL;
46484688 411
c0f7ac3a 412 /*
46484688
MH
413 * __copy_instruction can modify the displacement of the instruction,
414 * but it doesn't affect boostable check.
c0f7ac3a 415 */
46484688 416 if (can_boost(p->ainsn.insn))
aa470140 417 p->ainsn.boostable = 0;
8533bbe9 418 else
aa470140 419 p->ainsn.boostable = -1;
8533bbe9 420
9a556ab9
MH
421 /* Check whether the instruction modifies Interrupt Flag or not */
422 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
423
46484688
MH
424 /* Also, displacement change doesn't affect the first byte */
425 p->opcode = p->ainsn.insn[0];
003002e0
MH
426
427 return 0;
1da177e4
LT
428}
429
7ec8a97a 430int arch_prepare_kprobe(struct kprobe *p)
8533bbe9 431{
4554dbcb
MH
432 if (alternatives_text_reserved(p->addr, p->addr))
433 return -EINVAL;
434
b46b3d70
MH
435 if (!can_probe((unsigned long)p->addr))
436 return -EILSEQ;
8533bbe9
MH
437 /* insn: must be on special executable page on x86. */
438 p->ainsn.insn = get_insn_slot();
439 if (!p->ainsn.insn)
440 return -ENOMEM;
003002e0
MH
441
442 return arch_copy_kprobe(p);
8533bbe9
MH
443}
444
7ec8a97a 445void arch_arm_kprobe(struct kprobe *p)
1da177e4 446{
19d36ccd 447 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
448}
449
7ec8a97a 450void arch_disarm_kprobe(struct kprobe *p)
1da177e4 451{
19d36ccd 452 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
453}
454
7ec8a97a 455void arch_remove_kprobe(struct kprobe *p)
7e1048b1 456{
12941560
MH
457 if (p->ainsn.insn) {
458 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
459 p->ainsn.insn = NULL;
460 }
1da177e4
LT
461}
462
9326638c
MH
463static nokprobe_inline void
464save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 465{
e7a510f9
AM
466 kcb->prev_kprobe.kp = kprobe_running();
467 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
468 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
469 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
470}
471
9326638c
MH
472static nokprobe_inline void
473restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 474{
b76834bc 475 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 476 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
477 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
478 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
479}
480
9326638c
MH
481static nokprobe_inline void
482set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
483 struct kprobe_ctlblk *kcb)
aa3d7e3d 484{
b76834bc 485 __this_cpu_write(current_kprobe, p);
8533bbe9 486 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 487 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
9a556ab9 488 if (p->ainsn.if_modifier)
053de044 489 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
490}
491
9326638c 492static nokprobe_inline void clear_btf(void)
1ecc798c 493{
ea8e61b7
PZ
494 if (test_thread_flag(TIF_BLOCKSTEP)) {
495 unsigned long debugctl = get_debugctlmsr();
496
497 debugctl &= ~DEBUGCTLMSR_BTF;
498 update_debugctlmsr(debugctl);
499 }
1ecc798c
RM
500}
501
9326638c 502static nokprobe_inline void restore_btf(void)
1ecc798c 503{
ea8e61b7
PZ
504 if (test_thread_flag(TIF_BLOCKSTEP)) {
505 unsigned long debugctl = get_debugctlmsr();
506
507 debugctl |= DEBUGCTLMSR_BTF;
508 update_debugctlmsr(debugctl);
509 }
1ecc798c
RM
510}
511
9326638c 512void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 513{
8533bbe9 514 unsigned long *sara = stack_addr(regs);
ba8af12f 515
4c4308cb 516 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 517
4c4308cb
CH
518 /* Replace the return addr with trampoline addr */
519 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 520}
9326638c 521NOKPROBE_SYMBOL(arch_prepare_kretprobe);
f315decb 522
9326638c
MH
523static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
524 struct kprobe_ctlblk *kcb, int reenter)
f315decb 525{
c0f7ac3a
MH
526 if (setup_detour_execution(p, regs, reenter))
527 return;
528
615d0ebb 529#if !defined(CONFIG_PREEMPT)
f315decb
AS
530 if (p->ainsn.boostable == 1 && !p->post_handler) {
531 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
532 if (!reenter)
533 reset_current_kprobe();
534 /*
535 * Reentering boosted probe doesn't reset current_kprobe,
536 * nor set current_kprobe, because it doesn't use single
537 * stepping.
