x86/fpu: Use 'struct fpu' in fpu_copy()
[linux-2.6-block.git] / arch / x86 / kernel / fpu / core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
1361b83a 8#include <asm/fpu-internal.h>
1da177e4 9
085cc281
IM
10/*
11 * Track whether the kernel is using the FPU state
12 * currently.
13 *
14 * This flag is used:
15 *
16 * - by IRQ context code to potentially use the FPU
17 * if it's unused.
18 *
19 * - to debug kernel_fpu_begin()/end() correctness
20 */
14e153ef
ON
21static DEFINE_PER_CPU(bool, in_kernel_fpu);
22
b0c050c5 23/*
36b544dc 24 * Track which context is using the FPU on the CPU:
b0c050c5 25 */
36b544dc 26DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
b0c050c5 27
416d49ac 28static void kernel_fpu_disable(void)
7575637a
ON
29{
30 WARN_ON(this_cpu_read(in_kernel_fpu));
31 this_cpu_write(in_kernel_fpu, true);
32}
33
416d49ac 34static void kernel_fpu_enable(void)
7575637a 35{
3103ae3a 36 WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu));
7575637a
ON
37 this_cpu_write(in_kernel_fpu, false);
38}
39
085cc281
IM
40static bool kernel_fpu_disabled(void)
41{
42 return this_cpu_read(in_kernel_fpu);
43}
44
8546c008
LT
45/*
46 * Were we in an interrupt that interrupted kernel mode?
47 *
304bceda 48 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
8546c008
LT
49 * pair does nothing at all: the thread must not have fpu (so
50 * that we don't try to save the FPU state), and TS must
51 * be set (so that the clts/stts pair does nothing that is
52 * visible in the interrupted kernel thread).
5187b28f 53 *
4b2e762e
ON
54 * Except for the eagerfpu case when we return true; in the likely case
55 * the thread has FPU but we are not going to set/clear TS.
8546c008 56 */
416d49ac 57static bool interrupted_kernel_fpu_idle(void)
8546c008 58{
085cc281 59 if (kernel_fpu_disabled())
14e153ef
ON
60 return false;
61
5d2bd700 62 if (use_eager_fpu())
4b2e762e 63 return true;
304bceda 64
276983f8 65 return !current->thread.fpu.has_fpu && (read_cr0() & X86_CR0_TS);
8546c008
LT
66}
67
68/*
69 * Were we in user mode (or vm86 mode) when we were
70 * interrupted?
71 *
72 * Doing kernel_fpu_begin/end() is ok if we are running
73 * in an interrupt context from user mode - we'll just
74 * save the FPU state as required.
75 */
416d49ac 76static bool interrupted_user_mode(void)
8546c008
LT
77{
78 struct pt_regs *regs = get_irq_regs();
f39b6f0e 79 return regs && user_mode(regs);
8546c008
LT
80}
81
82/*
83 * Can we use the FPU in kernel mode with the
84 * whole "kernel_fpu_begin/end()" sequence?
85 *
86 * It's always ok in process context (ie "not interrupt")
87 * but it is sometimes ok even from an irq.
