perf/x86: Fix LBR call stack save/restore
[linux-block.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
1b7b938f 138static atomic_t pmc_refcount;
4e935e47
PZ
139static DEFINE_MUTEX(pmc_reserve_mutex);
140
b27ea29c
RR
141#ifdef CONFIG_X86_LOCAL_APIC
142
4e935e47
PZ
143static bool reserve_pmc_hardware(void)
144{
145 int i;
146
948b1bb8 147 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
149 goto perfctr_fail;
150 }
151
948b1bb8 152 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
154 goto eventsel_fail;
155 }
156
157 return true;
158
159eventsel_fail:
160 for (i--; i >= 0; i--)
41bf4989 161 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 162
948b1bb8 163 i = x86_pmu.num_counters;
4e935e47
PZ
164
165perfctr_fail:
166 for (i--; i >= 0; i--)
41bf4989 167 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 168
4e935e47
PZ
169 return false;
170}
171
172static void release_pmc_hardware(void)
173{
174 int i;
175
948b1bb8 176 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 179 }
4e935e47
PZ
180}
181
b27ea29c
RR
182#else
183
184static bool reserve_pmc_hardware(void) { return true; }
185static void release_pmc_hardware(void) {}
186
187#endif
188
33c6d6a7
DZ
189static bool check_hw_exists(void)
190{
a5ebe0ba
GD
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
68ab7476 194 int reg_safe = -1;
33c6d6a7 195
4407204c
PZ
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 201 reg = x86_pmu_config_addr(i);
4407204c
PZ
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
a5ebe0ba
GD
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
68ab7476
DZ
209 } else {
210 reg_safe = i;
a5ebe0ba 211 }
4407204c
PZ
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
4407204c
PZ
225 }
226 }
227
68ab7476
DZ
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
4407204c 239 /*
bffd5fc2
AP
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 243 */
68ab7476 244 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
f285f92f
RR
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 250 if (ret || val != val_new)
4407204c 251 goto msr_fail;
33c6d6a7 252
45daae57
IM
253 /*
254 * We still allow the PMU driver to operate:
255 */
a5ebe0ba
GD
256 if (bios_fail) {
257 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
258 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
259 }
45daae57
IM
260
261 return true;
4407204c
PZ
262
263msr_fail:
264 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
265 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
266 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
267 reg, val_new);
45daae57 268
4407204c 269 return false;
33c6d6a7
DZ
270}
271
cdd6c482 272static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 273{
6b099d9b 274 x86_release_hardware();
1b7b938f 275 atomic_dec(&active_events);
4e935e47
PZ
276}
277
48070342
AS
278void hw_perf_lbr_event_destroy(struct perf_event *event)
279{
280 hw_perf_event_destroy(event);
281
282 /* undo the lbr/bts event accounting */
283 x86_del_exclusive(x86_lbr_exclusive_lbr);
284}
285
85cf9dba
RR
286static inline int x86_pmu_initialized(void)
287{
288 return x86_pmu.handle_irq != NULL;
289}
290
8326f44d 291static inline int
e994d7d2 292set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 293{
e994d7d2 294 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
295 unsigned int cache_type, cache_op, cache_result;
296 u64 config, val;
297
298 config = attr->config;
299
300 cache_type = (config >> 0) & 0xff;
301 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
302 return -EINVAL;
303
304 cache_op = (config >> 8) & 0xff;
305 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
306 return -EINVAL;
307
308 cache_result = (config >> 16) & 0xff;
309 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
310 return -EINVAL;
311
312 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
313
314 if (val == 0)
315 return -ENOENT;
316
317 if (val == -1)
318 return -EINVAL;
319
320 hwc->config |= val;
e994d7d2
AK
321 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
322 return x86_pmu_extra_regs(val, event);
8326f44d
IM
323}
324
6b099d9b
AS
325int x86_reserve_hardware(void)
326{
327 int err = 0;
328
1b7b938f 329 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 330 mutex_lock(&pmc_reserve_mutex);
1b7b938f 331 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
332 if (!reserve_pmc_hardware())
333 err = -EBUSY;
334 else
335 reserve_ds_buffers();
336 }
337 if (!err)
1b7b938f 338 atomic_inc(&pmc_refcount);
6b099d9b
AS
339 mutex_unlock(&pmc_reserve_mutex);
340 }
341
342 return err;
343}
344
345void x86_release_hardware(void)
346{
1b7b938f 347 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
348 release_pmc_hardware();
349 release_ds_buffers();
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352}
353
48070342
AS
354/*
355 * Check if we can create event of a certain type (that no conflicting events
356 * are present).
357 */
358int x86_add_exclusive(unsigned int what)
359{
93472aff 360 int i;
48070342 361
93472aff
PZ
362 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
363 mutex_lock(&pmc_reserve_mutex);
364 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
365 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
366 goto fail_unlock;
367 }
368 atomic_inc(&x86_pmu.lbr_exclusive[what]);
369 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 370 }
48070342 371
93472aff
PZ
372 atomic_inc(&active_events);
373 return 0;
48070342 374
93472aff 375fail_unlock:
48070342 376 mutex_unlock(&pmc_reserve_mutex);
93472aff 377 return -EBUSY;
48070342
AS
378}
379
380void x86_del_exclusive(unsigned int what)
381{
382 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 383 atomic_dec(&active_events);
48070342
AS
384}
385
de0428a7 386int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
387{
388 struct perf_event_attr *attr = &event->attr;
389 struct hw_perf_event *hwc = &event->hw;
390 u64 config;
391
6c7e550f 392 if (!is_sampling_event(event)) {
c1726f34
RR
393 hwc->sample_period = x86_pmu.max_period;
394 hwc->last_period = hwc->sample_period;
e7850595 395 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
396 }
397
398 if (attr->type == PERF_TYPE_RAW)
ed13ec58 399 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
400
401 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 402 return set_ext_hw_attr(hwc, event);
c1726f34
RR
403
404 if (attr->config >= x86_pmu.max_events)
405 return -EINVAL;
406
407 /*
408 * The generic map:
409 */
410 config = x86_pmu.event_map(attr->config);
411
412 if (config == 0)
413 return -ENOENT;
414
415 if (config == -1LL)
416 return -EINVAL;
417
418 /*
419 * Branch tracing:
420 */
18a073a3
PZ
421 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
422 !attr->freq && hwc->sample_period == 1) {
c1726f34 423 /* BTS is not supported by this architecture. */
6809b6ea 424 if (!x86_pmu.bts_active)
c1726f34
RR
425 return -EOPNOTSUPP;
426
427 /* BTS is currently only allowed for user-mode. */
428 if (!attr->exclude_kernel)
429 return -EOPNOTSUPP;
48070342
AS
430
431 /* disallow bts if conflicting events are present */
432 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
433 return -EBUSY;
434
435 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
436 }
437
438 hwc->config |= config;
439
440 return 0;
441}
4261e0e0 442
ff3fb511
SE
443/*
444 * check that branch_sample_type is compatible with
445 * settings needed for precise_ip > 1 which implies
446 * using the LBR to capture ALL taken branches at the
447 * priv levels of the measurement
448 */
449static inline int precise_br_compat(struct perf_event *event)
450{
451 u64 m = event->attr.branch_sample_type;
452 u64 b = 0;
453
454 /* must capture all branches */
455 if (!(m & PERF_SAMPLE_BRANCH_ANY))
456 return 0;
457
458 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
459
460 if (!event->attr.exclude_user)
461 b |= PERF_SAMPLE_BRANCH_USER;
462
463 if (!event->attr.exclude_kernel)
464 b |= PERF_SAMPLE_BRANCH_KERNEL;
465
466 /*
467 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
468 */
469
470 return m == b;
471}
472
de0428a7 473int x86_pmu_hw_config(struct perf_event *event)
a072738e 474{
ab608344
PZ
475 if (event->attr.precise_ip) {
476 int precise = 0;
477
478 /* Support for constant skid */
c93dc84c 479 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
480 precise++;
481
5553be26 482 /* Support for IP fixup */
03de874a 483 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
484 precise++;
485 }
ab608344
PZ
486
487 if (event->attr.precise_ip > precise)
488 return -EOPNOTSUPP;
4b854900
YZ
489 }
490 /*
491 * check that PEBS LBR correction does not conflict with
492 * whatever the user is asking with attr->branch_sample_type
493 */
494 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
495 u64 *br_type = &event->attr.branch_sample_type;
496
497 if (has_branch_stack(event)) {
498 if (!precise_br_compat(event))
499 return -EOPNOTSUPP;
500
501 /* branch_sample_type is compatible */
502
503 } else {
504 /*
505 * user did not specify branch_sample_type
506 *
507 * For PEBS fixups, we capture all
508 * the branches at the priv level of the
509 * event.
