x86, hpet: Erratum workaround for read after write of HPET comparator
[linux-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
7#include <linux/hpet.h>
8#include <linux/init.h>
58ac1e76 9#include <linux/cpu.h>
4588c1f0
IM
10#include <linux/pm.h>
11#include <linux/io.h>
5d0cf410 12
28769149 13#include <asm/fixmap.h>
06a24dec 14#include <asm/i8253.h>
4588c1f0 15#include <asm/hpet.h>
5d0cf410 16
4588c1f0
IM
17#define HPET_MASK CLOCKSOURCE_MASK(32)
18#define HPET_SHIFT 22
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
c8bc6f3c 36u8 hpet_blockid; /* OS timer block num */
73472a46
PV
37u8 hpet_msi_disable;
38
e951e4af 39#ifdef CONFIG_PCI_MSI
3b71e9e3 40static unsigned long hpet_num_timers;
e951e4af 41#endif
4588c1f0 42static void __iomem *hpet_virt_address;
e9e2cdb4 43
58ac1e76 44struct hpet_dev {
4588c1f0
IM
45 struct clock_event_device evt;
46 unsigned int num;
47 int cpu;
48 unsigned int irq;
49 unsigned int flags;
50 char name[10];
58ac1e76 51};
52
5946fa3d 53inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
54{
55 return readl(hpet_virt_address + a);
56}
57
5946fa3d 58static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
59{
60 writel(d, hpet_virt_address + a);
61}
62
28769149 63#ifdef CONFIG_X86_64
28769149 64#include <asm/pgtable.h>
2387ce57 65#endif
28769149 66
06a24dec
TG
67static inline void hpet_set_mapping(void)
68{
69 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
70#ifdef CONFIG_X86_64
71 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72#endif
06a24dec
TG
73}
74
75static inline void hpet_clear_mapping(void)
76{
77 iounmap(hpet_virt_address);
78 hpet_virt_address = NULL;
79}
80
e9e2cdb4
TG
81/*
82 * HPET command line enable / disable
83 */
84static int boot_hpet_disable;
b17530bd 85int hpet_force_user;
b98103a5 86static int hpet_verbose;
e9e2cdb4 87
4588c1f0 88static int __init hpet_setup(char *str)
e9e2cdb4
TG
89{
90 if (str) {
91 if (!strncmp("disable", str, 7))
92 boot_hpet_disable = 1;
b17530bd
TG
93 if (!strncmp("force", str, 5))
94 hpet_force_user = 1;
b98103a5
AH
95 if (!strncmp("verbose", str, 7))
96 hpet_verbose = 1;
e9e2cdb4
TG
97 }
98 return 1;
99}
100__setup("hpet=", hpet_setup);
101
28769149
TG
102static int __init disable_hpet(char *str)
103{
104 boot_hpet_disable = 1;
105 return 1;
106}
107__setup("nohpet", disable_hpet);
108
e9e2cdb4
TG
109static inline int is_hpet_capable(void)
110{
4588c1f0 111 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
112}
113
114/*
115 * HPET timer interrupt enable / disable
116 */
117static int hpet_legacy_int_enabled;
118
119/**
120 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121 */
122int is_hpet_enabled(void)
123{
124 return is_hpet_capable() && hpet_legacy_int_enabled;
125}
1bdbdaac 126EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 127
b98103a5
AH
128static void _hpet_print_config(const char *function, int line)
129{
130 u32 i, timers, l, h;
131 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132 l = hpet_readl(HPET_ID);
133 h = hpet_readl(HPET_PERIOD);
134 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136 l = hpet_readl(HPET_CFG);
137 h = hpet_readl(HPET_STATUS);
138 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139 l = hpet_readl(HPET_COUNTER);
140 h = hpet_readl(HPET_COUNTER+4);
141 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143 for (i = 0; i < timers; i++) {
144 l = hpet_readl(HPET_Tn_CFG(i));
145 h = hpet_readl(HPET_Tn_CFG(i)+4);
146 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147 i, l, h);
148 l = hpet_readl(HPET_Tn_CMP(i));
149 h = hpet_readl(HPET_Tn_CMP(i)+4);
150 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151 i, l, h);
152 l = hpet_readl(HPET_Tn_ROUTE(i));
153 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155 i, l, h);
156 }
157}
158
159#define hpet_print_config() \
160do { \
161 if (hpet_verbose) \
162 _hpet_print_config(__FUNCTION__, __LINE__); \
163} while (0)
164
e9e2cdb4
TG
165/*
166 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167 * timer 0 and timer 1 in case of RTC emulation.