538 */
f315decb
AS
539 regs->ip = (unsigned long)p->ainsn.insn;
540 preempt_enable_no_resched();
541 return;
542 }
543#endif
0f94eb63
MH
544 if (reenter) {
545 save_previous_kprobe(kcb);
546 set_current_kprobe(p, regs, kcb);
547 kcb->kprobe_status = KPROBE_REENTER;
548 } else
549 kcb->kprobe_status = KPROBE_HIT_SS;
550 /* Prepare real single stepping */
551 clear_btf();
552 regs->flags |= X86_EFLAGS_TF;
553 regs->flags &= ~X86_EFLAGS_IF;
554 /* single step inline if the instruction is an int3 */
555 if (p->opcode == BREAKPOINT_INSTRUCTION)
556 regs->ip = (unsigned long)p->addr;
557 else
558 regs->ip = (unsigned long)p->ainsn.insn;
f315decb 559}
9326638c 560NOKPROBE_SYMBOL(setup_singlestep);
f315decb 561
40102d4a
HH
562/*
563 * We have reentered the kprobe_handler(), since another probe was hit while
564 * within the handler. We save the original kprobes variables and just single
565 * step on the instruction of the new probe without calling any user handlers.
566 */
9326638c
MH
567static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
568 struct kprobe_ctlblk *kcb)
40102d4a 569{
f315decb
AS
570 switch (kcb->kprobe_status) {
571 case KPROBE_HIT_SSDONE:
f315decb 572 case KPROBE_HIT_ACTIVE:
6a5022a5 573 case KPROBE_HIT_SS:
fb8830e7 574 kprobes_inc_nmissed_count(p);
0f94eb63 575 setup_singlestep(p, regs, kcb, 1);
f315decb 576 break;
6a5022a5 577 case KPROBE_REENTER:
e9afe9e1
MH
578 /* A probe has been hit in the codepath leading up to, or just
579 * after, single-stepping of a probed instruction. This entire
580 * codepath should strictly reside in .kprobes.text section.
581 * Raise a BUG or we'll continue in an endless reentering loop
582 * and eventually a stack overflow.
583 */
584 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
585 p->addr);
586 dump_kprobe(p);
587 BUG();
f315decb
AS
588 default:
589 /* impossible cases */
590 WARN_ON(1);
fb8830e7 591 return 0;
59e87cdc 592 }
f315decb 593
59e87cdc 594 return 1;
40102d4a 595}
9326638c 596NOKPROBE_SYMBOL(reenter_kprobe);
73649dab 597
8533bbe9
MH
598/*
599 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 600 * remain disabled throughout this function.
8533bbe9 601 */
9326638c 602int kprobe_int3_handler(struct pt_regs *regs)
1da177e4 603{
8533bbe9 604 kprobe_opcode_t *addr;
f315decb 605 struct kprobe *p;
d217d545
AM
606 struct kprobe_ctlblk *kcb;
607
f39b6f0e 608 if (user_mode(regs))
0cdd192c
AL
609 return 0;
610
8533bbe9 611 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
612 /*
613 * We don't want to be preempted for the entire
f315decb
AS
614 * duration of kprobe processing. We conditionally
615 * re-enable preemption at the end of this function,
616 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
617 */
618 preempt_disable();
1da177e4 619
f315decb 620 kcb = get_kprobe_ctlblk();
b9760156 621 p = get_kprobe(addr);
f315decb 622
b9760156 623 if (p) {
b9760156 624 if (kprobe_running()) {
f315decb
AS
625 if (reenter_kprobe(p, regs, kcb))
626 return 1;
1da177e4 627 } else {
b9760156
HH
628 set_current_kprobe(p, regs, kcb);
629 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 630
1da177e4 631 /*
f315decb
AS
632 * If we have no pre-handler or it returned 0, we
633 * continue with normal processing. If we have a
634 * pre-handler and it returned non-zero, it prepped
635 * for calling the break_handler below on re-entry
636 * for jprobe processing, so get out doing nothing
637 * more here.