510 */
511 *br_type = PERF_SAMPLE_BRANCH_ANY;
512
513 if (!event->attr.exclude_user)
514 *br_type |= PERF_SAMPLE_BRANCH_USER;
515
516 if (!event->attr.exclude_kernel)
517 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 518 }
ab608344
PZ
519 }
520
e18bf526
YZ
521 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
522 event->attach_state |= PERF_ATTACH_TASK_DATA;
523
a072738e
CG
524 /*
525 * Generate PMC IRQs:
526 * (keep 'enabled' bit clear for now)
527 */
b4cdc5c2 528 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
529
530 /*
531 * Count user and OS events unless requested not to
532 */
b4cdc5c2
PZ
533 if (!event->attr.exclude_user)
534 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
535 if (!event->attr.exclude_kernel)
536 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 537
b4cdc5c2
PZ
538 if (event->attr.type == PERF_TYPE_RAW)
539 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 540
294fe0f5
AK
541 if (event->attr.sample_period && x86_pmu.limit_period) {
542 if (x86_pmu.limit_period(event, event->attr.sample_period) >
543 event->attr.sample_period)
544 return -EINVAL;
545 }
546
9d0fcba6 547 return x86_setup_perfctr(event);
a098f448
RR
548}
549
241771ef 550/*
0d48696f 551 * Setup the hardware configuration for a given attr_type
241771ef 552 */
b0a873eb 553static int __x86_pmu_event_init(struct perf_event *event)
241771ef 554{
4e935e47 555 int err;
241771ef 556
85cf9dba
RR
557 if (!x86_pmu_initialized())
558 return -ENODEV;
241771ef 559
6b099d9b 560 err = x86_reserve_hardware();
4e935e47
PZ
561 if (err)
562 return err;
563
1b7b938f 564 atomic_inc(&active_events);
cdd6c482 565 event->destroy = hw_perf_event_destroy;
a1792cda 566
4261e0e0
RR
567 event->hw.idx = -1;
568 event->hw.last_cpu = -1;
569 event->hw.last_tag = ~0ULL;
b690081d 570
efc9f05d
SE
571 /* mark unused */
572 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
573 event->hw.branch_reg.idx = EXTRA_REG_NONE;
574
9d0fcba6 575 return x86_pmu.hw_config(event);
4261e0e0
RR
576}
577
de0428a7 578void x86_pmu_disable_all(void)
f87ad35d 579{
89cbc767 580 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
581 int idx;
582
948b1bb8 583 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
584 u64 val;
585
43f6201a 586 if (!test_bit(idx, cpuc->active_mask))
4295ee62 587 continue;
41bf4989 588 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 589 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 590 continue;
bb1165d6 591 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 592 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 593 }
f87ad35d
JSR
594}
595
a4eaf7f1 596static void x86_pmu_disable(struct pmu *pmu)
b56a3802 597{
89cbc767 598 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 599
85cf9dba 600 if (!x86_pmu_initialized())
9e35ad38 601 return;
1da53e02 602
1a6e21f7
PZ
603 if (!cpuc->enabled)
604 return;
605
606 cpuc->n_added = 0;
607 cpuc->enabled = 0;
608 barrier();
1da53e02
SE
609
610 x86_pmu.disable_all();
b56a3802 611}
241771ef 612
de0428a7 613void x86_pmu_enable_all(int added)
f87ad35d 614{
89cbc767 615 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
616 int idx;
617
948b1bb8 618 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 619 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 620
43f6201a 621 if (!test_bit(idx, cpuc->active_mask))
4295ee62 622 continue;
984b838c 623
d45dd923 624 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
625 }
626}
627
51b0fe39 628static struct pmu pmu;
1da53e02
SE
629
630static inline int is_x86_event(struct perf_event *event)
631{
632 return event->pmu == &pmu;
633}
634
1e2ad28f
RR
635/*
636 * Event scheduler state:
637 *
638 * Assign events iterating over all events and counters, beginning
639 * with events with least weights first. Keep the current iterator
640 * state in struct sched_state.
641 */
642struct sched_state {
643 int weight;
644 int event; /* event index */
645 int counter; /* counter index */
646 int unassigned; /* number of events to be assigned left */
cc1790cf 647 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
648 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
649};
650
bc1738f6
RR
651/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
652#define SCHED_STATES_MAX 2
653
1e2ad28f
RR
654struct perf_sched {
655 int max_weight;
656 int max_events;
cc1790cf
PZ
657 int max_gp;
658 int saved_states;
b371b594 659 struct event_constraint **constraints;
1e2ad28f 660 struct sched_state state;
bc1738f6 661 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
662};
663
664/*
665 * Initialize interator that runs through all events and counters.
666 */
b371b594 667static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 668 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
669{
670 int idx;
671
672 memset(sched, 0, sizeof(*sched));
673 sched->max_events = num;
674 sched->max_weight = wmax;
cc1790cf 675 sched->max_gp = gpmax;
b371b594 676 sched->constraints = constraints;
1e2ad28f
RR
677
678 for (idx = 0; idx < num; idx++) {
b371b594 679 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
680 break;
681 }
682
683 sched->state.event = idx; /* start with min weight */
684 sched->state.weight = wmin;
685 sched->state.unassigned = num;
686}
687
bc1738f6
RR
688static void perf_sched_save_state(struct perf_sched *sched)
689{
690 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
691 return;
692
693 sched->saved[sched->saved_states] = sched->state;
694 sched->saved_states++;
695}
696
697static bool perf_sched_restore_state(struct perf_sched *sched)
698{
699 if (!sched->saved_states)
700 return false;
701
702 sched->saved_states--;
703 sched->state = sched->saved[sched->saved_states];
704
705 /* continue with next counter: */
706 clear_bit(sched->state.counter++, sched->state.used);
707
708 return true;
709}
710
1e2ad28f
RR
711/*
712 * Select a counter for the current event to schedule. Return true on
713 * success.
714 */
bc1738f6 715static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
716{
717 struct event_constraint *c;
718 int idx;
719
720 if (!sched->state.unassigned)
721 return false;
722
723 if (sched->state.event >= sched->max_events)
724 return false;
725
b371b594 726 c = sched->constraints[sched->state.event];
4defea85 727 /* Prefer fixed purpose counters */
15c7ad51
RR
728 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
729 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 730 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
731 if (!__test_and_set_bit(idx, sched->state.used))
732 goto done;
733 }
734 }
cc1790cf 735
1e2ad28f
RR
736 /* Grab the first unused counter starting with idx */
737 idx = sched->state.counter;
15c7ad51 738 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
739 if (!__test_and_set_bit(idx, sched->state.used)) {
740 if (sched->state.nr_gp++ >= sched->max_gp)
741 return false;
742
4defea85 743 goto done;
cc1790cf 744 }
1e2ad28f 745 }
1e2ad28f 746
4defea85
PZ
747 return false;
748
749done:
750 sched->state.counter = idx;
1e2ad28f 751
bc1738f6
RR
752 if (c->overlap)
753 perf_sched_save_state(sched);
754
755 return true;
756}
757
758static bool perf_sched_find_counter(struct perf_sched *sched)
759{
760 while (!__perf_sched_find_counter(sched)) {
761 if (!perf_sched_restore_state(sched))
762 return false;
763 }
764
1e2ad28f
RR
765 return true;
766}
767
768/*
769 * Go through all unassigned events and find the next one to schedule.
770 * Take events with the least weight first. Return true on success.
771 */
772static bool perf_sched_next_event(struct perf_sched *sched)
773{
774 struct event_constraint *c;
775
776 if (!sched->state.unassigned || !--sched->state.unassigned)
777 return false;
778
779 do {
780 /* next event */
781 sched->state.event++;
782 if (sched->state.event >= sched->max_events) {
783 /* next weight */
784 sched->state.event = 0;
785 sched->state.weight++;
786 if (sched->state.weight > sched->max_weight)
787 return false;
788 }
b371b594 789 c = sched->constraints[sched->state.event];
1e2ad28f
RR
790 } while (c->weight != sched->state.weight);
791
792 sched->state.counter = 0; /* start with first counter */
793
794 return true;
795}
796
797/*
798 * Assign a counter for each event.
