x86_64: Consolidate tsc calibration
[linux-block.git] / arch / x86 / kernel / hpet_64.c
CommitLineData
c37e7bb5 1#include <linux/kernel.h>
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/mc146818rtc.h>
5#include <linux/time.h>
6#include <linux/clocksource.h>
7#include <linux/ioport.h>
8#include <linux/acpi.h>
9#include <linux/hpet.h>
10#include <asm/pgtable.h>
11#include <asm/vsyscall.h>
12#include <asm/timex.h>
13#include <asm/hpet.h>
14
6bb74df4 15#define HPET_MASK 0xFFFFFFFF
16#define HPET_SHIFT 22
17
18/* FSEC = 10^-15 NSEC = 10^-9 */
19#define FSEC_PER_NSEC 1000000
20
c37e7bb5 21int nohpet __initdata;
22
23unsigned long hpet_address;
24unsigned long hpet_period; /* fsecs / HPET clock */
25unsigned long hpet_tick; /* HPET clocks / interrupt */
26
27int hpet_use_timer; /* Use counter of hpet for time keeping,
28 * otherwise PIT
29 */
c37e7bb5 30
31#ifdef CONFIG_HPET
32static __init int late_hpet_init(void)
33{
34 struct hpet_data hd;
35 unsigned int ntimer;
36
37 if (!hpet_address)
38 return 0;
39
40 memset(&hd, 0, sizeof(hd));
41
42 ntimer = hpet_readl(HPET_ID);
43 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
44 ntimer++;
45
46 /*
47 * Register with driver.
48 * Timer0 and Timer1 is used by platform.
49 */
50 hd.hd_phys_address = hpet_address;
51 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
52 hd.hd_nirqs = ntimer;
53 hd.hd_flags = HPET_DATA_PLATFORM;
54 hpet_reserve_timer(&hd, 0);
55#ifdef CONFIG_HPET_EMULATE_RTC
56 hpet_reserve_timer(&hd, 1);
57#endif
58 hd.hd_irq[0] = HPET_LEGACY_8254;
59 hd.hd_irq[1] = HPET_LEGACY_RTC;
60 if (ntimer > 2) {
61 struct hpet *hpet;
62 struct hpet_timer *timer;
63 int i;
64
65 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
66 timer = &hpet->hpet_timers[2];
67 for (i = 2; i < ntimer; timer++, i++)
68 hd.hd_irq[i] = (timer->hpet_config &
69 Tn_INT_ROUTE_CNF_MASK) >>
70 Tn_INT_ROUTE_CNF_SHIFT;
71
72 }
73
74 hpet_alloc(&hd);
75 return 0;
76}
77fs_initcall(late_hpet_init);
78#endif
79
80int hpet_timer_stop_set_go(unsigned long tick)
81{
82 unsigned int cfg;
83
84/*
85 * Stop the timers and reset the main counter.
86 */
87
88 cfg = hpet_readl(HPET_CFG);
89 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
90 hpet_writel(cfg, HPET_CFG);
91 hpet_writel(0, HPET_COUNTER);
92 hpet_writel(0, HPET_COUNTER + 4);
93
94/*
95 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
96 * and period also hpet_tick.
97 */
98 if (hpet_use_timer) {
99 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
100 HPET_TN_32BIT, HPET_T0_CFG);
101 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
102 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
103 cfg |= HPET_CFG_LEGACY;
104 }
105/*
106 * Go!
107 */
108
109 cfg |= HPET_CFG_ENABLE;
110 hpet_writel(cfg, HPET_CFG);
111
112 return 0;
113}
114
6bb74df4 115static cycle_t read_hpet(void)
116{
117 return (cycle_t)hpet_readl(HPET_COUNTER);
118}
119
120static cycle_t __vsyscall_fn vread_hpet(void)
121{
122 return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
123}
124
125struct clocksource clocksource_hpet = {
126 .name = "hpet",
127 .rating = 250,
128 .read = read_hpet,
129 .mask = (cycle_t)HPET_MASK,
130 .mult = 0, /* set below */
131 .shift = HPET_SHIFT,
132 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
133 .vread = vread_hpet,
134};
135
7aa6ec56 136int __init hpet_arch_init(void)
c37e7bb5 137{
138 unsigned int id;
6bb74df4 139 u64 tmp;
c37e7bb5 140
141 if (!hpet_address)
142 return -1;
143 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
144 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
145
146/*
147 * Read the period, compute tick and quotient.
