perf/x86: Make merge_attr() global to use from perf_event_intel
[linux-2.6-block.git] / arch / x86 / kernel / cpu / perf_event_intel.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
b37609c3 15#include <linux/watchdog.h>
de0428a7 16
3a632cb2 17#include <asm/cpufeature.h>
de0428a7
KW
18#include <asm/hardirq.h>
19#include <asm/apic.h>
20
21#include "perf_event.h"
a7e3ed1e 22
f22f54f4 23/*
b622d644 24 * Intel PerfMon, used on Core and later.
f22f54f4 25 */
ec75a716 26static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 27{
c3b7cdf1
PE
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
36};
37
5c543e3c 38static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
39{
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47};
48
5c543e3c 49static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 50{
b622d644
PZ
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65};
66
5c543e3c 67static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 68{
b622d644
PZ
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81};
82
5c543e3c 83static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 84{
53ad0447
YZ
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
f20093ee 87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
88 EVENT_EXTRA_END
89};
90
5c543e3c 91static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 92{
b622d644
PZ
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
100 EVENT_CONSTRAINT_END
101};
102
5c543e3c 103static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
104{
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
f8378f52
AK
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
93fcf72c
MD
117
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
b06b3d49
LM
123 EVENT_CONSTRAINT_END
124};
125
69943182
SE
126static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127{
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
6113af14 134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
69943182
SE
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
93fcf72c
MD
141
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
69943182
SE
147 EVENT_CONSTRAINT_END
148};
149
5c543e3c 150static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 151{
53ad0447
YZ
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
f20093ee 155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
156 EVENT_EXTRA_END
157};
158
0af3ac1f
AK
159static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160{
161 EVENT_CONSTRAINT_END
162};
163
5c543e3c 164static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 165{
b622d644
PZ
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
169 EVENT_CONSTRAINT_END
170};
171
1fa64180
YZ
172static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173{
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
1fa64180
YZ
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 EVENT_CONSTRAINT_END
178};
179
9a92e16f
AK
180struct event_constraint intel_skl_event_constraints[] = {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
185 EVENT_CONSTRAINT_END
186};
187
ee89cbc2 188static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
53ad0447
YZ
189 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
191 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
f20093ee 192 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
f1923820
SE
193 EVENT_EXTRA_END
194};
195
196static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
53ad0447
YZ
197 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
199 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
f1a52789 200 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
ee89cbc2
SE
201 EVENT_EXTRA_END
202};
203
9a92e16f
AK
204static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
205 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
206 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
207 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
208 EVENT_EXTRA_END
209};
210
7f2ee91f
IM
211EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
212EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
213EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
f20093ee
SE
214
215struct attribute *nhm_events_attrs[] = {
216 EVENT_PTR(mem_ld_nhm),
217 NULL,
218};
219
220struct attribute *snb_events_attrs[] = {
221 EVENT_PTR(mem_ld_snb),
9ad64c0f 222 EVENT_PTR(mem_st_snb),
f20093ee
SE
223 NULL,
224};
225
3a632cb2
AK
226static struct event_constraint intel_hsw_event_constraints[] = {
227 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
228 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
229 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
230 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
231 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
232 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
233 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
c420f19b 234 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
3a632cb2 235 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
c420f19b 236 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
3a632cb2 237 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
c420f19b 238 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
93fcf72c
MD
239
240 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
241 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
242 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
243 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
244
3a632cb2
AK
245 EVENT_CONSTRAINT_END
246};
247
91f1b705
AK
248struct event_constraint intel_bdw_event_constraints[] = {
249 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
250 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
251 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
252 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
253 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
254 EVENT_CONSTRAINT_END
255};
256
f22f54f4
PZ
257static u64 intel_pmu_event_map(int hw_event)
258{
259 return intel_perfmon_event_map[hw_event];
260}
261
9a92e16f
AK
262/*
263 * Notes on the events:
264 * - data reads do not include code reads (comparable to earlier tables)
265 * - data counts include speculative execution (except L1 write, dtlb, bpu)
266 * - remote node access includes remote memory, remote cache, remote mmio.
267 * - prefetches are not included in the counts.
268 * - icache miss does not include decoded icache
269 */
270
271#define SKL_DEMAND_DATA_RD BIT_ULL(0)
272#define SKL_DEMAND_RFO BIT_ULL(1)
273#define SKL_ANY_RESPONSE BIT_ULL(16)
274#define SKL_SUPPLIER_NONE BIT_ULL(17)
275#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
276#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
277#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
278#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
279#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
280 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
281 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
282 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
283#define SKL_SPL_HIT BIT_ULL(30)
284#define SKL_SNOOP_NONE BIT_ULL(31)
285#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
286#define SKL_SNOOP_MISS BIT_ULL(33)
287#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
288#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
289#define SKL_SNOOP_HITM BIT_ULL(36)
290#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
291#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
292 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
293 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
294 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
295#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
296#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
297 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
298 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
299 SKL_SNOOP_HITM|SKL_SPL_HIT)
300#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
301#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
302#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
303 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
304 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
305
306static __initconst const u64 skl_hw_cache_event_ids
307 [PERF_COUNT_HW_CACHE_MAX]
308 [PERF_COUNT_HW_CACHE_OP_MAX]
309 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
310{
311 [ C(L1D ) ] = {
312 [ C(OP_READ) ] = {
313 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
314 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
315 },
316 [ C(OP_WRITE) ] = {
317 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
318 [ C(RESULT_MISS) ] = 0x0,
319 },
320 [ C(OP_PREFETCH) ] = {
321 [ C(RESULT_ACCESS) ] = 0x0,
322 [ C(RESULT_MISS) ] = 0x0,
323 },
324 },
325 [ C(L1I ) ] = {
326 [ C(OP_READ) ] = {
327 [ C(RESULT_ACCESS) ] = 0x0,
328 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
329 },
330 [ C(OP_WRITE) ] = {
331 [ C(RESULT_ACCESS) ] = -1,
332 [ C(RESULT_MISS) ] = -1,
333 },
334 [ C(OP_PREFETCH) ] = {
335 [ C(RESULT_ACCESS) ] = 0x0,
336 [ C(RESULT_MISS) ] = 0x0,
337 },
338 },
339 [ C(LL ) ] = {
340 [ C(OP_READ) ] = {
341 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
342 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
343 },
344 [ C(OP_WRITE) ] = {
345 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
346 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
347 },
348 [ C(OP_PREFETCH) ] = {
349 [ C(RESULT_ACCESS) ] = 0x0,
350 [ C(RESULT_MISS) ] = 0x0,
351 },
352 },
353 [ C(DTLB) ] = {
354 [ C(OP_READ) ] = {
355 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
356 [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
357 },
358 [ C(OP_WRITE) ] = {
359 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
360 [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
361 },
362 [ C(OP_PREFETCH) ] = {
363 [ C(RESULT_ACCESS) ] = 0x0,
364 [ C(RESULT_MISS) ] = 0x0,
365 },
366 },
367 [ C(ITLB) ] = {
368 [ C(OP_READ) ] = {
369 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
370 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
371 },
372 [ C(OP_WRITE) ] = {
373 [ C(RESULT_ACCESS) ] = -1,
374 [ C(RESULT_MISS) ] = -1,
375 },
376 [ C(OP_PREFETCH) ] = {
377 [ C(RESULT_ACCESS) ] = -1,
378 [ C(RESULT_MISS) ] = -1,
379 },
380 },
381 [ C(BPU ) ] = {
382 [ C(OP_READ) ] = {
383 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
384 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
385 },
386 [ C(OP_WRITE) ] = {
387 [ C(RESULT_ACCESS) ] = -1,
388 [ C(RESULT_MISS) ] = -1,
389 },
390 [ C(OP_PREFETCH) ] = {
391 [ C(RESULT_ACCESS) ] = -1,
392 [ C(RESULT_MISS) ] = -1,
393 },
394 },
395 [ C(NODE) ] = {
396 [ C(OP_READ) ] = {
397 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
398 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
399 },
400 [ C(OP_WRITE) ] = {
401 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
402 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
403 },
404 [ C(OP_PREFETCH) ] = {
405 [ C(RESULT_ACCESS) ] = 0x0,
406 [ C(RESULT_MISS) ] = 0x0,
407 },
408 },
409};
410
411static __initconst const u64 skl_hw_cache_extra_regs
412 [PERF_COUNT_HW_CACHE_MAX]
413 [PERF_COUNT_HW_CACHE_OP_MAX]
414 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
415{
416 [ C(LL ) ] = {
417 [ C(OP_READ) ] = {
418 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
419 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
420 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
421 SKL_L3_MISS|SKL_ANY_SNOOP|
422 SKL_SUPPLIER_NONE,
423 },
424 [ C(OP_WRITE) ] = {
425 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
426 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
427 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
428 SKL_L3_MISS|SKL_ANY_SNOOP|
429 SKL_SUPPLIER_NONE,
430 },
431 [ C(OP_PREFETCH) ] = {
432 [ C(RESULT_ACCESS) ] = 0x0,
433 [ C(RESULT_MISS) ] = 0x0,
434 },
435 },
436 [ C(NODE) ] = {
437 [ C(OP_READ) ] = {
438 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
439 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
440 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
441 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
442 },
443 [ C(OP_WRITE) ] = {
444 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
445 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
446 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
447 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
448 },
449 [ C(OP_PREFETCH) ] = {
450 [ C(RESULT_ACCESS) ] = 0x0,
451 [ C(RESULT_MISS) ] = 0x0,
452 },
453 },
454};
455
74e6543f
YZ
456#define SNB_DMND_DATA_RD (1ULL << 0)
457#define SNB_DMND_RFO (1ULL << 1)
458#define SNB_DMND_IFETCH (1ULL << 2)
459#define SNB_DMND_WB (1ULL << 3)
460#define SNB_PF_DATA_RD (1ULL << 4)
461#define SNB_PF_RFO (1ULL << 5)
462#define SNB_PF_IFETCH (1ULL << 6)
463#define SNB_LLC_DATA_RD (1ULL << 7)
464#define SNB_LLC_RFO (1ULL << 8)
465#define SNB_LLC_IFETCH (1ULL << 9)
466#define SNB_BUS_LOCKS (1ULL << 10)
467#define SNB_STRM_ST (1ULL << 11)
468#define SNB_OTHER (1ULL << 15)
469#define SNB_RESP_ANY (1ULL << 16)
470#define SNB_NO_SUPP (1ULL << 17)
471#define SNB_LLC_HITM (1ULL << 18)
472#define SNB_LLC_HITE (1ULL << 19)
473#define SNB_LLC_HITS (1ULL << 20)
474#define SNB_LLC_HITF (1ULL << 21)
475#define SNB_LOCAL (1ULL << 22)
476#define SNB_REMOTE (0xffULL << 23)
477#define SNB_SNP_NONE (1ULL << 31)
478#define SNB_SNP_NOT_NEEDED (1ULL << 32)
479#define SNB_SNP_MISS (1ULL << 33)
480#define SNB_NO_FWD (1ULL << 34)
481#define SNB_SNP_FWD (1ULL << 35)
482#define SNB_HITM (1ULL << 36)
483#define SNB_NON_DRAM (1ULL << 37)
484
485#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
486#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
487#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
488
489#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
490 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
491 SNB_HITM)
492
493#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
494#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
495
496#define SNB_L3_ACCESS SNB_RESP_ANY
497#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
498
499static __initconst const u64 snb_hw_cache_extra_regs
500 [PERF_COUNT_HW_CACHE_MAX]
501 [PERF_COUNT_HW_CACHE_OP_MAX]
502 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
503{
504 [ C(LL ) ] = {
505 [ C(OP_READ) ] = {
506 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
507 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
508 },
509 [ C(OP_WRITE) ] = {
510 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
511 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
512 },
513 [ C(OP_PREFETCH) ] = {
514 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
515 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
516 },
517 },
518 [ C(NODE) ] = {
519 [ C(OP_READ) ] = {
520 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
521 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
522 },
523 [ C(OP_WRITE) ] = {
524 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
525 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
526 },
527 [ C(OP_PREFETCH) ] = {
528 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
529 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
530 },
531 },
532};
533
b06b3d49
LM
534static __initconst const u64 snb_hw_cache_event_ids
535 [PERF_COUNT_HW_CACHE_MAX]
536 [PERF_COUNT_HW_CACHE_OP_MAX]
537 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
538{
539 [ C(L1D) ] = {
540 [ C(OP_READ) ] = {
541 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
542 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
543 },
544 [ C(OP_WRITE) ] = {
545 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
546 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
547 },
548 [ C(OP_PREFETCH) ] = {
549 [ C(RESULT_ACCESS) ] = 0x0,
550 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
551 },
552 },
553 [ C(L1I ) ] = {
554 [ C(OP_READ) ] = {
555 [ C(RESULT_ACCESS) ] = 0x0,
556 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
557 },
558 [ C(OP_WRITE) ] = {
559 [ C(RESULT_ACCESS) ] = -1,
560 [ C(RESULT_MISS) ] = -1,
561 },
562 [ C(OP_PREFETCH) ] = {
563 [ C(RESULT_ACCESS) ] = 0x0,
564 [ C(RESULT_MISS) ] = 0x0,
565 },
566 },
567 [ C(LL ) ] = {
b06b3d49 568 [ C(OP_READ) ] = {
63b6a675 569 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 570 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
571 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
572 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
573 },
574 [ C(OP_WRITE) ] = {
63b6a675 575 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 576 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
577 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
578 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
579 },
580 [ C(OP_PREFETCH) ] = {
63b6a675 581 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 582 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
583 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
584 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
585 },
586 },
587 [ C(DTLB) ] = {
588 [ C(OP_READ) ] = {
589 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
590 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
591 },
592 [ C(OP_WRITE) ] = {
593 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
594 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
595 },
596 [ C(OP_PREFETCH) ] = {
597 [ C(RESULT_ACCESS) ] = 0x0,
598 [ C(RESULT_MISS) ] = 0x0,
599 },
600 },
601 [ C(ITLB) ] = {
602 [ C(OP_READ) ] = {
603 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
604 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
605 },
606 [ C(OP_WRITE) ] = {
607 [ C(RESULT_ACCESS) ] = -1,
608 [ C(RESULT_MISS) ] = -1,
609 },
610 [ C(OP_PREFETCH) ] = {
611 [ C(RESULT_ACCESS) ] = -1,
612 [ C(RESULT_MISS) ] = -1,
613 },
614 },
615 [ C(BPU ) ] = {
616 [ C(OP_READ) ] = {
617 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
618 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
619 },
620 [ C(OP_WRITE) ] = {
621 [ C(RESULT_ACCESS) ] = -1,
622 [ C(RESULT_MISS) ] = -1,
623 },
624 [ C(OP_PREFETCH) ] = {
625 [ C(RESULT_ACCESS) ] = -1,
626 [ C(RESULT_MISS) ] = -1,
627 },
628 },
89d6c0b5
PZ
629 [ C(NODE) ] = {
630 [ C(OP_READ) ] = {
74e6543f
YZ
631 [ C(RESULT_ACCESS) ] = 0x01b7,
632 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
633 },
634 [ C(OP_WRITE) ] = {
74e6543f
YZ
635 [ C(RESULT_ACCESS) ] = 0x01b7,
636 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
637 },
638 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
639 [ C(RESULT_ACCESS) ] = 0x01b7,
640 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
641 },
642 },
643
b06b3d49
LM
644};
645
0f1b5ca2
AK
646/*
647 * Notes on the events:
648 * - data reads do not include code reads (comparable to earlier tables)
649 * - data counts include speculative execution (except L1 write, dtlb, bpu)
650 * - remote node access includes remote memory, remote cache, remote mmio.