168 */
169#ifdef CONFIG_HPET
f0ed4e69 170
5f79f2f2 171static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 172
5946fa3d 173static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
174{
175 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
176 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177 unsigned int nrtimers, i;
e9e2cdb4
TG
178 struct hpet_data hd;
179
180 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
4588c1f0
IM
182 memset(&hd, 0, sizeof(hd));
183 hd.hd_phys_address = hpet_address;
184 hd.hd_address = hpet;
185 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
186 hpet_reserve_timer(&hd, 0);
187
188#ifdef CONFIG_HPET_EMULATE_RTC
189 hpet_reserve_timer(&hd, 1);
190#endif
5761d64b 191
64a76f66
DB
192 /*
193 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194 * is wrong for i8259!) not the output IRQ. Many BIOS writers
195 * don't bother configuring *any* comparator interrupts.
196 */
e9e2cdb4
TG
197 hd.hd_irq[0] = HPET_LEGACY_8254;
198 hd.hd_irq[1] = HPET_LEGACY_RTC;
199
fc3fbc45 200 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
201 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 203 }
5761d64b 204
f0ed4e69 205 hpet_reserve_msi_timers(&hd);
26afe5f2 206
e9e2cdb4 207 hpet_alloc(&hd);
5761d64b 208
e9e2cdb4
TG
209}
210#else
5946fa3d 211static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
212#endif
213
214/*
215 * Common hpet info
216 */
217static unsigned long hpet_period;
218
610bf2f1 219static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 220 struct clock_event_device *evt);
610bf2f1 221static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
222 struct clock_event_device *evt);
223
224/*
225 * The hpet clock event device
226 */
227static struct clock_event_device hpet_clockevent = {
228 .name = "hpet",
229 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
230 .set_mode = hpet_legacy_set_mode,
231 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
232 .shift = 32,
233 .irq = 0,
59c69f2a 234 .rating = 50,
e9e2cdb4
TG
235};
236
8d6f0c82 237static void hpet_stop_counter(void)
e9e2cdb4
TG
238{
239 unsigned long cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
240 cfg &= ~HPET_CFG_ENABLE;
241 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
242}
243
244static void hpet_reset_counter(void)
245{
e9e2cdb4
TG
246 hpet_writel(0, HPET_COUNTER);
247 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
248}
249
250static void hpet_start_counter(void)
251{
5946fa3d 252 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
253 cfg |= HPET_CFG_ENABLE;
254 hpet_writel(cfg, HPET_CFG);
255}
256
8d6f0c82
AH
257static void hpet_restart_counter(void)
258{
259 hpet_stop_counter();
7a6f9cbb 260 hpet_reset_counter();
8d6f0c82
AH
261 hpet_start_counter();
262}
263
59c69f2a
VP
264static void hpet_resume_device(void)
265{
bfe0c1cc 266 force_hpet_resume();
59c69f2a
VP
267}
268
17622339 269static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
270{
271 hpet_resume_device();
8d6f0c82 272 hpet_restart_counter();
59c69f2a
VP
273}
274
610bf2f1 275static void hpet_enable_legacy_int(void)
e9e2cdb4 276{
5946fa3d 277 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
278
279 cfg |= HPET_CFG_LEGACY;
280 hpet_writel(cfg, HPET_CFG);
281 hpet_legacy_int_enabled = 1;
282}
283
610bf2f1
VP
284static void hpet_legacy_clockevent_register(void)
285{
610bf2f1
VP
286 /* Start HPET legacy interrupts */
287 hpet_enable_legacy_int();
288
289 /*
6fd592da
CM
290 * The mult factor is defined as (include/linux/clockchips.h)
291 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292 * hpet_period is in units of femtoseconds (per cycle), so
293 * mult/2^shift = cyc/ns = 10^6/hpet_period
294 * mult = (10^6 * 2^shift)/hpet_period
295 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 296 */
6fd592da
CM
297 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
299 /* Calculate the min / max delta */
300 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301 &hpet_clockevent);
7cfb0435
TG
302 /* 5 usec minimum reprogramming delta. */
303 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
304
305 /*
306 * Start hpet with the boot cpu mask and make it
307 * global after the IO_APIC has been initialized.