1da177e4 638 */
f315decb 639 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 640 setup_singlestep(p, regs, kcb, 0);
f315decb 641 return 1;
b9760156 642 }
829e9245
MH
643 } else if (*addr != BREAKPOINT_INSTRUCTION) {
644 /*
645 * The breakpoint instruction was removed right
646 * after we hit it. Another cpu has removed
647 * either a probepoint or a debugger breakpoint
648 * at this address. In either case, no further
649 * handling of this interrupt is appropriate.
650 * Back up over the (now missing) int3 and run
651 * the original instruction.
652 */
653 regs->ip = (unsigned long)addr;
654 preempt_enable_no_resched();
655 return 1;
f315decb 656 } else if (kprobe_running()) {
b76834bc 657 p = __this_cpu_read(current_kprobe);
f315decb 658 if (p->break_handler && p->break_handler(p, regs)) {
e7dbfe34
MH
659 if (!skip_singlestep(p, regs, kcb))
660 setup_singlestep(p, regs, kcb, 0);
f315decb 661 return 1;
1da177e4 662 }
f315decb 663 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 664
d217d545 665 preempt_enable_no_resched();
f315decb 666 return 0;
1da177e4 667}
9326638c 668NOKPROBE_SYMBOL(kprobe_int3_handler);
1da177e4 669
73649dab 670/*
da07ab03
MH
671 * When a retprobed function returns, this code saves registers and
672 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 673 */
9326638c 674static void __used kretprobe_trampoline_holder(void)
1017579a 675{
d6be29b8
MH
676 asm volatile (
677 ".global kretprobe_trampoline\n"
da07ab03 678 "kretprobe_trampoline: \n"
d6be29b8 679#ifdef CONFIG_X86_64
da07ab03
MH
680 /* We don't bother saving the ss register */
681 " pushq %rsp\n"
682 " pushfq\n"
f007ea26 683 SAVE_REGS_STRING
da07ab03
MH
684 " movq %rsp, %rdi\n"
685 " call trampoline_handler\n"
686 /* Replace saved sp with true return address. */
687 " movq %rax, 152(%rsp)\n"
f007ea26 688 RESTORE_REGS_STRING
da07ab03 689 " popfq\n"
d6be29b8
MH
690#else
691 " pushf\n"
f007ea26 692 SAVE_REGS_STRING
d6be29b8
MH
693 " movl %esp, %eax\n"
694 " call trampoline_handler\n"
695 /* Move flags to cs */
fee039a1
MH
696 " movl 56(%esp), %edx\n"
697 " movl %edx, 52(%esp)\n"
d6be29b8 698 /* Replace saved flags with true return address. */
fee039a1 699 " movl %eax, 56(%esp)\n"
f007ea26 700 RESTORE_REGS_STRING
d6be29b8
MH
701 " popf\n"
702#endif
da07ab03 703 " ret\n");
1017579a 704}
9326638c
MH
705NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
706NOKPROBE_SYMBOL(kretprobe_trampoline);
73649dab
RL
707
708/*
da07ab03 709 * Called from kretprobe_trampoline
73649dab 710 */
9326638c 711__visible __used void *trampoline_handler(struct pt_regs *regs)
73649dab 712{
62c27be0 713 struct kretprobe_instance *ri = NULL;
99219a3f 714 struct hlist_head *head, empty_rp;
b67bfe0d 715 struct hlist_node *tmp;
991a51d8 716 unsigned long flags, orig_ret_address = 0;
d6be29b8 717 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 718 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 719
99219a3f 720 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 721 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 722 /* fixup registers */
d6be29b8 723#ifdef CONFIG_X86_64
da07ab03 724 regs->cs = __KERNEL_CS;
d6be29b8
MH
725#else
726 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 727 regs->gs = 0;
d6be29b8 728#endif
da07ab03 729 regs->ip = trampoline_address;
8533bbe9 730 regs->orig_ax = ~0UL;
73649dab 731
ba8af12f
RL
732 /*
733 * It is possible to have multiple instances associated with a given
8533bbe9 734 * task either because multiple functions in the call path have
025dfdaf 735 * return probes installed on them, and/or more than one
ba8af12f
RL
736 * return probe was registered for a target function.