651 * - prefetches are not included in the counts because they are not
652 * reliably counted.
653 */
654
655#define HSW_DEMAND_DATA_RD BIT_ULL(0)
656#define HSW_DEMAND_RFO BIT_ULL(1)
657#define HSW_ANY_RESPONSE BIT_ULL(16)
658#define HSW_SUPPLIER_NONE BIT_ULL(17)
659#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
660#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
661#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
662#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
663#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
664 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
665 HSW_L3_MISS_REMOTE_HOP2P)
666#define HSW_SNOOP_NONE BIT_ULL(31)
667#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
668#define HSW_SNOOP_MISS BIT_ULL(33)
669#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
670#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
671#define HSW_SNOOP_HITM BIT_ULL(36)
672#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
673#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
674 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
675 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
676 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
677#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
678#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
679#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
680#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
681 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
682#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
683
91f1b705
AK
684#define BDW_L3_MISS_LOCAL BIT(26)
685#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
686 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
687 HSW_L3_MISS_REMOTE_HOP2P)
688
689
0f1b5ca2
AK
690static __initconst const u64 hsw_hw_cache_event_ids
691 [PERF_COUNT_HW_CACHE_MAX]
692 [PERF_COUNT_HW_CACHE_OP_MAX]
693 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
694{
695 [ C(L1D ) ] = {
696 [ C(OP_READ) ] = {
697 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
698 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
699 },
700 [ C(OP_WRITE) ] = {
701 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
702 [ C(RESULT_MISS) ] = 0x0,
703 },
704 [ C(OP_PREFETCH) ] = {
705 [ C(RESULT_ACCESS) ] = 0x0,
706 [ C(RESULT_MISS) ] = 0x0,
707 },
708 },
709 [ C(L1I ) ] = {
710 [ C(OP_READ) ] = {
711 [ C(RESULT_ACCESS) ] = 0x0,
712 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
713 },
714 [ C(OP_WRITE) ] = {
715 [ C(RESULT_ACCESS) ] = -1,
716 [ C(RESULT_MISS) ] = -1,
717 },
718 [ C(OP_PREFETCH) ] = {
719 [ C(RESULT_ACCESS) ] = 0x0,
720 [ C(RESULT_MISS) ] = 0x0,
721 },
722 },
723 [ C(LL ) ] = {
724 [ C(OP_READ) ] = {
725 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
726 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
727 },
728 [ C(OP_WRITE) ] = {
729 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
730 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
731 },
732 [ C(OP_PREFETCH) ] = {
733 [ C(RESULT_ACCESS) ] = 0x0,
734 [ C(RESULT_MISS) ] = 0x0,
735 },
736 },
737 [ C(DTLB) ] = {
738 [ C(OP_READ) ] = {
739 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
740 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
741 },
742 [ C(OP_WRITE) ] = {
743 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
744 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
745 },
746 [ C(OP_PREFETCH) ] = {
747 [ C(RESULT_ACCESS) ] = 0x0,
748 [ C(RESULT_MISS) ] = 0x0,
749 },
750 },
751 [ C(ITLB) ] = {
752 [ C(OP_READ) ] = {
753 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
754 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
755 },
756 [ C(OP_WRITE) ] = {
757 [ C(RESULT_ACCESS) ] = -1,
758 [ C(RESULT_MISS) ] = -1,
759 },
760 [ C(OP_PREFETCH) ] = {
761 [ C(RESULT_ACCESS) ] = -1,
762 [ C(RESULT_MISS) ] = -1,
763 },
764 },
765 [ C(BPU ) ] = {
766 [ C(OP_READ) ] = {
767 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
768 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
769 },
770 [ C(OP_WRITE) ] = {
771 [ C(RESULT_ACCESS) ] = -1,
772 [ C(RESULT_MISS) ] = -1,
773 },
774 [ C(OP_PREFETCH) ] = {
775 [ C(RESULT_ACCESS) ] = -1,
776 [ C(RESULT_MISS) ] = -1,
777 },
778 },
779 [ C(NODE) ] = {
780 [ C(OP_READ) ] = {
781 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
782 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
783 },
784 [ C(OP_WRITE) ] = {
785 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
786 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
787 },
788 [ C(OP_PREFETCH) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0,
790 [ C(RESULT_MISS) ] = 0x0,
791 },
792 },
793};
794
795static __initconst const u64 hsw_hw_cache_extra_regs
796 [PERF_COUNT_HW_CACHE_MAX]
797 [PERF_COUNT_HW_CACHE_OP_MAX]
798 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
799{
800 [ C(LL ) ] = {
801 [ C(OP_READ) ] = {
802 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
803 HSW_LLC_ACCESS,
804 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
805 HSW_L3_MISS|HSW_ANY_SNOOP,
806 },
807 [ C(OP_WRITE) ] = {
808 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
809 HSW_LLC_ACCESS,
810 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
811 HSW_L3_MISS|HSW_ANY_SNOOP,
812 },
813 [ C(OP_PREFETCH) ] = {
814 [ C(RESULT_ACCESS) ] = 0x0,
815 [ C(RESULT_MISS) ] = 0x0,
816 },
817 },
818 [ C(NODE) ] = {
819 [ C(OP_READ) ] = {
820 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
821 HSW_L3_MISS_LOCAL_DRAM|
822 HSW_SNOOP_DRAM,
823 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
824 HSW_L3_MISS_REMOTE|
825 HSW_SNOOP_DRAM,
826 },
827 [ C(OP_WRITE) ] = {
828 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
829 HSW_L3_MISS_LOCAL_DRAM|
830 HSW_SNOOP_DRAM,
831 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
832 HSW_L3_MISS_REMOTE|
833 HSW_SNOOP_DRAM,
834 },
835 [ C(OP_PREFETCH) ] = {
836 [ C(RESULT_ACCESS) ] = 0x0,
837 [ C(RESULT_MISS) ] = 0x0,
838 },
839 },
840};
841
caaa8be3 842static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
843 [PERF_COUNT_HW_CACHE_MAX]
844 [PERF_COUNT_HW_CACHE_OP_MAX]
845 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
846{
847 [ C(L1D) ] = {
848 [ C(OP_READ) ] = {
849 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
850 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
851 },
852 [ C(OP_WRITE) ] = {
853 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
854 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
855 },
856 [ C(OP_PREFETCH) ] = {
857 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
858 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
859 },
860 },
861 [ C(L1I ) ] = {
862 [ C(OP_READ) ] = {
863 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
864 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
865 },
866 [ C(OP_WRITE) ] = {
867 [ C(RESULT_ACCESS) ] = -1,
868 [ C(RESULT_MISS) ] = -1,
869 },
870 [ C(OP_PREFETCH) ] = {
871 [ C(RESULT_ACCESS) ] = 0x0,
872 [ C(RESULT_MISS) ] = 0x0,
873 },
874 },
875 [ C(LL ) ] = {
876 [ C(OP_READ) ] = {
63b6a675 877 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 878 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
879 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
880 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 881 },
e994d7d2
AK
882 /*
883 * Use RFO, not WRITEBACK, because a write miss would typically occur
884 * on RFO.
885 */
f22f54f4 886 [ C(OP_WRITE) ] = {
63b6a675
PZ
887 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
888 [ C(RESULT_ACCESS) ] = 0x01b7,
889 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 890 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
891 },
892 [ C(OP_PREFETCH) ] = {
63b6a675 893 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 894 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
895 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
896 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
897 },
898 },
899 [ C(DTLB) ] = {
900 [ C(OP_READ) ] = {
901 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
902 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
903 },
904 [ C(OP_WRITE) ] = {
905 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
906 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
907 },
908 [ C(OP_PREFETCH) ] = {
909 [ C(RESULT_ACCESS) ] = 0x0,
910 [ C(RESULT_MISS) ] = 0x0,
911 },
912 },
913 [ C(ITLB) ] = {
914 [ C(OP_READ) ] = {
915 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
916 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
917 },
918 [ C(OP_WRITE) ] = {
919 [ C(RESULT_ACCESS) ] = -1,
920 [ C(RESULT_MISS) ] = -1,
921 },
922 [ C(OP_PREFETCH) ] = {
923 [ C(RESULT_ACCESS) ] = -1,
924 [ C(RESULT_MISS) ] = -1,
925 },
926 },
927 [ C(BPU ) ] = {
928 [ C(OP_READ) ] = {
929 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
930 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
931 },
932 [ C(OP_WRITE) ] = {
933 [ C(RESULT_ACCESS) ] = -1,
934 [ C(RESULT_MISS) ] = -1,
935 },
936 [ C(OP_PREFETCH) ] = {
937 [ C(RESULT_ACCESS) ] = -1,
938 [ C(RESULT_MISS) ] = -1,
939 },
940 },
89d6c0b5
PZ
941 [ C(NODE) ] = {
942 [ C(OP_READ) ] = {
943 [ C(RESULT_ACCESS) ] = 0x01b7,
944 [ C(RESULT_MISS) ] = 0x01b7,
945 },
946 [ C(OP_WRITE) ] = {
947 [ C(RESULT_ACCESS) ] = 0x01b7,
948 [ C(RESULT_MISS) ] = 0x01b7,
949 },
950 [ C(OP_PREFETCH) ] = {
951 [ C(RESULT_ACCESS) ] = 0x01b7,
952 [ C(RESULT_MISS) ] = 0x01b7,
953 },
954 },
f22f54f4
PZ
955};
956
e994d7d2 957/*
63b6a675
PZ
958 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
959 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
960 */
961
63b6a675
PZ
962#define NHM_DMND_DATA_RD (1 << 0)
963#define NHM_DMND_RFO (1 << 1)
964#define NHM_DMND_IFETCH (1 << 2)
965#define NHM_DMND_WB (1 << 3)
966#define NHM_PF_DATA_RD (1 << 4)
967#define NHM_PF_DATA_RFO (1 << 5)
968#define NHM_PF_IFETCH (1 << 6)
969#define NHM_OFFCORE_OTHER (1 << 7)
970#define NHM_UNCORE_HIT (1 << 8)
971#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
972#define NHM_OTHER_CORE_HITM (1 << 10)
973 /* reserved */
974#define NHM_REMOTE_CACHE_FWD (1 << 12)
975#define NHM_REMOTE_DRAM (1 << 13)
976#define NHM_LOCAL_DRAM (1 << 14)
977#define NHM_NON_DRAM (1 << 15)
978
87e24f4b
PZ
979#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
980#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
981
982#define NHM_DMND_READ (NHM_DMND_DATA_RD)
983#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
984#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
985
986#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 987#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 988#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
989
990static __initconst const u64 nehalem_hw_cache_extra_regs
991 [PERF_COUNT_HW_CACHE_MAX]
992 [PERF_COUNT_HW_CACHE_OP_MAX]
993 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
994{
995 [ C(LL ) ] = {
996 [ C(OP_READ) ] = {
63b6a675
PZ
997 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
998 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
999 },
1000 [ C(OP_WRITE) ] = {
63b6a675
PZ
1001 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1002 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
1003 },
1004 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
1005 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1006 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 1007 },
89d6c0b5
PZ
1008 },
1009 [ C(NODE) ] = {
1010 [ C(OP_READ) ] = {
87e24f4b
PZ
1011 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1012 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
1013 },
1014 [ C(OP_WRITE) ] = {
87e24f4b
PZ
1015 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1016 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
1017 },
1018 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
1019 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1020 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
1021 },
1022 },
e994d7d2
AK
1023};
1024
caaa8be3 1025static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
1026 [PERF_COUNT_HW_CACHE_MAX]
1027 [PERF_COUNT_HW_CACHE_OP_MAX]
1028 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1029{
1030 [ C(L1D) ] = {
1031 [ C(OP_READ) ] = {
f4929bd3
PZ
1032 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1033 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
1034 },
1035 [ C(OP_WRITE) ] = {
f4929bd3
PZ
1036 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1037 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
1038 },
1039 [ C(OP_PREFETCH) ] = {
1040 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1041 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1042 },
1043 },
1044 [ C(L1I ) ] = {
1045 [ C(OP_READ) ] = {
1046 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1047 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1048 },
1049 [ C(OP_WRITE) ] = {
1050 [ C(RESULT_ACCESS) ] = -1,
1051 [ C(RESULT_MISS) ] = -1,
1052 },
1053 [ C(OP_PREFETCH) ] = {
1054 [ C(RESULT_ACCESS) ] = 0x0,
1055 [ C(RESULT_MISS) ] = 0x0,
1056 },
1057 },
1058 [ C(LL ) ] = {
1059 [ C(OP_READ) ] = {
e994d7d2
AK
1060 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1061 [ C(RESULT_ACCESS) ] = 0x01b7,
1062 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1063 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 1064 },
e994d7d2
AK
1065 /*
1066 * Use RFO, not WRITEBACK, because a write miss would typically occur
1067 * on RFO.
