perf/x86/intel/pt: Untangle pt_buffer_reset_markers()
[linux-2.6-block.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
33c6d6a7 193
4407204c
PZ
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 199 reg = x86_pmu_config_addr(i);
4407204c
PZ
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
a5ebe0ba
GD
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
4407204c
PZ
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
4407204c
PZ
221 }
222 }
223
224 /*
bffd5fc2
AP
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 228 */
f285f92f 229 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
f285f92f
RR
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 235 if (ret || val != val_new)
4407204c 236 goto msr_fail;
33c6d6a7 237
45daae57
IM
238 /*
239 * We still allow the PMU driver to operate:
240 */
a5ebe0ba
GD
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
45daae57
IM
245
246 return true;
4407204c
PZ
247
248msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
45daae57 253
4407204c 254 return false;
33c6d6a7
DZ
255}
256
cdd6c482 257static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 258{
cdd6c482 259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 260 release_pmc_hardware();
ca037701 261 release_ds_buffers();
4e935e47
PZ
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264}
265
48070342
AS
266void hw_perf_lbr_event_destroy(struct perf_event *event)
267{
268 hw_perf_event_destroy(event);
269
270 /* undo the lbr/bts event accounting */
271 x86_del_exclusive(x86_lbr_exclusive_lbr);
272}
273
85cf9dba
RR
274static inline int x86_pmu_initialized(void)
275{
276 return x86_pmu.handle_irq != NULL;
277}
278
8326f44d 279static inline int
e994d7d2 280set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 281{
e994d7d2 282 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
283 unsigned int cache_type, cache_op, cache_result;
284 u64 config, val;
285
286 config = attr->config;
287
288 cache_type = (config >> 0) & 0xff;
289 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
290 return -EINVAL;
291
292 cache_op = (config >> 8) & 0xff;
293 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
294 return -EINVAL;
295
296 cache_result = (config >> 16) & 0xff;
297 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
298 return -EINVAL;
299
300 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301
302 if (val == 0)
303 return -ENOENT;
304
305 if (val == -1)
306 return -EINVAL;
307
308 hwc->config |= val;
e994d7d2
AK
309 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
310 return x86_pmu_extra_regs(val, event);
8326f44d
IM
311}
312
48070342
AS
313/*
314 * Check if we can create event of a certain type (that no conflicting events
315 * are present).
316 */
317int x86_add_exclusive(unsigned int what)
318{
319 int ret = -EBUSY, i;
320
321 if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
322 return 0;
323
324 mutex_lock(&pmc_reserve_mutex);
325 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
326 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
327 goto out;
328
329 atomic_inc(&x86_pmu.lbr_exclusive[what]);
330 ret = 0;
331
332out:
333 mutex_unlock(&pmc_reserve_mutex);
334 return ret;
335}
336
337void x86_del_exclusive(unsigned int what)
338{
339 atomic_dec(&x86_pmu.lbr_exclusive[what]);
340}
341
de0428a7 342int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
343{
344 struct perf_event_attr *attr = &event->attr;
345 struct hw_perf_event *hwc = &event->hw;
346 u64 config;
347
6c7e550f 348 if (!is_sampling_event(event)) {
c1726f34
RR
349 hwc->sample_period = x86_pmu.max_period;
350 hwc->last_period = hwc->sample_period;
e7850595 351 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
352 }
353
354 if (attr->type == PERF_TYPE_RAW)
ed13ec58 355 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
356
357 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 358 return set_ext_hw_attr(hwc, event);
c1726f34
RR
359
360 if (attr->config >= x86_pmu.max_events)
361 return -EINVAL;
362
363 /*
364 * The generic map:
365 */
366 config = x86_pmu.event_map(attr->config);
367
368 if (config == 0)
369 return -ENOENT;
370
371 if (config == -1LL)
372 return -EINVAL;
373
374 /*
375 * Branch tracing:
376 */
18a073a3
PZ
377 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
378 !attr->freq && hwc->sample_period == 1) {
c1726f34 379 /* BTS is not supported by this architecture. */
6809b6ea 380 if (!x86_pmu.bts_active)
c1726f34
RR
381 return -EOPNOTSUPP;
382
383 /* BTS is currently only allowed for user-mode. */
384 if (!attr->exclude_kernel)
385 return -EOPNOTSUPP;
48070342
AS
386
387 /* disallow bts if conflicting events are present */
388 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
389 return -EBUSY;
390
391 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
392 }
393
394 hwc->config |= config;
395
396 return 0;
397}
4261e0e0 398
ff3fb511
SE
399/*
400 * check that branch_sample_type is compatible with
401 * settings needed for precise_ip > 1 which implies
402 * using the LBR to capture ALL taken branches at the
403 * priv levels of the measurement
404 */
405static inline int precise_br_compat(struct perf_event *event)
406{
407 u64 m = event->attr.branch_sample_type;
408 u64 b = 0;
409
410 /* must capture all branches */
411 if (!(m & PERF_SAMPLE_BRANCH_ANY))
412 return 0;
413
414 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
415
416 if (!event->attr.exclude_user)
417 b |= PERF_SAMPLE_BRANCH_USER;
418
419 if (!event->attr.exclude_kernel)
420 b |= PERF_SAMPLE_BRANCH_KERNEL;
421
422 /*
423 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
424 */
425
426 return m == b;
427}
428
de0428a7 429int x86_pmu_hw_config(struct perf_event *event)
a072738e 430{
ab608344
PZ
431 if (event->attr.precise_ip) {
432 int precise = 0;
433
434 /* Support for constant skid */
c93dc84c 435 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
436 precise++;
437
5553be26 438 /* Support for IP fixup */
03de874a 439 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
440 precise++;
441 }
ab608344
PZ
442
443 if (event->attr.precise_ip > precise)
444 return -EOPNOTSUPP;
4b854900
YZ
445 }
446 /*
447 * check that PEBS LBR correction does not conflict with
448 * whatever the user is asking with attr->branch_sample_type
449 */
450 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
451 u64 *br_type = &event->attr.branch_sample_type;
452
453 if (has_branch_stack(event)) {
454 if (!precise_br_compat(event))
455 return -EOPNOTSUPP;
456
457 /* branch_sample_type is compatible */
458
459 } else {
460 /*
461 * user did not specify branch_sample_type
462 *
463 * For PEBS fixups, we capture all
464 * the branches at the priv level of the
465 * event.