88 */
89bool irq_fpu_usable(void)
90{
91 return !in_interrupt() ||
92 interrupted_user_mode() ||
93 interrupted_kernel_fpu_idle();
94}
95EXPORT_SYMBOL(irq_fpu_usable);
96
b1a74bf8 97void __kernel_fpu_begin(void)
8546c008 98{
36b544dc 99 struct fpu *fpu = &current->thread.fpu;
8546c008 100
3103ae3a 101 kernel_fpu_disable();
14e153ef 102
276983f8
IM
103 if (fpu->has_fpu) {
104 fpu_save_init(fpu);
7aeccb83 105 } else {
36b544dc 106 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
7aeccb83
ON
107 if (!use_eager_fpu())
108 clts();
8546c008
LT
109 }
110}
b1a74bf8 111EXPORT_SYMBOL(__kernel_fpu_begin);
8546c008 112
b1a74bf8 113void __kernel_fpu_end(void)
8546c008 114{
af2d94fd 115 struct fpu *fpu = &current->thread.fpu;
33a3ebdc 116
276983f8 117 if (fpu->has_fpu) {
11f2d50b 118 if (WARN_ON(restore_fpu_checking(fpu)))
af2d94fd 119 fpu_reset_state(fpu);
33a3ebdc 120 } else if (!use_eager_fpu()) {
304bceda 121 stts();
731bd6a9 122 }
14e153ef 123
3103ae3a 124 kernel_fpu_enable();
8546c008 125}
b1a74bf8 126EXPORT_SYMBOL(__kernel_fpu_end);
8546c008 127
a4d8fc2e 128static void __save_fpu(struct fpu *fpu)
2d75bcf3
IM
129{
130 if (use_xsave()) {
131 if (unlikely(system_state == SYSTEM_BOOTING))
a4d8fc2e 132 xsave_state_booting(&fpu->state->xsave);
2d75bcf3 133 else
a4d8fc2e 134 xsave_state(&fpu->state->xsave);
2d75bcf3 135 } else {
a4d8fc2e 136 fpu_fxsave(fpu);
2d75bcf3
IM
137 }
138}
139
4af08f2f
IM
140/*
141 * Save the FPU state (initialize it if necessary):
87cdb98a
IM
142 *
143 * This only ever gets called for the current task.
4af08f2f 144 */
0c070595 145void fpu__save(struct fpu *fpu)
8546c008 146{
0c070595 147 WARN_ON(fpu != &current->thread.fpu);
87cdb98a 148
8546c008 149 preempt_disable();
276983f8 150 if (fpu->has_fpu) {
1a2a7f4e 151 if (use_eager_fpu()) {
a4d8fc2e 152 __save_fpu(fpu);
1a2a7f4e 153 } else {
276983f8 154 fpu_save_init(fpu);
35191e3f 155 __thread_fpu_end(fpu);
1a2a7f4e 156 }
a9241ea5 157 }
8546c008
LT
158 preempt_enable();
159}
4af08f2f 160EXPORT_SYMBOL_GPL(fpu__save);
8546c008 161
c0ee2cf6 162void fpstate_init(struct fpu *fpu)
1da177e4 163{
60e019eb 164 if (!cpu_has_fpu) {
86603283
AK
165 finit_soft_fpu(&fpu->state->soft);
166 return;
e8a496ac 167 }
e8a496ac 168
1d23c451
ON
169 memset(fpu->state, 0, xstate_size);
170
1da177e4 171 if (cpu_has_fxsr) {
5d2bd700 172 fx_finit(&fpu->state->fxsave);
1da177e4 173 } else {
86603283 174 struct i387_fsave_struct *fp = &fpu->state->fsave;
61c4628b
SS
175 fp->cwd = 0xffff037fu;
176 fp->swd = 0xffff0000u;
177 fp->twd = 0xffffffffu;
178 fp->fos = 0xffff0000u;
1da177e4 179 }
86603283 180}
c0ee2cf6 181EXPORT_SYMBOL_GPL(fpstate_init);
86603283 182
8ffb53ab
IM
183/*
184 * FPU state allocation:
185 */
f55f88e2 186static struct kmem_cache *task_xstate_cachep;
8ffb53ab
IM
187
188void fpstate_cache_init(void)
189{
190 task_xstate_cachep =
191 kmem_cache_create("task_xstate", xstate_size,
192 __alignof__(union thread_xstate),
193 SLAB_PANIC | SLAB_NOTRACK, NULL);
194 setup_xstate_comp();
195}
196
ed97b085 197int fpstate_alloc(struct fpu *fpu)
6fbe6712
IM
198{
199 if (fpu->state)
200 return 0;
ed97b085 201
6fbe6712
IM
202 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
203 if (!fpu->state)
204 return -ENOMEM;
ed97b085
IM
205
206 /* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
6fbe6712 207 WARN_ON((unsigned long)fpu->state & 15);
ed97b085 208
6fbe6712
IM
209 return 0;
210}
ed97b085 211EXPORT_SYMBOL_GPL(fpstate_alloc);
6fbe6712 212
5a12bf63
IM
213void fpstate_free(struct fpu *fpu)
214{
215 if (fpu->state) {
216 kmem_cache_free(task_xstate_cachep, fpu->state);
217 fpu->state = NULL;
218 }
219}
220EXPORT_SYMBOL_GPL(fpstate_free);
221
bfd6fc05
IM
222/*
223 * Copy the current task's FPU state to a new task's FPU context.