1068 */
f22f54f4 1069 [ C(OP_WRITE) ] = {
e994d7d2
AK
1070 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1071 [ C(RESULT_ACCESS) ] = 0x01b7,
1072 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1073 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
1074 },
1075 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
1076 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1077 [ C(RESULT_ACCESS) ] = 0x01b7,
1078 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1079 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
1080 },
1081 },
1082 [ C(DTLB) ] = {
1083 [ C(OP_READ) ] = {
1084 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1085 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1086 },
1087 [ C(OP_WRITE) ] = {
1088 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1089 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1090 },
1091 [ C(OP_PREFETCH) ] = {
1092 [ C(RESULT_ACCESS) ] = 0x0,
1093 [ C(RESULT_MISS) ] = 0x0,
1094 },
1095 },
1096 [ C(ITLB) ] = {
1097 [ C(OP_READ) ] = {
1098 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1099 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1100 },
1101 [ C(OP_WRITE) ] = {
1102 [ C(RESULT_ACCESS) ] = -1,
1103 [ C(RESULT_MISS) ] = -1,
1104 },
1105 [ C(OP_PREFETCH) ] = {
1106 [ C(RESULT_ACCESS) ] = -1,
1107 [ C(RESULT_MISS) ] = -1,
1108 },
1109 },
1110 [ C(BPU ) ] = {
1111 [ C(OP_READ) ] = {
1112 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1113 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1114 },
1115 [ C(OP_WRITE) ] = {
1116 [ C(RESULT_ACCESS) ] = -1,
1117 [ C(RESULT_MISS) ] = -1,
1118 },
1119 [ C(OP_PREFETCH) ] = {
1120 [ C(RESULT_ACCESS) ] = -1,
1121 [ C(RESULT_MISS) ] = -1,
1122 },
1123 },
89d6c0b5
PZ
1124 [ C(NODE) ] = {
1125 [ C(OP_READ) ] = {
1126 [ C(RESULT_ACCESS) ] = 0x01b7,
1127 [ C(RESULT_MISS) ] = 0x01b7,
1128 },
1129 [ C(OP_WRITE) ] = {
1130 [ C(RESULT_ACCESS) ] = 0x01b7,
1131 [ C(RESULT_MISS) ] = 0x01b7,
1132 },
1133 [ C(OP_PREFETCH) ] = {
1134 [ C(RESULT_ACCESS) ] = 0x01b7,
1135 [ C(RESULT_MISS) ] = 0x01b7,
1136 },
1137 },
f22f54f4
PZ
1138};
1139
caaa8be3 1140static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
1141 [PERF_COUNT_HW_CACHE_MAX]
1142 [PERF_COUNT_HW_CACHE_OP_MAX]
1143 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1144{
1145 [ C(L1D) ] = {
1146 [ C(OP_READ) ] = {
1147 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1148 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1149 },
1150 [ C(OP_WRITE) ] = {
1151 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1152 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1153 },
1154 [ C(OP_PREFETCH) ] = {
1155 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1156 [ C(RESULT_MISS) ] = 0,
1157 },
1158 },
1159 [ C(L1I ) ] = {
1160 [ C(OP_READ) ] = {
1161 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1162 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1163 },
1164 [ C(OP_WRITE) ] = {
1165 [ C(RESULT_ACCESS) ] = -1,
1166 [ C(RESULT_MISS) ] = -1,
1167 },
1168 [ C(OP_PREFETCH) ] = {
1169 [ C(RESULT_ACCESS) ] = 0,
1170 [ C(RESULT_MISS) ] = 0,
1171 },
1172 },
1173 [ C(LL ) ] = {
1174 [ C(OP_READ) ] = {
1175 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1176 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1177 },
1178 [ C(OP_WRITE) ] = {
1179 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1180 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1181 },
1182 [ C(OP_PREFETCH) ] = {
1183 [ C(RESULT_ACCESS) ] = 0,
1184 [ C(RESULT_MISS) ] = 0,
1185 },
1186 },
1187 [ C(DTLB) ] = {
1188 [ C(OP_READ) ] = {
1189 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1190 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1191 },
1192 [ C(OP_WRITE) ] = {
1193 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1194 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1195 },
1196 [ C(OP_PREFETCH) ] = {
1197 [ C(RESULT_ACCESS) ] = 0,
1198 [ C(RESULT_MISS) ] = 0,
1199 },
1200 },
1201 [ C(ITLB) ] = {
1202 [ C(OP_READ) ] = {
1203 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1204 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1205 },
1206 [ C(OP_WRITE) ] = {
1207 [ C(RESULT_ACCESS) ] = -1,
1208 [ C(RESULT_MISS) ] = -1,
1209 },
1210 [ C(OP_PREFETCH) ] = {
1211 [ C(RESULT_ACCESS) ] = -1,
1212 [ C(RESULT_MISS) ] = -1,
1213 },
1214 },
1215 [ C(BPU ) ] = {
1216 [ C(OP_READ) ] = {
1217 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1218 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1219 },
1220 [ C(OP_WRITE) ] = {
1221 [ C(RESULT_ACCESS) ] = -1,
1222 [ C(RESULT_MISS) ] = -1,
1223 },
1224 [ C(OP_PREFETCH) ] = {
1225 [ C(RESULT_ACCESS) ] = -1,
1226 [ C(RESULT_MISS) ] = -1,
1227 },
1228 },
1229};
1230
caaa8be3 1231static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
1232 [PERF_COUNT_HW_CACHE_MAX]
1233 [PERF_COUNT_HW_CACHE_OP_MAX]
1234 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1235{
1236 [ C(L1D) ] = {
1237 [ C(OP_READ) ] = {
1238 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1239 [ C(RESULT_MISS) ] = 0,
1240 },
1241 [ C(OP_WRITE) ] = {
1242 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1243 [ C(RESULT_MISS) ] = 0,
1244 },
1245 [ C(OP_PREFETCH) ] = {
1246 [ C(RESULT_ACCESS) ] = 0x0,
1247 [ C(RESULT_MISS) ] = 0,
1248 },
1249 },
1250 [ C(L1I ) ] = {
1251 [ C(OP_READ) ] = {
1252 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1253 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1254 },
1255 [ C(OP_WRITE) ] = {
1256 [ C(RESULT_ACCESS) ] = -1,
1257 [ C(RESULT_MISS) ] = -1,
1258 },
1259 [ C(OP_PREFETCH) ] = {
1260 [ C(RESULT_ACCESS) ] = 0,
1261 [ C(RESULT_MISS) ] = 0,
1262 },
1263 },
1264 [ C(LL ) ] = {
1265 [ C(OP_READ) ] = {
1266 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1267 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1268 },
1269 [ C(OP_WRITE) ] = {
1270 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1271 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1272 },
1273 [ C(OP_PREFETCH) ] = {
1274 [ C(RESULT_ACCESS) ] = 0,
1275 [ C(RESULT_MISS) ] = 0,
1276 },
1277 },
1278 [ C(DTLB) ] = {
1279 [ C(OP_READ) ] = {
1280 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1281 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1282 },
1283 [ C(OP_WRITE) ] = {
1284 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1285 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1286 },
1287 [ C(OP_PREFETCH) ] = {
1288 [ C(RESULT_ACCESS) ] = 0,
1289 [ C(RESULT_MISS) ] = 0,
1290 },
1291 },
1292 [ C(ITLB) ] = {
1293 [ C(OP_READ) ] = {
1294 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1295 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1296 },
1297 [ C(OP_WRITE) ] = {
1298 [ C(RESULT_ACCESS) ] = -1,
1299 [ C(RESULT_MISS) ] = -1,
1300 },
1301 [ C(OP_PREFETCH) ] = {
1302 [ C(RESULT_ACCESS) ] = -1,
1303 [ C(RESULT_MISS) ] = -1,
1304 },
1305 },
1306 [ C(BPU ) ] = {
1307 [ C(OP_READ) ] = {
1308 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1309 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1310 },
1311 [ C(OP_WRITE) ] = {
1312 [ C(RESULT_ACCESS) ] = -1,
1313 [ C(RESULT_MISS) ] = -1,
1314 },
1315 [ C(OP_PREFETCH) ] = {
1316 [ C(RESULT_ACCESS) ] = -1,
1317 [ C(RESULT_MISS) ] = -1,
1318 },
1319 },
1320};
1321
1fa64180
YZ
1322static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1323{
1324 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
06c939c1 1325 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
ae3f011f 1326 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1fa64180
YZ
1327 EVENT_EXTRA_END
1328};
1329
1330#define SLM_DMND_READ SNB_DMND_DATA_RD
1331#define SLM_DMND_WRITE SNB_DMND_RFO
1332#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1333
1334#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1335#define SLM_LLC_ACCESS SNB_RESP_ANY
1336#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1337
1338static __initconst const u64 slm_hw_cache_extra_regs
1339 [PERF_COUNT_HW_CACHE_MAX]
1340 [PERF_COUNT_HW_CACHE_OP_MAX]
1341 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1342{
1343 [ C(LL ) ] = {
1344 [ C(OP_READ) ] = {
1345 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
6d374056 1346 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1347 },
1348 [ C(OP_WRITE) ] = {
1349 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1350 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1351 },
1352 [ C(OP_PREFETCH) ] = {
1353 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1354 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1355 },
1356 },
1357};
1358
1359static __initconst const u64 slm_hw_cache_event_ids
1360 [PERF_COUNT_HW_CACHE_MAX]
1361 [PERF_COUNT_HW_CACHE_OP_MAX]
1362 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1363{
1364 [ C(L1D) ] = {
1365 [ C(OP_READ) ] = {
1366 [ C(RESULT_ACCESS) ] = 0,
1367 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1368 },
1369 [ C(OP_WRITE) ] = {
1370 [ C(RESULT_ACCESS) ] = 0,
1371 [ C(RESULT_MISS) ] = 0,
1372 },
1373 [ C(OP_PREFETCH) ] = {
1374 [ C(RESULT_ACCESS) ] = 0,
1375 [ C(RESULT_MISS) ] = 0,
1376 },
1377 },
1378 [ C(L1I ) ] = {
1379 [ C(OP_READ) ] = {
1380 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1381 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1382 },
1383 [ C(OP_WRITE) ] = {
1384 [ C(RESULT_ACCESS) ] = -1,
1385 [ C(RESULT_MISS) ] = -1,
1386 },
1387 [ C(OP_PREFETCH) ] = {
1388 [ C(RESULT_ACCESS) ] = 0,
1389 [ C(RESULT_MISS) ] = 0,
1390 },
1391 },
1392 [ C(LL ) ] = {
1393 [ C(OP_READ) ] = {
1394 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1395 [ C(RESULT_ACCESS) ] = 0x01b7,
6d374056 1396 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1397 },
1398 [ C(OP_WRITE) ] = {
1399 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1400 [ C(RESULT_ACCESS) ] = 0x01b7,
1401 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1402 [ C(RESULT_MISS) ] = 0x01b7,
1403 },
1404 [ C(OP_PREFETCH) ] = {
1405 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1406 [ C(RESULT_ACCESS) ] = 0x01b7,
1407 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1408 [ C(RESULT_MISS) ] = 0x01b7,
1409 },
1410 },
1411 [ C(DTLB) ] = {
1412 [ C(OP_READ) ] = {
1413 [ C(RESULT_ACCESS) ] = 0,
1414 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1415 },
1416 [ C(OP_WRITE) ] = {
1417 [ C(RESULT_ACCESS) ] = 0,
1418 [ C(RESULT_MISS) ] = 0,
1419 },
1420 [ C(OP_PREFETCH) ] = {
1421 [ C(RESULT_ACCESS) ] = 0,
1422 [ C(RESULT_MISS) ] = 0,
1423 },
1424 },
1425 [ C(ITLB) ] = {
1426 [ C(OP_READ) ] = {
1427 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
6d374056 1428 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1fa64180
YZ
1429 },
1430 [ C(OP_WRITE) ] = {
1431 [ C(RESULT_ACCESS) ] = -1,
1432 [ C(RESULT_MISS) ] = -1,
1433 },
1434 [ C(OP_PREFETCH) ] = {
1435 [ C(RESULT_ACCESS) ] = -1,
1436 [ C(RESULT_MISS) ] = -1,
1437 },
1438 },
1439 [ C(BPU ) ] = {
1440 [ C(OP_READ) ] = {
1441 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1442 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1443 },
1444 [ C(OP_WRITE) ] = {
1445 [ C(RESULT_ACCESS) ] = -1,
1446 [ C(RESULT_MISS) ] = -1,
1447 },
1448 [ C(OP_PREFETCH) ] = {
1449 [ C(RESULT_ACCESS) ] = -1,
1450 [ C(RESULT_MISS) ] = -1,
1451 },
1452 },
1453};
1454
1a78d937
AK
1455/*
1456 * Use from PMIs where the LBRs are already disabled.