799 */
b371b594 800int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 801 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
802{
803 struct perf_sched sched;
804
cc1790cf 805 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
806
807 do {
808 if (!perf_sched_find_counter(&sched))
809 break; /* failed */
810 if (assign)
811 assign[sched.state.event] = sched.state.counter;
812 } while (perf_sched_next_event(&sched));
813
814 return sched.state.unassigned;
815}
4a3dc121 816EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 817
de0428a7 818int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 819{
43b45780 820 struct event_constraint *c;
1da53e02 821 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 822 struct perf_event *e;
e979121b 823 int i, wmin, wmax, unsched = 0;
1da53e02
SE
824 struct hw_perf_event *hwc;
825
826 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
827
c5362c0c
MD
828 if (x86_pmu.start_scheduling)
829 x86_pmu.start_scheduling(cpuc);
830
1e2ad28f 831 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 832 cpuc->event_constraint[i] = NULL;
79cba822 833 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 834 cpuc->event_constraint[i] = c;
43b45780 835
1e2ad28f
RR
836 wmin = min(wmin, c->weight);
837 wmax = max(wmax, c->weight);
1da53e02
SE
838 }
839
8113070d
SE
840 /*
841 * fastpath, try to reuse previous register
842 */
c933c1a6 843 for (i = 0; i < n; i++) {
8113070d 844 hwc = &cpuc->event_list[i]->hw;
b371b594 845 c = cpuc->event_constraint[i];
8113070d
SE
846
847 /* never assigned */
848 if (hwc->idx == -1)
849 break;
850
851 /* constraint still honored */
63b14649 852 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
853 break;
854
855 /* not already used */
856 if (test_bit(hwc->idx, used_mask))
857 break;
858
34538ee7 859 __set_bit(hwc->idx, used_mask);
8113070d
SE
860 if (assign)
861 assign[i] = hwc->idx;
862 }
8113070d 863
1e2ad28f 864 /* slow path */
b371b594 865 if (i != n) {
cc1790cf
PZ
866 int gpmax = x86_pmu.num_counters;
867
868 /*
869 * Do not allow scheduling of more than half the available
870 * generic counters.
871 *
872 * This helps avoid counter starvation of sibling thread by
873 * ensuring at most half the counters cannot be in exclusive
874 * mode. There is no designated counters for the limits. Any
875 * N/2 counters can be used. This helps with events with
876 * specific counter constraints.
877 */
878 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
879 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
880 gpmax /= 2;
881
b371b594 882 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 883 wmax, gpmax, assign);
b371b594 884 }
8113070d 885
2f7f73a5 886 /*
e979121b
MD
887 * In case of success (unsched = 0), mark events as committed,
888 * so we do not put_constraint() in case new events are added
889 * and fail to be scheduled
890 *
891 * We invoke the lower level commit callback to lock the resource
892 *
893 * We do not need to do all of this in case we are called to
894 * validate an event group (assign == NULL)
2f7f73a5 895 */
e979121b 896 if (!unsched && assign) {
2f7f73a5
SE
897 for (i = 0; i < n; i++) {
898 e = cpuc->event_list[i];
899 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 900 if (x86_pmu.commit_scheduling)
b371b594 901 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 902 }
8736e548 903 } else {
1da53e02 904 for (i = 0; i < n; i++) {
2f7f73a5
SE
905 e = cpuc->event_list[i];
906 /*
907 * do not put_constraint() on comitted events,
908 * because they are good to go
909 */
910 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
911 continue;
912
e979121b
MD
913 /*
914 * release events that failed scheduling
915 */
1da53e02 916 if (x86_pmu.put_event_constraints)
2f7f73a5 917 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
918 }
919 }
c5362c0c
MD
920
921 if (x86_pmu.stop_scheduling)
922 x86_pmu.stop_scheduling(cpuc);
923
e979121b 924 return unsched ? -EINVAL : 0;
1da53e02
SE
925}
926
927/*
928 * dogrp: true if must collect siblings events (group)
929 * returns total number of events and error code
930 */
931static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
932{
933 struct perf_event *event;
934 int n, max_count;
935
948b1bb8 936 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
937
938 /* current number of events already accepted */
939 n = cpuc->n_events;
940
941 if (is_x86_event(leader)) {
942 if (n >= max_count)
aa2bc1ad 943 return -EINVAL;
1da53e02
SE
944 cpuc->event_list[n] = leader;
945 n++;
946 }
947 if (!dogrp)
948 return n;
949
950 list_for_each_entry(event, &leader->sibling_list, group_entry) {
951 if (!is_x86_event(event) ||
8113070d 952 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
953 continue;
954
955 if (n >= max_count)
aa2bc1ad 956 return -EINVAL;
1da53e02
SE
957
958 cpuc->event_list[n] = event;
959 n++;
960 }
961 return n;
962}
963
1da53e02 964static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 965 struct cpu_hw_events *cpuc, int i)
1da53e02 966{
447a194b
SE
967 struct hw_perf_event *hwc = &event->hw;
968
969 hwc->idx = cpuc->assign[i];
970 hwc->last_cpu = smp_processor_id();
971 hwc->last_tag = ++cpuc->tags[i];
1da53e02 972
15c7ad51 973 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
974 hwc->config_base = 0;
975 hwc->event_base = 0;
15c7ad51 976 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 977 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
978 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
979 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 980 } else {
73d6e522
RR
981 hwc->config_base = x86_pmu_config_addr(hwc->idx);
982 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 983 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
984 }
985}
986
447a194b
SE
987static inline int match_prev_assignment(struct hw_perf_event *hwc,
988 struct cpu_hw_events *cpuc,
989 int i)
990{
991 return hwc->idx == cpuc->assign[i] &&
992 hwc->last_cpu == smp_processor_id() &&
993 hwc->last_tag == cpuc->tags[i];
994}
995
a4eaf7f1 996static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 997
a4eaf7f1 998static void x86_pmu_enable(struct pmu *pmu)
ee06094f 999{
89cbc767 1000 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1001 struct perf_event *event;
1002 struct hw_perf_event *hwc;
11164cd4 1003 int i, added = cpuc->n_added;
1da53e02 1004
85cf9dba 1005 if (!x86_pmu_initialized())
2b9ff0db 1006 return;
1a6e21f7
PZ
1007
1008 if (cpuc->enabled)
1009 return;
1010
1da53e02 1011 if (cpuc->n_added) {
19925ce7 1012 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1013 /*
1014 * apply assignment obtained either from
1015 * hw_perf_group_sched_in() or x86_pmu_enable()
1016 *
1017 * step1: save events moving to new counters
1da53e02 1018 */
19925ce7 1019 for (i = 0; i < n_running; i++) {
1da53e02
SE
1020 event = cpuc->event_list[i];
1021 hwc = &event->hw;
1022
447a194b
SE
1023 /*
1024 * we can avoid reprogramming counter if:
1025 * - assigned same counter as last time
1026 * - running on same CPU as last time
1027 * - no other event has used the counter since
1028 */
1029 if (hwc->idx == -1 ||
1030 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1031 continue;
1032
a4eaf7f1
PZ
1033 /*
1034 * Ensure we don't accidentally enable a stopped
1035 * counter simply because we rescheduled.