737 *
738 * We can handle this because:
8533bbe9 739 * - instances are always pushed into the head of the list
ba8af12f 740 * - when multiple return probes are registered for the same
8533bbe9
MH
741 * function, the (chronologically) first instance's ret_addr
742 * will be the real return address, and all the rest will
743 * point to kretprobe_trampoline.
ba8af12f 744 */
b67bfe0d 745 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
62c27be0 746 if (ri->task != current)
ba8af12f 747 /* another task is sharing our hash bucket */
62c27be0 748 continue;
ba8af12f 749
737480a0
KS
750 orig_ret_address = (unsigned long)ri->ret_addr;
751
752 if (orig_ret_address != trampoline_address)
753 /*
754 * This is the real return address. Any other
755 * instances associated with this task are for
756 * other calls deeper on the call stack
757 */
758 break;
759 }
760
761 kretprobe_assert(ri, orig_ret_address, trampoline_address);
762
763 correct_ret_addr = ri->ret_addr;
b67bfe0d 764 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737480a0
KS
765 if (ri->task != current)
766 /* another task is sharing our hash bucket */
767 continue;
768
769 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 770 if (ri->rp && ri->rp->handler) {
b76834bc 771 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 772 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 773 ri->ret_addr = correct_ret_addr;
ba8af12f 774 ri->rp->handler(ri, regs);
b76834bc 775 __this_cpu_write(current_kprobe, NULL);
da07ab03 776 }
ba8af12f 777
99219a3f 778 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
779
780 if (orig_ret_address != trampoline_address)
781 /*
782 * This is the real return address. Any other
783 * instances associated with this task are for
784 * other calls deeper on the call stack
785 */
786 break;
73649dab 787 }
ba8af12f 788
ef53d9c5 789 kretprobe_hash_unlock(current, &flags);
ba8af12f 790
b67bfe0d 791 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
99219a3f 792 hlist_del(&ri->hlist);
793 kfree(ri);
794 }
da07ab03 795 return (void *)orig_ret_address;
73649dab 796}
9326638c 797NOKPROBE_SYMBOL(trampoline_handler);
73649dab 798
1da177e4
LT
799/*
800 * Called after single-stepping. p->addr is the address of the
801 * instruction whose first byte has been replaced by the "int 3"
802 * instruction. To avoid the SMP problems that can occur when we
803 * temporarily put back the original opcode to single-step, we
804 * single-stepped a copy of the instruction. The address of this
805 * copy is p->ainsn.insn.
806 *
807 * This function prepares to return from the post-single-step
808 * interrupt. We have to fix up the stack as follows:
809 *
810 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 811 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
812 * it relative to the original instruction.
813 *
814 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 815 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
816 *
817 * 2) If the single-stepped instruction was a call, the return address
818 * that is atop the stack is the address following the copied instruction.