1457 */
1458static void __intel_pmu_disable_all(void)
f22f54f4 1459{
89cbc767 1460 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4
PZ
1461
1462 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1463
15c7ad51 1464 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 1465 intel_pmu_disable_bts();
8062382c
AS
1466 else
1467 intel_bts_disable_local();
ca037701
PZ
1468
1469 intel_pmu_pebs_disable_all();
1a78d937
AK
1470}
1471
1472static void intel_pmu_disable_all(void)
1473{
1474 __intel_pmu_disable_all();
caff2bef 1475 intel_pmu_lbr_disable_all();
f22f54f4
PZ
1476}
1477
1a78d937 1478static void __intel_pmu_enable_all(int added, bool pmi)
f22f54f4 1479{
89cbc767 1480 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1481
d329527e 1482 intel_pmu_pebs_enable_all();
1a78d937 1483 intel_pmu_lbr_enable_all(pmi);
144d31e6
GN
1484 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1485 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 1486
15c7ad51 1487 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 1488 struct perf_event *event =
15c7ad51 1489 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
1490
1491 if (WARN_ON_ONCE(!event))
1492 return;
1493
1494 intel_pmu_enable_bts(event->hw.config);
8062382c
AS
1495 } else
1496 intel_bts_enable_local();
f22f54f4
PZ
1497}
1498
1a78d937
AK
1499static void intel_pmu_enable_all(int added)
1500{
1501 __intel_pmu_enable_all(added, false);
1502}
1503
11164cd4
PZ
1504/*
1505 * Workaround for:
1506 * Intel Errata AAK100 (model 26)
1507 * Intel Errata AAP53 (model 30)
40b91cd1 1508 * Intel Errata BD53 (model 44)
11164cd4 1509 *
351af072
ZY
1510 * The official story:
1511 * These chips need to be 'reset' when adding counters by programming the
1512 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1513 * in sequence on the same PMC or on different PMCs.
1514 *
1515 * In practise it appears some of these events do in fact count, and
1516 * we need to programm all 4 events.
11164cd4 1517 */
351af072 1518static void intel_pmu_nhm_workaround(void)
11164cd4 1519{
89cbc767 1520 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
351af072
ZY
1521 static const unsigned long nhm_magic[4] = {
1522 0x4300B5,
1523 0x4300D2,
1524 0x4300B1,
1525 0x4300B1
1526 };
1527 struct perf_event *event;
1528 int i;
11164cd4 1529
351af072
ZY
1530 /*
1531 * The Errata requires below steps:
1532 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1533 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1534 * the corresponding PMCx;
1535 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1536 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1537 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1538 */
11164cd4 1539
351af072
ZY
1540 /*
1541 * The real steps we choose are a little different from above.
1542 * A) To reduce MSR operations, we don't run step 1) as they
1543 * are already cleared before this function is called;
1544 * B) Call x86_perf_event_update to save PMCx before configuring
1545 * PERFEVTSELx with magic number;
1546 * C) With step 5), we do clear only when the PERFEVTSELx is
1547 * not used currently.
1548 * D) Call x86_perf_event_set_period to restore PMCx;
1549 */
11164cd4 1550
351af072
ZY
1551 /* We always operate 4 pairs of PERF Counters */
1552 for (i = 0; i < 4; i++) {
1553 event = cpuc->events[i];
1554 if (event)
1555 x86_perf_event_update(event);
1556 }
11164cd4 1557
351af072
ZY
1558 for (i = 0; i < 4; i++) {
1559 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1560 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1561 }
1562
1563 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1564 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 1565
351af072
ZY
1566 for (i = 0; i < 4; i++) {
1567 event = cpuc->events[i];
1568
1569 if (event) {
1570 x86_perf_event_set_period(event);
31fa58af 1571 __x86_pmu_enable_event(&event->hw,
351af072
ZY
1572 ARCH_PERFMON_EVENTSEL_ENABLE);
1573 } else
1574 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 1575 }
351af072
ZY
1576}
1577
1578static void intel_pmu_nhm_enable_all(int added)
1579{
1580 if (added)
1581 intel_pmu_nhm_workaround();
11164cd4
PZ
1582 intel_pmu_enable_all(added);
1583}
1584
f22f54f4
PZ
1585static inline u64 intel_pmu_get_status(void)
1586{
1587 u64 status;
1588
1589 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1590
1591 return status;
1592}
1593
1594static inline void intel_pmu_ack_status(u64 ack)
1595{
1596 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1597}
1598
ca037701 1599static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 1600{
15c7ad51 1601 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
1602 u64 ctrl_val, mask;
1603
1604 mask = 0xfULL << (idx * 4);
1605
1606 rdmsrl(hwc->config_base, ctrl_val);
1607 ctrl_val &= ~mask;
7645a24c 1608 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1609}
1610
2b9e344d
PZ
1611static inline bool event_is_checkpointed(struct perf_event *event)
1612{
1613 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1614}
1615
ca037701 1616static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 1617{
aff3d91a 1618 struct hw_perf_event *hwc = &event->hw;
89cbc767 1619 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1620
15c7ad51 1621 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
1622 intel_pmu_disable_bts();
1623 intel_pmu_drain_bts_buffer();
1624 return;
1625 }
1626
144d31e6
GN
1627 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1628 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2b9e344d 1629 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
144d31e6 1630
60ce0fbd
SE
1631 /*
1632 * must disable before any actual event
1633 * because any event may be combined with LBR
1634 */
a46a2300 1635 if (needs_branch_stack(event))
60ce0fbd
SE
1636 intel_pmu_lbr_disable(event);
1637
f22f54f4 1638 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1639 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
1640 return;
1641 }
1642
aff3d91a 1643 x86_pmu_disable_event(event);
ca037701 1644
ab608344 1645 if (unlikely(event->attr.precise_ip))
ef21f683 1646 intel_pmu_pebs_disable(event);
f22f54f4
PZ
1647}
1648
ca037701 1649static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 1650{
15c7ad51 1651 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 1652 u64 ctrl_val, bits, mask;
f22f54f4
PZ
1653
1654 /*
1655 * Enable IRQ generation (0x8),
1656 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1657 * if requested:
1658 */
1659 bits = 0x8ULL;
1660 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1661 bits |= 0x2;
1662 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1663 bits |= 0x1;
1664
1665 /*
1666 * ANY bit is supported in v3 and up
1667 */
1668 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1669 bits |= 0x4;
1670
1671 bits <<= (idx * 4);
1672 mask = 0xfULL << (idx * 4);
1673
1674 rdmsrl(hwc->config_base, ctrl_val);
1675 ctrl_val &= ~mask;
1676 ctrl_val |= bits;
7645a24c 1677 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1678}
1679
aff3d91a 1680static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 1681{
aff3d91a 1682 struct hw_perf_event *hwc = &event->hw;
89cbc767 1683 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1684
15c7ad51 1685 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 1686 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
1687 return;
1688
1689 intel_pmu_enable_bts(hwc->config);
1690 return;
1691 }
60ce0fbd
SE
1692 /*
1693 * must enabled before any actual event
1694 * because any event may be combined with LBR
1695 */
a46a2300 1696 if (needs_branch_stack(event))
60ce0fbd 1697 intel_pmu_lbr_enable(event);
f22f54f4 1698
144d31e6
GN
1699 if (event->attr.exclude_host)
1700 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1701 if (event->attr.exclude_guest)
1702 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1703
2b9e344d
PZ
1704 if (unlikely(event_is_checkpointed(event)))
1705 cpuc->intel_cp_status |= (1ull << hwc->idx);
1706
f22f54f4 1707 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1708 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
1709 return;
1710 }
1711
ab608344 1712 if (unlikely(event->attr.precise_ip))
ef21f683 1713 intel_pmu_pebs_enable(event);
ca037701 1714
31fa58af 1715 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
1716}
1717
1718/*
1719 * Save and restart an expired event. Called by NMI contexts,
1720 * so it has to be careful about preempting normal event ops:
1721 */
de0428a7 1722int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 1723{
cc2ad4ba 1724 x86_perf_event_update(event);
2dbf0116
AK
1725 /*
1726 * For a checkpointed counter always reset back to 0. This
1727 * avoids a situation where the counter overflows, aborts the
1728 * transaction and is then set back to shortly before the
1729 * overflow, and overflows and aborts again.
1730 */
1731 if (unlikely(event_is_checkpointed(event))) {
1732 /* No race with NMIs because the counter should not be armed */
1733 wrmsrl(event->hw.event_base, 0);
1734 local64_set(&event->hw.prev_count, 0);
1735 }
cc2ad4ba 1736 return x86_perf_event_set_period(event);
f22f54f4
PZ
1737}
1738
1739static void intel_pmu_reset(void)
1740{
0a3aee0d 1741 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
1742 unsigned long flags;
1743 int idx;
1744
948b1bb8 1745 if (!x86_pmu.num_counters)
f22f54f4
PZ
1746 return;
1747
1748 local_irq_save(flags);
1749
c767a54b 1750 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 1751
948b1bb8 1752 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
1753 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1754 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 1755 }
948b1bb8 1756 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 1757 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 1758
f22f54f4
PZ
1759 if (ds)
1760 ds->bts_index = ds->bts_buffer_base;
1761
8882edf7
AK
1762 /* Ack all overflows and disable fixed counters */
1763 if (x86_pmu.version >= 2) {
1764 intel_pmu_ack_status(intel_pmu_get_status());
1765 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1766 }
1767
1768 /* Reset LBRs and LBR freezing */
1769 if (x86_pmu.lbr_nr) {
1770 update_debugctlmsr(get_debugctlmsr() &
1771 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1772 }
1773
f22f54f4
PZ
1774 local_irq_restore(flags);
1775}
1776
1777/*
1778 * This handler is triggered by the local APIC, so the APIC IRQ handling
1779 * rules apply:
1780 */
1781static int intel_pmu_handle_irq(struct pt_regs *regs)
1782{
1783 struct perf_sample_data data;
1784 struct cpu_hw_events *cpuc;
1785 int bit, loops;
2e556b5b 1786 u64 status;
b0b2072d 1787 int handled;
f22f54f4 1788
89cbc767 1789 cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1790
2bce5dac 1791 /*
72db5596
AK
1792 * No known reason to not always do late ACK,
1793 * but just in case do it opt-in.
2bce5dac 1794 */
72db5596
AK
1795 if (!x86_pmu.late_ack)
1796 apic_write(APIC_LVTPC, APIC_DM_NMI);
1a78d937 1797 __intel_pmu_disable_all();
b0b2072d 1798 handled = intel_pmu_drain_bts_buffer();
8062382c 1799 handled += intel_bts_interrupt();
f22f54f4 1800 status = intel_pmu_get_status();
a3ef2229
MM
1801 if (!status)
1802 goto done;
f22f54f4
PZ
1803
1804 loops = 0;
1805again:
0f29e573 1806 intel_pmu_lbr_read();
2e556b5b 1807 intel_pmu_ack_status(status);
f22f54f4 1808 if (++loops > 100) {
ae0def05
DH
1809 static bool warned = false;
1810 if (!warned) {
1811 WARN(1, "perfevents: irq loop stuck!\n");
1812 perf_event_print_debug();
1813 warned = true;
1814 }
f22f54f4 1815 intel_pmu_reset();
3fb2b8dd 1816 goto done;
f22f54f4
PZ
1817 }
1818
1819 inc_irq_stat(apic_perf_irqs);
ca037701 1820
caff2bef 1821
b292d7a1 1822 /*
d8020bee
AK
1823 * Ignore a range of extra bits in status that do not indicate
1824 * overflow by themselves.
b292d7a1 1825 */
d8020bee
AK
1826 status &= ~(GLOBAL_STATUS_COND_CHG |
1827 GLOBAL_STATUS_ASIF |
1828 GLOBAL_STATUS_LBRS_FROZEN);
1829 if (!status)
1830 goto done;
b292d7a1 1831
ca037701
PZ
1832 /*
1833 * PEBS overflow sets bit 62 in the global status register
1834 */
de725dec
PZ
1835 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1836 handled++;
ca037701 1837 x86_pmu.drain_pebs(regs);
de725dec 1838 }
ca037701 1839
52ca9ced
AS
1840 /*
1841 * Intel PT
1842 */
1843 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1844 handled++;
1845 intel_pt_interrupt();
1846 }
1847
2dbf0116 1848 /*
2b9e344d
PZ
1849 * Checkpointed counters can lead to 'spurious' PMIs because the
1850 * rollback caused by the PMI will have cleared the overflow status
1851 * bit. Therefore always force probe these counters.
2dbf0116 1852 */
2b9e344d 1853 status |= cpuc->intel_cp_status;
2dbf0116 1854
984b3f57 1855 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
1856 struct perf_event *event = cpuc->events[bit];
1857
de725dec
PZ
1858 handled++;
1859
f22f54f4
PZ
1860 if (!test_bit(bit, cpuc->active_mask))
1861 continue;
1862
1863 if (!intel_pmu_save_and_restart(event))
1864 continue;
1865
fd0d000b 1866 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 1867
60ce0fbd
SE
1868 if (has_branch_stack(event))
1869 data.br_stack = &cpuc->lbr_stack;
1870
a8b0ca17 1871 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1872 x86_pmu_stop(event, 0);
f22f54f4
PZ
1873 }
1874
f22f54f4
PZ
1875 /*
1876 * Repeat if there is more work to be done:
1877 */
1878 status = intel_pmu_get_status();
1879 if (status)
1880 goto again;
1881
3fb2b8dd 1882done:
1a78d937 1883 __intel_pmu_enable_all(0, true);
72db5596
AK
1884 /*
1885 * Only unmask the NMI after the overflow counters
1886 * have been reset. This avoids spurious NMIs on
1887 * Haswell CPUs.