466 */
467 *br_type = PERF_SAMPLE_BRANCH_ANY;
468
469 if (!event->attr.exclude_user)
470 *br_type |= PERF_SAMPLE_BRANCH_USER;
471
472 if (!event->attr.exclude_kernel)
473 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 474 }
ab608344
PZ
475 }
476
e18bf526
YZ
477 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
478 event->attach_state |= PERF_ATTACH_TASK_DATA;
479
a072738e
CG
480 /*
481 * Generate PMC IRQs:
482 * (keep 'enabled' bit clear for now)
483 */
b4cdc5c2 484 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
485
486 /*
487 * Count user and OS events unless requested not to
488 */
b4cdc5c2
PZ
489 if (!event->attr.exclude_user)
490 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
491 if (!event->attr.exclude_kernel)
492 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 493
b4cdc5c2
PZ
494 if (event->attr.type == PERF_TYPE_RAW)
495 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 496
294fe0f5
AK
497 if (event->attr.sample_period && x86_pmu.limit_period) {
498 if (x86_pmu.limit_period(event, event->attr.sample_period) >
499 event->attr.sample_period)
500 return -EINVAL;
501 }
502
9d0fcba6 503 return x86_setup_perfctr(event);
a098f448
RR
504}
505
241771ef 506/*
0d48696f 507 * Setup the hardware configuration for a given attr_type
241771ef 508 */
b0a873eb 509static int __x86_pmu_event_init(struct perf_event *event)
241771ef 510{
4e935e47 511 int err;
241771ef 512
85cf9dba
RR
513 if (!x86_pmu_initialized())
514 return -ENODEV;
241771ef 515
4e935e47 516 err = 0;
cdd6c482 517 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 518 mutex_lock(&pmc_reserve_mutex);
cdd6c482 519 if (atomic_read(&active_events) == 0) {
30dd568c
MM
520 if (!reserve_pmc_hardware())
521 err = -EBUSY;
f80c9e30
PZ
522 else
523 reserve_ds_buffers();
30dd568c
MM
524 }
525 if (!err)
cdd6c482 526 atomic_inc(&active_events);
4e935e47
PZ
527 mutex_unlock(&pmc_reserve_mutex);
528 }
529 if (err)
530 return err;
531
cdd6c482 532 event->destroy = hw_perf_event_destroy;
a1792cda 533
4261e0e0
RR
534 event->hw.idx = -1;
535 event->hw.last_cpu = -1;
536 event->hw.last_tag = ~0ULL;
b690081d 537
efc9f05d
SE
538 /* mark unused */
539 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
540 event->hw.branch_reg.idx = EXTRA_REG_NONE;
541
9d0fcba6 542 return x86_pmu.hw_config(event);
4261e0e0
RR
543}
544
de0428a7 545void x86_pmu_disable_all(void)
f87ad35d 546{
89cbc767 547 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
548 int idx;
549
948b1bb8 550 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
551 u64 val;
552
43f6201a 553 if (!test_bit(idx, cpuc->active_mask))
4295ee62 554 continue;
41bf4989 555 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 556 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 557 continue;
bb1165d6 558 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 559 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 560 }
f87ad35d
JSR
561}
562
a4eaf7f1 563static void x86_pmu_disable(struct pmu *pmu)
b56a3802 564{
89cbc767 565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 566
85cf9dba 567 if (!x86_pmu_initialized())
9e35ad38 568 return;
1da53e02 569
1a6e21f7
PZ
570 if (!cpuc->enabled)
571 return;
572
573 cpuc->n_added = 0;
574 cpuc->enabled = 0;
575 barrier();
1da53e02
SE
576
577 x86_pmu.disable_all();
b56a3802 578}
241771ef 579
de0428a7 580void x86_pmu_enable_all(int added)
f87ad35d 581{
89cbc767 582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
583 int idx;
584
948b1bb8 585 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 586 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 587
43f6201a 588 if (!test_bit(idx, cpuc->active_mask))
4295ee62 589 continue;
984b838c 590
d45dd923 591 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
592 }
593}
594
51b0fe39 595static struct pmu pmu;
1da53e02
SE
596
597static inline int is_x86_event(struct perf_event *event)
598{
599 return event->pmu == &pmu;
600}
601
1e2ad28f
RR
602/*
603 * Event scheduler state:
604 *
605 * Assign events iterating over all events and counters, beginning
606 * with events with least weights first. Keep the current iterator
607 * state in struct sched_state.
608 */
609struct sched_state {
610 int weight;
611 int event; /* event index */
612 int counter; /* counter index */
613 int unassigned; /* number of events to be assigned left */
cc1790cf 614 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
615 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
616};
617
bc1738f6
RR
618/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
619#define SCHED_STATES_MAX 2
620
1e2ad28f
RR
621struct perf_sched {
622 int max_weight;
623 int max_events;
cc1790cf
PZ
624 int max_gp;
625 int saved_states;
b371b594 626 struct event_constraint **constraints;
1e2ad28f 627 struct sched_state state;
bc1738f6 628 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
629};
630
631/*
632 * Initialize interator that runs through all events and counters.
633 */
b371b594 634static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 635 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
636{
637 int idx;
638
639 memset(sched, 0, sizeof(*sched));
640 sched->max_events = num;
641 sched->max_weight = wmax;
cc1790cf 642 sched->max_gp = gpmax;
b371b594 643 sched->constraints = constraints;
1e2ad28f
RR
644
645 for (idx = 0; idx < num; idx++) {
b371b594 646 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
647 break;
648 }
649
650 sched->state.event = idx; /* start with min weight */
651 sched->state.weight = wmin;
652 sched->state.unassigned = num;
653}
654
bc1738f6
RR
655static void perf_sched_save_state(struct perf_sched *sched)
656{
657 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
658 return;
659
660 sched->saved[sched->saved_states] = sched->state;
661 sched->saved_states++;
662}
663
664static bool perf_sched_restore_state(struct perf_sched *sched)
665{
666 if (!sched->saved_states)
667 return false;
668
669 sched->saved_states--;
670 sched->state = sched->saved[sched->saved_states];
671
672 /* continue with next counter: */
673 clear_bit(sched->state.counter++, sched->state.used);
674
675 return true;
676}
677
1e2ad28f
RR
678/*
679 * Select a counter for the current event to schedule. Return true on
680 * success.
681 */
bc1738f6 682static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
683{
684 struct event_constraint *c;
685 int idx;
686
687 if (!sched->state.unassigned)
688 return false;
689
690 if (sched->state.event >= sched->max_events)
691 return false;
692
b371b594 693 c = sched->constraints[sched->state.event];
4defea85 694 /* Prefer fixed purpose counters */
15c7ad51
RR
695 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
696 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 697 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
698 if (!__test_and_set_bit(idx, sched->state.used))
699 goto done;
700 }
701 }
cc1790cf 702
1e2ad28f
RR
703 /* Grab the first unused counter starting with idx */
704 idx = sched->state.counter;
15c7ad51 705 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
706 if (!__test_and_set_bit(idx, sched->state.used)) {
707 if (sched->state.nr_gp++ >= sched->max_gp)
708 return false;
709
4defea85 710 goto done;
cc1790cf 711 }
1e2ad28f 712 }
1e2ad28f 713
4defea85
PZ
714 return false;
715
716done:
717 sched->state.counter = idx;
1e2ad28f 718
bc1738f6
RR
719 if (c->overlap)
720 perf_sched_save_state(sched);
721
722 return true;
723}
724
725static bool perf_sched_find_counter(struct perf_sched *sched)
726{
727 while (!__perf_sched_find_counter(sched)) {
728 if (!perf_sched_restore_state(sched))
729 return false;
730 }
731
1e2ad28f
RR
732 return true;
733}
734
735/*
736 * Go through all unassigned events and find the next one to schedule.
737 * Take events with the least weight first. Return true on success.
738 */
739static bool perf_sched_next_event(struct perf_sched *sched)
740{
741 struct event_constraint *c;
742
743 if (!sched->state.unassigned || !--sched->state.unassigned)
744 return false;
745
746 do {
747 /* next event */
748 sched->state.event++;
749 if (sched->state.event >= sched->max_events) {
750 /* next weight */
751 sched->state.event = 0;
752 sched->state.weight++;
753 if (sched->state.weight > sched->max_weight)
754 return false;
755 }
b371b594 756 c = sched->constraints[sched->state.event];
1e2ad28f
RR
757 } while (c->weight != sched->state.weight);
758
759 sched->state.counter = 0; /* start with first counter */
760
761 return true;
762}
763
764/*
765 * Assign a counter for each event.