819 * We need to make it the address following the original instruction.
aa470140
MH
820 *
821 * If this is the first time we've single-stepped the instruction at
822 * this probepoint, and the instruction is boostable, boost it: add a
823 * jump instruction after the copied instruction, that jumps to the next
824 * instruction after the probepoint.
1da177e4 825 */
9326638c
MH
826static void resume_execution(struct kprobe *p, struct pt_regs *regs,
827 struct kprobe_ctlblk *kcb)
1da177e4 828{
8533bbe9
MH
829 unsigned long *tos = stack_addr(regs);
830 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
831 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
832 kprobe_opcode_t *insn = p->ainsn.insn;
833
567a9fd8
MH
834 /* Skip prefixes */
835 insn = skip_prefixes(insn);
1da177e4 836
053de044 837 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 838 switch (*insn) {
0b0122fa 839 case 0x9c: /* pushfl */
053de044 840 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 841 *tos |= kcb->kprobe_old_flags;
1da177e4 842 break;
0b0122fa
MH
843 case 0xc2: /* iret/ret/lret */
844 case 0xc3:
0b9e2cac 845 case 0xca:
0b0122fa
MH
846 case 0xcb:
847 case 0xcf:
848 case 0xea: /* jmp absolute -- ip is correct */
849 /* ip is already adjusted, no more changes required */
aa470140 850 p->ainsn.boostable = 1;
0b0122fa
MH
851 goto no_change;
852 case 0xe8: /* call relative - Fix return addr */
8533bbe9 853 *tos = orig_ip + (*tos - copy_ip);
1da177e4 854 break;
e7b5e11e 855#ifdef CONFIG_X86_32
d6be29b8
MH
856 case 0x9a: /* call absolute -- same as call absolute, indirect */
857 *tos = orig_ip + (*tos - copy_ip);
858 goto no_change;
859#endif
1da177e4 860 case 0xff:
dc49e344 861 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
862 /*
863 * call absolute, indirect
864 * Fix return addr; ip is correct.
865 * But this is not boostable
866 */
867 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 868 goto no_change;
8533bbe9
MH
869 } else if (((insn[1] & 0x31) == 0x20) ||
870 ((insn[1] & 0x31) == 0x21)) {
871 /*
872 * jmp near and far, absolute indirect
873 * ip is correct. And this is boostable
874 */
aa470140 875 p->ainsn.boostable = 1;
0b0122fa 876 goto no_change;
1da177e4 877 }
1da177e4
LT
878 default:
879 break;
880 }
881
aa470140 882 if (p->ainsn.boostable == 0) {
8533bbe9
MH
883 if ((regs->ip > copy_ip) &&
884 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
885 /*
886 * These instructions can be executed directly if it
887 * jumps back to correct address.
888 */
c0f7ac3a
MH
889 synthesize_reljump((void *)regs->ip,
890 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
891 p->ainsn.boostable = 1;
892 } else {
893 p->ainsn.boostable = -1;
894 }
895 }
896
8533bbe9 897 regs->ip += orig_ip - copy_ip;
65ea5b03 898
0b0122fa 899no_change:
1ecc798c 900 restore_btf();
1da177e4 901}
9326638c 902NOKPROBE_SYMBOL(resume_execution);
1da177e4 903
8533bbe9
MH
904/*
905 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 906 * remain disabled throughout this function.
8533bbe9 907 */
9326638c 908int kprobe_debug_handler(struct pt_regs *regs)
1da177e4 909{
e7a510f9
AM
910 struct kprobe *cur = kprobe_running();
911 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
912
913 if (!cur)
1da177e4
LT
914 return 0;
915
acb5b8a2
YL
916 resume_execution(cur, regs, kcb);
917 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 918
e7a510f9
AM
919 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
920 kcb->kprobe_status = KPROBE_HIT_SSDONE;
921 cur->post_handler(cur, regs, 0);
aa3d7e3d 922 }
1da177e4 923
8533bbe9 924 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
925 if (kcb->kprobe_status == KPROBE_REENTER) {
926 restore_previous_kprobe(kcb);
aa3d7e3d 927 goto out;
aa3d7e3d 928 }
e7a510f9 929 reset_current_kprobe();
aa3d7e3d 930out:
1da177e4
LT
931 preempt_enable_no_resched();
932
933 /*
65ea5b03 934 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
935 * will have TF set, in which case, continue the remaining processing
936 * of do_debug, as if this is not a probe hit.