308 */
320ab2b0 309 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
610bf2f1
VP
310 clockevents_register_device(&hpet_clockevent);
311 global_clock_event = &hpet_clockevent;
312 printk(KERN_DEBUG "hpet clockevent registered\n");
313}
314
26afe5f2 315static int hpet_setup_msi_irq(unsigned int irq);
316
b40d575b 317static void hpet_set_mode(enum clock_event_mode mode,
318 struct clock_event_device *evt, int timer)
e9e2cdb4 319{
5946fa3d 320 unsigned int cfg, cmp, now;
e9e2cdb4
TG
321 uint64_t delta;
322
4588c1f0 323 switch (mode) {
e9e2cdb4 324 case CLOCK_EVT_MODE_PERIODIC:
c23e253e 325 hpet_stop_counter();
b40d575b 326 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327 delta >>= evt->shift;
7a6f9cbb 328 now = hpet_readl(HPET_COUNTER);
5946fa3d 329 cmp = now + (unsigned int) delta;
b40d575b 330 cfg = hpet_readl(HPET_Tn_CFG(timer));
b13e2464 331 /* Make sure we use edge triggered interrupts */
332 cfg &= ~HPET_TN_LEVEL;
e9e2cdb4
TG
333 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 335 hpet_writel(cfg, HPET_Tn_CFG(timer));
7a6f9cbb
AH
336 hpet_writel(cmp, HPET_Tn_CMP(timer));
337 udelay(1);
338 /*
339 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341 * bit is automatically cleared after the first write.
342 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343 * Publication # 24674)
344 */
5946fa3d 345 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
c23e253e 346 hpet_start_counter();
b98103a5 347 hpet_print_config();
e9e2cdb4
TG
348 break;
349
350 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 351 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
352 cfg &= ~HPET_TN_PERIODIC;
353 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 354 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
355 break;
356
357 case CLOCK_EVT_MODE_UNUSED:
358 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 359 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 360 cfg &= ~HPET_TN_ENABLE;
b40d575b 361 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 362 break;
18de5bc4
TG
363
364 case CLOCK_EVT_MODE_RESUME:
26afe5f2 365 if (timer == 0) {
366 hpet_enable_legacy_int();
367 } else {
368 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369 hpet_setup_msi_irq(hdev->irq);
370 disable_irq(hdev->irq);
0de26520 371 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
26afe5f2 372 enable_irq(hdev->irq);
373 }
b98103a5 374 hpet_print_config();
18de5bc4 375 break;
e9e2cdb4
TG
376 }
377}
378
b40d575b 379static int hpet_next_event(unsigned long delta,
380 struct clock_event_device *evt, int timer)
e9e2cdb4 381{
f7676254 382 u32 cnt;
e9e2cdb4
TG
383
384 cnt = hpet_readl(HPET_COUNTER);
f7676254 385 cnt += (u32) delta;
b40d575b 386 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 387
72d43d9b 388 /*
18ed61da
TG
389 * We need to read back the CMP register on certain HPET
390 * implementations (ATI chipsets) which seem to delay the
391 * transfer of the compare register into the internal compare
392 * logic. With small deltas this might actually be too late as
393 * the counter could already be higher than the compare value
394 * at that point and we would wait for the next hpet interrupt
395 * forever. We found out that reading the CMP register back
396 * forces the transfer so we can rely on the comparison with
397 * the counter register below. If the read back from the
398 * compare register does not match the value we programmed
399 * then we might have a real hardware problem. We can not do
400 * much about it here, but at least alert the user/admin with
401 * a prominent warning.
8da854cb
PV
402 * An erratum on some chipsets (ICH9,..), results in comparator read
403 * immediately following a write returning old value. Workaround
404 * for this is to read this value second time, when first
405 * read returns old value.
72d43d9b 406 */
8da854cb
PV
407 if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
408 WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
18ed61da 409 KERN_WARNING "hpet: compare register read back failed.\n");
8da854cb 410 }
72d43d9b 411
5946fa3d 412 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
413}
414
b40d575b 415static void hpet_legacy_set_mode(enum clock_event_mode mode,
416 struct clock_event_device *evt)
417{
418 hpet_set_mode(mode, evt, 0);
419}
420
421static int hpet_legacy_next_event(unsigned long delta,