1888 */
1889 if (x86_pmu.late_ack)
1890 apic_write(APIC_LVTPC, APIC_DM_NMI);
de725dec 1891 return handled;
f22f54f4
PZ
1892}
1893
f22f54f4 1894static struct event_constraint *
ca037701 1895intel_bts_constraints(struct perf_event *event)
f22f54f4 1896{
ca037701
PZ
1897 struct hw_perf_event *hwc = &event->hw;
1898 unsigned int hw_event, bts_event;
f22f54f4 1899
18a073a3
PZ
1900 if (event->attr.freq)
1901 return NULL;
1902
ca037701
PZ
1903 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1904 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 1905
ca037701 1906 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 1907 return &bts_constraint;
ca037701 1908
f22f54f4
PZ
1909 return NULL;
1910}
1911
ae3f011f 1912static int intel_alt_er(int idx, u64 config)
b79e8941 1913{
ae3f011f 1914 int alt_idx;
9a5e3fb5 1915 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
5a425294 1916 return idx;
b79e8941 1917
5a425294 1918 if (idx == EXTRA_REG_RSP_0)
ae3f011f 1919 alt_idx = EXTRA_REG_RSP_1;
5a425294
PZ
1920
1921 if (idx == EXTRA_REG_RSP_1)
ae3f011f 1922 alt_idx = EXTRA_REG_RSP_0;
5a425294 1923
ae3f011f
KL
1924 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1925 return idx;
1926
1927 return alt_idx;
5a425294
PZ
1928}
1929
1930static void intel_fixup_er(struct perf_event *event, int idx)
1931{
1932 event->hw.extra_reg.idx = idx;
1933
1934 if (idx == EXTRA_REG_RSP_0) {
b79e8941 1935 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1936 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
b79e8941 1937 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
1938 } else if (idx == EXTRA_REG_RSP_1) {
1939 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 1940 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
5a425294 1941 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 1942 }
b79e8941
PZ
1943}
1944
efc9f05d
SE
1945/*
1946 * manage allocation of shared extra msr for certain events
1947 *
1948 * sharing can be:
1949 * per-cpu: to be shared between the various events on a single PMU
1950 * per-core: per-cpu + shared by HT threads
1951 */
a7e3ed1e 1952static struct event_constraint *
efc9f05d 1953__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
1954 struct perf_event *event,
1955 struct hw_perf_event_extra *reg)
a7e3ed1e 1956{
efc9f05d 1957 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 1958 struct er_account *era;
cd8a38d3 1959 unsigned long flags;
5a425294 1960 int idx = reg->idx;
a7e3ed1e 1961
5a425294
PZ
1962 /*
1963 * reg->alloc can be set due to existing state, so for fake cpuc we
1964 * need to ignore this, otherwise we might fail to allocate proper fake
1965 * state for this extra reg constraint. Also see the comment below.
1966 */
1967 if (reg->alloc && !cpuc->is_fake)
b36817e8 1968 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 1969
b79e8941 1970again:
5a425294 1971 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
1972 /*
1973 * we use spin_lock_irqsave() to avoid lockdep issues when
1974 * passing a fake cpuc
1975 */
1976 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
1977
1978 if (!atomic_read(&era->ref) || era->config == reg->config) {
1979
5a425294
PZ
1980 /*
1981 * If its a fake cpuc -- as per validate_{group,event}() we
1982 * shouldn't touch event state and we can avoid doing so
1983 * since both will only call get_event_constraints() once
1984 * on each event, this avoids the need for reg->alloc.
1985 *
1986 * Not doing the ER fixup will only result in era->reg being
1987 * wrong, but since we won't actually try and program hardware
1988 * this isn't a problem either.
1989 */
1990 if (!cpuc->is_fake) {
1991 if (idx != reg->idx)
1992 intel_fixup_er(event, idx);
1993
1994 /*
1995 * x86_schedule_events() can call get_event_constraints()
1996 * multiple times on events in the case of incremental
1997 * scheduling(). reg->alloc ensures we only do the ER
1998 * allocation once.
1999 */
2000 reg->alloc = 1;
2001 }
2002
efc9f05d
SE
2003 /* lock in msr value */
2004 era->config = reg->config;
2005 era->reg = reg->reg;
2006
2007 /* one more user */
2008 atomic_inc(&era->ref);
2009
a7e3ed1e 2010 /*
b36817e8
SE
2011 * need to call x86_get_event_constraint()
2012 * to check if associated event has constraints
a7e3ed1e 2013 */
b36817e8 2014 c = NULL;
5a425294 2015 } else {
ae3f011f 2016 idx = intel_alt_er(idx, reg->config);
5a425294
PZ
2017 if (idx != reg->idx) {
2018 raw_spin_unlock_irqrestore(&era->lock, flags);
2019 goto again;
2020 }
a7e3ed1e 2021 }
cd8a38d3 2022 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 2023
efc9f05d
SE
2024 return c;
2025}
2026
2027static void
2028__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2029 struct hw_perf_event_extra *reg)
2030{
2031 struct er_account *era;
2032
2033 /*
5a425294
PZ
2034 * Only put constraint if extra reg was actually allocated. Also takes
2035 * care of event which do not use an extra shared reg.
2036 *
2037 * Also, if this is a fake cpuc we shouldn't touch any event state
2038 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2039 * either since it'll be thrown out.
efc9f05d 2040 */
5a425294 2041 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
2042 return;
2043
2044 era = &cpuc->shared_regs->regs[reg->idx];
2045
2046 /* one fewer user */
2047 atomic_dec(&era->ref);
2048
2049 /* allocate again next time */
2050 reg->alloc = 0;
2051}
2052
2053static struct event_constraint *
2054intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2055 struct perf_event *event)
2056{
b36817e8
SE
2057 struct event_constraint *c = NULL, *d;
2058 struct hw_perf_event_extra *xreg, *breg;
2059
2060 xreg = &event->hw.extra_reg;
2061 if (xreg->idx != EXTRA_REG_NONE) {
2062 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2063 if (c == &emptyconstraint)
2064 return c;
2065 }
2066 breg = &event->hw.branch_reg;
2067 if (breg->idx != EXTRA_REG_NONE) {
2068 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2069 if (d == &emptyconstraint) {
2070 __intel_shared_reg_put_constraints(cpuc, xreg);
2071 c = d;
2072 }
2073 }
efc9f05d 2074 return c;
a7e3ed1e
AK
2075}
2076
de0428a7 2077struct event_constraint *
79cba822
SE
2078x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2079 struct perf_event *event)
de0428a7
KW
2080{
2081 struct event_constraint *c;
2082
2083 if (x86_pmu.event_constraints) {
2084 for_each_event_constraint(c, x86_pmu.event_constraints) {
9fac2cf3 2085 if ((event->hw.config & c->cmask) == c->code) {
9fac2cf3 2086 event->hw.flags |= c->flags;
de0428a7 2087 return c;
9fac2cf3 2088 }
de0428a7
KW
2089 }
2090 }
2091
2092 return &unconstrained;
2093}
2094
f22f54f4 2095static struct event_constraint *
e979121b 2096__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
79cba822 2097 struct perf_event *event)
f22f54f4
PZ
2098{
2099 struct event_constraint *c;
2100
ca037701
PZ
2101 c = intel_bts_constraints(event);
2102 if (c)
2103 return c;
2104
687805e4 2105 c = intel_shared_regs_constraints(cpuc, event);
f22f54f4
PZ
2106 if (c)
2107 return c;
2108
687805e4 2109 c = intel_pebs_constraints(event);
a7e3ed1e
AK
2110 if (c)
2111 return c;
2112
79cba822 2113 return x86_get_event_constraints(cpuc, idx, event);
f22f54f4
PZ
2114}
2115
e979121b
MD
2116static void
2117intel_start_scheduling(struct cpu_hw_events *cpuc)
2118{
2119 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2120 struct intel_excl_states *xl;
e979121b 2121 int tid = cpuc->excl_thread_id;
e979121b
MD
2122
2123 /*
2124 * nothing needed if in group validation mode
2125 */
b37609c3 2126 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b 2127 return;
b37609c3 2128
e979121b
MD
2129 /*
2130 * no exclusion needed
2131 */
17186ccd 2132 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2133 return;
2134
e979121b
MD
2135 xl = &excl_cntrs->states[tid];
2136
2137 xl->sched_started = true;
e979121b
MD
2138 /*
2139 * lock shared state until we are done scheduling
2140 * in stop_event_scheduling()
2141 * makes scheduling appear as a transaction
2142 */
e979121b 2143 raw_spin_lock(&excl_cntrs->lock);
e979121b
MD
2144}
2145
0c41e756
PZ
2146static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2147{
2148 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2149 struct event_constraint *c = cpuc->event_constraint[idx];
2150 struct intel_excl_states *xl;
2151 int tid = cpuc->excl_thread_id;
2152
2153 if (cpuc->is_fake || !is_ht_workaround_enabled())
2154 return;
2155
2156 if (WARN_ON_ONCE(!excl_cntrs))
2157 return;
2158
2159 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2160 return;
2161
2162 xl = &excl_cntrs->states[tid];
2163
2164 lockdep_assert_held(&excl_cntrs->lock);
2165
1fe684e3 2166 if (c->flags & PERF_X86_EVENT_EXCL)
43ef205b 2167 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
1fe684e3 2168 else
43ef205b 2169 xl->state[cntr] = INTEL_EXCL_SHARED;
0c41e756
PZ
2170}
2171
e979121b
MD
2172static void
2173intel_stop_scheduling(struct cpu_hw_events *cpuc)
2174{
2175 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2176 struct intel_excl_states *xl;
e979121b 2177 int tid = cpuc->excl_thread_id;
e979121b
MD
2178
2179 /*
2180 * nothing needed if in group validation mode
2181 */
b37609c3 2182 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b
MD
2183 return;
2184 /*
2185 * no exclusion needed
2186 */
17186ccd 2187 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2188 return;
2189
e979121b
MD
2190 xl = &excl_cntrs->states[tid];
2191
e979121b
MD
2192 xl->sched_started = false;
2193 /*
2194 * release shared state lock (acquired in intel_start_scheduling())
2195 */
2196 raw_spin_unlock(&excl_cntrs->lock);
2197}
2198
2199static struct event_constraint *
2200intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2201 int idx, struct event_constraint *c)
2202{
e979121b 2203 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2204 struct intel_excl_states *xlo;
e979121b 2205 int tid = cpuc->excl_thread_id;
1c565833 2206 int is_excl, i;
e979121b
MD
2207
2208 /*
2209 * validating a group does not require
2210 * enforcing cross-thread exclusion
2211 */
b37609c3
SE
2212 if (cpuc->is_fake || !is_ht_workaround_enabled())
2213 return c;
2214
2215 /*
2216 * no exclusion needed
2217 */
17186ccd 2218 if (WARN_ON_ONCE(!excl_cntrs))
e979121b 2219 return c;
e979121b 2220
e979121b
MD
2221 /*
2222 * because we modify the constraint, we need
2223 * to make a copy. Static constraints come
2224 * from static const tables.
2225 *
2226 * only needed when constraint has not yet
2227 * been cloned (marked dynamic)
2228 */
2229 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
aaf932e8 2230 struct event_constraint *cx;
e979121b 2231
e979121b
MD
2232 /*
2233 * grab pre-allocated constraint entry
2234 */
2235 cx = &cpuc->constraint_list[idx];
2236
2237 /*
2238 * initialize dynamic constraint
2239 * with static constraint
2240 */
aaf932e8 2241 *cx = *c;
e979121b
MD
2242
2243 /*
2244 * mark constraint as dynamic, so we
2245 * can free it later on
2246 */
2247 cx->flags |= PERF_X86_EVENT_DYNAMIC;
aaf932e8 2248 c = cx;
e979121b
MD
2249 }
2250
2251 /*
2252 * From here on, the constraint is dynamic.
2253 * Either it was just allocated above, or it
2254 * was allocated during a earlier invocation
2255 * of this function
2256 */
2257
1c565833
PZ
2258 /*
2259 * state of sibling HT
2260 */
2261 xlo = &excl_cntrs->states[tid ^ 1];
2262
2263 /*
2264 * event requires exclusive counter access
2265 * across HT threads
2266 */
2267 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2268 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2269 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2270 if (!cpuc->n_excl++)
2271 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2272 }
2273
e979121b
MD
2274 /*
2275 * Modify static constraint with current dynamic
2276 * state of thread
2277 *
2278 * EXCLUSIVE: sibling counter measuring exclusive event
2279 * SHARED : sibling counter measuring non-exclusive event
2280 * UNUSED : sibling counter unused
2281 */
aaf932e8 2282 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
e979121b
MD
2283 /*
2284 * exclusive event in sibling counter
2285 * our corresponding counter cannot be used
2286 * regardless of our event
2287 */
1c565833 2288 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
aaf932e8 2289 __clear_bit(i, c->idxmsk);
e979121b
MD
2290 /*
2291 * if measuring an exclusive event, sibling
2292 * measuring non-exclusive, then counter cannot
2293 * be used
2294 */
1c565833 2295 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
aaf932e8 2296 __clear_bit(i, c->idxmsk);
e979121b
MD
2297 }
2298
2299 /*
2300 * recompute actual bit weight for scheduling algorithm
2301 */
aaf932e8 2302 c->weight = hweight64(c->idxmsk64);
e979121b
MD
2303
2304 /*
2305 * if we return an empty mask, then switch
2306 * back to static empty constraint to avoid
2307 * the cost of freeing later on
2308 */
aaf932e8
PZ
2309 if (c->weight == 0)
2310 c = &emptyconstraint;
e979121b 2311
aaf932e8 2312 return c;
e979121b
MD
2313}
2314
2315static struct event_constraint *
2316intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2317 struct perf_event *event)
2318{
b371b594 2319 struct event_constraint *c1 = cpuc->event_constraint[idx];
a90738c2 2320 struct event_constraint *c2;
e979121b
MD
2321
2322 /*
2323 * first time only
2324 * - static constraint: no change across incremental scheduling calls
2325 * - dynamic constraint: handled by intel_get_excl_constraints()
2326 */
a90738c2
SE
2327 c2 = __intel_get_event_constraints(cpuc, idx, event);
2328 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2329 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2330 c1->weight = c2->weight;
2331 c2 = c1;
2332 }
e979121b
MD
2333
2334 if (cpuc->excl_cntrs)
a90738c2 2335 return intel_get_excl_constraints(cpuc, event, idx, c2);
e979121b 2336
a90738c2 2337 return c2;
e979121b
MD
2338}
2339
2340static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2341 struct perf_event *event)
2342{
2343 struct hw_perf_event *hwc = &event->hw;
2344 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
e979121b 2345 int tid = cpuc->excl_thread_id;
1c565833 2346 struct intel_excl_states *xl;
e979121b
MD
2347
2348 /*
2349 * nothing needed if in group validation mode
2350 */
2351 if (cpuc->is_fake)
2352 return;
2353
17186ccd 2354 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2355 return;
2356
cc1790cf
PZ
2357 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2358 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2359 if (!--cpuc->n_excl)
2360 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2361 }
e979121b
MD
2362
2363 /*
ba040653
PZ
2364 * If event was actually assigned, then mark the counter state as
2365 * unused now.
e979121b 2366 */
ba040653
PZ
2367 if (hwc->idx >= 0) {
2368 xl = &excl_cntrs->states[tid];
2369
2370 /*
2371 * put_constraint may be called from x86_schedule_events()
2372 * which already has the lock held so here make locking
2373 * conditional.