148 */
149
150 id = hpet_readl(HPET_ID);
151
152 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
153 return -1;
154
155 hpet_period = hpet_readl(HPET_PERIOD);
156 if (hpet_period < 100000 || hpet_period > 100000000)
157 return -1;
158
159 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
160
161 hpet_use_timer = (id & HPET_ID_LEGSUP);
162
6bb74df4 163 /*
164 * hpet period is in femto seconds per cycle
165 * so we need to convert this to ns/cyc units
166 * aproximated by mult/2^shift
167 *
168 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
169 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
170 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
171 * (fsec/cyc << shift)/1000000 = mult
172 * (hpet_period << shift)/FSEC_PER_NSEC = mult
173 */
174 tmp = (u64)hpet_period << HPET_SHIFT;
175 do_div(tmp, FSEC_PER_NSEC);
176 clocksource_hpet.mult = (u32)tmp;
177 clocksource_register(&clocksource_hpet);
178
c37e7bb5 179 return hpet_timer_stop_set_go(hpet_tick);
180}
181
182int hpet_reenable(void)
183{
184 return hpet_timer_stop_set_go(hpet_tick);
185}
186
c37e7bb5 187#ifdef CONFIG_HPET_EMULATE_RTC
188/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
189 * is enabled, we support RTC interrupt functionality in software.
190 * RTC has 3 kinds of interrupts:
191 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
192 * is updated
193 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
194 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
195 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
196 * (1) and (2) above are implemented using polling at a frequency of
197 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
198 * overhead. (DEFAULT_RTC_INT_FREQ)
199 * For (3), we use interrupts at 64Hz or user specified periodic
200 * frequency, whichever is higher.
201 */
202#include <linux/rtc.h>
203
204#define DEFAULT_RTC_INT_FREQ 64
205#define RTC_NUM_INTS 1
206
207static unsigned long UIE_on;
208static unsigned long prev_update_sec;
209
210static unsigned long AIE_on;
211static struct rtc_time alarm_time;
212
213static unsigned long PIE_on;
214static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
215static unsigned long PIE_count;
216
217static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
218static unsigned int hpet_t1_cmp; /* cached comparator register */
219
220int is_hpet_enabled(void)
221{
222 return hpet_address != 0;
223}
224
225/*
226 * Timer 1 for RTC, we do not use periodic interrupt feature,
227 * even if HPET supports periodic interrupts on Timer 1.
228 * The reason being, to set up a periodic interrupt in HPET, we need to
229 * stop the main counter. And if we do that everytime someone diables/enables
230 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
231 * So, for the time being, simulate the periodic interrupt in software.
232 *
233 * hpet_rtc_timer_init() is called for the first time and during subsequent
234 * interuppts reinit happens through hpet_rtc_timer_reinit().
235 */
236int hpet_rtc_timer_init(void)
237{
238 unsigned int cfg, cnt;
239 unsigned long flags;
240
241 if (!is_hpet_enabled())
242 return 0;
243 /*
244 * Set the counter 1 and enable the interrupts.
245 */
246 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
247 hpet_rtc_int_freq = PIE_freq;
248 else
249 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
250
251 local_irq_save(flags);
252
253 cnt = hpet_readl(HPET_COUNTER);
254 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
255 hpet_writel(cnt, HPET_T1_CMP);
256 hpet_t1_cmp = cnt;
257
258 cfg = hpet_readl(HPET_T1_CFG);
259 cfg &= ~HPET_TN_PERIODIC;
260 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
261 hpet_writel(cfg, HPET_T1_CFG);
262
263 local_irq_restore(flags);
264
265 return 1;
266}
267
268static void hpet_rtc_timer_reinit(void)
269{
270 unsigned int cfg, cnt, ticks_per_int, lost_ints;
271
272 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
273 cfg = hpet_readl(HPET_T1_CFG);
274 cfg &= ~HPET_TN_ENABLE;
275 hpet_writel(cfg, HPET_T1_CFG);
276 return;
277 }
278
279 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
280 hpet_rtc_int_freq = PIE_freq;
281 else
282 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
283
284 /* It is more accurate to use the comparator value than current count.*/
285 ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
286 hpet_t1_cmp += ticks_per_int;
287 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
288
289 /*
290 * If the interrupt handler was delayed too long, the write above tries
291 * to schedule the next interrupt in the past and the hardware would
292 * not interrupt until the counter had wrapped around.