422 struct clock_event_device *evt)
423{
424 return hpet_next_event(delta, evt, 0);
425}
426
58ac1e76 427/*
428 * HPET MSI Support
429 */
26afe5f2 430#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
431
432static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
433static struct hpet_dev *hpet_devs;
434
58ac1e76 435void hpet_msi_unmask(unsigned int irq)
436{
437 struct hpet_dev *hdev = get_irq_data(irq);
5946fa3d 438 unsigned int cfg;
58ac1e76 439
440 /* unmask it */
441 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
442 cfg |= HPET_TN_FSB;
443 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
444}
445
446void hpet_msi_mask(unsigned int irq)
447{
5946fa3d 448 unsigned int cfg;
58ac1e76 449 struct hpet_dev *hdev = get_irq_data(irq);
450
451 /* mask it */
452 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
453 cfg &= ~HPET_TN_FSB;
454 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
455}
456
457void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
458{
459 struct hpet_dev *hdev = get_irq_data(irq);
460
461 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
462 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
463}
464
465void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
466{
467 struct hpet_dev *hdev = get_irq_data(irq);
468
469 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
470 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
471 msg->address_hi = 0;
472}
473
26afe5f2 474static void hpet_msi_set_mode(enum clock_event_mode mode,
475 struct clock_event_device *evt)
476{
477 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
478 hpet_set_mode(mode, evt, hdev->num);
479}
480
481static int hpet_msi_next_event(unsigned long delta,
482 struct clock_event_device *evt)
483{
484 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
485 return hpet_next_event(delta, evt, hdev->num);
486}
487
488static int hpet_setup_msi_irq(unsigned int irq)
489{
c8bc6f3c 490 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
26afe5f2 491 destroy_irq(irq);
492 return -EINVAL;
493 }
494 return 0;
495}
496
497static int hpet_assign_irq(struct hpet_dev *dev)
498{
499 unsigned int irq;
500
501 irq = create_irq();
502 if (!irq)
503 return -EINVAL;
504
505 set_irq_data(irq, dev);
506
507 if (hpet_setup_msi_irq(irq))
508 return -EINVAL;
509
510 dev->irq = irq;
511 return 0;
512}
513
514static irqreturn_t hpet_interrupt_handler(int irq, void *data)
515{
516 struct hpet_dev *dev = (struct hpet_dev *)data;
517 struct clock_event_device *hevt = &dev->evt;
518
519 if (!hevt->event_handler) {
520 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
521 dev->num);
522 return IRQ_HANDLED;
523 }
524
525 hevt->event_handler(hevt);
526 return IRQ_HANDLED;
527}
528
529static int hpet_setup_irq(struct hpet_dev *dev)
530{
531
532 if (request_irq(dev->irq, hpet_interrupt_handler,
507fa3a3
TG
533 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
534 dev->name, dev))
26afe5f2 535 return -1;
536
537 disable_irq(dev->irq);
0de26520 538 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 539 enable_irq(dev->irq);
540
c81bba49
YL
541 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
542 dev->name, dev->irq);
543
26afe5f2 544 return 0;
545}
546
547/* This should be called in specific @cpu */
548static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
549{
550 struct clock_event_device *evt = &hdev->evt;
551 uint64_t hpet_freq;
552
553 WARN_ON(cpu != smp_processor_id());
554 if (!(hdev->flags & HPET_DEV_VALID))
555 return;
556
557 if (hpet_setup_msi_irq(hdev->irq))
558 return;
559
560 hdev->cpu = cpu;
561 per_cpu(cpu_hpet_dev, cpu) = hdev;
562 evt->name = hdev->name;
563 hpet_setup_irq(hdev);
564 evt->irq = hdev->irq;
565
566 evt->rating = 110;
567 evt->features = CLOCK_EVT_FEAT_ONESHOT;
568 if (hdev->flags & HPET_DEV_PERI_CAP)
569 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
570
571 evt->set_mode = hpet_msi_set_mode;
572 evt->set_next_event = hpet_msi_next_event;
573 evt->shift = 32;
574
575 /*
576 * The period is a femto seconds value. We need to calculate the
577 * scaled math multiplication factor for nanosecond to hpet tick
578 * conversion.
579 */
580 hpet_freq = 1000000000000000ULL;
581 do_div(hpet_freq, hpet_period);
582 evt->mult = div_sc((unsigned long) hpet_freq,
583 NSEC_PER_SEC, evt->shift);