1036 */
1037 if (hwc->state & PERF_HES_STOPPED)
1038 hwc->state |= PERF_HES_ARCH;
1039
1040 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1041 }
1042
c347a2f1
PZ
1043 /*
1044 * step2: reprogram moved events into new counters
1045 */
1da53e02 1046 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1047 event = cpuc->event_list[i];
1048 hwc = &event->hw;
1049
45e16a68 1050 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1051 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1052 else if (i < n_running)
1053 continue;
1da53e02 1054
a4eaf7f1
PZ
1055 if (hwc->state & PERF_HES_ARCH)
1056 continue;
1057
1058 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1059 }
1060 cpuc->n_added = 0;
1061 perf_events_lapic_init();
1062 }
1a6e21f7
PZ
1063
1064 cpuc->enabled = 1;
1065 barrier();
1066
11164cd4 1067 x86_pmu.enable_all(added);
ee06094f 1068}
ee06094f 1069
245b2e70 1070static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1071
ee06094f
IM
1072/*
1073 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1074 * To be called with the event disabled in hw:
ee06094f 1075 */
de0428a7 1076int x86_perf_event_set_period(struct perf_event *event)
241771ef 1077{
07088edb 1078 struct hw_perf_event *hwc = &event->hw;
e7850595 1079 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1080 s64 period = hwc->sample_period;
7645a24c 1081 int ret = 0, idx = hwc->idx;
ee06094f 1082
15c7ad51 1083 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1084 return 0;
1085
ee06094f 1086 /*
af901ca1 1087 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1088 */
1089 if (unlikely(left <= -period)) {
1090 left = period;
e7850595 1091 local64_set(&hwc->period_left, left);
9e350de3 1092 hwc->last_period = period;
e4abb5d4 1093 ret = 1;
ee06094f
IM
1094 }
1095
1096 if (unlikely(left <= 0)) {
1097 left += period;
e7850595 1098 local64_set(&hwc->period_left, left);
9e350de3 1099 hwc->last_period = period;
e4abb5d4 1100 ret = 1;
ee06094f 1101 }
1c80f4b5 1102 /*
dfc65094 1103 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1104 */
1105 if (unlikely(left < 2))
1106 left = 2;
241771ef 1107
e4abb5d4
PZ
1108 if (left > x86_pmu.max_period)
1109 left = x86_pmu.max_period;
1110
294fe0f5
AK
1111 if (x86_pmu.limit_period)
1112 left = x86_pmu.limit_period(event, left);
1113
245b2e70 1114 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1115
851559e3
YZ
1116 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1117 local64_read(&hwc->prev_count) != (u64)-left) {
1118 /*
1119 * The hw event starts counting from this event offset,
1120 * mark it to be able to extra future deltas:
1121 */
1122 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1123
851559e3
YZ
1124 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1125 }
68aa00ac
CG
1126
1127 /*
1128 * Due to erratum on certan cpu we need
1129 * a second write to be sure the register
1130 * is updated properly
1131 */
1132 if (x86_pmu.perfctr_second_write) {
73d6e522 1133 wrmsrl(hwc->event_base,
948b1bb8 1134 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1135 }
e4abb5d4 1136
cdd6c482 1137 perf_event_update_userpage(event);
194002b2 1138
e4abb5d4 1139 return ret;
2f18d1e8
IM
1140}
1141
de0428a7 1142void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1143{
0a3aee0d 1144 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1145 __x86_pmu_enable_event(&event->hw,
1146 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1147}
1148
b690081d 1149/*
a4eaf7f1 1150 * Add a single event to the PMU.
1da53e02
SE
1151 *
1152 * The event is added to the group of enabled events
1153 * but only if it can be scehduled with existing events.
fe9081cc 1154 */
a4eaf7f1 1155static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1156{
89cbc767 1157 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1158 struct hw_perf_event *hwc;
1159 int assign[X86_PMC_IDX_MAX];
1160 int n, n0, ret;
fe9081cc 1161
1da53e02 1162 hwc = &event->hw;
fe9081cc 1163
1da53e02 1164 n0 = cpuc->n_events;
24cd7f54
PZ
1165 ret = n = collect_events(cpuc, event, false);
1166 if (ret < 0)
1167 goto out;
53b441a5 1168
a4eaf7f1
PZ
1169 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1170 if (!(flags & PERF_EF_START))
1171 hwc->state |= PERF_HES_ARCH;
1172
4d1c52b0
LM
1173 /*
1174 * If group events scheduling transaction was started,
0d2eb44f 1175 * skip the schedulability test here, it will be performed
c347a2f1 1176 * at commit time (->commit_txn) as a whole.
4d1c52b0 1177 */
8f3e5684 1178 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1179 goto done_collect;
4d1c52b0 1180
a072738e 1181 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1182 if (ret)
24cd7f54 1183 goto out;
1da53e02
SE
1184 /*
1185 * copy new assignment, now we know it is possible
1186 * will be used by hw_perf_enable()
1187 */
1188 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1189
24cd7f54 1190done_collect:
c347a2f1
PZ
1191 /*
1192 * Commit the collect_events() state. See x86_pmu_del() and
1193 * x86_pmu_*_txn().
1194 */
1da53e02 1195 cpuc->n_events = n;
356e1f2e 1196 cpuc->n_added += n - n0;
90151c35 1197 cpuc->n_txn += n - n0;
95cdd2e7 1198
24cd7f54
PZ
1199 ret = 0;
1200out:
24cd7f54 1201 return ret;
241771ef
IM
1202}
1203
a4eaf7f1 1204static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1205{
89cbc767 1206 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1207 int idx = event->hw.idx;
1208
a4eaf7f1
PZ
1209 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1210 return;
1211
1212 if (WARN_ON_ONCE(idx == -1))
1213 return;
1214
1215 if (flags & PERF_EF_RELOAD) {
1216 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1217 x86_perf_event_set_period(event);
1218 }
1219
1220 event->hw.state = 0;
d76a0812 1221
c08053e6
PZ
1222 cpuc->events[idx] = event;
1223 __set_bit(idx, cpuc->active_mask);
63e6be6d 1224 __set_bit(idx, cpuc->running);
aff3d91a 1225 x86_pmu.enable(event);
c08053e6 1226 perf_event_update_userpage(event);
a78ac325
PZ
1227}
1228
cdd6c482 1229void perf_event_print_debug(void)
241771ef 1230{
2f18d1e8 1231 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1232 u64 pebs, debugctl;
cdd6c482 1233 struct cpu_hw_events *cpuc;
5bb9efe3 1234 unsigned long flags;
1e125676
IM
1235 int cpu, idx;
1236
948b1bb8 1237 if (!x86_pmu.num_counters)
1e125676 1238 return;
241771ef 1239
5bb9efe3 1240 local_irq_save(flags);
241771ef
IM
1241
1242 cpu = smp_processor_id();
cdd6c482 1243 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1244
faa28ae0 1245 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1246 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1247 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1248 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1249 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1250
1251 pr_info("\n");
1252 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1253 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1254 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1255 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1256 if (x86_pmu.pebs_constraints) {
1257 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1258 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1259 }
da3e606d
AK
1260 if (x86_pmu.lbr_nr) {
1261 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1262 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1263 }
f87ad35d 1264 }
7645a24c 1265 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1266
948b1bb8 1267 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1268 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1269 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1270
245b2e70 1271 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1272
a1ef58f4 1273 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1274 cpu, idx, pmc_ctrl);
a1ef58f4 1275 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1276 cpu, idx, pmc_count);
a1ef58f4 1277 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1278 cpu, idx, prev_left);
241771ef 1279 }
948b1bb8 1280 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1281 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1282
a1ef58f4 1283 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1284 cpu, idx, pmc_count);
1285 }
5bb9efe3 1286 local_irq_restore(flags);
241771ef
IM
1287}
1288
de0428a7 1289void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1290{
89cbc767 1291 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1292 struct hw_perf_event *hwc = &event->hw;
241771ef 1293
a4eaf7f1
PZ
1294 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1295 x86_pmu.disable(event);
1296 cpuc->events[hwc->idx] = NULL;
1297 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1298 hwc->state |= PERF_HES_STOPPED;
1299 }
30dd568c 1300
a4eaf7f1
PZ
1301 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1302 /*
1303 * Drain the remaining delta count out of a event
1304 * that we are disabling:
1305 */
1306 x86_perf_event_update(event);
1307 hwc->state |= PERF_HES_UPTODATE;
1308 }
2e841873
PZ
1309}
1310
a4eaf7f1 1311static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1312{
89cbc767 1313 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1314 int i;
1315
2f7f73a5
SE
1316 /*
1317 * event is descheduled
1318 */
1319 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1320
90151c35
SE
1321 /*
1322 * If we're called during a txn, we don't need to do anything.
1323 * The events never got scheduled and ->cancel_txn will truncate
1324 * the event_list.
c347a2f1
PZ
1325 *
1326 * XXX assumes any ->del() called during a TXN will only be on
1327 * an event added during that same TXN.
90151c35 1328 */
8f3e5684 1329 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
90151c35
SE
1330 return;
1331
c347a2f1
PZ
1332 /*
1333 * Not a TXN, therefore cleanup properly.