2374 */
2375 if (!xl->sched_started)
2376 raw_spin_lock(&excl_cntrs->lock);
e979121b 2377
1c565833 2378 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
e979121b 2379
ba040653
PZ
2380 if (!xl->sched_started)
2381 raw_spin_unlock(&excl_cntrs->lock);
2382 }
e979121b
MD
2383}
2384
efc9f05d
SE
2385static void
2386intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
2387 struct perf_event *event)
2388{
efc9f05d 2389 struct hw_perf_event_extra *reg;
a7e3ed1e 2390
efc9f05d
SE
2391 reg = &event->hw.extra_reg;
2392 if (reg->idx != EXTRA_REG_NONE)
2393 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
2394
2395 reg = &event->hw.branch_reg;
2396 if (reg->idx != EXTRA_REG_NONE)
2397 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 2398}
a7e3ed1e 2399
efc9f05d
SE
2400static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2401 struct perf_event *event)
2402{
2403 intel_put_shared_regs_event_constraints(cpuc, event);
e979121b
MD
2404
2405 /*
2406 * is PMU has exclusive counter restrictions, then
2407 * all events are subject to and must call the
2408 * put_excl_constraints() routine
2409 */
b371b594 2410 if (cpuc->excl_cntrs)
e979121b 2411 intel_put_excl_constraints(cpuc, event);
e979121b
MD
2412}
2413
0780c927 2414static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 2415{
0780c927 2416 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
2417 /*
2418 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2419 * (0x003c) so that we can use it with PEBS.
2420 *
2421 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2422 * PEBS capable. However we can use INST_RETIRED.ANY_P
2423 * (0x00c0), which is a PEBS capable event, to get the same
2424 * count.
2425 *
2426 * INST_RETIRED.ANY_P counts the number of cycles that retires
2427 * CNTMASK instructions. By setting CNTMASK to a value (16)
2428 * larger than the maximum number of instructions that can be
2429 * retired per cycle (4) and then inverting the condition, we
2430 * count all cycles that retire 16 or less instructions, which
2431 * is every cycle.
2432 *
2433 * Thereby we gain a PEBS capable cycle counter.
2434 */
f9b4eeb8
PZ
2435 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2436
0780c927
PZ
2437 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2438 event->hw.config = alt_config;
2439 }
2440}
2441
2442static void intel_pebs_aliases_snb(struct perf_event *event)
2443{
2444 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2445 /*
2446 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2447 * (0x003c) so that we can use it with PEBS.
2448 *
2449 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2450 * PEBS capable. However we can use UOPS_RETIRED.ALL
2451 * (0x01c2), which is a PEBS capable event, to get the same
2452 * count.
2453 *
2454 * UOPS_RETIRED.ALL counts the number of cycles that retires
2455 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2456 * larger than the maximum number of micro-ops that can be
2457 * retired per cycle (4) and then inverting the condition, we
2458 * count all cycles that retire 16 or less micro-ops, which
2459 * is every cycle.
2460 *
2461 * Thereby we gain a PEBS capable cycle counter.
2462 */
2463 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
2464
2465 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2466 event->hw.config = alt_config;
2467 }
0780c927
PZ
2468}
2469
a7b58d21
AK
2470static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2471{
2472 unsigned long flags = x86_pmu.free_running_flags;
2473
2474 if (event->attr.use_clockid)
2475 flags &= ~PERF_SAMPLE_TIME;
2476 return flags;
2477}
2478
0780c927
PZ
2479static int intel_pmu_hw_config(struct perf_event *event)
2480{
2481 int ret = x86_pmu_hw_config(event);
2482
2483 if (ret)
2484 return ret;
2485
851559e3 2486 if (event->attr.precise_ip) {
3569c0d7 2487 if (!event->attr.freq) {
851559e3 2488 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
a7b58d21
AK
2489 if (!(event->attr.sample_type &
2490 ~intel_pmu_free_running_flags(event)))
3569c0d7
YZ
2491 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2492 }
851559e3
YZ
2493 if (x86_pmu.pebs_aliases)
2494 x86_pmu.pebs_aliases(event);
2495 }
7639dae0 2496
a46a2300 2497 if (needs_branch_stack(event)) {
60ce0fbd
SE
2498 ret = intel_pmu_setup_lbr_filter(event);
2499 if (ret)
2500 return ret;
48070342
AS
2501
2502 /*
2503 * BTS is set up earlier in this path, so don't account twice
2504 */
2505 if (!intel_pmu_has_bts(event)) {
2506 /* disallow lbr if conflicting events are present */
2507 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2508 return -EBUSY;
2509
2510 event->destroy = hw_perf_lbr_event_destroy;
2511 }
60ce0fbd
SE
2512 }
2513
b4cdc5c2
PZ
2514 if (event->attr.type != PERF_TYPE_RAW)
2515 return 0;
2516
2517 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2518 return 0;
2519
2520 if (x86_pmu.version < 3)
2521 return -EINVAL;
2522
2523 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2524 return -EACCES;
2525
2526 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2527
2528 return 0;
2529}
2530
144d31e6
GN
2531struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2532{
2533 if (x86_pmu.guest_get_msrs)
2534 return x86_pmu.guest_get_msrs(nr);
2535 *nr = 0;
2536 return NULL;
2537}
2538EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2539
2540static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2541{
89cbc767 2542 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2543 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2544
2545 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2546 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2547 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
2548 /*
2549 * If PMU counter has PEBS enabled it is not enough to disable counter
2550 * on a guest entry since PEBS memory write can overshoot guest entry
2551 * and corrupt guest memory. Disabling PEBS solves the problem.
2552 */
2553 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2554 arr[1].host = cpuc->pebs_enabled;
2555 arr[1].guest = 0;
144d31e6 2556
26a4f3c0 2557 *nr = 2;
144d31e6
GN
2558 return arr;
2559}
2560
2561static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2562{
89cbc767 2563 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2564 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2565 int idx;
2566
2567 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2568 struct perf_event *event = cpuc->events[idx];
2569
2570 arr[idx].msr = x86_pmu_config_addr(idx);
2571 arr[idx].host = arr[idx].guest = 0;
2572
2573 if (!test_bit(idx, cpuc->active_mask))
2574 continue;
2575
2576 arr[idx].host = arr[idx].guest =
2577 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2578
2579 if (event->attr.exclude_host)
2580 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2581 else if (event->attr.exclude_guest)
2582 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2583 }
2584
2585 *nr = x86_pmu.num_counters;
2586 return arr;
2587}
2588
2589static void core_pmu_enable_event(struct perf_event *event)
2590{
2591 if (!event->attr.exclude_host)
2592 x86_pmu_enable_event(event);
2593}
2594
2595static void core_pmu_enable_all(int added)
2596{
89cbc767 2597 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2598 int idx;
2599
2600 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2601 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2602
2603 if (!test_bit(idx, cpuc->active_mask) ||
2604 cpuc->events[idx]->attr.exclude_host)
2605 continue;
2606
2607 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2608 }
2609}
2610
3a632cb2
AK
2611static int hsw_hw_config(struct perf_event *event)
2612{
2613 int ret = intel_pmu_hw_config(event);
2614
2615 if (ret)
2616 return ret;
2617 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2618 return 0;
2619 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2620
2621 /*
2622 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2623 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2624 * this combination.
2625 */
2626 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2627 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2628 event->attr.precise_ip > 0))
2629 return -EOPNOTSUPP;
2630
2dbf0116
AK
2631 if (event_is_checkpointed(event)) {
2632 /*
2633 * Sampling of checkpointed events can cause situations where
2634 * the CPU constantly aborts because of a overflow, which is
2635 * then checkpointed back and ignored. Forbid checkpointing
2636 * for sampling.
2637 *
2638 * But still allow a long sampling period, so that perf stat
2639 * from KVM works.
2640 */
2641 if (event->attr.sample_period > 0 &&
2642 event->attr.sample_period < 0x7fffffff)
2643 return -EOPNOTSUPP;
2644 }
3a632cb2
AK
2645 return 0;
2646}
2647
2648static struct event_constraint counter2_constraint =
2649 EVENT_CONSTRAINT(0, 0x4, 0);
2650
2651static struct event_constraint *
79cba822
SE
2652hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2653 struct perf_event *event)
3a632cb2 2654{
79cba822
SE
2655 struct event_constraint *c;
2656
2657 c = intel_get_event_constraints(cpuc, idx, event);
3a632cb2
AK
2658
2659 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2660 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2661 if (c->idxmsk64 & (1U << 2))
2662 return &counter2_constraint;
2663 return &emptyconstraint;
2664 }
2665
2666 return c;
2667}
2668
294fe0f5
AK
2669/*
2670 * Broadwell:
2671 *
2672 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2673 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2674 * the two to enforce a minimum period of 128 (the smallest value that has bits
2675 * 0-5 cleared and >= 100).
2676 *
2677 * Because of how the code in x86_perf_event_set_period() works, the truncation
2678 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2679 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2680 *
2681 * Therefore the effective (average) period matches the requested period,
2682 * despite coarser hardware granularity.
2683 */
2684static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2685{
2686 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2687 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2688 if (left < 128)
2689 left = 128;
2690 left &= ~0x3fu;
2691 }
2692 return left;
2693}
2694
641cc938
JO
2695PMU_FORMAT_ATTR(event, "config:0-7" );
2696PMU_FORMAT_ATTR(umask, "config:8-15" );
2697PMU_FORMAT_ATTR(edge, "config:18" );
2698PMU_FORMAT_ATTR(pc, "config:19" );
2699PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2700PMU_FORMAT_ATTR(inv, "config:23" );
2701PMU_FORMAT_ATTR(cmask, "config:24-31" );
3a632cb2
AK
2702PMU_FORMAT_ATTR(in_tx, "config:32");
2703PMU_FORMAT_ATTR(in_tx_cp, "config:33");
641cc938
JO
2704
2705static struct attribute *intel_arch_formats_attr[] = {
2706 &format_attr_event.attr,
2707 &format_attr_umask.attr,
2708 &format_attr_edge.attr,
2709 &format_attr_pc.attr,
2710 &format_attr_inv.attr,
2711 &format_attr_cmask.attr,
2712 NULL,
2713};
2714
0bf79d44
JO
2715ssize_t intel_event_sysfs_show(char *page, u64 config)
2716{
2717 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2718
2719 return x86_event_sysfs_show(page, config, event);
2720}
2721
de0428a7 2722struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
2723{
2724 struct intel_shared_regs *regs;
2725 int i;
2726
2727 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2728 GFP_KERNEL, cpu_to_node(cpu));
2729 if (regs) {
2730 /*
2731 * initialize the locks to keep lockdep happy
2732 */
2733 for (i = 0; i < EXTRA_REG_MAX; i++)
2734 raw_spin_lock_init(&regs->regs[i].lock);
2735
2736 regs->core_id = -1;
2737 }
2738 return regs;
2739}
2740
6f6539ca
MD
2741static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2742{
2743 struct intel_excl_cntrs *c;
6f6539ca
MD
2744
2745 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2746 GFP_KERNEL, cpu_to_node(cpu));
2747 if (c) {
2748 raw_spin_lock_init(&c->lock);
6f6539ca
MD
2749 c->core_id = -1;
2750 }
2751 return c;
2752}
2753
a7e3ed1e
AK
2754static int intel_pmu_cpu_prepare(int cpu)
2755{
2756 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2757
6f6539ca
MD
2758 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2759 cpuc->shared_regs = allocate_shared_regs(cpu);
2760 if (!cpuc->shared_regs)
2761 return NOTIFY_BAD;
2762 }
69092624 2763
6f6539ca
MD
2764 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2765 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2766
2767 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2768 if (!cpuc->constraint_list)
2769 return NOTIFY_BAD;
2770
2771 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2772 if (!cpuc->excl_cntrs) {
2773 kfree(cpuc->constraint_list);
2774 kfree(cpuc->shared_regs);
2775 return NOTIFY_BAD;
2776 }
2777 cpuc->excl_thread_id = 0;
2778 }
a7e3ed1e 2779
a7e3ed1e
AK
2780 return NOTIFY_OK;
2781}
2782
74846d35
PZ
2783static void intel_pmu_cpu_starting(int cpu)
2784{
a7e3ed1e
AK
2785 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2786 int core_id = topology_core_id(cpu);
2787 int i;
2788
69092624
LM
2789 init_debug_store_on_cpu(cpu);
2790 /*
2791 * Deal with CPUs that don't clear their LBRs on power-up.