584 /* Calculate the max delta */
585 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
586 /* 5 usec minimum reprogramming delta. */
587 evt->min_delta_ns = 5000;
588
320ab2b0 589 evt->cpumask = cpumask_of(hdev->cpu);
26afe5f2 590 clockevents_register_device(evt);
591}
592
593#ifdef CONFIG_HPET
594/* Reserve at least one timer for userspace (/dev/hpet) */
595#define RESERVE_TIMERS 1
596#else
597#define RESERVE_TIMERS 0
598#endif
5f79f2f2
VP
599
600static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 601{
602 unsigned int id;
603 unsigned int num_timers;
604 unsigned int num_timers_used = 0;
605 int i;
606
73472a46
PV
607 if (hpet_msi_disable)
608 return;
609
39fe05e5
SL
610 if (boot_cpu_has(X86_FEATURE_ARAT))
611 return;
26afe5f2 612 id = hpet_readl(HPET_ID);
613
614 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
615 num_timers++; /* Value read out starts from 0 */
b98103a5 616 hpet_print_config();
26afe5f2 617
618 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619 if (!hpet_devs)
620 return;
621
622 hpet_num_timers = num_timers;
623
624 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 626 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 627
628 /* Only consider HPET timer with MSI support */
629 if (!(cfg & HPET_TN_FSB_CAP))
630 continue;
631
632 hdev->flags = 0;
633 if (cfg & HPET_TN_PERIODIC_CAP)
634 hdev->flags |= HPET_DEV_PERI_CAP;
635 hdev->num = i;
636
637 sprintf(hdev->name, "hpet%d", i);
638 if (hpet_assign_irq(hdev))
639 continue;
640
641 hdev->flags |= HPET_DEV_FSB_CAP;
642 hdev->flags |= HPET_DEV_VALID;
643 num_timers_used++;
644 if (num_timers_used == num_possible_cpus())
645 break;
646 }
647
648 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
649 num_timers, num_timers_used);
650}
651
5f79f2f2
VP
652#ifdef CONFIG_HPET
653static void hpet_reserve_msi_timers(struct hpet_data *hd)
654{
655 int i;
656
657 if (!hpet_devs)
658 return;
659
660 for (i = 0; i < hpet_num_timers; i++) {
661 struct hpet_dev *hdev = &hpet_devs[i];
662
663 if (!(hdev->flags & HPET_DEV_VALID))
664 continue;
665
666 hd->hd_irq[hdev->num] = hdev->irq;
667 hpet_reserve_timer(hd, hdev->num);
668 }
669}
670#endif
671
26afe5f2 672static struct hpet_dev *hpet_get_unused_timer(void)
673{
674 int i;
675
676 if (!hpet_devs)
677 return NULL;
678
679 for (i = 0; i < hpet_num_timers; i++) {
680 struct hpet_dev *hdev = &hpet_devs[i];
681
682 if (!(hdev->flags & HPET_DEV_VALID))
683 continue;
684 if (test_and_set_bit(HPET_DEV_USED_BIT,
685 (unsigned long *)&hdev->flags))
686 continue;
687 return hdev;
688 }
689 return NULL;
690}
691
692struct hpet_work_struct {
693 struct delayed_work work;
694 struct completion complete;
695};
696
697static void hpet_work(struct work_struct *w)
698{
699 struct hpet_dev *hdev;
700 int cpu = smp_processor_id();
701 struct hpet_work_struct *hpet_work;
702
703 hpet_work = container_of(w, struct hpet_work_struct, work.work);
704
705 hdev = hpet_get_unused_timer();
706 if (hdev)
707 init_one_hpet_msi_clockevent(hdev, cpu);
708
709 complete(&hpet_work->complete);
710}
711
712static int hpet_cpuhp_notify(struct notifier_block *n,
713 unsigned long action, void *hcpu)
714{
715 unsigned long cpu = (unsigned long)hcpu;
716 struct hpet_work_struct work;
717 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
718
719 switch (action & 0xf) {
720 case CPU_ONLINE:
336f6c32 721 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
26afe5f2 722 init_completion(&work.complete);
723 /* FIXME: add schedule_work_on() */
724 schedule_delayed_work_on(cpu, &work.work, 0);
725 wait_for_completion(&work.complete);
336f6c32 726 destroy_timer_on_stack(&work.work.timer);
26afe5f2 727 break;
728 case CPU_DEAD:
729 if (hdev) {
730 free_irq(hdev->irq, hdev);
731 hdev->flags &= ~HPET_DEV_USED;
732 per_cpu(cpu_hpet_dev, cpu) = NULL;
733 }
734 break;
735 }
736 return NOTIFY_OK;
737}
738#else
739
ba374c9b
SN
740static int hpet_setup_msi_irq(unsigned int irq)
741{
742 return 0;
743}
5f79f2f2
VP
744static void hpet_msi_capability_lookup(unsigned int start_timer)
745{
746 return;
747}
748
749#ifdef CONFIG_HPET
750static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 751{
752 return;
753}
5f79f2f2 754#endif
26afe5f2 755
756static int hpet_cpuhp_notify(struct notifier_block *n,
757 unsigned long action, void *hcpu)
758{
759 return NOTIFY_OK;