1334 */
a4eaf7f1 1335 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1336
1da53e02 1337 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1338 if (event == cpuc->event_list[i])
1339 break;
1340 }
1da53e02 1341
c347a2f1
PZ
1342 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1343 return;
26e61e89 1344
c347a2f1
PZ
1345 /* If we have a newly added event; make sure to decrease n_added. */
1346 if (i >= cpuc->n_events - cpuc->n_added)
1347 --cpuc->n_added;
1da53e02 1348
c347a2f1
PZ
1349 if (x86_pmu.put_event_constraints)
1350 x86_pmu.put_event_constraints(cpuc, event);
1351
1352 /* Delete the array entry. */
b371b594 1353 while (++i < cpuc->n_events) {
c347a2f1 1354 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1355 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1356 }
c347a2f1 1357 --cpuc->n_events;
1da53e02 1358
cdd6c482 1359 perf_event_update_userpage(event);
241771ef
IM
1360}
1361
de0428a7 1362int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1363{
df1a132b 1364 struct perf_sample_data data;
cdd6c482
IM
1365 struct cpu_hw_events *cpuc;
1366 struct perf_event *event;
11d1578f 1367 int idx, handled = 0;
9029a5e3
IM
1368 u64 val;
1369
89cbc767 1370 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1371
2bce5dac
DZ
1372 /*
1373 * Some chipsets need to unmask the LVTPC in a particular spot
1374 * inside the nmi handler. As a result, the unmasking was pushed
1375 * into all the nmi handlers.
1376 *
1377 * This generic handler doesn't seem to have any issues where the
1378 * unmasking occurs so it was left at the top.
1379 */
1380 apic_write(APIC_LVTPC, APIC_DM_NMI);
1381
948b1bb8 1382 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1383 if (!test_bit(idx, cpuc->active_mask)) {
1384 /*
1385 * Though we deactivated the counter some cpus
1386 * might still deliver spurious interrupts still
1387 * in flight. Catch them:
1388 */
1389 if (__test_and_clear_bit(idx, cpuc->running))
1390 handled++;
a29aa8a7 1391 continue;
63e6be6d 1392 }
962bf7a6 1393
cdd6c482 1394 event = cpuc->events[idx];
a4016a79 1395
cc2ad4ba 1396 val = x86_perf_event_update(event);
948b1bb8 1397 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1398 continue;
962bf7a6 1399
9e350de3 1400 /*
cdd6c482 1401 * event overflow
9e350de3 1402 */
4177c42a 1403 handled++;
fd0d000b 1404 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1405
07088edb 1406 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1407 continue;
1408
a8b0ca17 1409 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1410 x86_pmu_stop(event, 0);
a29aa8a7 1411 }
962bf7a6 1412
9e350de3
PZ
1413 if (handled)
1414 inc_irq_stat(apic_perf_irqs);
1415
a29aa8a7
RR
1416 return handled;
1417}
39d81eab 1418
cdd6c482 1419void perf_events_lapic_init(void)
241771ef 1420{
04da8a43 1421 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1422 return;
85cf9dba 1423
241771ef 1424 /*
c323d95f 1425 * Always use NMI for PMU
241771ef 1426 */
c323d95f 1427 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1428}
1429
9326638c 1430static int
9c48f1c6 1431perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1432{
14c63f17
DH
1433 u64 start_clock;
1434 u64 finish_clock;
e8a923cc 1435 int ret;
14c63f17 1436
1b7b938f
AS
1437 /*
1438 * All PMUs/events that share this PMI handler should make sure to
1439 * increment active_events for their events.
1440 */
cdd6c482 1441 if (!atomic_read(&active_events))
9c48f1c6 1442 return NMI_DONE;
4177c42a 1443
e8a923cc 1444 start_clock = sched_clock();
14c63f17 1445 ret = x86_pmu.handle_irq(regs);
e8a923cc 1446 finish_clock = sched_clock();
14c63f17
DH
1447
1448 perf_sample_event_took(finish_clock - start_clock);
1449
1450 return ret;
241771ef 1451}
9326638c 1452NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1453
de0428a7
KW
1454struct event_constraint emptyconstraint;
1455struct event_constraint unconstrained;
f87ad35d 1456
148f9bb8 1457static int
3f6da390
PZ
1458x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1459{
1460 unsigned int cpu = (long)hcpu;
7fdba1ca 1461 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1462 int i, ret = NOTIFY_OK;
3f6da390
PZ
1463
1464 switch (action & ~CPU_TASKS_FROZEN) {
1465 case CPU_UP_PREPARE:
90413464
SE
1466 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1467 cpuc->kfree_on_online[i] = NULL;
3f6da390 1468 if (x86_pmu.cpu_prepare)
b38b24ea 1469 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1470 break;
1471
1472 case CPU_STARTING:
1473 if (x86_pmu.cpu_starting)
1474 x86_pmu.cpu_starting(cpu);
1475 break;
1476
7fdba1ca 1477 case CPU_ONLINE:
90413464
SE
1478 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1479 kfree(cpuc->kfree_on_online[i]);
1480 cpuc->kfree_on_online[i] = NULL;
1481 }
7fdba1ca
PZ
1482 break;
1483
3f6da390
PZ
1484 case CPU_DYING:
1485 if (x86_pmu.cpu_dying)
1486 x86_pmu.cpu_dying(cpu);
1487 break;
1488
b38b24ea 1489 case CPU_UP_CANCELED:
3f6da390
PZ
1490 case CPU_DEAD:
1491 if (x86_pmu.cpu_dead)
1492 x86_pmu.cpu_dead(cpu);
1493 break;
1494
1495 default:
1496 break;
1497 }
1498
b38b24ea 1499 return ret;
3f6da390
PZ
1500}
1501
12558038
CG
1502static void __init pmu_check_apic(void)
1503{
1504 if (cpu_has_apic)
1505 return;
1506
1507 x86_pmu.apic = 0;
1508 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1509 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1510
1511 /*
1512 * If we have a PMU initialized but no APIC
1513 * interrupts, we cannot sample hardware
1514 * events (user-space has to fall back and
1515 * sample via a hrtimer based software event):
1516 */
1517 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1518
12558038
CG
1519}
1520
641cc938
JO
1521static struct attribute_group x86_pmu_format_group = {
1522 .name = "format",
1523 .attrs = NULL,
1524};
1525
8300daa2
JO
1526/*
1527 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1528 * out of events_attr attributes.
1529 */
1530static void __init filter_events(struct attribute **attrs)
1531{
3a54aaa0
SE
1532 struct device_attribute *d;
1533 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1534 int i, j;
1535
1536 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1537 d = (struct device_attribute *)attrs[i];
1538 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1539 /* str trumps id */
1540 if (pmu_attr->event_str)
1541 continue;
8300daa2
JO
1542 if (x86_pmu.event_map(i))
1543 continue;
1544
1545 for (j = i; attrs[j]; j++)
1546 attrs[j] = attrs[j + 1];
1547
1548 /* Check the shifted attr. */
1549 i--;
1550 }
1551}
1552
1a6461b1 1553/* Merge two pointer arrays */
47732d88 1554__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1555{
1556 struct attribute **new;
1557 int j, i;
1558
1559 for (j = 0; a[j]; j++)
1560 ;
1561 for (i = 0; b[i]; i++)
1562 j++;
1563 j++;
1564
1565 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1566 if (!new)
1567 return NULL;
1568
1569 j = 0;
1570 for (i = 0; a[i]; i++)
1571 new[j++] = a[i];
1572 for (i = 0; b[i]; i++)
1573 new[j++] = b[i];
1574 new[j] = NULL;
1575
1576 return new;
1577}
1578
f20093ee 1579ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1580 char *page)
1581{
1582 struct perf_pmu_events_attr *pmu_attr = \
1583 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1584 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1585
3a54aaa0
SE
1586 /* string trumps id */
1587 if (pmu_attr->event_str)
1588 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1589
3a54aaa0
SE
1590 return x86_pmu.events_sysfs_show(page, config);
1591}
a4747393
JO
1592
1593EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1594EVENT_ATTR(instructions, INSTRUCTIONS );
1595EVENT_ATTR(cache-references, CACHE_REFERENCES );
1596EVENT_ATTR(cache-misses, CACHE_MISSES );
1597EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1598EVENT_ATTR(branch-misses, BRANCH_MISSES );
1599EVENT_ATTR(bus-cycles, BUS_CYCLES );
1600EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1601EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1602EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1603
1604static struct attribute *empty_attrs;
1605
95d18aa2 1606static struct attribute *events_attr[] = {
a4747393
JO
1607 EVENT_PTR(CPU_CYCLES),
1608 EVENT_PTR(INSTRUCTIONS),
1609 EVENT_PTR(CACHE_REFERENCES),
1610 EVENT_PTR(CACHE_MISSES),
1611 EVENT_PTR(BRANCH_INSTRUCTIONS),
1612 EVENT_PTR(BRANCH_MISSES),
1613 EVENT_PTR(BUS_CYCLES),
1614 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1615 EVENT_PTR(STALLED_CYCLES_BACKEND),
1616 EVENT_PTR(REF_CPU_CYCLES),
1617 NULL,
1618};
1619
1620static struct attribute_group x86_pmu_events_group = {
1621 .name = "events",
1622 .attrs = events_attr,
1623};
1624
0bf79d44 1625ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1626{
43c032fe
JO
1627 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1628 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1629 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1630 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1631 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1632 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1633 ssize_t ret;
1634
1635 /*
1636 * We have whole page size to spend and just little data
1637 * to write, so we can safely use sprintf.