224 *
225 * In the 'eager' case we just save to the destination context.
226 *
227 * In the 'lazy' case we save to the source context, mark the FPU lazy
228 * via stts() and copy the source context into the destination context.
229 */
f9bc977f 230static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
e102f30f 231{
f9bc977f 232 WARN_ON(src_fpu != &current->thread.fpu);
bfd6fc05 233
e102f30f 234 if (use_eager_fpu()) {
f9bc977f 235 memset(&dst_fpu->state->xsave, 0, xstate_size);
a4d8fc2e 236 __save_fpu(dst_fpu);
e102f30f 237 } else {
0c070595 238 fpu__save(src_fpu);
a4d8fc2e 239 memcpy(dst_fpu->state, src_fpu->state, xstate_size);
e102f30f
IM
240 }
241}
242
a752b53d
IM
243int fpu__copy(struct task_struct *dst, struct task_struct *src)
244{
c5bedc68
IM
245 struct fpu *dst_fpu = &dst->thread.fpu;
246 struct fpu *src_fpu = &src->thread.fpu;
247
a752b53d
IM
248 dst->thread.fpu.counter = 0;
249 dst->thread.fpu.has_fpu = 0;
250 dst->thread.fpu.state = NULL;
eb6a3251 251 dst->thread.fpu.last_cpu = -1;
a752b53d 252
c5bedc68
IM
253 if (src_fpu->fpstate_active) {
254 int err = fpstate_alloc(dst_fpu);
a752b53d
IM
255
256 if (err)
257 return err;
f9bc977f 258 fpu_copy(dst_fpu, src_fpu);
a752b53d
IM
259 }
260 return 0;
261}
262
97185c95
IM
263/*
264 * Allocate the backing store for the current task's FPU registers
265 * and initialize the registers themselves as well.
266 *
267 * Can fail.
268 */
269int fpstate_alloc_init(struct task_struct *curr)
270{
c5bedc68 271 struct fpu *fpu = &curr->thread.fpu;
97185c95
IM
272 int ret;
273
274 if (WARN_ON_ONCE(curr != current))
275 return -EINVAL;
c5bedc68 276 if (WARN_ON_ONCE(fpu->fpstate_active))
97185c95
IM
277 return -EINVAL;
278
279 /*
280 * Memory allocation at the first usage of the FPU and other state.
281 */
ed97b085 282 ret = fpstate_alloc(&curr->thread.fpu);
97185c95
IM
283 if (ret)
284 return ret;
285
c0ee2cf6 286 fpstate_init(&curr->thread.fpu);
97185c95
IM
287
288 /* Safe to do for the current task: */
c5bedc68 289 fpu->fpstate_active = 1;
97185c95
IM
290
291 return 0;
292}
293EXPORT_SYMBOL_GPL(fpstate_alloc_init);
294
86603283 295/*
af7f8721
IM
296 * This function is called before we modify a stopped child's
297 * FPU state context.
298 *
299 * If the child has not used the FPU before then initialize its
300 * FPU context.
301 *
302 * If the child has used the FPU before then unlazy it.
303 *
304 * [ After this function call, after the context is modified and
305 * the child task is woken up, the child task will restore
306 * the modified FPU state from the modified context. If we
307 * didn't clear its lazy status here then the lazy in-registers
308 * state pending on its former CPU could be restored, losing
309 * the modifications. ]
310 *
311 * This function is also called before we read a stopped child's
312 * FPU state - to make sure it's modified.
313 *
314 * TODO: A future optimization would be to skip the unlazying in
315 * the read-only case, it's not strictly necessary for
316 * read-only access to the context.