760}
761
762#endif
763
6bb74df4 764/*
765 * Clock source related code
766 */
8e19608e 767static cycle_t read_hpet(struct clocksource *cs)
6bb74df4 768{
769 return (cycle_t)hpet_readl(HPET_COUNTER);
770}
771
28769149
TG
772#ifdef CONFIG_X86_64
773static cycle_t __vsyscall_fn vread_hpet(void)
774{
775 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
776}
777#endif
778
6bb74df4 779static struct clocksource clocksource_hpet = {
780 .name = "hpet",
781 .rating = 250,
782 .read = read_hpet,
783 .mask = HPET_MASK,
784 .shift = HPET_SHIFT,
785 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 786 .resume = hpet_resume_counter,
28769149
TG
787#ifdef CONFIG_X86_64
788 .vread = vread_hpet,
789#endif
6bb74df4 790};
791
610bf2f1 792static int hpet_clocksource_register(void)
e9e2cdb4 793{
6fd592da 794 u64 start, now;
075bcd1f 795 cycle_t t1;
e9e2cdb4 796
e9e2cdb4 797 /* Start the counter */
8d6f0c82 798 hpet_restart_counter();
e9e2cdb4 799
075bcd1f 800 /* Verify whether hpet counter works */
8e19608e 801 t1 = hpet_readl(HPET_COUNTER);
075bcd1f
TG
802 rdtscll(start);
803
804 /*
805 * We don't know the TSC frequency yet, but waiting for
806 * 200000 TSC cycles is safe:
807 * 4 GHz == 50us
808 * 1 GHz == 200us
809 */
810 do {
811 rep_nop();
812 rdtscll(now);
813 } while ((now - start) < 200000UL);
814
8e19608e 815 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
816 printk(KERN_WARNING
817 "HPET counter not counting. HPET disabled\n");
610bf2f1 818 return -ENODEV;
075bcd1f
TG
819 }
820
6fd592da
CM
821 /*
822 * The definition of mult is (include/linux/clocksource.h)
823 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
824 * so we first need to convert hpet_period to ns/cyc units:
825 * mult/2^shift = ns/cyc = hpet_period/10^6
826 * mult = (hpet_period * 2^shift)/10^6
827 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 828 */
6fd592da 829 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
6bb74df4 830
831 clocksource_register(&clocksource_hpet);
832
610bf2f1
VP
833 return 0;
834}
835
b02a7f22
PM
836/**
837 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
838 */
839int __init hpet_enable(void)
840{
5946fa3d 841 unsigned int id;
a6825f1c 842 int i;
610bf2f1
VP
843
844 if (!is_hpet_capable())
845 return 0;
846
847 hpet_set_mapping();
848
849 /*
850 * Read the period and check for a sane value:
851 */
852 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
853
854 /*
855 * AMD SB700 based systems with spread spectrum enabled use a
856 * SMM based HPET emulation to provide proper frequency
857 * setting. The SMM code is initialized with the first HPET
858 * register access and takes some time to complete. During
859 * this time the config register reads 0xffffffff. We check
860 * for max. 1000 loops whether the config register reads a non
861 * 0xffffffff value to make sure that HPET is up and running
862 * before we go further. A counting loop is safe, as the HPET
863 * access takes thousands of CPU cycles. On non SB700 based
864 * machines this check is only done once and has no side
865 * effects.
866 */
867 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
868 if (i == 1000) {
869 printk(KERN_WARNING
870 "HPET config register value = 0xFFFFFFFF. "
871 "Disabling HPET\n");
872 goto out_nohpet;
873 }
874 }
875
610bf2f1
VP
876 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
877 goto out_nohpet;
878
879 /*
880 * Read the HPET ID register to retrieve the IRQ routing
881 * information and the number of channels
882 */
883 id = hpet_readl(HPET_ID);
b98103a5 884 hpet_print_config();
610bf2f1
VP
885
886#ifdef CONFIG_HPET_EMULATE_RTC
887 /*
888 * The legacy routing mode needs at least two channels, tick timer
889 * and the rtc emulation channel.
890 */
891 if (!(id & HPET_ID_NUMBER))
892 goto out_nohpet;
893#endif
894
895 if (hpet_clocksource_register())
896 goto out_nohpet;
897
e9e2cdb4 898 if (id & HPET_ID_LEGSUP) {
610bf2f1 899 hpet_legacy_clockevent_register();
e9e2cdb4
TG
900 return 1;
901 }
902 return 0;
5d0cf410 903
e9e2cdb4 904out_nohpet:
06a24dec 905 hpet_clear_mapping();
bacbe999 906 hpet_address = 0;
e9e2cdb4
TG
907 return 0;
908}
909
28769149
TG
910/*
911 * Needs to be late, as the reserve_timer code calls kalloc !
912 *
913 * Not a problem on i386 as hpet_enable is called from late_time_init,
914 * but on x86_64 it is necessary !