1638 */
1639 ret = sprintf(page, "event=0x%02llx", event);
1640
1641 if (umask)
1642 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1643
1644 if (edge)
1645 ret += sprintf(page + ret, ",edge");
1646
1647 if (pc)
1648 ret += sprintf(page + ret, ",pc");
1649
1650 if (any)
1651 ret += sprintf(page + ret, ",any");
1652
1653 if (inv)
1654 ret += sprintf(page + ret, ",inv");
1655
1656 if (cmask)
1657 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1658
1659 ret += sprintf(page + ret, "\n");
1660
1661 return ret;
1662}
1663
dda99116 1664static int __init init_hw_perf_events(void)
b56a3802 1665{
c1d6f42f 1666 struct x86_pmu_quirk *quirk;
72eae04d
RR
1667 int err;
1668
cdd6c482 1669 pr_info("Performance Events: ");
1123e3ad 1670
b56a3802
JSR
1671 switch (boot_cpu_data.x86_vendor) {
1672 case X86_VENDOR_INTEL:
72eae04d 1673 err = intel_pmu_init();
b56a3802 1674 break;
f87ad35d 1675 case X86_VENDOR_AMD:
72eae04d 1676 err = amd_pmu_init();
f87ad35d 1677 break;
4138960a 1678 default:
8a3da6c7 1679 err = -ENOTSUPP;
b56a3802 1680 }
1123e3ad 1681 if (err != 0) {
cdd6c482 1682 pr_cont("no PMU driver, software events only.\n");
004417a6 1683 return 0;
1123e3ad 1684 }
b56a3802 1685
12558038
CG
1686 pmu_check_apic();
1687
33c6d6a7 1688 /* sanity check that the hardware exists or is emulated */
4407204c 1689 if (!check_hw_exists())
004417a6 1690 return 0;
33c6d6a7 1691
1123e3ad 1692 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1693
e97df763
PZ
1694 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1695
c1d6f42f
PZ
1696 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1697 quirk->func();
3c44780b 1698
a1eac7ac
RR
1699 if (!x86_pmu.intel_ctrl)
1700 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1701
cdd6c482 1702 perf_events_lapic_init();
9c48f1c6 1703 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1704
63b14649 1705 unconstrained = (struct event_constraint)
948b1bb8 1706 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1707 0, x86_pmu.num_counters, 0, 0);
63b14649 1708
641cc938 1709 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1710
f20093ee
SE
1711 if (x86_pmu.event_attrs)
1712 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1713
a4747393
JO
1714 if (!x86_pmu.events_sysfs_show)
1715 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1716 else
1717 filter_events(x86_pmu_events_group.attrs);
a4747393 1718
1a6461b1
AK
1719 if (x86_pmu.cpu_events) {
1720 struct attribute **tmp;
1721
1722 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1723 if (!WARN_ON(!tmp))
1724 x86_pmu_events_group.attrs = tmp;
1725 }
1726
57c0c15b 1727 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1728 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1729 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1730 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1731 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1732 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1733 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1734
2e80a82a 1735 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1736 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1737
1738 return 0;
241771ef 1739}
004417a6 1740early_initcall(init_hw_perf_events);
621a01ea 1741
cdd6c482 1742static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1743{
cc2ad4ba 1744 x86_perf_event_update(event);
ee06094f
IM
1745}
1746
4d1c52b0
LM
1747/*
1748 * Start group events scheduling transaction
1749 * Set the flag to make pmu::enable() not perform the
1750 * schedulability test, it will be performed at commit time
fbbe0701
SB
1751 *
1752 * We only support PERF_PMU_TXN_ADD transactions. Save the
1753 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1754 * transactions.
4d1c52b0 1755 */
fbbe0701 1756static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1757{
fbbe0701
SB
1758 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1759
1760 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1761
1762 cpuc->txn_flags = txn_flags;
1763 if (txn_flags & ~PERF_PMU_TXN_ADD)
1764 return;
1765
33696fc0 1766 perf_pmu_disable(pmu);
0a3aee0d 1767 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1768}
1769
1770/*
1771 * Stop group events scheduling transaction
1772 * Clear the flag and pmu::enable() will perform the
1773 * schedulability test.
1774 */
51b0fe39 1775static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1776{
fbbe0701
SB
1777 unsigned int txn_flags;
1778 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1779
1780 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1781
1782 txn_flags = cpuc->txn_flags;
1783 cpuc->txn_flags = 0;
1784 if (txn_flags & ~PERF_PMU_TXN_ADD)
1785 return;
1786
90151c35 1787 /*
c347a2f1
PZ
1788 * Truncate collected array by the number of events added in this
1789 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1790 */
0a3aee0d
TH
1791 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1792 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1793 perf_pmu_enable(pmu);
4d1c52b0
LM
1794}
1795
1796/*
1797 * Commit group events scheduling transaction
1798 * Perform the group schedulability test as a whole
1799 * Return 0 if success
c347a2f1
PZ
1800 *
1801 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1802 */
51b0fe39 1803static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1804{
89cbc767 1805 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1806 int assign[X86_PMC_IDX_MAX];
1807 int n, ret;
1808
fbbe0701
SB
1809 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1810
1811 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1812 cpuc->txn_flags = 0;
1813 return 0;
1814 }
1815
4d1c52b0
LM
1816 n = cpuc->n_events;
1817
1818 if (!x86_pmu_initialized())
1819 return -EAGAIN;
1820
1821 ret = x86_pmu.schedule_events(cpuc, n, assign);
1822 if (ret)
1823 return ret;
1824
1825 /*
1826 * copy new assignment, now we know it is possible
1827 * will be used by hw_perf_enable()
1828 */
1829 memcpy(cpuc->assign, assign, n*sizeof(int));
1830
fbbe0701 1831 cpuc->txn_flags = 0;
33696fc0 1832 perf_pmu_enable(pmu);
4d1c52b0
LM
1833 return 0;
1834}
cd8a38d3
SE
1835/*
1836 * a fake_cpuc is used to validate event groups. Due to
1837 * the extra reg logic, we need to also allocate a fake
1838 * per_core and per_cpu structure. Otherwise, group events
1839 * using extra reg may conflict without the kernel being
1840 * able to catch this when the last event gets added to
1841 * the group.
1842 */
1843static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1844{
1845 kfree(cpuc->shared_regs);
1846 kfree(cpuc);
1847}
1848
1849static struct cpu_hw_events *allocate_fake_cpuc(void)
1850{
1851 struct cpu_hw_events *cpuc;
1852 int cpu = raw_smp_processor_id();
1853
1854 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1855 if (!cpuc)
1856 return ERR_PTR(-ENOMEM);
1857
1858 /* only needed, if we have extra_regs */
1859 if (x86_pmu.extra_regs) {
1860 cpuc->shared_regs = allocate_shared_regs(cpu);
1861 if (!cpuc->shared_regs)
1862 goto error;
1863 }
b430f7c4 1864 cpuc->is_fake = 1;
cd8a38d3
SE
1865 return cpuc;
1866error:
1867 free_fake_cpuc(cpuc);
1868 return ERR_PTR(-ENOMEM);
1869}
4d1c52b0 1870
ca037701
PZ
1871/*
1872 * validate that we can schedule this event
1873 */
1874static int validate_event(struct perf_event *event)
1875{
1876 struct cpu_hw_events *fake_cpuc;
1877 struct event_constraint *c;
1878 int ret = 0;
1879
cd8a38d3
SE
1880 fake_cpuc = allocate_fake_cpuc();
1881 if (IS_ERR(fake_cpuc))
1882 return PTR_ERR(fake_cpuc);
ca037701 1883
79cba822 1884 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1885
1886 if (!c || !c->weight)
aa2bc1ad 1887 ret = -EINVAL;
ca037701
PZ
1888
1889 if (x86_pmu.put_event_constraints)
1890 x86_pmu.put_event_constraints(fake_cpuc, event);
1891
cd8a38d3 1892 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1893
1894 return ret;
1895}
1896
1da53e02
SE
1897/*
1898 * validate a single event group
1899 *
1900 * validation include:
184f412c
IM
1901 * - check events are compatible which each other
1902 * - events do not compete for the same counter
1903 * - number of events <= number of counters
1da53e02
SE
1904 *
1905 * validation ensures the group can be loaded onto the
1906 * PMU if it was the only group available.