86603283 317 */
67e97fc2 318static int fpu__unlazy_stopped(struct task_struct *child)
86603283 319{
c5bedc68 320 struct fpu *child_fpu = &child->thread.fpu;
86603283
AK
321 int ret;
322
67e97fc2
IM
323 if (WARN_ON_ONCE(child == current))
324 return -EINVAL;
325
c5bedc68 326 if (child_fpu->fpstate_active) {
eb6a3251 327 child->thread.fpu.last_cpu = -1;
86603283
AK
328 return 0;
329 }
330
44210111 331 /*
86603283 332 * Memory allocation at the first usage of the FPU and other state.
44210111 333 */
ed97b085 334 ret = fpstate_alloc(&child->thread.fpu);
86603283
AK
335 if (ret)
336 return ret;
337
c0ee2cf6 338 fpstate_init(&child->thread.fpu);
86603283 339
071ae621 340 /* Safe to do for stopped child tasks: */
c5bedc68 341 child_fpu->fpstate_active = 1;
071ae621 342
aa283f49 343 return 0;
1da177e4
LT
344}
345
93b90712 346/*
3a0aee48 347 * 'fpu__restore()' saves the current math information in the
93b90712
IM
348 * old math state array, and gets the new ones from the current task
349 *
350 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
351 * Don't touch unless you *really* know how it works.
352 *
353 * Must be called with kernel preemption disabled (eg with local
354 * local interrupts as in the case of do_device_not_available).
355 */
3a0aee48 356void fpu__restore(void)
93b90712
IM
357{
358 struct task_struct *tsk = current;
4540d3fa 359 struct fpu *fpu = &tsk->thread.fpu;
93b90712 360
c5bedc68 361 if (!fpu->fpstate_active) {
93b90712
IM
362 local_irq_enable();
363 /*
364 * does a slab alloc which can sleep
365 */
366 if (fpstate_alloc_init(tsk)) {
367 /*
368 * ran out of memory!
369 */
370 do_group_exit(SIGKILL);
371 return;
372 }
373 local_irq_disable();
374 }
375
376 /* Avoid __kernel_fpu_begin() right after __thread_fpu_begin() */
377 kernel_fpu_disable();
4540d3fa 378 __thread_fpu_begin(fpu);
11f2d50b 379 if (unlikely(restore_fpu_checking(fpu))) {
af2d94fd 380 fpu_reset_state(fpu);
93b90712
IM
381 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
382 } else {
383 tsk->thread.fpu.counter++;
384 }
385 kernel_fpu_enable();
386}
3a0aee48 387EXPORT_SYMBOL_GPL(fpu__restore);
93b90712 388
81683cc8
IM
389void fpu__flush_thread(struct task_struct *tsk)
390{
c5bedc68
IM
391 struct fpu *fpu = &tsk->thread.fpu;
392
4c138410
IM
393 WARN_ON(tsk != current);
394
81683cc8
IM
395 if (!use_eager_fpu()) {
396 /* FPU state will be reallocated lazily at the first use. */
ca6787ba 397 drop_fpu(fpu);
81683cc8
IM
398 fpstate_free(&tsk->thread.fpu);
399 } else {
c5bedc68 400 if (!fpu->fpstate_active) {
81683cc8
IM
401 /* kthread execs. TODO: cleanup this horror. */
402 if (WARN_ON(fpstate_alloc_init(tsk)))
403 force_sig(SIGKILL, tsk);
404 user_fpu_begin();
405 }
406 restore_init_xstate();
407 }
408}
409
5b3efd50
SS
410/*
411 * The xstateregs_active() routine is the same as the fpregs_active() routine,
412 * as the "regset->n" for the xstate regset will be updated based on the feature
413 * capabilites supported by the xsave.