915 */
916static __init int hpet_late_init(void)
917{
26afe5f2 918 int cpu;
919
59c69f2a 920 if (boot_hpet_disable)
28769149
TG
921 return -ENODEV;
922
59c69f2a
VP
923 if (!hpet_address) {
924 if (!force_hpet_address)
925 return -ENODEV;
926
927 hpet_address = force_hpet_address;
928 hpet_enable();
59c69f2a
VP
929 }
930
39c04b55
JF
931 if (!hpet_virt_address)
932 return -ENODEV;
933
39fe05e5
SL
934 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
935 hpet_msi_capability_lookup(2);
936 else
937 hpet_msi_capability_lookup(0);
938
28769149 939 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 940 hpet_print_config();
59c69f2a 941
73472a46
PV
942 if (hpet_msi_disable)
943 return 0;
944
39fe05e5
SL
945 if (boot_cpu_has(X86_FEATURE_ARAT))
946 return 0;
947
26afe5f2 948 for_each_online_cpu(cpu) {
949 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
950 }
951
952 /* This notifier should be called after workqueue is ready */
953 hotcpu_notifier(hpet_cpuhp_notify, -20);
954
28769149
TG
955 return 0;
956}
957fs_initcall(hpet_late_init);
958
c86c7fbc
OH
959void hpet_disable(void)
960{
961 if (is_hpet_capable()) {
5946fa3d 962 unsigned int cfg = hpet_readl(HPET_CFG);
c86c7fbc
OH
963
964 if (hpet_legacy_int_enabled) {
965 cfg &= ~HPET_CFG_LEGACY;
966 hpet_legacy_int_enabled = 0;
967 }
968 cfg &= ~HPET_CFG_ENABLE;
969 hpet_writel(cfg, HPET_CFG);
970 }
971}
972
e9e2cdb4
TG
973#ifdef CONFIG_HPET_EMULATE_RTC
974
975/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
976 * is enabled, we support RTC interrupt functionality in software.
977 * RTC has 3 kinds of interrupts:
978 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
979 * is updated
980 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
981 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
982 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
983 * (1) and (2) above are implemented using polling at a frequency of
984 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
985 * overhead. (DEFAULT_RTC_INT_FREQ)
986 * For (3), we use interrupts at 64Hz or user specified periodic
987 * frequency, whichever is higher.
988 */
989#include <linux/mc146818rtc.h>
990#include <linux/rtc.h>
1bdbdaac 991#include <asm/rtc.h>
e9e2cdb4
TG
992
993#define DEFAULT_RTC_INT_FREQ 64
994#define DEFAULT_RTC_SHIFT 6
995#define RTC_NUM_INTS 1
996
997static unsigned long hpet_rtc_flags;
7e2a31da 998static int hpet_prev_update_sec;
e9e2cdb4
TG
999static struct rtc_time hpet_alarm_time;
1000static unsigned long hpet_pie_count;
ff08f76d 1001static u32 hpet_t1_cmp;
5946fa3d
JB
1002static u32 hpet_default_delta;
1003static u32 hpet_pie_delta;
e9e2cdb4
TG
1004static unsigned long hpet_pie_limit;
1005
1bdbdaac
BW
1006static rtc_irq_handler irq_handler;
1007
ff08f76d
PE
1008/*
1009 * Check that the hpet counter c1 is ahead of the c2
1010 */
1011static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1012{
1013 return (s32)(c2 - c1) < 0;
1014}
1015
1bdbdaac
BW
1016/*
1017 * Registers a IRQ handler.
1018 */
1019int hpet_register_irq_handler(rtc_irq_handler handler)
1020{
1021 if (!is_hpet_enabled())
1022 return -ENODEV;
1023 if (irq_handler)
1024 return -EBUSY;
1025
1026 irq_handler = handler;
1027
1028 return 0;
1029}
1030EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1031
1032/*
1033 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1034 * and does cleanup.
1035 */
1036void hpet_unregister_irq_handler(rtc_irq_handler handler)
1037{
1038 if (!is_hpet_enabled())
1039 return;
1040
1041 irq_handler = NULL;
1042 hpet_rtc_flags = 0;
1043}
1044EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1045
e9e2cdb4
TG
1046/*
1047 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1048 * is not supported by all HPET implementations for timer 1.
1049 *
1050 * hpet_rtc_timer_init() is called when the rtc is initialized.
1051 */
1052int hpet_rtc_timer_init(void)
1053{
5946fa3d
JB
1054 unsigned int cfg, cnt, delta;
1055 unsigned long flags;
e9e2cdb4
TG
1056
1057 if (!is_hpet_enabled())
1058 return 0;
1059
1060 if (!hpet_default_delta) {
1061 uint64_t clc;
1062
1063 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1064 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1065 hpet_default_delta = clc;
e9e2cdb4
TG
1066 }
1067
1068 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1069 delta = hpet_default_delta;
1070 else
1071 delta = hpet_pie_delta;
1072
1073 local_irq_save(flags);
1074
1075 cnt = delta + hpet_readl(HPET_COUNTER);
1076 hpet_writel(cnt, HPET_T1_CMP);
1077 hpet_t1_cmp = cnt;
1078
1079 cfg = hpet_readl(HPET_T1_CFG);
1080 cfg &= ~HPET_TN_PERIODIC;
1081 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1082 hpet_writel(cfg, HPET_T1_CFG);
1083
1084 local_irq_restore(flags);
1085
1086 return 1;
1087}
1bdbdaac 1088EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
1089
1090/*
1091 * The functions below are called from rtc driver.