766 */
b371b594 767int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 768 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
769{
770 struct perf_sched sched;
771
cc1790cf 772 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
773
774 do {
775 if (!perf_sched_find_counter(&sched))
776 break; /* failed */
777 if (assign)
778 assign[sched.state.event] = sched.state.counter;
779 } while (perf_sched_next_event(&sched));
780
781 return sched.state.unassigned;
782}
4a3dc121 783EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 784
de0428a7 785int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 786{
43b45780 787 struct event_constraint *c;
1da53e02 788 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 789 struct perf_event *e;
e979121b 790 int i, wmin, wmax, unsched = 0;
1da53e02
SE
791 struct hw_perf_event *hwc;
792
793 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
794
c5362c0c
MD
795 if (x86_pmu.start_scheduling)
796 x86_pmu.start_scheduling(cpuc);
797
1e2ad28f 798 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 799 cpuc->event_constraint[i] = NULL;
79cba822 800 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 801 cpuc->event_constraint[i] = c;
43b45780 802
1e2ad28f
RR
803 wmin = min(wmin, c->weight);
804 wmax = max(wmax, c->weight);
1da53e02
SE
805 }
806
8113070d
SE
807 /*
808 * fastpath, try to reuse previous register
809 */
c933c1a6 810 for (i = 0; i < n; i++) {
8113070d 811 hwc = &cpuc->event_list[i]->hw;
b371b594 812 c = cpuc->event_constraint[i];
8113070d
SE
813
814 /* never assigned */
815 if (hwc->idx == -1)
816 break;
817
818 /* constraint still honored */
63b14649 819 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
820 break;
821
822 /* not already used */
823 if (test_bit(hwc->idx, used_mask))
824 break;
825
34538ee7 826 __set_bit(hwc->idx, used_mask);
8113070d
SE
827 if (assign)
828 assign[i] = hwc->idx;
829 }
8113070d 830
1e2ad28f 831 /* slow path */
b371b594 832 if (i != n) {
cc1790cf
PZ
833 int gpmax = x86_pmu.num_counters;
834
835 /*
836 * Do not allow scheduling of more than half the available
837 * generic counters.
838 *
839 * This helps avoid counter starvation of sibling thread by
840 * ensuring at most half the counters cannot be in exclusive
841 * mode. There is no designated counters for the limits. Any
842 * N/2 counters can be used. This helps with events with
843 * specific counter constraints.
844 */
845 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
846 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
847 gpmax /= 2;
848
b371b594 849 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 850 wmax, gpmax, assign);
b371b594 851 }
8113070d 852
2f7f73a5 853 /*
e979121b
MD
854 * In case of success (unsched = 0), mark events as committed,
855 * so we do not put_constraint() in case new events are added
856 * and fail to be scheduled
857 *
858 * We invoke the lower level commit callback to lock the resource
859 *
860 * We do not need to do all of this in case we are called to
861 * validate an event group (assign == NULL)
2f7f73a5 862 */
e979121b 863 if (!unsched && assign) {
2f7f73a5
SE
864 for (i = 0; i < n; i++) {
865 e = cpuc->event_list[i];
866 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 867 if (x86_pmu.commit_scheduling)
b371b594 868 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5
SE
869 }
870 }
e979121b
MD
871
872 if (!assign || unsched) {
873
1da53e02 874 for (i = 0; i < n; i++) {
2f7f73a5
SE
875 e = cpuc->event_list[i];
876 /*
877 * do not put_constraint() on comitted events,
878 * because they are good to go
879 */
880 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
881 continue;
882
e979121b
MD
883 /*
884 * release events that failed scheduling
885 */
1da53e02 886 if (x86_pmu.put_event_constraints)
2f7f73a5 887 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
888 }
889 }
c5362c0c
MD
890
891 if (x86_pmu.stop_scheduling)
892 x86_pmu.stop_scheduling(cpuc);
893
e979121b 894 return unsched ? -EINVAL : 0;
1da53e02
SE
895}
896
897/*
898 * dogrp: true if must collect siblings events (group)
899 * returns total number of events and error code
900 */
901static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
902{
903 struct perf_event *event;
904 int n, max_count;
905
948b1bb8 906 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
907
908 /* current number of events already accepted */
909 n = cpuc->n_events;
910
911 if (is_x86_event(leader)) {
912 if (n >= max_count)
aa2bc1ad 913 return -EINVAL;
1da53e02
SE
914 cpuc->event_list[n] = leader;
915 n++;
916 }
917 if (!dogrp)
918 return n;
919
920 list_for_each_entry(event, &leader->sibling_list, group_entry) {
921 if (!is_x86_event(event) ||
8113070d 922 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
923 continue;
924
925 if (n >= max_count)
aa2bc1ad 926 return -EINVAL;
1da53e02
SE
927
928 cpuc->event_list[n] = event;
929 n++;
930 }
931 return n;
932}
933
1da53e02 934static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 935 struct cpu_hw_events *cpuc, int i)
1da53e02 936{
447a194b
SE
937 struct hw_perf_event *hwc = &event->hw;
938
939 hwc->idx = cpuc->assign[i];
940 hwc->last_cpu = smp_processor_id();
941 hwc->last_tag = ++cpuc->tags[i];
1da53e02 942
15c7ad51 943 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
944 hwc->config_base = 0;
945 hwc->event_base = 0;
15c7ad51 946 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 947 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
948 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
949 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 950 } else {
73d6e522
RR
951 hwc->config_base = x86_pmu_config_addr(hwc->idx);
952 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 953 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
954 }
955}
956
447a194b
SE
957static inline int match_prev_assignment(struct hw_perf_event *hwc,
958 struct cpu_hw_events *cpuc,
959 int i)
960{
961 return hwc->idx == cpuc->assign[i] &&
962 hwc->last_cpu == smp_processor_id() &&
963 hwc->last_tag == cpuc->tags[i];
964}
965
a4eaf7f1 966static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 967
a4eaf7f1 968static void x86_pmu_enable(struct pmu *pmu)
ee06094f 969{
89cbc767 970 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
971 struct perf_event *event;
972 struct hw_perf_event *hwc;
11164cd4 973 int i, added = cpuc->n_added;
1da53e02 974
85cf9dba 975 if (!x86_pmu_initialized())
2b9ff0db 976 return;
1a6e21f7
PZ
977
978 if (cpuc->enabled)
979 return;
980
1da53e02 981 if (cpuc->n_added) {
19925ce7 982 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
983 /*
984 * apply assignment obtained either from
985 * hw_perf_group_sched_in() or x86_pmu_enable()
986 *
987 * step1: save events moving to new counters
1da53e02 988 */
19925ce7 989 for (i = 0; i < n_running; i++) {
1da53e02
SE
990 event = cpuc->event_list[i];
991 hwc = &event->hw;
992
447a194b
SE
993 /*
994 * we can avoid reprogramming counter if:
995 * - assigned same counter as last time
996 * - running on same CPU as last time
997 * - no other event has used the counter since
998 */
999 if (hwc->idx == -1 ||
1000 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1001 continue;
1002
a4eaf7f1
PZ
1003 /*
1004 * Ensure we don't accidentally enable a stopped
1005 * counter simply because we rescheduled.