293 * So we have to check that the comparator wasn't set to a past time.
294 */
295 cnt = hpet_readl(HPET_COUNTER);
296 if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
297 lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
298 /* Make sure that, even with the time needed to execute
299 * this code, the next scheduled interrupt has been moved
300 * back to the future: */
301 lost_ints++;
302
303 hpet_t1_cmp += lost_ints * ticks_per_int;
304 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
305
306 if (PIE_on)
307 PIE_count += lost_ints;
308
309 if (printk_ratelimit())
310 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
311 hpet_rtc_int_freq);
312 }
313}
314
315/*
316 * The functions below are called from rtc driver.
317 * Return 0 if HPET is not being used.
318 * Otherwise do the necessary changes and return 1.
319 */
320int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
321{
322 if (!is_hpet_enabled())
323 return 0;
324
325 if (bit_mask & RTC_UIE)
326 UIE_on = 0;
327 if (bit_mask & RTC_PIE)
328 PIE_on = 0;
329 if (bit_mask & RTC_AIE)
330 AIE_on = 0;
331
332 return 1;
333}
334
335int hpet_set_rtc_irq_bit(unsigned long bit_mask)
336{
337 int timer_init_reqd = 0;
338
339 if (!is_hpet_enabled())
340 return 0;
341
342 if (!(PIE_on | AIE_on | UIE_on))
343 timer_init_reqd = 1;
344
345 if (bit_mask & RTC_UIE) {
346 UIE_on = 1;
347 }
348 if (bit_mask & RTC_PIE) {
349 PIE_on = 1;
350 PIE_count = 0;
351 }
352 if (bit_mask & RTC_AIE) {
353 AIE_on = 1;
354 }
355
356 if (timer_init_reqd)
357 hpet_rtc_timer_init();
358
359 return 1;
360}
361
362int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
363{
364 if (!is_hpet_enabled())
365 return 0;
366
367 alarm_time.tm_hour = hrs;
368 alarm_time.tm_min = min;
369 alarm_time.tm_sec = sec;
370
371 return 1;
372}
373
374int hpet_set_periodic_freq(unsigned long freq)
375{
376 if (!is_hpet_enabled())
377 return 0;
378
379 PIE_freq = freq;
380 PIE_count = 0;
381
382 return 1;
383}
384
385int hpet_rtc_dropped_irq(void)
386{
387 if (!is_hpet_enabled())
388 return 0;
389
390 return 1;
391}
392
aec8148f 393irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
c37e7bb5 394{
395 struct rtc_time curr_time;
396 unsigned long rtc_int_flag = 0;
397 int call_rtc_interrupt = 0;
398
399 hpet_rtc_timer_reinit();
400
401 if (UIE_on | AIE_on) {
402 rtc_get_rtc_time(&curr_time);
403 }
404 if (UIE_on) {
405 if (curr_time.tm_sec != prev_update_sec) {
406 /* Set update int info, call real rtc int routine */
407 call_rtc_interrupt = 1;
408 rtc_int_flag = RTC_UF;
409 prev_update_sec = curr_time.tm_sec;
410 }
411 }
412 if (PIE_on) {
413 PIE_count++;
414 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
415 /* Set periodic int info, call real rtc int routine */
416 call_rtc_interrupt = 1;
417 rtc_int_flag |= RTC_PF;
418 PIE_count = 0;
419 }
420 }
421 if (AIE_on) {
422 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
423 (curr_time.tm_min == alarm_time.tm_min) &&
424 (curr_time.tm_hour == alarm_time.tm_hour)) {
425 /* Set alarm int info, call real rtc int routine */
426 call_rtc_interrupt = 1;
427 rtc_int_flag |= RTC_AF;
428 }
429 }
430 if (call_rtc_interrupt) {
431 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
432 rtc_interrupt(rtc_int_flag, dev_id);
433 }
434 return IRQ_HANDLED;
435}
436#endif
437
438static int __init nohpet_setup(char *s)
439{
440 nohpet = 1;
441 return 1;
442}
443
444__setup("nohpet", nohpet_setup);