1092 * Return 0 if HPET is not being used.
1093 * Otherwise do the necessary changes and return 1.
1094 */
1095int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1096{
1097 if (!is_hpet_enabled())
1098 return 0;
1099
1100 hpet_rtc_flags &= ~bit_mask;
1101 return 1;
1102}
1bdbdaac 1103EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1104
1105int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1106{
1107 unsigned long oldbits = hpet_rtc_flags;
1108
1109 if (!is_hpet_enabled())
1110 return 0;
1111
1112 hpet_rtc_flags |= bit_mask;
1113
7e2a31da
DB
1114 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1115 hpet_prev_update_sec = -1;
1116
e9e2cdb4
TG
1117 if (!oldbits)
1118 hpet_rtc_timer_init();
1119
1120 return 1;
1121}
1bdbdaac 1122EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1123
1124int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1125 unsigned char sec)
1126{
1127 if (!is_hpet_enabled())
1128 return 0;
1129
1130 hpet_alarm_time.tm_hour = hrs;
1131 hpet_alarm_time.tm_min = min;
1132 hpet_alarm_time.tm_sec = sec;
1133
1134 return 1;
1135}
1bdbdaac 1136EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1137
1138int hpet_set_periodic_freq(unsigned long freq)
1139{
1140 uint64_t clc;
1141
1142 if (!is_hpet_enabled())
1143 return 0;
1144
1145 if (freq <= DEFAULT_RTC_INT_FREQ)
1146 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1147 else {
1148 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1149 do_div(clc, freq);
1150 clc >>= hpet_clockevent.shift;
5946fa3d 1151 hpet_pie_delta = clc;
e9e2cdb4
TG
1152 }
1153 return 1;
1154}
1bdbdaac 1155EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1156
1157int hpet_rtc_dropped_irq(void)
1158{
1159 return is_hpet_enabled();
1160}
1bdbdaac 1161EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1162
1163static void hpet_rtc_timer_reinit(void)
1164{
5946fa3d 1165 unsigned int cfg, delta;
e9e2cdb4
TG
1166 int lost_ints = -1;
1167
1168 if (unlikely(!hpet_rtc_flags)) {
1169 cfg = hpet_readl(HPET_T1_CFG);
1170 cfg &= ~HPET_TN_ENABLE;
1171 hpet_writel(cfg, HPET_T1_CFG);
1172 return;
1173 }
1174
1175 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1176 delta = hpet_default_delta;
1177 else
1178 delta = hpet_pie_delta;
1179
1180 /*
1181 * Increment the comparator value until we are ahead of the
1182 * current count.
1183 */
1184 do {
1185 hpet_t1_cmp += delta;
1186 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1187 lost_ints++;
ff08f76d 1188 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1189
1190 if (lost_ints) {
1191 if (hpet_rtc_flags & RTC_PIE)
1192 hpet_pie_count += lost_ints;
1193 if (printk_ratelimit())
7e2a31da 1194 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1195 lost_ints);
1196 }
1197}
1198
1199irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1200{
1201 struct rtc_time curr_time;
1202 unsigned long rtc_int_flag = 0;
1203
1204 hpet_rtc_timer_reinit();
1bdbdaac 1205 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1206
1207 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1208 get_rtc_time(&curr_time);
e9e2cdb4
TG
1209
1210 if (hpet_rtc_flags & RTC_UIE &&
1211 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1212 if (hpet_prev_update_sec >= 0)
1213 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1214 hpet_prev_update_sec = curr_time.tm_sec;
1215 }
1216
1217 if (hpet_rtc_flags & RTC_PIE &&
1218 ++hpet_pie_count >= hpet_pie_limit) {
1219 rtc_int_flag |= RTC_PF;
1220 hpet_pie_count = 0;
1221 }
1222
8ee291f8 1223 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1224 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1225 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1226 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1227 rtc_int_flag |= RTC_AF;
1228
1229 if (rtc_int_flag) {
1230 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1231 if (irq_handler)
1232 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1233 }
1234 return IRQ_HANDLED;
1235}
1bdbdaac 1236EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1237#endif