1006 */
1007 if (hwc->state & PERF_HES_STOPPED)
1008 hwc->state |= PERF_HES_ARCH;
1009
1010 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1011 }
1012
c347a2f1
PZ
1013 /*
1014 * step2: reprogram moved events into new counters
1015 */
1da53e02 1016 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1017 event = cpuc->event_list[i];
1018 hwc = &event->hw;
1019
45e16a68 1020 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1021 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1022 else if (i < n_running)
1023 continue;
1da53e02 1024
a4eaf7f1
PZ
1025 if (hwc->state & PERF_HES_ARCH)
1026 continue;
1027
1028 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1029 }
1030 cpuc->n_added = 0;
1031 perf_events_lapic_init();
1032 }
1a6e21f7
PZ
1033
1034 cpuc->enabled = 1;
1035 barrier();
1036
11164cd4 1037 x86_pmu.enable_all(added);
ee06094f 1038}
ee06094f 1039
245b2e70 1040static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1041
ee06094f
IM
1042/*
1043 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1044 * To be called with the event disabled in hw:
ee06094f 1045 */
de0428a7 1046int x86_perf_event_set_period(struct perf_event *event)
241771ef 1047{
07088edb 1048 struct hw_perf_event *hwc = &event->hw;
e7850595 1049 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1050 s64 period = hwc->sample_period;
7645a24c 1051 int ret = 0, idx = hwc->idx;
ee06094f 1052
15c7ad51 1053 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1054 return 0;
1055
ee06094f 1056 /*
af901ca1 1057 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1058 */
1059 if (unlikely(left <= -period)) {
1060 left = period;
e7850595 1061 local64_set(&hwc->period_left, left);
9e350de3 1062 hwc->last_period = period;
e4abb5d4 1063 ret = 1;
ee06094f
IM
1064 }
1065
1066 if (unlikely(left <= 0)) {
1067 left += period;
e7850595 1068 local64_set(&hwc->period_left, left);
9e350de3 1069 hwc->last_period = period;
e4abb5d4 1070 ret = 1;
ee06094f 1071 }
1c80f4b5 1072 /*
dfc65094 1073 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1074 */
1075 if (unlikely(left < 2))
1076 left = 2;
241771ef 1077
e4abb5d4
PZ
1078 if (left > x86_pmu.max_period)
1079 left = x86_pmu.max_period;
1080
294fe0f5
AK
1081 if (x86_pmu.limit_period)
1082 left = x86_pmu.limit_period(event, left);
1083
245b2e70 1084 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1085
1086 /*
cdd6c482 1087 * The hw event starts counting from this event offset,
ee06094f
IM
1088 * mark it to be able to extra future deltas:
1089 */
e7850595 1090 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1091
73d6e522 1092 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1093
1094 /*
1095 * Due to erratum on certan cpu we need
1096 * a second write to be sure the register
1097 * is updated properly
1098 */
1099 if (x86_pmu.perfctr_second_write) {
73d6e522 1100 wrmsrl(hwc->event_base,
948b1bb8 1101 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1102 }
e4abb5d4 1103
cdd6c482 1104 perf_event_update_userpage(event);
194002b2 1105
e4abb5d4 1106 return ret;
2f18d1e8
IM
1107}
1108
de0428a7 1109void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1110{
0a3aee0d 1111 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1112 __x86_pmu_enable_event(&event->hw,
1113 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1114}
1115
b690081d 1116/*
a4eaf7f1 1117 * Add a single event to the PMU.
1da53e02
SE
1118 *
1119 * The event is added to the group of enabled events
1120 * but only if it can be scehduled with existing events.
fe9081cc 1121 */
a4eaf7f1 1122static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1123{
89cbc767 1124 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1125 struct hw_perf_event *hwc;
1126 int assign[X86_PMC_IDX_MAX];
1127 int n, n0, ret;
fe9081cc 1128
1da53e02 1129 hwc = &event->hw;
fe9081cc 1130
1da53e02 1131 n0 = cpuc->n_events;
24cd7f54
PZ
1132 ret = n = collect_events(cpuc, event, false);
1133 if (ret < 0)
1134 goto out;
53b441a5 1135
a4eaf7f1
PZ
1136 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1137 if (!(flags & PERF_EF_START))
1138 hwc->state |= PERF_HES_ARCH;
1139
4d1c52b0
LM
1140 /*
1141 * If group events scheduling transaction was started,
0d2eb44f 1142 * skip the schedulability test here, it will be performed
c347a2f1 1143 * at commit time (->commit_txn) as a whole.
4d1c52b0 1144 */
8d2cacbb 1145 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1146 goto done_collect;
4d1c52b0 1147
a072738e 1148 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1149 if (ret)
24cd7f54 1150 goto out;
1da53e02
SE
1151 /*
1152 * copy new assignment, now we know it is possible
1153 * will be used by hw_perf_enable()
1154 */
1155 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1156
24cd7f54 1157done_collect:
c347a2f1
PZ
1158 /*
1159 * Commit the collect_events() state. See x86_pmu_del() and
1160 * x86_pmu_*_txn().
1161 */
1da53e02 1162 cpuc->n_events = n;
356e1f2e 1163 cpuc->n_added += n - n0;
90151c35 1164 cpuc->n_txn += n - n0;
95cdd2e7 1165
24cd7f54
PZ
1166 ret = 0;
1167out:
24cd7f54 1168 return ret;
241771ef
IM
1169}
1170
a4eaf7f1 1171static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1172{
89cbc767 1173 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1174 int idx = event->hw.idx;
1175
a4eaf7f1
PZ
1176 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1177 return;
1178
1179 if (WARN_ON_ONCE(idx == -1))
1180 return;
1181
1182 if (flags & PERF_EF_RELOAD) {
1183 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1184 x86_perf_event_set_period(event);
1185 }
1186
1187 event->hw.state = 0;
d76a0812 1188
c08053e6
PZ
1189 cpuc->events[idx] = event;
1190 __set_bit(idx, cpuc->active_mask);
63e6be6d 1191 __set_bit(idx, cpuc->running);
aff3d91a 1192 x86_pmu.enable(event);
c08053e6 1193 perf_event_update_userpage(event);
a78ac325
PZ
1194}
1195
cdd6c482 1196void perf_event_print_debug(void)
241771ef 1197{
2f18d1e8 1198 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1199 u64 pebs, debugctl;
cdd6c482 1200 struct cpu_hw_events *cpuc;
5bb9efe3 1201 unsigned long flags;
1e125676
IM
1202 int cpu, idx;
1203
948b1bb8 1204 if (!x86_pmu.num_counters)
1e125676 1205 return;
241771ef 1206
5bb9efe3 1207 local_irq_save(flags);
241771ef
IM
1208
1209 cpu = smp_processor_id();
cdd6c482 1210 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1211
faa28ae0 1212 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1213 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1214 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1215 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1216 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1217
1218 pr_info("\n");
1219 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1220 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1221 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1222 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1223 if (x86_pmu.pebs_constraints) {
1224 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1225 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1226 }
da3e606d
AK
1227 if (x86_pmu.lbr_nr) {
1228 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1229 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1230 }
f87ad35d 1231 }
7645a24c 1232 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1233
948b1bb8 1234 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1235 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1236 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1237
245b2e70 1238 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1239
a1ef58f4 1240 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1241 cpu, idx, pmc_ctrl);
a1ef58f4 1242 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1243 cpu, idx, pmc_count);
a1ef58f4 1244 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1245 cpu, idx, prev_left);
241771ef 1246 }
948b1bb8 1247 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1248 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1249
a1ef58f4 1250 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1251 cpu, idx, pmc_count);
1252 }
5bb9efe3 1253 local_irq_restore(flags);
241771ef
IM
1254}
1255
de0428a7 1256void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1257{
89cbc767 1258 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1259 struct hw_perf_event *hwc = &event->hw;
241771ef 1260
a4eaf7f1
PZ
1261 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1262 x86_pmu.disable(event);
1263 cpuc->events[hwc->idx] = NULL;
1264 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1265 hwc->state |= PERF_HES_STOPPED;
1266 }
30dd568c 1267
a4eaf7f1
PZ
1268 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1269 /*
1270 * Drain the remaining delta count out of a event
1271 * that we are disabling:
1272 */
1273 x86_perf_event_update(event);
1274 hwc->state |= PERF_HES_UPTODATE;
1275 }
2e841873
PZ
1276}
1277
a4eaf7f1 1278static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1279{
89cbc767 1280 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1281 int i;
1282
2f7f73a5
SE
1283 /*
1284 * event is descheduled
1285 */
1286 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1287
90151c35
SE
1288 /*
1289 * If we're called during a txn, we don't need to do anything.
1290 * The events never got scheduled and ->cancel_txn will truncate
1291 * the event_list.
c347a2f1
PZ
1292 *
1293 * XXX assumes any ->del() called during a TXN will only be on
1294 * an event added during that same TXN.
90151c35 1295 */
8d2cacbb 1296 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1297 return;
1298
c347a2f1
PZ
1299 /*
1300 * Not a TXN, therefore cleanup properly.