414 */
44210111
RM
415int fpregs_active(struct task_struct *target, const struct user_regset *regset)
416{
c5bedc68
IM
417 struct fpu *target_fpu = &target->thread.fpu;
418
419 return target_fpu->fpstate_active ? regset->n : 0;
44210111 420}
1da177e4 421
44210111 422int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
1da177e4 423{
c5bedc68
IM
424 struct fpu *target_fpu = &target->thread.fpu;
425
426 return (cpu_has_fxsr && target_fpu->fpstate_active) ? regset->n : 0;
44210111 427}
1da177e4 428
44210111
RM
429int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
430 unsigned int pos, unsigned int count,
431 void *kbuf, void __user *ubuf)
432{
aa283f49
SS
433 int ret;
434
44210111
RM
435 if (!cpu_has_fxsr)
436 return -ENODEV;
437
67e97fc2 438 ret = fpu__unlazy_stopped(target);
aa283f49
SS
439 if (ret)
440 return ret;
44210111 441
29104e10
SS
442 sanitize_i387_state(target);
443
44210111 444 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
86603283 445 &target->thread.fpu.state->fxsave, 0, -1);
1da177e4 446}
44210111
RM
447
448int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
449 unsigned int pos, unsigned int count,
450 const void *kbuf, const void __user *ubuf)
451{
452 int ret;
453
454 if (!cpu_has_fxsr)
455 return -ENODEV;
456
67e97fc2 457 ret = fpu__unlazy_stopped(target);
aa283f49
SS
458 if (ret)
459 return ret;
460
29104e10
SS
461 sanitize_i387_state(target);
462
44210111 463 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
86603283 464 &target->thread.fpu.state->fxsave, 0, -1);
44210111
RM
465
466 /*
467 * mxcsr reserved bits must be masked to zero for security reasons.
468 */
86603283 469 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
44210111 470
42deec6f
SS
471 /*
472 * update the header bits in the xsave header, indicating the
473 * presence of FP and SSE state.
474 */
475 if (cpu_has_xsave)
86603283 476 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
42deec6f 477
44210111
RM
478 return ret;
479}
480
5b3efd50
SS
481int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
482 unsigned int pos, unsigned int count,
483 void *kbuf, void __user *ubuf)
484{
18ecb3bf 485 struct xsave_struct *xsave;
5b3efd50
SS
486 int ret;
487
488 if (!cpu_has_xsave)
489 return -ENODEV;
490
67e97fc2 491 ret = fpu__unlazy_stopped(target);
5b3efd50
SS
492 if (ret)
493 return ret;
494
18ecb3bf
BP
495 xsave = &target->thread.fpu.state->xsave;
496
5b3efd50 497 /*
ff7fbc72
SS
498 * Copy the 48bytes defined by the software first into the xstate
499 * memory layout in the thread struct, so that we can copy the entire
500 * xstateregs to the user using one user_regset_copyout().
5b3efd50 501 */
e7f180dc
ON
502 memcpy(&xsave->i387.sw_reserved,
503 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
5b3efd50 504 /*
ff7fbc72 505 * Copy the xstate memory layout.
5b3efd50 506 */
e7f180dc 507 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
5b3efd50
SS
508 return ret;
509}
510
511int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
512 unsigned int pos, unsigned int count,
513 const void *kbuf, const void __user *ubuf)
514{
18ecb3bf 515 struct xsave_struct *xsave;
5b3efd50 516 int ret;
5b3efd50
SS
517
518 if (!cpu_has_xsave)
519 return -ENODEV;
520
67e97fc2 521 ret = fpu__unlazy_stopped(target);
5b3efd50
SS
522 if (ret)
523 return ret;
524
18ecb3bf
BP
525 xsave = &target->thread.fpu.state->xsave;
526
e7f180dc 527 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
5b3efd50
SS
528 /*
529 * mxcsr reserved bits must be masked to zero for security reasons.
530 */
e7f180dc
ON
531 xsave->i387.mxcsr &= mxcsr_feature_mask;
532 xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
5b3efd50
SS
533 /*
534 * These bits must be zero.
535 */
e7f180dc 536 memset(&xsave->xsave_hdr.reserved, 0, 48);
5b3efd50
SS
537 return ret;
538}
539
44210111 540#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
1da177e4 541
1da177e4
LT
542/*
543 * FPU tag word conversions.