1907 */
fe9081cc
PZ
1908static int validate_group(struct perf_event *event)
1909{
1da53e02 1910 struct perf_event *leader = event->group_leader;
502568d5 1911 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1912 int ret = -EINVAL, n;
fe9081cc 1913
cd8a38d3
SE
1914 fake_cpuc = allocate_fake_cpuc();
1915 if (IS_ERR(fake_cpuc))
1916 return PTR_ERR(fake_cpuc);
1da53e02
SE
1917 /*
1918 * the event is not yet connected with its
1919 * siblings therefore we must first collect
1920 * existing siblings, then add the new event
1921 * before we can simulate the scheduling
1922 */
502568d5 1923 n = collect_events(fake_cpuc, leader, true);
1da53e02 1924 if (n < 0)
cd8a38d3 1925 goto out;
fe9081cc 1926
502568d5
PZ
1927 fake_cpuc->n_events = n;
1928 n = collect_events(fake_cpuc, event, false);
1da53e02 1929 if (n < 0)
cd8a38d3 1930 goto out;
fe9081cc 1931
502568d5 1932 fake_cpuc->n_events = n;
1da53e02 1933
a072738e 1934 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1935
502568d5 1936out:
cd8a38d3 1937 free_fake_cpuc(fake_cpuc);
502568d5 1938 return ret;
fe9081cc
PZ
1939}
1940
dda99116 1941static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1942{
51b0fe39 1943 struct pmu *tmp;
621a01ea
IM
1944 int err;
1945
b0a873eb
PZ
1946 switch (event->attr.type) {
1947 case PERF_TYPE_RAW:
1948 case PERF_TYPE_HARDWARE:
1949 case PERF_TYPE_HW_CACHE:
1950 break;
1951
1952 default:
1953 return -ENOENT;
1954 }
1955
1956 err = __x86_pmu_event_init(event);
fe9081cc 1957 if (!err) {
8113070d
SE
1958 /*
1959 * we temporarily connect event to its pmu
1960 * such that validate_group() can classify
1961 * it as an x86 event using is_x86_event()
1962 */
1963 tmp = event->pmu;
1964 event->pmu = &pmu;
1965
fe9081cc
PZ
1966 if (event->group_leader != event)
1967 err = validate_group(event);
ca037701
PZ
1968 else
1969 err = validate_event(event);
8113070d
SE
1970
1971 event->pmu = tmp;
fe9081cc 1972 }
a1792cda 1973 if (err) {
cdd6c482
IM
1974 if (event->destroy)
1975 event->destroy(event);
a1792cda 1976 }
621a01ea 1977
7911d3f7
AL
1978 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1979 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1980
b0a873eb 1981 return err;
621a01ea 1982}
d7d59fb3 1983
7911d3f7
AL
1984static void refresh_pce(void *ignored)
1985{
1986 if (current->mm)
1987 load_mm_cr4(current->mm);
1988}
1989
1990static void x86_pmu_event_mapped(struct perf_event *event)
1991{
1992 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1993 return;
1994
1995 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1996 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1997}
1998
1999static void x86_pmu_event_unmapped(struct perf_event *event)
2000{
2001 if (!current->mm)
2002 return;
2003
2004 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2005 return;
2006
2007 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2008 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2009}
2010
fe4a3308
PZ
2011static int x86_pmu_event_idx(struct perf_event *event)
2012{
2013 int idx = event->hw.idx;
2014
7911d3f7 2015 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2016 return 0;
2017
15c7ad51
RR
2018 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2019 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2020 idx |= 1 << 30;
2021 }
2022
2023 return idx + 1;
2024}
2025
0c9d42ed
PZ
2026static ssize_t get_attr_rdpmc(struct device *cdev,
2027 struct device_attribute *attr,
2028 char *buf)
2029{
2030 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2031}
2032
0c9d42ed
PZ
2033static ssize_t set_attr_rdpmc(struct device *cdev,
2034 struct device_attribute *attr,
2035 const char *buf, size_t count)
2036{
e2b297fc
SK
2037 unsigned long val;
2038 ssize_t ret;
2039
2040 ret = kstrtoul(buf, 0, &val);
2041 if (ret)
2042 return ret;
e97df763 2043
a6673429
AL
2044 if (val > 2)
2045 return -EINVAL;
2046
e97df763
PZ
2047 if (x86_pmu.attr_rdpmc_broken)
2048 return -ENOTSUPP;
0c9d42ed 2049
a6673429
AL
2050 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2051 /*
2052 * Changing into or out of always available, aka
2053 * perf-event-bypassing mode. This path is extremely slow,
2054 * but only root can trigger it, so it's okay.
2055 */
2056 if (val == 2)
2057 static_key_slow_inc(&rdpmc_always_available);
2058 else
2059 static_key_slow_dec(&rdpmc_always_available);
2060 on_each_cpu(refresh_pce, NULL, 1);
2061 }
2062
2063 x86_pmu.attr_rdpmc = val;
2064
0c9d42ed
PZ
2065 return count;
2066}
2067
2068static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2069
2070static struct attribute *x86_pmu_attrs[] = {
2071 &dev_attr_rdpmc.attr,
2072 NULL,
2073};
2074
2075static struct attribute_group x86_pmu_attr_group = {
2076 .attrs = x86_pmu_attrs,
2077};
2078
2079static const struct attribute_group *x86_pmu_attr_groups[] = {
2080 &x86_pmu_attr_group,
641cc938 2081 &x86_pmu_format_group,
a4747393 2082 &x86_pmu_events_group,
0c9d42ed
PZ
2083 NULL,
2084};
2085
ba532500 2086static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2087{
ba532500
YZ
2088 if (x86_pmu.sched_task)
2089 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2090}
2091
c93dc84c
PZ
2092void perf_check_microcode(void)
2093{
2094 if (x86_pmu.check_microcode)
2095 x86_pmu.check_microcode();
2096}
2097EXPORT_SYMBOL_GPL(perf_check_microcode);
2098
b0a873eb 2099static struct pmu pmu = {
d010b332
SE
2100 .pmu_enable = x86_pmu_enable,
2101 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2102
c93dc84c 2103 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2104
c93dc84c 2105 .event_init = x86_pmu_event_init,
a4eaf7f1 2106
7911d3f7
AL
2107 .event_mapped = x86_pmu_event_mapped,
2108 .event_unmapped = x86_pmu_event_unmapped,
2109
d010b332
SE
2110 .add = x86_pmu_add,
2111 .del = x86_pmu_del,
2112 .start = x86_pmu_start,
2113 .stop = x86_pmu_stop,
2114 .read = x86_pmu_read,
a4eaf7f1 2115
c93dc84c
PZ
2116 .start_txn = x86_pmu_start_txn,
2117 .cancel_txn = x86_pmu_cancel_txn,
2118 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2119
c93dc84c 2120 .event_idx = x86_pmu_event_idx,
ba532500 2121 .sched_task = x86_pmu_sched_task,
e18bf526 2122 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2123};
2124
c1317ec2
AL
2125void arch_perf_update_userpage(struct perf_event *event,
2126 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2127{
20d1c86a
PZ
2128 struct cyc2ns_data *data;
2129
fa731587
PZ
2130 userpg->cap_user_time = 0;
2131 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2132 userpg->cap_user_rdpmc =
2133 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2134 userpg->pmc_width = x86_pmu.cntval_bits;
2135
35af99e6 2136 if (!sched_clock_stable())
e3f3541c
PZ
2137 return;
2138
20d1c86a
PZ
2139 data = cyc2ns_read_begin();
2140
34f43927
PZ
2141 /*
2142 * Internal timekeeping for enabled/running/stopped times
2143 * is always in the local_clock domain.