1301 */
a4eaf7f1 1302 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1303
1da53e02 1304 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1305 if (event == cpuc->event_list[i])
1306 break;
1307 }
1da53e02 1308
c347a2f1
PZ
1309 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1310 return;
26e61e89 1311
c347a2f1
PZ
1312 /* If we have a newly added event; make sure to decrease n_added. */
1313 if (i >= cpuc->n_events - cpuc->n_added)
1314 --cpuc->n_added;
1da53e02 1315
c347a2f1
PZ
1316 if (x86_pmu.put_event_constraints)
1317 x86_pmu.put_event_constraints(cpuc, event);
1318
1319 /* Delete the array entry. */
b371b594 1320 while (++i < cpuc->n_events) {
c347a2f1 1321 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1322 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1323 }
c347a2f1 1324 --cpuc->n_events;
1da53e02 1325
cdd6c482 1326 perf_event_update_userpage(event);
241771ef
IM
1327}
1328
de0428a7 1329int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1330{
df1a132b 1331 struct perf_sample_data data;
cdd6c482
IM
1332 struct cpu_hw_events *cpuc;
1333 struct perf_event *event;
11d1578f 1334 int idx, handled = 0;
9029a5e3
IM
1335 u64 val;
1336
89cbc767 1337 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1338
2bce5dac
DZ
1339 /*
1340 * Some chipsets need to unmask the LVTPC in a particular spot
1341 * inside the nmi handler. As a result, the unmasking was pushed
1342 * into all the nmi handlers.
1343 *
1344 * This generic handler doesn't seem to have any issues where the
1345 * unmasking occurs so it was left at the top.
1346 */
1347 apic_write(APIC_LVTPC, APIC_DM_NMI);
1348
948b1bb8 1349 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1350 if (!test_bit(idx, cpuc->active_mask)) {
1351 /*
1352 * Though we deactivated the counter some cpus
1353 * might still deliver spurious interrupts still
1354 * in flight. Catch them:
1355 */
1356 if (__test_and_clear_bit(idx, cpuc->running))
1357 handled++;
a29aa8a7 1358 continue;
63e6be6d 1359 }
962bf7a6 1360
cdd6c482 1361 event = cpuc->events[idx];
a4016a79 1362
cc2ad4ba 1363 val = x86_perf_event_update(event);
948b1bb8 1364 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1365 continue;
962bf7a6 1366
9e350de3 1367 /*
cdd6c482 1368 * event overflow
9e350de3 1369 */
4177c42a 1370 handled++;
fd0d000b 1371 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1372
07088edb 1373 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1374 continue;
1375
a8b0ca17 1376 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1377 x86_pmu_stop(event, 0);
a29aa8a7 1378 }
962bf7a6 1379
9e350de3
PZ
1380 if (handled)
1381 inc_irq_stat(apic_perf_irqs);
1382
a29aa8a7
RR
1383 return handled;
1384}
39d81eab 1385
cdd6c482 1386void perf_events_lapic_init(void)
241771ef 1387{
04da8a43 1388 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1389 return;
85cf9dba 1390
241771ef 1391 /*
c323d95f 1392 * Always use NMI for PMU
241771ef 1393 */
c323d95f 1394 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1395}
1396
9326638c 1397static int
9c48f1c6 1398perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1399{
14c63f17
DH
1400 u64 start_clock;
1401 u64 finish_clock;
e8a923cc 1402 int ret;
14c63f17 1403
cdd6c482 1404 if (!atomic_read(&active_events))
9c48f1c6 1405 return NMI_DONE;
4177c42a 1406
e8a923cc 1407 start_clock = sched_clock();
14c63f17 1408 ret = x86_pmu.handle_irq(regs);
e8a923cc 1409 finish_clock = sched_clock();
14c63f17
DH
1410
1411 perf_sample_event_took(finish_clock - start_clock);
1412
1413 return ret;
241771ef 1414}
9326638c 1415NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1416
de0428a7
KW
1417struct event_constraint emptyconstraint;
1418struct event_constraint unconstrained;
f87ad35d 1419
148f9bb8 1420static int
3f6da390
PZ
1421x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1422{
1423 unsigned int cpu = (long)hcpu;
7fdba1ca 1424 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1425 int i, ret = NOTIFY_OK;
3f6da390
PZ
1426
1427 switch (action & ~CPU_TASKS_FROZEN) {
1428 case CPU_UP_PREPARE:
90413464
SE
1429 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1430 cpuc->kfree_on_online[i] = NULL;
3f6da390 1431 if (x86_pmu.cpu_prepare)
b38b24ea 1432 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1433 break;
1434
1435 case CPU_STARTING:
1436 if (x86_pmu.cpu_starting)
1437 x86_pmu.cpu_starting(cpu);
1438 break;
1439
7fdba1ca 1440 case CPU_ONLINE:
90413464
SE
1441 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1442 kfree(cpuc->kfree_on_online[i]);
1443 cpuc->kfree_on_online[i] = NULL;
1444 }
7fdba1ca
PZ
1445 break;
1446
3f6da390
PZ
1447 case CPU_DYING:
1448 if (x86_pmu.cpu_dying)
1449 x86_pmu.cpu_dying(cpu);
1450 break;
1451
b38b24ea 1452 case CPU_UP_CANCELED:
3f6da390
PZ
1453 case CPU_DEAD:
1454 if (x86_pmu.cpu_dead)
1455 x86_pmu.cpu_dead(cpu);
1456 break;
1457
1458 default:
1459 break;
1460 }
1461
b38b24ea 1462 return ret;
3f6da390
PZ
1463}
1464
12558038
CG
1465static void __init pmu_check_apic(void)
1466{
1467 if (cpu_has_apic)
1468 return;
1469
1470 x86_pmu.apic = 0;
1471 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1472 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1473
1474 /*
1475 * If we have a PMU initialized but no APIC
1476 * interrupts, we cannot sample hardware
1477 * events (user-space has to fall back and
1478 * sample via a hrtimer based software event):
1479 */
1480 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1481
12558038
CG
1482}
1483
641cc938
JO
1484static struct attribute_group x86_pmu_format_group = {
1485 .name = "format",
1486 .attrs = NULL,
1487};
1488
8300daa2
JO
1489/*
1490 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1491 * out of events_attr attributes.
1492 */
1493static void __init filter_events(struct attribute **attrs)
1494{
3a54aaa0
SE
1495 struct device_attribute *d;
1496 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1497 int i, j;
1498
1499 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1500 d = (struct device_attribute *)attrs[i];
1501 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1502 /* str trumps id */
1503 if (pmu_attr->event_str)
1504 continue;
8300daa2
JO
1505 if (x86_pmu.event_map(i))
1506 continue;
1507
1508 for (j = i; attrs[j]; j++)
1509 attrs[j] = attrs[j + 1];
1510
1511 /* Check the shifted attr. */
1512 i--;
1513 }
1514}
1515
1a6461b1
AK
1516/* Merge two pointer arrays */
1517static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1518{
1519 struct attribute **new;
1520 int j, i;
1521
1522 for (j = 0; a[j]; j++)
1523 ;
1524 for (i = 0; b[i]; i++)
1525 j++;
1526 j++;
1527
1528 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1529 if (!new)
1530 return NULL;
1531
1532 j = 0;
1533 for (i = 0; a[i]; i++)
1534 new[j++] = a[i];
1535 for (i = 0; b[i]; i++)
1536 new[j++] = b[i];
1537 new[j] = NULL;
1538
1539 return new;
1540}
1541
f20093ee 1542ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1543 char *page)
1544{
1545 struct perf_pmu_events_attr *pmu_attr = \
1546 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1547 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1548
3a54aaa0
SE
1549 /* string trumps id */
1550 if (pmu_attr->event_str)
1551 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1552
3a54aaa0
SE
1553 return x86_pmu.events_sysfs_show(page, config);
1554}
a4747393
JO
1555
1556EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1557EVENT_ATTR(instructions, INSTRUCTIONS );
1558EVENT_ATTR(cache-references, CACHE_REFERENCES );
1559EVENT_ATTR(cache-misses, CACHE_MISSES );
1560EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1561EVENT_ATTR(branch-misses, BRANCH_MISSES );
1562EVENT_ATTR(bus-cycles, BUS_CYCLES );
1563EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1564EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1565EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1566
1567static struct attribute *empty_attrs;
1568
95d18aa2 1569static struct attribute *events_attr[] = {
a4747393
JO
1570 EVENT_PTR(CPU_CYCLES),
1571 EVENT_PTR(INSTRUCTIONS),
1572 EVENT_PTR(CACHE_REFERENCES),
1573 EVENT_PTR(CACHE_MISSES),
1574 EVENT_PTR(BRANCH_INSTRUCTIONS),
1575 EVENT_PTR(BRANCH_MISSES),
1576 EVENT_PTR(BUS_CYCLES),
1577 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1578 EVENT_PTR(STALLED_CYCLES_BACKEND),
1579 EVENT_PTR(REF_CPU_CYCLES),
1580 NULL,
1581};
1582
1583static struct attribute_group x86_pmu_events_group = {
1584 .name = "events",
1585 .attrs = events_attr,
1586};
1587
0bf79d44 1588ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1589{
43c032fe
JO
1590 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1591 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1592 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1593 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1594 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1595 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1596 ssize_t ret;
1597
1598 /*
1599 * We have whole page size to spend and just little data
1600 * to write, so we can safely use sprintf.