2792 */
2793 intel_pmu_lbr_reset();
2794
b36817e8
SE
2795 cpuc->lbr_sel = NULL;
2796
2797 if (!cpuc->shared_regs)
69092624
LM
2798 return;
2799
9a5e3fb5 2800 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
90413464
SE
2801 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2802
06931e62 2803 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
b36817e8 2804 struct intel_shared_regs *pc;
a7e3ed1e 2805
b36817e8
SE
2806 pc = per_cpu(cpu_hw_events, i).shared_regs;
2807 if (pc && pc->core_id == core_id) {
90413464 2808 *onln = cpuc->shared_regs;
b36817e8
SE
2809 cpuc->shared_regs = pc;
2810 break;
2811 }
a7e3ed1e 2812 }
b36817e8
SE
2813 cpuc->shared_regs->core_id = core_id;
2814 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
2815 }
2816
b36817e8
SE
2817 if (x86_pmu.lbr_sel_map)
2818 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6f6539ca
MD
2819
2820 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
06931e62 2821 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6f6539ca
MD
2822 struct intel_excl_cntrs *c;
2823
2824 c = per_cpu(cpu_hw_events, i).excl_cntrs;
2825 if (c && c->core_id == core_id) {
2826 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2827 cpuc->excl_cntrs = c;
2828 cpuc->excl_thread_id = 1;
2829 break;
2830 }
2831 }
2832 cpuc->excl_cntrs->core_id = core_id;
2833 cpuc->excl_cntrs->refcnt++;
2834 }
74846d35
PZ
2835}
2836
b37609c3 2837static void free_excl_cntrs(int cpu)
74846d35 2838{
a7e3ed1e 2839 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6f6539ca 2840 struct intel_excl_cntrs *c;
a7e3ed1e 2841
6f6539ca
MD
2842 c = cpuc->excl_cntrs;
2843 if (c) {
2844 if (c->core_id == -1 || --c->refcnt == 0)
2845 kfree(c);
2846 cpuc->excl_cntrs = NULL;
2847 kfree(cpuc->constraint_list);
2848 cpuc->constraint_list = NULL;
2849 }
b37609c3 2850}
a7e3ed1e 2851
b37609c3
SE
2852static void intel_pmu_cpu_dying(int cpu)
2853{
2854 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2855 struct intel_shared_regs *pc;
2856
2857 pc = cpuc->shared_regs;
2858 if (pc) {
2859 if (pc->core_id == -1 || --pc->refcnt == 0)
2860 kfree(pc);
2861 cpuc->shared_regs = NULL;
e979121b
MD
2862 }
2863
b37609c3
SE
2864 free_excl_cntrs(cpu);
2865
74846d35
PZ
2866 fini_debug_store_on_cpu(cpu);
2867}
2868
9c964efa
YZ
2869static void intel_pmu_sched_task(struct perf_event_context *ctx,
2870 bool sched_in)
2871{
2872 if (x86_pmu.pebs_active)
2873 intel_pmu_pebs_sched_task(ctx, sched_in);
2874 if (x86_pmu.lbr_nr)
2875 intel_pmu_lbr_sched_task(ctx, sched_in);
2876}
2877
641cc938
JO
2878PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2879
a63fcab4
SE
2880PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2881
641cc938
JO
2882static struct attribute *intel_arch3_formats_attr[] = {
2883 &format_attr_event.attr,
2884 &format_attr_umask.attr,
2885 &format_attr_edge.attr,
2886 &format_attr_pc.attr,
2887 &format_attr_any.attr,
2888 &format_attr_inv.attr,
2889 &format_attr_cmask.attr,
3a632cb2
AK
2890 &format_attr_in_tx.attr,
2891 &format_attr_in_tx_cp.attr,
641cc938
JO
2892
2893 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
a63fcab4 2894 &format_attr_ldlat.attr, /* PEBS load latency */
641cc938
JO
2895 NULL,
2896};
2897
3b6e0421
JO
2898static __initconst const struct x86_pmu core_pmu = {
2899 .name = "core",
2900 .handle_irq = x86_pmu_handle_irq,
2901 .disable_all = x86_pmu_disable_all,
2902 .enable_all = core_pmu_enable_all,
2903 .enable = core_pmu_enable_event,
2904 .disable = x86_pmu_disable_event,
2905 .hw_config = x86_pmu_hw_config,
2906 .schedule_events = x86_schedule_events,
2907 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2908 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2909 .event_map = intel_pmu_event_map,
2910 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2911 .apic = 1,
a7b58d21
AK
2912 .free_running_flags = PEBS_FREERUNNING_FLAGS,
2913
3b6e0421
JO
2914 /*
2915 * Intel PMCs cannot be accessed sanely above 32-bit width,
2916 * so we install an artificial 1<<31 period regardless of
2917 * the generic event period:
2918 */
2919 .max_period = (1ULL<<31) - 1,
2920 .get_event_constraints = intel_get_event_constraints,
2921 .put_event_constraints = intel_put_event_constraints,
2922 .event_constraints = intel_core_event_constraints,
2923 .guest_get_msrs = core_guest_get_msrs,
2924 .format_attrs = intel_arch_formats_attr,
2925 .events_sysfs_show = intel_event_sysfs_show,
2926
2927 /*
2928 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2929 * together with PMU version 1 and thus be using core_pmu with
2930 * shared_regs. We need following callbacks here to allocate
2931 * it properly.
2932 */
2933 .cpu_prepare = intel_pmu_cpu_prepare,
2934 .cpu_starting = intel_pmu_cpu_starting,
2935 .cpu_dying = intel_pmu_cpu_dying,
2936};
2937
caaa8be3 2938static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
2939 .name = "Intel",
2940 .handle_irq = intel_pmu_handle_irq,
2941 .disable_all = intel_pmu_disable_all,
2942 .enable_all = intel_pmu_enable_all,
2943 .enable = intel_pmu_enable_event,
2944 .disable = intel_pmu_disable_event,
b4cdc5c2 2945 .hw_config = intel_pmu_hw_config,
a072738e 2946 .schedule_events = x86_schedule_events,
f22f54f4
PZ
2947 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2948 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2949 .event_map = intel_pmu_event_map,
f22f54f4
PZ
2950 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2951 .apic = 1,
a7b58d21 2952 .free_running_flags = PEBS_FREERUNNING_FLAGS,
f22f54f4
PZ
2953 /*
2954 * Intel PMCs cannot be accessed sanely above 32 bit width,
2955 * so we install an artificial 1<<31 period regardless of
2956 * the generic event period:
2957 */
2958 .max_period = (1ULL << 31) - 1,
3f6da390 2959 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 2960 .put_event_constraints = intel_put_event_constraints,
0780c927 2961 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 2962
641cc938 2963 .format_attrs = intel_arch3_formats_attr,
0bf79d44 2964 .events_sysfs_show = intel_event_sysfs_show,
641cc938 2965
a7e3ed1e 2966 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
2967 .cpu_starting = intel_pmu_cpu_starting,
2968 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 2969 .guest_get_msrs = intel_guest_get_msrs,
9c964efa 2970 .sched_task = intel_pmu_sched_task,
f22f54f4
PZ
2971};
2972
c1d6f42f 2973static __init void intel_clovertown_quirk(void)
3c44780b
PZ
2974{
2975 /*
2976 * PEBS is unreliable due to:
2977 *
2978 * AJ67 - PEBS may experience CPL leaks
2979 * AJ68 - PEBS PMI may be delayed by one event
2980 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2981 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2982 *
2983 * AJ67 could be worked around by restricting the OS/USR flags.
2984 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2985 *
2986 * AJ106 could possibly be worked around by not allowing LBR
2987 * usage from PEBS, including the fixup.
2988 * AJ68 could possibly be worked around by always programming
ec75a716 2989 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
2990 *
2991 * But taken together it might just make sense to not enable PEBS on
2992 * these chips.
2993 */
c767a54b 2994 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
2995 x86_pmu.pebs = 0;
2996 x86_pmu.pebs_constraints = NULL;
2997}
2998
c93dc84c
PZ
2999static int intel_snb_pebs_broken(int cpu)
3000{
3001 u32 rev = UINT_MAX; /* default to broken for unknown models */
3002
3003 switch (cpu_data(cpu).x86_model) {
3004 case 42: /* SNB */
3005 rev = 0x28;
3006 break;
3007
3008 case 45: /* SNB-EP */
3009 switch (cpu_data(cpu).x86_mask) {
3010 case 6: rev = 0x618; break;
3011 case 7: rev = 0x70c; break;
3012 }
3013 }
3014
3015 return (cpu_data(cpu).microcode < rev);
3016}
3017
3018static void intel_snb_check_microcode(void)
3019{
3020 int pebs_broken = 0;
3021 int cpu;
3022
3023 get_online_cpus();
3024 for_each_online_cpu(cpu) {
3025 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3026 break;
3027 }
3028 put_online_cpus();
3029
3030 if (pebs_broken == x86_pmu.pebs_broken)
3031 return;
3032
3033 /*
3034 * Serialized by the microcode lock..
3035 */
3036 if (x86_pmu.pebs_broken) {
3037 pr_info("PEBS enabled due to microcode update\n");
3038 x86_pmu.pebs_broken = 0;
3039 } else {
3040 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3041 x86_pmu.pebs_broken = 1;
3042 }
3043}
3044
338b522c
KL
3045/*
3046 * Under certain circumstances, access certain MSR may cause #GP.
3047 * The function tests if the input MSR can be safely accessed.
3048 */
3049static bool check_msr(unsigned long msr, u64 mask)
3050{
3051 u64 val_old, val_new, val_tmp;
3052
3053 /*
3054 * Read the current value, change it and read it back to see if it
3055 * matches, this is needed to detect certain hardware emulators
3056 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3057 */
3058 if (rdmsrl_safe(msr, &val_old))
3059 return false;
3060
3061 /*
3062 * Only change the bits which can be updated by wrmsrl.
3063 */
3064 val_tmp = val_old ^ mask;
3065 if (wrmsrl_safe(msr, val_tmp) ||
3066 rdmsrl_safe(msr, &val_new))
3067 return false;
3068
3069 if (val_new != val_tmp)
3070 return false;
3071
3072 /* Here it's sure that the MSR can be safely accessed.
3073 * Restore the old value and return.
3074 */
3075 wrmsrl(msr, val_old);
3076
3077 return true;
3078}
3079
c1d6f42f 3080static __init void intel_sandybridge_quirk(void)
6a600a8b 3081{
c93dc84c
PZ
3082 x86_pmu.check_microcode = intel_snb_check_microcode;
3083 intel_snb_check_microcode();
6a600a8b
PZ
3084}
3085
c1d6f42f
PZ
3086static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3087 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3088 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3089 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3090 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3091 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3092 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3093 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
3094};
3095
c1d6f42f
PZ
3096static __init void intel_arch_events_quirk(void)
3097{
3098 int bit;
3099
3100 /* disable event that reported as not presend by cpuid */
3101 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3102 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
3103 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3104 intel_arch_events_map[bit].name);
c1d6f42f
PZ
3105 }
3106}
3107
3108static __init void intel_nehalem_quirk(void)
3109{
3110 union cpuid10_ebx ebx;
3111
3112 ebx.full = x86_pmu.events_maskl;
3113 if (ebx.split.no_branch_misses_retired) {
3114 /*
3115 * Erratum AAJ80 detected, we work it around by using
3116 * the BR_MISP_EXEC.ANY event. This will over-count
3117 * branch-misses, but it's still much better than the
3118 * architectural event which is often completely bogus:
3119 */
3120 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3121 ebx.split.no_branch_misses_retired = 0;
3122 x86_pmu.events_maskl = ebx.full;
c767a54b 3123 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
3124 }
3125}
3126
93fcf72c
MD
3127/*
3128 * enable software workaround for errata:
3129 * SNB: BJ122
3130 * IVB: BV98
3131 * HSW: HSD29
3132 *
3133 * Only needed when HT is enabled. However detecting
b37609c3
SE
3134 * if HT is enabled is difficult (model specific). So instead,
3135 * we enable the workaround in the early boot, and verify if
3136 * it is needed in a later initcall phase once we have valid
3137 * topology information to check if HT is actually enabled
93fcf72c
MD
3138 */
3139static __init void intel_ht_bug(void)
3140{
b37609c3 3141 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
93fcf72c 3142
93fcf72c 3143 x86_pmu.start_scheduling = intel_start_scheduling;
0c41e756 3144 x86_pmu.commit_scheduling = intel_commit_scheduling;
93fcf72c 3145 x86_pmu.stop_scheduling = intel_stop_scheduling;
93fcf72c
MD
3146}
3147
7f2ee91f
IM
3148EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3149EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
f9134f36 3150
4b2c4f1f 3151/* Haswell special events */
7f2ee91f
IM
3152EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3153EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3154EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3155EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3156EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3157EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3158EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3159EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3160EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3161EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3162EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3163EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4b2c4f1f 3164
f9134f36 3165static struct attribute *hsw_events_attrs[] = {
4b2c4f1f
AK
3166 EVENT_PTR(tx_start),
3167 EVENT_PTR(tx_commit),
3168 EVENT_PTR(tx_abort),
3169 EVENT_PTR(tx_capacity),
3170 EVENT_PTR(tx_conflict),
3171 EVENT_PTR(el_start),
3172 EVENT_PTR(el_commit),
3173 EVENT_PTR(el_abort),
3174 EVENT_PTR(el_capacity),
3175 EVENT_PTR(el_conflict),
3176 EVENT_PTR(cycles_t),
3177 EVENT_PTR(cycles_ct),
f9134f36
AK
3178 EVENT_PTR(mem_ld_hsw),
3179 EVENT_PTR(mem_st_hsw),
3180 NULL
3181};
3182
de0428a7 3183__init int intel_pmu_init(void)
f22f54f4
PZ
3184{
3185 union cpuid10_edx edx;
3186 union cpuid10_eax eax;
ffb871bc 3187 union cpuid10_ebx ebx;
a1eac7ac 3188 struct event_constraint *c;
f22f54f4 3189 unsigned int unused;
338b522c
KL
3190 struct extra_reg *er;
3191 int version, i;
f22f54f4
PZ
3192
3193 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
3194 switch (boot_cpu_data.x86) {
3195 case 0x6:
3196 return p6_pmu_init();
e717bf4e
VW
3197 case 0xb:
3198 return knc_pmu_init();
a072738e
CG
3199 case 0xf:
3200 return p4_pmu_init();
3201 }
f22f54f4 3202 return -ENODEV;
f22f54f4
PZ
3203 }
3204
3205 /*
3206 * Check whether the Architectural PerfMon supports
3207 * Branch Misses Retired hw_event or not.