2144 */
fa731587 2145 userpg->cap_user_time = 1;
20d1c86a
PZ
2146 userpg->time_mult = data->cyc2ns_mul;
2147 userpg->time_shift = data->cyc2ns_shift;
2148 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2149
34f43927
PZ
2150 /*
2151 * cap_user_time_zero doesn't make sense when we're using a different
2152 * time base for the records.
2153 */
2154 if (event->clock == &local_clock) {
2155 userpg->cap_user_time_zero = 1;
2156 userpg->time_zero = data->cyc2ns_offset;
2157 }
20d1c86a
PZ
2158
2159 cyc2ns_read_end(data);
e3f3541c
PZ
2160}
2161
d7d59fb3
PZ
2162/*
2163 * callchain support
2164 */
2165
d7d59fb3
PZ
2166static int backtrace_stack(void *data, char *name)
2167{
038e836e 2168 return 0;
d7d59fb3
PZ
2169}
2170
2171static void backtrace_address(void *data, unsigned long addr, int reliable)
2172{
2173 struct perf_callchain_entry *entry = data;
2174
70791ce9 2175 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2176}
2177
2178static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2179 .stack = backtrace_stack,
2180 .address = backtrace_address,
06d65bda 2181 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2182};
2183
56962b44
FW
2184void
2185perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2186{
927c7a9e
FW
2187 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2188 /* TODO: We don't support guest os callchain now */
ed805261 2189 return;
927c7a9e
FW
2190 }
2191
70791ce9 2192 perf_callchain_store(entry, regs->ip);
d7d59fb3 2193
e8e999cf 2194 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2195}
2196
bc6ca7b3
AS
2197static inline int
2198valid_user_frame(const void __user *fp, unsigned long size)
2199{
2200 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2201}
2202
d07bdfd3
PZ
2203static unsigned long get_segment_base(unsigned int segment)
2204{
2205 struct desc_struct *desc;
2206 int idx = segment >> 3;
2207
2208 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2209#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2210 struct ldt_struct *ldt;
2211
d07bdfd3
PZ
2212 if (idx > LDT_ENTRIES)
2213 return 0;
2214
37868fe1
AL
2215 /* IRQs are off, so this synchronizes with smp_store_release */
2216 ldt = lockless_dereference(current->active_mm->context.ldt);
2217 if (!ldt || idx > ldt->size)
d07bdfd3
PZ
2218 return 0;
2219
37868fe1 2220 desc = &ldt->entries[idx];
a5b9e5a2
AL
2221#else
2222 return 0;
2223#endif
d07bdfd3
PZ
2224 } else {
2225 if (idx > GDT_ENTRIES)
2226 return 0;
2227
37868fe1 2228 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2229 }
2230
37868fe1 2231 return get_desc_base(desc);
d07bdfd3
PZ
2232}
2233
10ed3493 2234#ifdef CONFIG_IA32_EMULATION
d1a797f3
PA
2235
2236#include <asm/compat.h>
2237
257ef9d2
TE
2238static inline int
2239perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2240{
257ef9d2 2241 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2242 unsigned long ss_base, cs_base;
257ef9d2
TE
2243 struct stack_frame_ia32 frame;
2244 const void __user *fp;
74193ef0 2245
257ef9d2
TE
2246 if (!test_thread_flag(TIF_IA32))
2247 return 0;
2248
d07bdfd3
PZ
2249 cs_base = get_segment_base(regs->cs);
2250 ss_base = get_segment_base(regs->ss);
2251
2252 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2253 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2254 unsigned long bytes;
2255 frame.next_frame = 0;
2256 frame.return_address = 0;
2257
2258 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2259 if (bytes != 0)
257ef9d2 2260 break;
74193ef0 2261
bc6ca7b3
AS
2262 if (!valid_user_frame(fp, sizeof(frame)))
2263 break;
2264
d07bdfd3
PZ
2265 perf_callchain_store(entry, cs_base + frame.return_address);
2266 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2267 }
2268 return 1;
d7d59fb3 2269}
257ef9d2
TE
2270#else
2271static inline int
2272perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2273{
2274 return 0;
2275}
2276#endif
d7d59fb3 2277
56962b44
FW
2278void
2279perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2280{
2281 struct stack_frame frame;
2282 const void __user *fp;
2283
927c7a9e
FW
2284 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2285 /* TODO: We don't support guest os callchain now */
ed805261 2286 return;
927c7a9e 2287 }
5a6cec3a 2288
d07bdfd3
PZ
2289 /*
2290 * We don't know what to do with VM86 stacks.. ignore them for now.
2291 */
2292 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2293 return;
2294
74193ef0 2295 fp = (void __user *)regs->bp;
d7d59fb3 2296
70791ce9 2297 perf_callchain_store(entry, regs->ip);
d7d59fb3 2298
20afc60f
AV
2299 if (!current->mm)
2300 return;
2301
257ef9d2
TE
2302 if (perf_callchain_user32(regs, entry))
2303 return;
2304
f9188e02 2305 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2306 unsigned long bytes;
038e836e 2307 frame.next_frame = NULL;
d7d59fb3
PZ
2308 frame.return_address = 0;
2309
257ef9d2 2310 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2311 if (bytes != 0)
d7d59fb3
PZ
2312 break;
2313
bc6ca7b3
AS
2314 if (!valid_user_frame(fp, sizeof(frame)))
2315 break;
2316
70791ce9 2317 perf_callchain_store(entry, frame.return_address);
038e836e 2318 fp = frame.next_frame;
d7d59fb3
PZ
2319 }
2320}
2321
d07bdfd3
PZ
2322/*
2323 * Deal with code segment offsets for the various execution modes:
2324 *
2325 * VM86 - the good olde 16 bit days, where the linear address is
2326 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2327 *
2328 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2329 * to figure out what the 32bit base address is.
2330 *
2331 * X32 - has TIF_X32 set, but is running in x86_64
2332 *
2333 * X86_64 - CS,DS,SS,ES are all zero based.
2334 */
2335static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2336{
383f3af3
AL
2337 /*
2338 * For IA32 we look at the GDT/LDT segment base to convert the
2339 * effective IP to a linear address.
2340 */
2341
2342#ifdef CONFIG_X86_32
d07bdfd3
PZ
2343 /*
2344 * If we are in VM86 mode, add the segment offset to convert to a
2345 * linear address.
2346 */
2347 if (regs->flags & X86_VM_MASK)
2348 return 0x10 * regs->cs;
2349
55474c48 2350 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2351 return get_segment_base(regs->cs);
2352#else
c56716af
AL
2353 if (user_mode(regs) && !user_64bit_mode(regs) &&
2354 regs->cs != __USER32_CS)
2355 return get_segment_base(regs->cs);
d07bdfd3
PZ
2356#endif
2357 return 0;
2358}
dcf46b94 2359
d07bdfd3
PZ
2360unsigned long perf_instruction_pointer(struct pt_regs *regs)
2361{
39447b38 2362 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2363 return perf_guest_cbs->get_guest_ip();
dcf46b94 2364
d07bdfd3 2365 return regs->ip + code_segment_base(regs);
39447b38
ZY
2366}
2367
2368unsigned long perf_misc_flags(struct pt_regs *regs)
2369{
2370 int misc = 0;
dcf46b94 2371
39447b38 2372 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2373 if (perf_guest_cbs->is_user_mode())
2374 misc |= PERF_RECORD_MISC_GUEST_USER;
2375 else
2376 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2377 } else {
d07bdfd3 2378 if (user_mode(regs))
dcf46b94
ZY
2379 misc |= PERF_RECORD_MISC_USER;
2380 else
2381 misc |= PERF_RECORD_MISC_KERNEL;
2382 }
2383
39447b38 2384 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2385 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2386
2387 return misc;
2388}
b3d9468a
GN
2389
2390void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2391{
2392 cap->version = x86_pmu.version;
2393 cap->num_counters_gp = x86_pmu.num_counters;
2394 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2395 cap->bit_width_gp = x86_pmu.cntval_bits;
2396 cap->bit_width_fixed = x86_pmu.cntval_bits;
2397 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2398 cap->events_mask_len = x86_pmu.events_mask_len;
2399}
2400EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);