1601 */
1602 ret = sprintf(page, "event=0x%02llx", event);
1603
1604 if (umask)
1605 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1606
1607 if (edge)
1608 ret += sprintf(page + ret, ",edge");
1609
1610 if (pc)
1611 ret += sprintf(page + ret, ",pc");
1612
1613 if (any)
1614 ret += sprintf(page + ret, ",any");
1615
1616 if (inv)
1617 ret += sprintf(page + ret, ",inv");
1618
1619 if (cmask)
1620 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1621
1622 ret += sprintf(page + ret, "\n");
1623
1624 return ret;
1625}
1626
dda99116 1627static int __init init_hw_perf_events(void)
b56a3802 1628{
c1d6f42f 1629 struct x86_pmu_quirk *quirk;
72eae04d
RR
1630 int err;
1631
cdd6c482 1632 pr_info("Performance Events: ");
1123e3ad 1633
b56a3802
JSR
1634 switch (boot_cpu_data.x86_vendor) {
1635 case X86_VENDOR_INTEL:
72eae04d 1636 err = intel_pmu_init();
b56a3802 1637 break;
f87ad35d 1638 case X86_VENDOR_AMD:
72eae04d 1639 err = amd_pmu_init();
f87ad35d 1640 break;
4138960a 1641 default:
8a3da6c7 1642 err = -ENOTSUPP;
b56a3802 1643 }
1123e3ad 1644 if (err != 0) {
cdd6c482 1645 pr_cont("no PMU driver, software events only.\n");
004417a6 1646 return 0;
1123e3ad 1647 }
b56a3802 1648
12558038
CG
1649 pmu_check_apic();
1650
33c6d6a7 1651 /* sanity check that the hardware exists or is emulated */
4407204c 1652 if (!check_hw_exists())
004417a6 1653 return 0;
33c6d6a7 1654
1123e3ad 1655 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1656
e97df763
PZ
1657 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1658
c1d6f42f
PZ
1659 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1660 quirk->func();
3c44780b 1661
a1eac7ac
RR
1662 if (!x86_pmu.intel_ctrl)
1663 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1664
cdd6c482 1665 perf_events_lapic_init();
9c48f1c6 1666 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1667
63b14649 1668 unconstrained = (struct event_constraint)
948b1bb8 1669 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1670 0, x86_pmu.num_counters, 0, 0);
63b14649 1671
641cc938 1672 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1673
f20093ee
SE
1674 if (x86_pmu.event_attrs)
1675 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1676
a4747393
JO
1677 if (!x86_pmu.events_sysfs_show)
1678 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1679 else
1680 filter_events(x86_pmu_events_group.attrs);
a4747393 1681
1a6461b1
AK
1682 if (x86_pmu.cpu_events) {
1683 struct attribute **tmp;
1684
1685 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1686 if (!WARN_ON(!tmp))
1687 x86_pmu_events_group.attrs = tmp;
1688 }
1689
57c0c15b 1690 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1691 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1692 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1693 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1694 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1695 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1696 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1697
2e80a82a 1698 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1699 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1700
1701 return 0;
241771ef 1702}
004417a6 1703early_initcall(init_hw_perf_events);
621a01ea 1704
cdd6c482 1705static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1706{
cc2ad4ba 1707 x86_perf_event_update(event);
ee06094f
IM
1708}
1709
4d1c52b0
LM
1710/*
1711 * Start group events scheduling transaction
1712 * Set the flag to make pmu::enable() not perform the
1713 * schedulability test, it will be performed at commit time
1714 */
51b0fe39 1715static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1716{
33696fc0 1717 perf_pmu_disable(pmu);
0a3aee0d
TH
1718 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1719 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1720}
1721
1722/*
1723 * Stop group events scheduling transaction
1724 * Clear the flag and pmu::enable() will perform the
1725 * schedulability test.
1726 */
51b0fe39 1727static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1728{
0a3aee0d 1729 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1730 /*
c347a2f1
PZ
1731 * Truncate collected array by the number of events added in this
1732 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1733 */
0a3aee0d
TH
1734 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1735 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1736 perf_pmu_enable(pmu);
4d1c52b0
LM
1737}
1738
1739/*
1740 * Commit group events scheduling transaction
1741 * Perform the group schedulability test as a whole
1742 * Return 0 if success
c347a2f1
PZ
1743 *
1744 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1745 */
51b0fe39 1746static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1747{
89cbc767 1748 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1749 int assign[X86_PMC_IDX_MAX];
1750 int n, ret;
1751
1752 n = cpuc->n_events;
1753
1754 if (!x86_pmu_initialized())
1755 return -EAGAIN;
1756
1757 ret = x86_pmu.schedule_events(cpuc, n, assign);
1758 if (ret)
1759 return ret;
1760
1761 /*
1762 * copy new assignment, now we know it is possible
1763 * will be used by hw_perf_enable()
1764 */
1765 memcpy(cpuc->assign, assign, n*sizeof(int));
1766
8d2cacbb 1767 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1768 perf_pmu_enable(pmu);
4d1c52b0
LM
1769 return 0;
1770}
cd8a38d3
SE
1771/*
1772 * a fake_cpuc is used to validate event groups. Due to
1773 * the extra reg logic, we need to also allocate a fake
1774 * per_core and per_cpu structure. Otherwise, group events
1775 * using extra reg may conflict without the kernel being
1776 * able to catch this when the last event gets added to
1777 * the group.
1778 */
1779static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1780{
1781 kfree(cpuc->shared_regs);
1782 kfree(cpuc);
1783}
1784
1785static struct cpu_hw_events *allocate_fake_cpuc(void)
1786{
1787 struct cpu_hw_events *cpuc;
1788 int cpu = raw_smp_processor_id();
1789
1790 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1791 if (!cpuc)
1792 return ERR_PTR(-ENOMEM);
1793
1794 /* only needed, if we have extra_regs */
1795 if (x86_pmu.extra_regs) {
1796 cpuc->shared_regs = allocate_shared_regs(cpu);
1797 if (!cpuc->shared_regs)
1798 goto error;
1799 }
b430f7c4 1800 cpuc->is_fake = 1;
cd8a38d3
SE
1801 return cpuc;
1802error:
1803 free_fake_cpuc(cpuc);
1804 return ERR_PTR(-ENOMEM);
1805}
4d1c52b0 1806
ca037701
PZ
1807/*
1808 * validate that we can schedule this event
1809 */
1810static int validate_event(struct perf_event *event)
1811{
1812 struct cpu_hw_events *fake_cpuc;
1813 struct event_constraint *c;
1814 int ret = 0;
1815
cd8a38d3
SE
1816 fake_cpuc = allocate_fake_cpuc();
1817 if (IS_ERR(fake_cpuc))
1818 return PTR_ERR(fake_cpuc);
ca037701 1819
79cba822 1820 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1821
1822 if (!c || !c->weight)
aa2bc1ad 1823 ret = -EINVAL;
ca037701
PZ
1824
1825 if (x86_pmu.put_event_constraints)
1826 x86_pmu.put_event_constraints(fake_cpuc, event);
1827
cd8a38d3 1828 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1829
1830 return ret;
1831}
1832
1da53e02
SE
1833/*
1834 * validate a single event group
1835 *
1836 * validation include:
184f412c
IM
1837 * - check events are compatible which each other
1838 * - events do not compete for the same counter
1839 * - number of events <= number of counters
1da53e02
SE
1840 *
1841 * validation ensures the group can be loaded onto the
1842 * PMU if it was the only group available.