3208 */
ffb871bc
GN
3209 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3210 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
3211 return -ENODEV;
3212
3213 version = eax.split.version_id;
3214 if (version < 2)
3215 x86_pmu = core_pmu;
3216 else
3217 x86_pmu = intel_pmu;
3218
3219 x86_pmu.version = version;
948b1bb8
RR
3220 x86_pmu.num_counters = eax.split.num_counters;
3221 x86_pmu.cntval_bits = eax.split.bit_width;
3222 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 3223
c1d6f42f
PZ
3224 x86_pmu.events_maskl = ebx.full;
3225 x86_pmu.events_mask_len = eax.split.mask_length;
3226
70ab7003
AK
3227 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3228
f22f54f4
PZ
3229 /*
3230 * Quirk: v2 perfmon does not report fixed-purpose events, so
3231 * assume at least 3 events:
3232 */
3233 if (version > 1)
948b1bb8 3234 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 3235
c9b08884 3236 if (boot_cpu_has(X86_FEATURE_PDCM)) {
8db909a7
PZ
3237 u64 capabilities;
3238
3239 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3240 x86_pmu.intel_cap.capabilities = capabilities;
3241 }
3242
ca037701
PZ
3243 intel_ds_init();
3244
c1d6f42f
PZ
3245 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3246
f22f54f4
PZ
3247 /*
3248 * Install the hw-cache-events table:
3249 */
3250 switch (boot_cpu_data.x86_model) {
0f7c29ce 3251 case 14: /* 65nm Core "Yonah" */
f22f54f4
PZ
3252 pr_cont("Core events, ");
3253 break;
3254
0f7c29ce 3255 case 15: /* 65nm Core2 "Merom" */
c1d6f42f 3256 x86_add_quirk(intel_clovertown_quirk);
0f7c29ce
PZ
3257 case 22: /* 65nm Core2 "Merom-L" */
3258 case 23: /* 45nm Core2 "Penryn" */
3259 case 29: /* 45nm Core2 "Dunnington (MP) */
f22f54f4
PZ
3260 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3261 sizeof(hw_cache_event_ids));
3262
caff2bef
PZ
3263 intel_pmu_lbr_init_core();
3264
f22f54f4 3265 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 3266 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
3267 pr_cont("Core2 events, ");
3268 break;
3269
0f7c29ce
PZ
3270 case 30: /* 45nm Nehalem */
3271 case 26: /* 45nm Nehalem-EP */
3272 case 46: /* 45nm Nehalem-EX */
f22f54f4
PZ
3273 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3274 sizeof(hw_cache_event_ids));
e994d7d2
AK
3275 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3276 sizeof(hw_cache_extra_regs));
f22f54f4 3277
caff2bef
PZ
3278 intel_pmu_lbr_init_nhm();
3279
f22f54f4 3280 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 3281 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 3282 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 3283 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 3284
f20093ee
SE
3285 x86_pmu.cpu_events = nhm_events_attrs;
3286
91fc4cc0 3287 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3288 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3289 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 3290 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3291 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3292 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 3293
c1d6f42f 3294 x86_add_quirk(intel_nehalem_quirk);
ec75a716 3295
11164cd4 3296 pr_cont("Nehalem events, ");
f22f54f4 3297 break;
caff2bef 3298
0f7c29ce
PZ
3299 case 28: /* 45nm Atom "Pineview" */
3300 case 38: /* 45nm Atom "Lincroft" */
3301 case 39: /* 32nm Atom "Penwell" */
3302 case 53: /* 32nm Atom "Cloverview" */
3303 case 54: /* 32nm Atom "Cedarview" */
f22f54f4
PZ
3304 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3305 sizeof(hw_cache_event_ids));
3306
caff2bef
PZ
3307 intel_pmu_lbr_init_atom();
3308
f22f54f4 3309 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 3310 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
f22f54f4
PZ
3311 pr_cont("Atom events, ");
3312 break;
3313
0f7c29ce 3314 case 55: /* 22nm Atom "Silvermont" */
ef454cae 3315 case 76: /* 14nm Atom "Airmont" */
0f7c29ce 3316 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
1fa64180
YZ
3317 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3318 sizeof(hw_cache_event_ids));
3319 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3320 sizeof(hw_cache_extra_regs));
3321
3322 intel_pmu_lbr_init_atom();
3323
3324 x86_pmu.event_constraints = intel_slm_event_constraints;
3325 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3326 x86_pmu.extra_regs = intel_slm_extra_regs;
9a5e3fb5 3327 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
1fa64180
YZ
3328 pr_cont("Silvermont events, ");
3329 break;
3330
0f7c29ce
PZ
3331 case 37: /* 32nm Westmere */
3332 case 44: /* 32nm Westmere-EP */
3333 case 47: /* 32nm Westmere-EX */
f22f54f4
PZ
3334 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3335 sizeof(hw_cache_event_ids));
e994d7d2
AK
3336 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3337 sizeof(hw_cache_extra_regs));
f22f54f4 3338
caff2bef
PZ
3339 intel_pmu_lbr_init_nhm();
3340
f22f54f4 3341 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 3342 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 3343 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 3344 x86_pmu.extra_regs = intel_westmere_extra_regs;
9a5e3fb5 3345 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
30112039 3346
f20093ee
SE
3347 x86_pmu.cpu_events = nhm_events_attrs;
3348
30112039 3349 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3350 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3351 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 3352 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3353 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3354 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 3355
f22f54f4
PZ
3356 pr_cont("Westmere events, ");
3357 break;
b622d644 3358
0f7c29ce
PZ
3359 case 42: /* 32nm SandyBridge */
3360 case 45: /* 32nm SandyBridge-E/EN/EP */
47a8863d 3361 x86_add_quirk(intel_sandybridge_quirk);
93fcf72c 3362 x86_add_quirk(intel_ht_bug);
b06b3d49
LM
3363 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3364 sizeof(hw_cache_event_ids));
74e6543f
YZ
3365 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3366 sizeof(hw_cache_extra_regs));
b06b3d49 3367
c5cc2cd9 3368 intel_pmu_lbr_init_snb();
b06b3d49
LM
3369
3370 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 3371 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 3372 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3373 if (boot_cpu_data.x86_model == 45)
3374 x86_pmu.extra_regs = intel_snbep_extra_regs;
3375 else
3376 x86_pmu.extra_regs = intel_snb_extra_regs;
93fcf72c
MD
3377
3378
ee89cbc2 3379 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3380 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3381 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
e04d1b23 3382
f20093ee
SE
3383 x86_pmu.cpu_events = snb_events_attrs;
3384
e04d1b23 3385 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
3386 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3387 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3388 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
3389 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3390 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3391
b06b3d49
LM
3392 pr_cont("SandyBridge events, ");
3393 break;
0f7c29ce
PZ
3394
3395 case 58: /* 22nm IvyBridge */
3396 case 62: /* 22nm IvyBridge-EP/EX */
93fcf72c 3397 x86_add_quirk(intel_ht_bug);
20a36e39
SE
3398 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3399 sizeof(hw_cache_event_ids));
1996388e
VW
3400 /* dTLB-load-misses on IVB is different than SNB */
3401 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3402
20a36e39
SE
3403 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3404 sizeof(hw_cache_extra_regs));
3405
3406 intel_pmu_lbr_init_snb();
3407
69943182 3408 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39
SE
3409 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3410 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3411 if (boot_cpu_data.x86_model == 62)
3412 x86_pmu.extra_regs = intel_snbep_extra_regs;
3413 else
3414 x86_pmu.extra_regs = intel_snb_extra_regs;
20a36e39 3415 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3416 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3417 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
20a36e39 3418
f20093ee
SE
3419 x86_pmu.cpu_events = snb_events_attrs;
3420
20a36e39
SE
3421 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3422 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3423 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3424
3425 pr_cont("IvyBridge events, ");
3426 break;
3427
b06b3d49 3428
d86c8eaf
AK
3429 case 60: /* 22nm Haswell Core */
3430 case 63: /* 22nm Haswell Server */
3431 case 69: /* 22nm Haswell ULT */
3432 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
93fcf72c 3433 x86_add_quirk(intel_ht_bug);
72db5596 3434 x86_pmu.late_ack = true;
0f1b5ca2
AK
3435 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3436 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3a632cb2 3437
e9d7f7cd 3438 intel_pmu_lbr_init_hsw();
3a632cb2
AK
3439
3440 x86_pmu.event_constraints = intel_hsw_event_constraints;
3044318f 3441 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
36bbb2f2 3442 x86_pmu.extra_regs = intel_snbep_extra_regs;
3044318f 3443 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3a632cb2 3444 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3445 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3446 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3a632cb2
AK
3447
3448 x86_pmu.hw_config = hsw_hw_config;
3449 x86_pmu.get_event_constraints = hsw_get_event_constraints;
f9134f36 3450 x86_pmu.cpu_events = hsw_events_attrs;
b7af41a1 3451 x86_pmu.lbr_double_abort = true;
3a632cb2
AK
3452 pr_cont("Haswell events, ");
3453 break;
3454
91f1b705
AK
3455 case 61: /* 14nm Broadwell Core-M */
3456 case 86: /* 14nm Broadwell Xeon D */
4b36f1a4
AK
3457 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3458 case 79: /* 14nm Broadwell Server */
91f1b705
AK
3459 x86_pmu.late_ack = true;
3460 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3461 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3462
3463 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3464 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3465 BDW_L3_MISS|HSW_SNOOP_DRAM;
3466 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3467 HSW_SNOOP_DRAM;
3468 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3469 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3470 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3471 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3472
78d504bc 3473 intel_pmu_lbr_init_hsw();
91f1b705
AK
3474
3475 x86_pmu.event_constraints = intel_bdw_event_constraints;
3476 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3477 x86_pmu.extra_regs = intel_snbep_extra_regs;
3478 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3479 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3480 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3481 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
91f1b705
AK
3482
3483 x86_pmu.hw_config = hsw_hw_config;
3484 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3485 x86_pmu.cpu_events = hsw_events_attrs;
294fe0f5 3486 x86_pmu.limit_period = bdw_limit_period;
91f1b705
AK
3487 pr_cont("Broadwell events, ");
3488 break;
3489
9a92e16f
AK
3490 case 78: /* 14nm Skylake Mobile */
3491 case 94: /* 14nm Skylake Desktop */
3492 x86_pmu.late_ack = true;
3493 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3494 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3495 intel_pmu_lbr_init_skl();
3496
3497 x86_pmu.event_constraints = intel_skl_event_constraints;
3498 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3499 x86_pmu.extra_regs = intel_skl_extra_regs;
3500 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3501 /* all extra regs are per-cpu when HT is on */
3502 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3503 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3504
3505 x86_pmu.hw_config = hsw_hw_config;
3506 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3507 x86_pmu.cpu_events = hsw_events_attrs;
3508 WARN_ON(!x86_pmu.format_attrs);
3509 x86_pmu.cpu_events = hsw_events_attrs;
3510 pr_cont("Skylake events, ");
3511 break;
3512
f22f54f4 3513 default:
0af3ac1f
AK
3514 switch (x86_pmu.version) {
3515 case 1:
3516 x86_pmu.event_constraints = intel_v1_event_constraints;
3517 pr_cont("generic architected perfmon v1, ");
3518 break;
3519 default:
3520 /*
3521 * default constraints for v2 and up
3522 */
3523 x86_pmu.event_constraints = intel_gen_event_constraints;
3524 pr_cont("generic architected perfmon, ");
3525 break;
3526 }
f22f54f4 3527 }
ffb871bc 3528
a1eac7ac
RR
3529 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3530 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3531 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3532 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3533 }
3534 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3535
3536 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3537 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3538 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3539 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3540 }
3541
3542 x86_pmu.intel_ctrl |=
3543 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3544
3545 if (x86_pmu.event_constraints) {
3546 /*
3547 * event on fixed counter2 (REF_CYCLES) only works on this
3548 * counter, so do not extend mask to generic counters
3549 */
3550 for_each_event_constraint(c, x86_pmu.event_constraints) {
2c33645d
PI
3551 if (c->cmask == FIXED_EVENT_FLAGS
3552 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3553 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
a1eac7ac 3554 }
2c33645d
PI
3555 c->idxmsk64 &=
3556 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3557 c->weight = hweight64(c->idxmsk64);
a1eac7ac
RR
3558 }
3559 }
3560
338b522c
KL
3561 /*
3562 * Access LBR MSR may cause #GP under certain circumstances.
3563 * E.g. KVM doesn't support LBR MSR
3564 * Check all LBT MSR here.
3565 * Disable LBR access if any LBR MSRs can not be accessed.
3566 */
3567 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3568 x86_pmu.lbr_nr = 0;
3569 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3570 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3571 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3572 x86_pmu.lbr_nr = 0;
3573 }
3574
3575 /*
3576 * Access extra MSR may cause #GP under certain circumstances.
3577 * E.g. KVM doesn't support offcore event
3578 * Check all extra_regs here.
3579 */
3580 if (x86_pmu.extra_regs) {
3581 for (er = x86_pmu.extra_regs; er->msr; er++) {
3582 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3583 /* Disable LBR select mapping */
3584 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3585 x86_pmu.lbr_sel_map = NULL;
3586 }
3587 }
3588
069e0c3c
AK
3589 /* Support full width counters using alternative MSR range */
3590 if (x86_pmu.intel_cap.full_width_write) {
3591 x86_pmu.max_period = x86_pmu.cntval_mask;
3592 x86_pmu.perfctr = MSR_IA32_PMC0;
3593 pr_cont("full-width counters, ");
3594 }
3595
f22f54f4
PZ
3596 return 0;
3597}
b37609c3
SE
3598
3599/*
3600 * HT bug: phase 2 init
3601 * Called once we have valid topology information to check
3602 * whether or not HT is enabled
3603 * If HT is off, then we disable the workaround
3604 */
3605static __init int fixup_ht_bug(void)
3606{
3607 int cpu = smp_processor_id();
3608 int w, c;
3609 /*
3610 * problem not present on this CPU model, nothing to do
3611 */
3612 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3613 return 0;
3614
06931e62 3615 w = cpumask_weight(topology_sibling_cpumask(cpu));
b37609c3
SE
3616 if (w > 1) {
3617 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3618 return 0;
3619 }
3620
3621 watchdog_nmi_disable_all();
3622
3623 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3624
b37609c3 3625 x86_pmu.start_scheduling = NULL;
0c41e756 3626 x86_pmu.commit_scheduling = NULL;
b37609c3
SE
3627 x86_pmu.stop_scheduling = NULL;
3628
3629 watchdog_nmi_enable_all();
3630
3631 get_online_cpus();
3632
3633 for_each_online_cpu(c) {
3634 free_excl_cntrs(c);
3635 }
3636
3637 put_online_cpus();
3638 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3639 return 0;
3640}
3641subsys_initcall(fixup_ht_bug)