937 */
053de044 938 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
939 return 0;
940
941 return 1;
942}
9326638c 943NOKPROBE_SYMBOL(kprobe_debug_handler);
1da177e4 944
9326638c 945int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 946{
e7a510f9
AM
947 struct kprobe *cur = kprobe_running();
948 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
949
6381c24c
MH
950 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
951 /* This must happen on single-stepping */
952 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
953 kcb->kprobe_status != KPROBE_REENTER);
c28f8966
PP
954 /*
955 * We are here because the instruction being single
956 * stepped caused a page fault. We reset the current
65ea5b03 957 * kprobe and the ip points back to the probe address
c28f8966
PP
958 * and allow the page fault handler to continue as a
959 * normal page fault.
960 */
65ea5b03 961 regs->ip = (unsigned long)cur->addr;
8533bbe9 962 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
963 if (kcb->kprobe_status == KPROBE_REENTER)
964 restore_previous_kprobe(kcb);
965 else
966 reset_current_kprobe();
1da177e4 967 preempt_enable_no_resched();
6381c24c
MH
968 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
969 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
c28f8966
PP
970 /*
971 * We increment the nmissed count for accounting,
8533bbe9 972 * we can also use npre/npostfault count for accounting
c28f8966
PP
973 * these specific fault cases.
974 */
975 kprobes_inc_nmissed_count(cur);
976
977 /*
978 * We come here because instructions in the pre/post
979 * handler caused the page_fault, this could happen
980 * if handler tries to access user space by
981 * copy_from_user(), get_user() etc. Let the
982 * user-specified handler try to fix it first.
983 */
984 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
985 return 1;
986
987 /*
988 * In case the user-specified fault handler returned
989 * zero, try to fix up.
990 */
548acf19 991 if (fixup_exception(regs, trapnr))
d6be29b8 992 return 1;
6d48583b 993
c28f8966 994 /*
8533bbe9 995 * fixup routine could not handle it,
c28f8966
PP
996 * Let do_page_fault() fix it.
997 */
1da177e4 998 }
6381c24c 999
1da177e4
LT
1000 return 0;
1001}
9326638c 1002NOKPROBE_SYMBOL(kprobe_fault_handler);
1da177e4
LT
1003
1004/*
1005 * Wrapper routine for handling exceptions.
1006 */
9326638c
MH
1007int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1008 void *data)
1da177e4 1009{
ade1af77 1010 struct die_args *args = data;
66ff2d06
AM
1011 int ret = NOTIFY_DONE;
1012
f39b6f0e 1013 if (args->regs && user_mode(args->regs))
2326c770 1014 return ret;
1015
6f6343f5 1016 if (val == DIE_GPF) {
b506a9d0
QB
1017 /*
1018 * To be potentially processing a kprobe fault and to
1019 * trust the result from kprobe_running(), we have
1020 * be non-preemptible.
1021 */
1022 if (!preemptible() && kprobe_running() &&
1da177e4 1023 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 1024 ret = NOTIFY_STOP;
1da177e4 1025 }
66ff2d06 1026 return ret;
1da177e4 1027}
9326638c 1028NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1da177e4 1029
9326638c 1030int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1031{
1032 struct jprobe *jp = container_of(p, struct jprobe, kp);
1033 unsigned long addr;
e7a510f9 1034 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1035
e7a510f9 1036 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1037 kcb->jprobe_saved_sp = stack_addr(regs);
1038 addr = (unsigned long)(kcb->jprobe_saved_sp);
1039
1da177e4
LT
1040 /*
1041 * As Linus pointed out, gcc assumes that the callee
1042 * owns the argument space and could overwrite it, e.g.