1843 */
fe9081cc
PZ
1844static int validate_group(struct perf_event *event)
1845{
1da53e02 1846 struct perf_event *leader = event->group_leader;
502568d5 1847 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1848 int ret = -EINVAL, n;
fe9081cc 1849
cd8a38d3
SE
1850 fake_cpuc = allocate_fake_cpuc();
1851 if (IS_ERR(fake_cpuc))
1852 return PTR_ERR(fake_cpuc);
1da53e02
SE
1853 /*
1854 * the event is not yet connected with its
1855 * siblings therefore we must first collect
1856 * existing siblings, then add the new event
1857 * before we can simulate the scheduling
1858 */
502568d5 1859 n = collect_events(fake_cpuc, leader, true);
1da53e02 1860 if (n < 0)
cd8a38d3 1861 goto out;
fe9081cc 1862
502568d5
PZ
1863 fake_cpuc->n_events = n;
1864 n = collect_events(fake_cpuc, event, false);
1da53e02 1865 if (n < 0)
cd8a38d3 1866 goto out;
fe9081cc 1867
502568d5 1868 fake_cpuc->n_events = n;
1da53e02 1869
a072738e 1870 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1871
502568d5 1872out:
cd8a38d3 1873 free_fake_cpuc(fake_cpuc);
502568d5 1874 return ret;
fe9081cc
PZ
1875}
1876
dda99116 1877static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1878{
51b0fe39 1879 struct pmu *tmp;
621a01ea
IM
1880 int err;
1881
b0a873eb
PZ
1882 switch (event->attr.type) {
1883 case PERF_TYPE_RAW:
1884 case PERF_TYPE_HARDWARE:
1885 case PERF_TYPE_HW_CACHE:
1886 break;
1887
1888 default:
1889 return -ENOENT;
1890 }
1891
1892 err = __x86_pmu_event_init(event);
fe9081cc 1893 if (!err) {
8113070d
SE
1894 /*
1895 * we temporarily connect event to its pmu
1896 * such that validate_group() can classify
1897 * it as an x86 event using is_x86_event()
1898 */
1899 tmp = event->pmu;
1900 event->pmu = &pmu;
1901
fe9081cc
PZ
1902 if (event->group_leader != event)
1903 err = validate_group(event);
ca037701
PZ
1904 else
1905 err = validate_event(event);
8113070d
SE
1906
1907 event->pmu = tmp;
fe9081cc 1908 }
a1792cda 1909 if (err) {
cdd6c482
IM
1910 if (event->destroy)
1911 event->destroy(event);
a1792cda 1912 }
621a01ea 1913
7911d3f7
AL
1914 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1915 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1916
b0a873eb 1917 return err;
621a01ea 1918}
d7d59fb3 1919
7911d3f7
AL
1920static void refresh_pce(void *ignored)
1921{
1922 if (current->mm)
1923 load_mm_cr4(current->mm);
1924}
1925
1926static void x86_pmu_event_mapped(struct perf_event *event)
1927{
1928 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1929 return;
1930
1931 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1932 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1933}
1934
1935static void x86_pmu_event_unmapped(struct perf_event *event)
1936{
1937 if (!current->mm)
1938 return;
1939
1940 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1941 return;
1942
1943 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1944 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1945}
1946
fe4a3308
PZ
1947static int x86_pmu_event_idx(struct perf_event *event)
1948{
1949 int idx = event->hw.idx;
1950
7911d3f7 1951 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1952 return 0;
1953
15c7ad51
RR
1954 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1955 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1956 idx |= 1 << 30;
1957 }
1958
1959 return idx + 1;
1960}
1961
0c9d42ed
PZ
1962static ssize_t get_attr_rdpmc(struct device *cdev,
1963 struct device_attribute *attr,
1964 char *buf)
1965{
1966 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1967}
1968
0c9d42ed
PZ
1969static ssize_t set_attr_rdpmc(struct device *cdev,
1970 struct device_attribute *attr,
1971 const char *buf, size_t count)
1972{
e2b297fc
SK
1973 unsigned long val;
1974 ssize_t ret;
1975
1976 ret = kstrtoul(buf, 0, &val);
1977 if (ret)
1978 return ret;
e97df763 1979
a6673429
AL
1980 if (val > 2)
1981 return -EINVAL;
1982
e97df763
PZ
1983 if (x86_pmu.attr_rdpmc_broken)
1984 return -ENOTSUPP;
0c9d42ed 1985
a6673429
AL
1986 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1987 /*
1988 * Changing into or out of always available, aka
1989 * perf-event-bypassing mode. This path is extremely slow,
1990 * but only root can trigger it, so it's okay.
1991 */
1992 if (val == 2)
1993 static_key_slow_inc(&rdpmc_always_available);
1994 else
1995 static_key_slow_dec(&rdpmc_always_available);
1996 on_each_cpu(refresh_pce, NULL, 1);
1997 }
1998
1999 x86_pmu.attr_rdpmc = val;
2000
0c9d42ed
PZ
2001 return count;
2002}
2003
2004static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2005
2006static struct attribute *x86_pmu_attrs[] = {
2007 &dev_attr_rdpmc.attr,
2008 NULL,
2009};
2010
2011static struct attribute_group x86_pmu_attr_group = {
2012 .attrs = x86_pmu_attrs,
2013};
2014
2015static const struct attribute_group *x86_pmu_attr_groups[] = {
2016 &x86_pmu_attr_group,
641cc938 2017 &x86_pmu_format_group,
a4747393 2018 &x86_pmu_events_group,
0c9d42ed
PZ
2019 NULL,
2020};
2021
ba532500 2022static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2023{
ba532500
YZ
2024 if (x86_pmu.sched_task)
2025 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2026}
2027
c93dc84c
PZ
2028void perf_check_microcode(void)
2029{
2030 if (x86_pmu.check_microcode)
2031 x86_pmu.check_microcode();
2032}
2033EXPORT_SYMBOL_GPL(perf_check_microcode);
2034
b0a873eb 2035static struct pmu pmu = {
d010b332
SE
2036 .pmu_enable = x86_pmu_enable,
2037 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2038
c93dc84c 2039 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2040
c93dc84c 2041 .event_init = x86_pmu_event_init,
a4eaf7f1 2042
7911d3f7
AL
2043 .event_mapped = x86_pmu_event_mapped,
2044 .event_unmapped = x86_pmu_event_unmapped,
2045
d010b332
SE
2046 .add = x86_pmu_add,
2047 .del = x86_pmu_del,
2048 .start = x86_pmu_start,
2049 .stop = x86_pmu_stop,
2050 .read = x86_pmu_read,
a4eaf7f1 2051
c93dc84c
PZ
2052 .start_txn = x86_pmu_start_txn,
2053 .cancel_txn = x86_pmu_cancel_txn,
2054 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2055
c93dc84c 2056 .event_idx = x86_pmu_event_idx,
ba532500 2057 .sched_task = x86_pmu_sched_task,
e18bf526 2058 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2059};
2060
c1317ec2
AL
2061void arch_perf_update_userpage(struct perf_event *event,
2062 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2063{
20d1c86a
PZ
2064 struct cyc2ns_data *data;
2065
fa731587
PZ
2066 userpg->cap_user_time = 0;
2067 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2068 userpg->cap_user_rdpmc =
2069 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2070 userpg->pmc_width = x86_pmu.cntval_bits;
2071
35af99e6 2072 if (!sched_clock_stable())
e3f3541c
PZ
2073 return;
2074
20d1c86a
PZ
2075 data = cyc2ns_read_begin();
2076
34f43927
PZ
2077 /*
2078 * Internal timekeeping for enabled/running/stopped times
2079 * is always in the local_clock domain.