544 */
545
3b095a04 546static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
1da177e4
LT
547{
548 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
3b095a04 549
1da177e4 550 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
3b095a04 551 tmp = ~twd;
44210111 552 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
3b095a04
CG
553 /* and move the valid bits to the lower byte. */
554 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
555 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
556 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
f668964e 557
3b095a04 558 return tmp;
1da177e4
LT
559}
560
497888cf 561#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
44210111
RM
562#define FP_EXP_TAG_VALID 0
563#define FP_EXP_TAG_ZERO 1
564#define FP_EXP_TAG_SPECIAL 2
565#define FP_EXP_TAG_EMPTY 3
566
567static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
568{
569 struct _fpxreg *st;
570 u32 tos = (fxsave->swd >> 11) & 7;
571 u32 twd = (unsigned long) fxsave->twd;
572 u32 tag;
573 u32 ret = 0xffff0000u;
574 int i;
1da177e4 575
44210111 576 for (i = 0; i < 8; i++, twd >>= 1) {
3b095a04
CG
577 if (twd & 0x1) {
578 st = FPREG_ADDR(fxsave, (i - tos) & 7);
1da177e4 579
3b095a04 580 switch (st->exponent & 0x7fff) {
1da177e4 581 case 0x7fff:
44210111 582 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
583 break;
584 case 0x0000:
3b095a04
CG
585 if (!st->significand[0] &&
586 !st->significand[1] &&
587 !st->significand[2] &&
44210111
RM
588 !st->significand[3])
589 tag = FP_EXP_TAG_ZERO;
590 else
591 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
592 break;
593 default:
44210111
RM
594 if (st->significand[3] & 0x8000)
595 tag = FP_EXP_TAG_VALID;
596 else
597 tag = FP_EXP_TAG_SPECIAL;
1da177e4
LT
598 break;
599 }
600 } else {
44210111 601 tag = FP_EXP_TAG_EMPTY;
1da177e4 602 }
44210111 603 ret |= tag << (2 * i);
1da177e4
LT
604 }
605 return ret;
606}
607
608/*
44210111 609 * FXSR floating point environment conversions.
1da177e4
LT
610 */
611
72a671ce 612void
f668964e 613convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
1da177e4 614{
86603283 615 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
44210111
RM
616 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
617 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
618 int i;
1da177e4 619
44210111
RM
620 env->cwd = fxsave->cwd | 0xffff0000u;
621 env->swd = fxsave->swd | 0xffff0000u;
622 env->twd = twd_fxsr_to_i387(fxsave);
623
624#ifdef CONFIG_X86_64
625 env->fip = fxsave->rip;
626 env->foo = fxsave->rdp;
10c11f30
BG
627 /*
628 * should be actually ds/cs at fpu exception time, but
629 * that information is not available in 64bit mode.