1043 * tailcall optimization. So, to be absolutely safe
1044 * we also save and restore enough stack bytes to cover
1045 * the argument area.
1046 */
e7a510f9 1047 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 1048 MIN_STACK_SIZE(addr));
053de044 1049 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1050 trace_hardirqs_off();
65ea5b03 1051 regs->ip = (unsigned long)(jp->entry);
237d28db
SRRH
1052
1053 /*
1054 * jprobes use jprobe_return() which skips the normal return
1055 * path of the function, and this messes up the accounting of the
1056 * function graph tracer to get messed up.
1057 *
1058 * Pause function graph tracing while performing the jprobe function.
1059 */
1060 pause_graph_tracing();
1da177e4
LT
1061 return 1;
1062}
9326638c 1063NOKPROBE_SYMBOL(setjmp_pre_handler);
1da177e4 1064
9326638c 1065void jprobe_return(void)
1da177e4 1066{
e7a510f9
AM
1067 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1068
d6be29b8
MH
1069 asm volatile (
1070#ifdef CONFIG_X86_64
1071 " xchg %%rbx,%%rsp \n"
1072#else
1073 " xchgl %%ebx,%%esp \n"
1074#endif
1075 " int3 \n"
1076 " .globl jprobe_return_end\n"
1077 " jprobe_return_end: \n"
1078 " nop \n"::"b"
1079 (kcb->jprobe_saved_sp):"memory");
1da177e4 1080}
9326638c
MH
1081NOKPROBE_SYMBOL(jprobe_return);
1082NOKPROBE_SYMBOL(jprobe_return_end);
1da177e4 1083
9326638c 1084int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1085{
e7a510f9 1086 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1087 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4 1088 struct jprobe *jp = container_of(p, struct jprobe, kp);
237d28db 1089 void *saved_sp = kcb->jprobe_saved_sp;
1da177e4 1090
d6be29b8
MH
1091 if ((addr > (u8 *) jprobe_return) &&
1092 (addr < (u8 *) jprobe_return_end)) {
237d28db 1093 if (stack_addr(regs) != saved_sp) {
29b6cd79 1094 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1095 printk(KERN_ERR
1096 "current sp %p does not match saved sp %p\n",
237d28db 1097 stack_addr(regs), saved_sp);
d6be29b8 1098 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
57da8b96 1099 show_regs(saved_regs);
d6be29b8 1100 printk(KERN_ERR "Current registers\n");
57da8b96 1101 show_regs(regs);
1da177e4
LT
1102 BUG();
1103 }
237d28db
SRRH
1104 /* It's OK to start function graph tracing again */
1105 unpause_graph_tracing();
e7a510f9 1106 *regs = kcb->jprobe_saved_regs;
237d28db 1107 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
d217d545 1108 preempt_enable_no_resched();
1da177e4
LT
1109 return 1;
1110 }
1111 return 0;
1112}
9326638c 1113NOKPROBE_SYMBOL(longjmp_break_handler);
ba8af12f 1114
be8f2743
MH
1115bool arch_within_kprobe_blacklist(unsigned long addr)
1116{
1117 return (addr >= (unsigned long)__kprobes_text_start &&
1118 addr < (unsigned long)__kprobes_text_end) ||
1119 (addr >= (unsigned long)__entry_text_start &&
1120 addr < (unsigned long)__entry_text_end);
1121}
1122
6772926b 1123int __init arch_init_kprobes(void)
ba8af12f 1124{
a7b0133e 1125 return 0;
ba8af12f 1126}
bf8f6e5b 1127
7ec8a97a 1128int arch_trampoline_kprobe(struct kprobe *p)
bf8f6e5b 1129{
bf8f6e5b
AM
1130 return 0;
1131}