2080 */
fa731587 2081 userpg->cap_user_time = 1;
20d1c86a
PZ
2082 userpg->time_mult = data->cyc2ns_mul;
2083 userpg->time_shift = data->cyc2ns_shift;
2084 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2085
34f43927
PZ
2086 /*
2087 * cap_user_time_zero doesn't make sense when we're using a different
2088 * time base for the records.
2089 */
2090 if (event->clock == &local_clock) {
2091 userpg->cap_user_time_zero = 1;
2092 userpg->time_zero = data->cyc2ns_offset;
2093 }
20d1c86a
PZ
2094
2095 cyc2ns_read_end(data);
e3f3541c
PZ
2096}
2097
d7d59fb3
PZ
2098/*
2099 * callchain support
2100 */
2101
d7d59fb3
PZ
2102static int backtrace_stack(void *data, char *name)
2103{
038e836e 2104 return 0;
d7d59fb3
PZ
2105}
2106
2107static void backtrace_address(void *data, unsigned long addr, int reliable)
2108{
2109 struct perf_callchain_entry *entry = data;
2110
70791ce9 2111 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2112}
2113
2114static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2115 .stack = backtrace_stack,
2116 .address = backtrace_address,
06d65bda 2117 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2118};
2119
56962b44
FW
2120void
2121perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2122{
927c7a9e
FW
2123 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2124 /* TODO: We don't support guest os callchain now */
ed805261 2125 return;
927c7a9e
FW
2126 }
2127
70791ce9 2128 perf_callchain_store(entry, regs->ip);
d7d59fb3 2129
e8e999cf 2130 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2131}
2132
bc6ca7b3
AS
2133static inline int
2134valid_user_frame(const void __user *fp, unsigned long size)
2135{
2136 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2137}
2138
d07bdfd3
PZ
2139static unsigned long get_segment_base(unsigned int segment)
2140{
2141 struct desc_struct *desc;
2142 int idx = segment >> 3;
2143
2144 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2145 if (idx > LDT_ENTRIES)
2146 return 0;
2147
2148 if (idx > current->active_mm->context.size)
2149 return 0;
2150
2151 desc = current->active_mm->context.ldt;
2152 } else {
2153 if (idx > GDT_ENTRIES)
2154 return 0;
2155
89cbc767 2156 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2157 }
2158
2159 return get_desc_base(desc + idx);
2160}
2161
257ef9d2 2162#ifdef CONFIG_COMPAT
d1a797f3
PA
2163
2164#include <asm/compat.h>
2165
257ef9d2
TE
2166static inline int
2167perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2168{
257ef9d2 2169 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2170 unsigned long ss_base, cs_base;
257ef9d2
TE
2171 struct stack_frame_ia32 frame;
2172 const void __user *fp;
74193ef0 2173
257ef9d2
TE
2174 if (!test_thread_flag(TIF_IA32))
2175 return 0;
2176
d07bdfd3
PZ
2177 cs_base = get_segment_base(regs->cs);
2178 ss_base = get_segment_base(regs->ss);
2179
2180 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2181 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2182 unsigned long bytes;
2183 frame.next_frame = 0;
2184 frame.return_address = 0;
2185
2186 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2187 if (bytes != 0)
257ef9d2 2188 break;
74193ef0 2189
bc6ca7b3
AS
2190 if (!valid_user_frame(fp, sizeof(frame)))
2191 break;
2192
d07bdfd3
PZ
2193 perf_callchain_store(entry, cs_base + frame.return_address);
2194 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2195 }
2196 return 1;
d7d59fb3 2197}
257ef9d2
TE
2198#else
2199static inline int
2200perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2201{
2202 return 0;
2203}
2204#endif
d7d59fb3 2205
56962b44
FW
2206void
2207perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2208{
2209 struct stack_frame frame;
2210 const void __user *fp;
2211
927c7a9e
FW
2212 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2213 /* TODO: We don't support guest os callchain now */
ed805261 2214 return;
927c7a9e 2215 }
5a6cec3a 2216
d07bdfd3
PZ
2217 /*
2218 * We don't know what to do with VM86 stacks.. ignore them for now.
2219 */
2220 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2221 return;
2222
74193ef0 2223 fp = (void __user *)regs->bp;
d7d59fb3 2224
70791ce9 2225 perf_callchain_store(entry, regs->ip);
d7d59fb3 2226
20afc60f
AV
2227 if (!current->mm)
2228 return;
2229
257ef9d2
TE
2230 if (perf_callchain_user32(regs, entry))
2231 return;
2232
f9188e02 2233 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2234 unsigned long bytes;
038e836e 2235 frame.next_frame = NULL;
d7d59fb3
PZ
2236 frame.return_address = 0;
2237
257ef9d2 2238 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2239 if (bytes != 0)
d7d59fb3
PZ
2240 break;
2241
bc6ca7b3
AS
2242 if (!valid_user_frame(fp, sizeof(frame)))
2243 break;
2244
70791ce9 2245 perf_callchain_store(entry, frame.return_address);
038e836e 2246 fp = frame.next_frame;
d7d59fb3
PZ
2247 }
2248}
2249
d07bdfd3
PZ
2250/*
2251 * Deal with code segment offsets for the various execution modes:
2252 *
2253 * VM86 - the good olde 16 bit days, where the linear address is
2254 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2255 *
2256 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2257 * to figure out what the 32bit base address is.
2258 *
2259 * X32 - has TIF_X32 set, but is running in x86_64
2260 *
2261 * X86_64 - CS,DS,SS,ES are all zero based.
2262 */
2263static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2264{
383f3af3
AL
2265 /*
2266 * For IA32 we look at the GDT/LDT segment base to convert the
2267 * effective IP to a linear address.
2268 */
2269
2270#ifdef CONFIG_X86_32
d07bdfd3
PZ
2271 /*
2272 * If we are in VM86 mode, add the segment offset to convert to a
2273 * linear address.
2274 */
2275 if (regs->flags & X86_VM_MASK)
2276 return 0x10 * regs->cs;
2277
55474c48 2278 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2279 return get_segment_base(regs->cs);
2280#else
c56716af
AL
2281 if (user_mode(regs) && !user_64bit_mode(regs) &&
2282 regs->cs != __USER32_CS)
2283 return get_segment_base(regs->cs);
d07bdfd3
PZ
2284#endif
2285 return 0;
2286}
dcf46b94 2287
d07bdfd3
PZ
2288unsigned long perf_instruction_pointer(struct pt_regs *regs)
2289{
39447b38 2290 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2291 return perf_guest_cbs->get_guest_ip();
dcf46b94 2292
d07bdfd3 2293 return regs->ip + code_segment_base(regs);
39447b38
ZY
2294}
2295
2296unsigned long perf_misc_flags(struct pt_regs *regs)
2297{
2298 int misc = 0;
dcf46b94 2299
39447b38 2300 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2301 if (perf_guest_cbs->is_user_mode())
2302 misc |= PERF_RECORD_MISC_GUEST_USER;
2303 else
2304 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2305 } else {
d07bdfd3 2306 if (user_mode(regs))
dcf46b94
ZY
2307 misc |= PERF_RECORD_MISC_USER;
2308 else
2309 misc |= PERF_RECORD_MISC_KERNEL;
2310 }
2311
39447b38 2312 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2313 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2314
2315 return misc;
2316}
b3d9468a
GN
2317
2318void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2319{
2320 cap->version = x86_pmu.version;
2321 cap->num_counters_gp = x86_pmu.num_counters;
2322 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2323 cap->bit_width_gp = x86_pmu.cntval_bits;
2324 cap->bit_width_fixed = x86_pmu.cntval_bits;
2325 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2326 cap->events_mask_len = x86_pmu.events_mask_len;
2327}
2328EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);