630 */
631 env->fcs = task_pt_regs(tsk)->cs;
44210111 632 if (tsk == current) {
10c11f30 633 savesegment(ds, env->fos);
1da177e4 634 } else {
10c11f30 635 env->fos = tsk->thread.ds;
1da177e4 636 }
10c11f30 637 env->fos |= 0xffff0000;
44210111
RM
638#else
639 env->fip = fxsave->fip;
609b5297 640 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
44210111
RM
641 env->foo = fxsave->foo;
642 env->fos = fxsave->fos;
643#endif
1da177e4 644
44210111
RM
645 for (i = 0; i < 8; ++i)
646 memcpy(&to[i], &from[i], sizeof(to[0]));
1da177e4
LT
647}
648
72a671ce
SS
649void convert_to_fxsr(struct task_struct *tsk,
650 const struct user_i387_ia32_struct *env)
1da177e4 651
1da177e4 652{
86603283 653 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
44210111
RM
654 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
655 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
656 int i;
1da177e4 657
44210111
RM
658 fxsave->cwd = env->cwd;
659 fxsave->swd = env->swd;
660 fxsave->twd = twd_i387_to_fxsr(env->twd);
661 fxsave->fop = (u16) ((u32) env->fcs >> 16);
662#ifdef CONFIG_X86_64
663 fxsave->rip = env->fip;
664 fxsave->rdp = env->foo;
665 /* cs and ds ignored */
666#else
667 fxsave->fip = env->fip;
668 fxsave->fcs = (env->fcs & 0xffff);
669 fxsave->foo = env->foo;
670 fxsave->fos = env->fos;
671#endif
1da177e4 672
44210111
RM
673 for (i = 0; i < 8; ++i)
674 memcpy(&to[i], &from[i], sizeof(from[0]));
1da177e4
LT
675}
676
44210111
RM
677int fpregs_get(struct task_struct *target, const struct user_regset *regset,
678 unsigned int pos, unsigned int count,
679 void *kbuf, void __user *ubuf)
1da177e4 680{
44210111 681 struct user_i387_ia32_struct env;
aa283f49 682 int ret;
1da177e4 683
67e97fc2 684 ret = fpu__unlazy_stopped(target);
aa283f49
SS
685 if (ret)
686 return ret;
1da177e4 687
60e019eb 688 if (!static_cpu_has(X86_FEATURE_FPU))
e8a496ac
SS
689 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
690
60e019eb 691 if (!cpu_has_fxsr)
44210111 692 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
86603283 693 &target->thread.fpu.state->fsave, 0,
61c4628b 694 -1);
1da177e4 695
29104e10
SS
696 sanitize_i387_state(target);
697
44210111
RM
698 if (kbuf && pos == 0 && count == sizeof(env)) {
699 convert_from_fxsr(kbuf, target);
700 return 0;
1da177e4 701 }
44210111
RM
702
703 convert_from_fxsr(&env, target);
f668964e 704
44210111 705 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
1da177e4
LT
706}
707
44210111
RM
708int fpregs_set(struct task_struct *target, const struct user_regset *regset,
709 unsigned int pos, unsigned int count,
710 const void *kbuf, const void __user *ubuf)
1da177e4 711{
44210111
RM
712 struct user_i387_ia32_struct env;
713 int ret;
1da177e4 714
67e97fc2 715 ret = fpu__unlazy_stopped(target);
aa283f49
SS
716 if (ret)
717 return ret;
718
29104e10
SS
719 sanitize_i387_state(target);
720
60e019eb 721 if (!static_cpu_has(X86_FEATURE_FPU))
e8a496ac
SS
722 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
723
60e019eb 724 if (!cpu_has_fxsr)
44210111 725 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
60e019eb
PA
726 &target->thread.fpu.state->fsave, 0,
727 -1);
44210111
RM
728
729 if (pos > 0 || count < sizeof(env))
730 convert_from_fxsr(&env, target);
731
732 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
733 if (!ret)
734 convert_to_fxsr(target, &env);
735
42deec6f
SS
736 /*
737 * update the header bit in the xsave header, indicating the
738 * presence of FP.
739 */
740 if (cpu_has_xsave)
86603283 741 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
44210111 742 return ret;
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * FPU state for core dumps.
60b3b9af
RM
747 * This is only used for a.out dumps now.
748 * It is declared generically using elf_fpregset_t (which is
749 * struct user_i387_struct) but is in fact only used for 32-bit
750 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
1da177e4 751 */
c5bedc68 752int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
1da177e4 753{
1da177e4 754 struct task_struct *tsk = current;
c5bedc68 755 struct fpu *fpu = &tsk->thread.fpu;
f668964e 756 int fpvalid;
1da177e4 757
c5bedc68 758 fpvalid = fpu->fpstate_active;
60b3b9af
RM
759 if (fpvalid)
760 fpvalid = !fpregs_get(tsk, NULL,
761 0, sizeof(struct user_i387_ia32_struct),
c5bedc68 762 ufpu, NULL);
1da177e4
LT
763
764 return fpvalid;
765}
129f6946 766EXPORT_SYMBOL(dump_fpu);
1da177e4 767
60b3b9af 768#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */