perf, x86: Restrict the ANY flag
[linux-block.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
74193ef0 24#include <linux/highmem.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
241771ef 27
241771ef 28#include <asm/apic.h>
d7d59fb3 29#include <asm/stacktrace.h>
4e935e47 30#include <asm/nmi.h>
241771ef 31
cdd6c482 32static u64 perf_event_mask __read_mostly;
703e937c 33
cdd6c482
IM
34/* The maximal number of PEBS events: */
35#define MAX_PEBS_EVENTS 4
30dd568c
MM
36
37/* The size of a BTS record in bytes: */
38#define BTS_RECORD_SIZE 24
39
40/* The size of a per-cpu BTS buffer in bytes: */
5622f295 41#define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
30dd568c
MM
42
43/* The BTS overflow threshold in bytes from the end of the buffer: */
5622f295 44#define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
30dd568c
MM
45
46
47/*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50#define X86_DEBUGCTL_TR (1 << 6)
51#define X86_DEBUGCTL_BTS (1 << 7)
52#define X86_DEBUGCTL_BTINT (1 << 8)
53#define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54#define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56/*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
cdd6c482 70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
30dd568c
MM
71};
72
1da53e02 73struct event_constraint {
c91e0f5d
PZ
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
76 u64 idxmsk64[1];
77 };
1da53e02
SE
78 int code;
79 int cmask;
272d30be 80 int weight;
1da53e02
SE
81};
82
38331f62
SE
83struct amd_nb {
84 int nb_id; /* NorthBridge id */
85 int refcnt; /* reference count */
86 struct perf_event *owners[X86_PMC_IDX_MAX];
87 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
88};
89
cdd6c482 90struct cpu_hw_events {
1da53e02 91 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 92 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
4b39fd96 93 unsigned long interrupts;
b0f3f28e 94 int enabled;
30dd568c 95 struct debug_store *ds;
241771ef 96
1da53e02
SE
97 int n_events;
98 int n_added;
99 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
447a194b 100 u64 tags[X86_PMC_IDX_MAX];
1da53e02 101 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
38331f62 102 struct amd_nb *amd_nb;
b690081d
SE
103};
104
fce877e3 105#define __EVENT_CONSTRAINT(c, n, m, w) {\
c91e0f5d
PZ
106 { .idxmsk64[0] = (n) }, \
107 .code = (c), \
108 .cmask = (m), \
fce877e3 109 .weight = (w), \
c91e0f5d 110}
b690081d 111
fce877e3
PZ
112#define EVENT_CONSTRAINT(c, n, m) \
113 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
114
ed8777fc
PZ
115#define INTEL_EVENT_CONSTRAINT(c, n) \
116 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
8433be11 117
ed8777fc
PZ
118#define FIXED_EVENT_CONSTRAINT(c, n) \
119 EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
8433be11 120
ed8777fc
PZ
121#define EVENT_CONSTRAINT_END \
122 EVENT_CONSTRAINT(0, 0, 0)
123
124#define for_each_event_constraint(e, c) \
125 for ((e) = (c); (e)->cmask; (e)++)
b690081d 126
241771ef 127/*
5f4ec28f 128 * struct x86_pmu - generic x86 pmu
241771ef 129 */
5f4ec28f 130struct x86_pmu {
faa28ae0
RR
131 const char *name;
132 int version;
a3288106 133 int (*handle_irq)(struct pt_regs *);
9e35ad38
PZ
134 void (*disable_all)(void);
135 void (*enable_all)(void);
cdd6c482
IM
136 void (*enable)(struct hw_perf_event *, int);
137 void (*disable)(struct hw_perf_event *, int);
169e41eb
JSR
138 unsigned eventsel;
139 unsigned perfctr;
b0f3f28e
PZ
140 u64 (*event_map)(int);
141 u64 (*raw_event)(u64);
169e41eb 142 int max_events;
cdd6c482
IM
143 int num_events;
144 int num_events_fixed;
145 int event_bits;
146 u64 event_mask;
04da8a43 147 int apic;
c619b8ff 148 u64 max_period;
9e35ad38 149 u64 intel_ctrl;
30dd568c
MM
150 void (*enable_bts)(u64 config);
151 void (*disable_bts)(void);
63b14649
PZ
152
153 struct event_constraint *
154 (*get_event_constraints)(struct cpu_hw_events *cpuc,
155 struct perf_event *event);
156
c91e0f5d
PZ
157 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
158 struct perf_event *event);
63b14649 159 struct event_constraint *event_constraints;
b56a3802
JSR
160};
161
4a06bd85 162static struct x86_pmu x86_pmu __read_mostly;
b56a3802 163
cdd6c482 164static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
165 .enabled = 1,
166};
241771ef 167
1da53e02
SE
168static int x86_perf_event_set_period(struct perf_event *event,
169 struct hw_perf_event *hwc, int idx);
b690081d 170
8326f44d 171/*
dfc65094 172 * Generalized hw caching related hw_event table, filled
8326f44d 173 * in on a per model basis. A value of 0 means
dfc65094
IM
174 * 'not supported', -1 means 'hw_event makes no sense on
175 * this CPU', any other value means the raw hw_event
8326f44d
IM
176 * ID.
177 */
178
179#define C(x) PERF_COUNT_HW_CACHE_##x
180
181static u64 __read_mostly hw_cache_event_ids
182 [PERF_COUNT_HW_CACHE_MAX]
183 [PERF_COUNT_HW_CACHE_OP_MAX]
184 [PERF_COUNT_HW_CACHE_RESULT_MAX];
185
ee06094f 186/*
cdd6c482
IM
187 * Propagate event elapsed time into the generic event.
188 * Can only be executed on the CPU where the event is active.
ee06094f
IM
189 * Returns the delta events processed.
190 */
4b7bfd0d 191static u64
cdd6c482
IM
192x86_perf_event_update(struct perf_event *event,
193 struct hw_perf_event *hwc, int idx)
ee06094f 194{
cdd6c482 195 int shift = 64 - x86_pmu.event_bits;
ec3232bd
PZ
196 u64 prev_raw_count, new_raw_count;
197 s64 delta;
ee06094f 198
30dd568c
MM
199 if (idx == X86_PMC_IDX_FIXED_BTS)
200 return 0;
201
ee06094f 202 /*
cdd6c482 203 * Careful: an NMI might modify the previous event value.
ee06094f
IM
204 *
205 * Our tactic to handle this is to first atomically read and
206 * exchange a new raw count - then add that new-prev delta
cdd6c482 207 * count to the generic event atomically:
ee06094f
IM
208 */
209again:
210 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 211 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
212
213 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
214 new_raw_count) != prev_raw_count)
215 goto again;
216
217 /*
218 * Now we have the new raw value and have updated the prev
219 * timestamp already. We can now calculate the elapsed delta
cdd6c482 220 * (event-)time and add that to the generic event.
ee06094f
IM
221 *
222 * Careful, not all hw sign-extends above the physical width
ec3232bd 223 * of the count.
ee06094f 224 */
ec3232bd
PZ
225 delta = (new_raw_count << shift) - (prev_raw_count << shift);
226 delta >>= shift;
ee06094f 227
cdd6c482 228 atomic64_add(delta, &event->count);
ee06094f 229 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
230
231 return new_raw_count;
ee06094f
IM
232}
233
cdd6c482 234static atomic_t active_events;
4e935e47
PZ
235static DEFINE_MUTEX(pmc_reserve_mutex);
236
237static bool reserve_pmc_hardware(void)
238{
04da8a43 239#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
240 int i;
241
242 if (nmi_watchdog == NMI_LOCAL_APIC)
243 disable_lapic_nmi_watchdog();
244
cdd6c482 245 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 246 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
247 goto perfctr_fail;
248 }
249
cdd6c482 250 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 251 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
252 goto eventsel_fail;
253 }
04da8a43 254#endif
4e935e47
PZ
255
256 return true;
257
04da8a43 258#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
259eventsel_fail:
260 for (i--; i >= 0; i--)
4a06bd85 261 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 262
cdd6c482 263 i = x86_pmu.num_events;
4e935e47
PZ
264
265perfctr_fail:
266 for (i--; i >= 0; i--)
4a06bd85 267 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
268
269 if (nmi_watchdog == NMI_LOCAL_APIC)
270 enable_lapic_nmi_watchdog();
271
272 return false;
04da8a43 273#endif
4e935e47
PZ
274}
275
276static void release_pmc_hardware(void)
277{
04da8a43 278#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
279 int i;
280
cdd6c482 281 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85
RR
282 release_perfctr_nmi(x86_pmu.perfctr + i);
283 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
284 }
285
286 if (nmi_watchdog == NMI_LOCAL_APIC)
287 enable_lapic_nmi_watchdog();
04da8a43 288#endif
4e935e47
PZ
289}
290
30dd568c
MM
291static inline bool bts_available(void)
292{
293 return x86_pmu.enable_bts != NULL;
294}
295
296static inline void init_debug_store_on_cpu(int cpu)
297{
cdd6c482 298 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
299
300 if (!ds)
301 return;
302
303 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
596da17f 304 (u32)((u64)(unsigned long)ds),
305 (u32)((u64)(unsigned long)ds >> 32));
30dd568c
MM
306}
307
308static inline void fini_debug_store_on_cpu(int cpu)
309{
cdd6c482 310 if (!per_cpu(cpu_hw_events, cpu).ds)
30dd568c
MM
311 return;
312
313 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
314}
315
316static void release_bts_hardware(void)
317{
318 int cpu;
319
320 if (!bts_available())
321 return;
322
323 get_online_cpus();
324
325 for_each_online_cpu(cpu)
326 fini_debug_store_on_cpu(cpu);
327
328 for_each_possible_cpu(cpu) {
cdd6c482 329 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
330
331 if (!ds)
332 continue;
333
cdd6c482 334 per_cpu(cpu_hw_events, cpu).ds = NULL;
30dd568c 335
596da17f 336 kfree((void *)(unsigned long)ds->bts_buffer_base);
30dd568c
MM
337 kfree(ds);
338 }
339
340 put_online_cpus();
341}
342
343static int reserve_bts_hardware(void)
344{
345 int cpu, err = 0;
346
347 if (!bts_available())
747b50aa 348 return 0;
30dd568c
MM
349
350 get_online_cpus();
351
352 for_each_possible_cpu(cpu) {
353 struct debug_store *ds;
354 void *buffer;
355
356 err = -ENOMEM;
357 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
358 if (unlikely(!buffer))
359 break;
360
361 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
362 if (unlikely(!ds)) {
363 kfree(buffer);
364 break;
365 }
366
596da17f 367 ds->bts_buffer_base = (u64)(unsigned long)buffer;
30dd568c
MM
368 ds->bts_index = ds->bts_buffer_base;
369 ds->bts_absolute_maximum =
370 ds->bts_buffer_base + BTS_BUFFER_SIZE;
371 ds->bts_interrupt_threshold =
372 ds->bts_absolute_maximum - BTS_OVFL_TH;
373
cdd6c482 374 per_cpu(cpu_hw_events, cpu).ds = ds;
30dd568c
MM
375 err = 0;
376 }
377
378 if (err)
379 release_bts_hardware();
380 else {
381 for_each_online_cpu(cpu)
382 init_debug_store_on_cpu(cpu);
383 }
384
385 put_online_cpus();
386
387 return err;
388}
389
cdd6c482 390static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 391{
cdd6c482 392 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 393 release_pmc_hardware();
30dd568c 394 release_bts_hardware();
4e935e47
PZ
395 mutex_unlock(&pmc_reserve_mutex);
396 }
397}
398
85cf9dba
RR
399static inline int x86_pmu_initialized(void)
400{
401 return x86_pmu.handle_irq != NULL;
402}
403
8326f44d 404static inline int
cdd6c482 405set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
406{
407 unsigned int cache_type, cache_op, cache_result;
408 u64 config, val;
409
410 config = attr->config;
411
412 cache_type = (config >> 0) & 0xff;
413 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
414 return -EINVAL;
415
416 cache_op = (config >> 8) & 0xff;
417 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
418 return -EINVAL;
419
420 cache_result = (config >> 16) & 0xff;
421 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
422 return -EINVAL;
423
424 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
425
426 if (val == 0)
427 return -ENOENT;
428
429 if (val == -1)
430 return -EINVAL;
431
432 hwc->config |= val;
433
434 return 0;
435}
436
241771ef 437/*
0d48696f 438 * Setup the hardware configuration for a given attr_type
241771ef 439 */
cdd6c482 440static int __hw_perf_event_init(struct perf_event *event)
241771ef 441{
cdd6c482
IM
442 struct perf_event_attr *attr = &event->attr;
443 struct hw_perf_event *hwc = &event->hw;
9c74fb50 444 u64 config;
4e935e47 445 int err;
241771ef 446
85cf9dba
RR
447 if (!x86_pmu_initialized())
448 return -ENODEV;
241771ef 449
4e935e47 450 err = 0;
cdd6c482 451 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 452 mutex_lock(&pmc_reserve_mutex);
cdd6c482 453 if (atomic_read(&active_events) == 0) {
30dd568c
MM
454 if (!reserve_pmc_hardware())
455 err = -EBUSY;
456 else
747b50aa 457 err = reserve_bts_hardware();
30dd568c
MM
458 }
459 if (!err)
cdd6c482 460 atomic_inc(&active_events);
4e935e47
PZ
461 mutex_unlock(&pmc_reserve_mutex);
462 }
463 if (err)
464 return err;
465
cdd6c482 466 event->destroy = hw_perf_event_destroy;
a1792cda 467
241771ef 468 /*
0475f9ea 469 * Generate PMC IRQs:
241771ef
IM
470 * (keep 'enabled' bit clear for now)
471 */
0475f9ea 472 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
241771ef 473
b690081d 474 hwc->idx = -1;
447a194b
SE
475 hwc->last_cpu = -1;
476 hwc->last_tag = ~0ULL;
b690081d 477
241771ef 478 /*
0475f9ea 479 * Count user and OS events unless requested not to.
241771ef 480 */
0d48696f 481 if (!attr->exclude_user)
0475f9ea 482 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
0d48696f 483 if (!attr->exclude_kernel)
241771ef 484 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
0475f9ea 485
bd2b5b12 486 if (!hwc->sample_period) {
b23f3325 487 hwc->sample_period = x86_pmu.max_period;
9e350de3 488 hwc->last_period = hwc->sample_period;
bd2b5b12 489 atomic64_set(&hwc->period_left, hwc->sample_period);
04da8a43
IM
490 } else {
491 /*
492 * If we have a PMU initialized but no APIC
493 * interrupts, we cannot sample hardware
cdd6c482
IM
494 * events (user-space has to fall back and
495 * sample via a hrtimer based software event):
04da8a43
IM
496 */
497 if (!x86_pmu.apic)
498 return -EOPNOTSUPP;
bd2b5b12 499 }
d2517a49 500
241771ef 501 /*
dfc65094 502 * Raw hw_event type provide the config in the hw_event structure
241771ef 503 */
a21ca2ca
IM
504 if (attr->type == PERF_TYPE_RAW) {
505 hwc->config |= x86_pmu.raw_event(attr->config);
320ebf09
PZ
506 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
507 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
508 return -EACCES;
8326f44d 509 return 0;
241771ef 510 }
241771ef 511
8326f44d
IM
512 if (attr->type == PERF_TYPE_HW_CACHE)
513 return set_ext_hw_attr(hwc, attr);
514
515 if (attr->config >= x86_pmu.max_events)
516 return -EINVAL;
9c74fb50 517
8326f44d
IM
518 /*
519 * The generic map:
520 */
9c74fb50
PZ
521 config = x86_pmu.event_map(attr->config);
522
523 if (config == 0)
524 return -ENOENT;
525
526 if (config == -1LL)
527 return -EINVAL;
528
747b50aa 529 /*
530 * Branch tracing:
531 */
532 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1653192f 533 (hwc->sample_period == 1)) {
534 /* BTS is not supported by this architecture. */
535 if (!bts_available())
536 return -EOPNOTSUPP;
537
538 /* BTS is currently only allowed for user-mode. */
539 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
540 return -EOPNOTSUPP;
541 }
747b50aa 542
9c74fb50 543 hwc->config |= config;
4e935e47 544
241771ef
IM
545 return 0;
546}
547
8c48e444 548static void x86_pmu_disable_all(void)
f87ad35d 549{
cdd6c482 550 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
551 int idx;
552
cdd6c482 553 for (idx = 0; idx < x86_pmu.num_events; idx++) {
b0f3f28e
PZ
554 u64 val;
555
43f6201a 556 if (!test_bit(idx, cpuc->active_mask))
4295ee62 557 continue;
8c48e444 558 rdmsrl(x86_pmu.eventsel + idx, val);
bb1165d6 559 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 560 continue;
bb1165d6 561 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 562 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d 563 }
f87ad35d
JSR
564}
565
9e35ad38 566void hw_perf_disable(void)
b56a3802 567{
1da53e02
SE
568 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
569
85cf9dba 570 if (!x86_pmu_initialized())
9e35ad38 571 return;
1da53e02 572
1a6e21f7
PZ
573 if (!cpuc->enabled)
574 return;
575
576 cpuc->n_added = 0;
577 cpuc->enabled = 0;
578 barrier();
1da53e02
SE
579
580 x86_pmu.disable_all();
b56a3802 581}
241771ef 582
8c48e444 583static void x86_pmu_enable_all(void)
f87ad35d 584{
cdd6c482 585 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
586 int idx;
587
cdd6c482
IM
588 for (idx = 0; idx < x86_pmu.num_events; idx++) {
589 struct perf_event *event = cpuc->events[idx];
4295ee62 590 u64 val;
b0f3f28e 591
43f6201a 592 if (!test_bit(idx, cpuc->active_mask))
4295ee62 593 continue;
984b838c 594
cdd6c482 595 val = event->hw.config;
bb1165d6 596 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 597 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d
JSR
598 }
599}
600
1da53e02
SE
601static const struct pmu pmu;
602
603static inline int is_x86_event(struct perf_event *event)
604{
605 return event->pmu == &pmu;
606}
607
608static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
609{
63b14649 610 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 611 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 612 int i, j, w, wmax, num = 0;
1da53e02
SE
613 struct hw_perf_event *hwc;
614
615 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
616
617 for (i = 0; i < n; i++) {
63b14649
PZ
618 constraints[i] =
619 x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
1da53e02
SE
620 }
621
8113070d
SE
622 /*
623 * fastpath, try to reuse previous register
624 */
c933c1a6 625 for (i = 0; i < n; i++) {
8113070d 626 hwc = &cpuc->event_list[i]->hw;
81269a08 627 c = constraints[i];
8113070d
SE
628
629 /* never assigned */
630 if (hwc->idx == -1)
631 break;
632
633 /* constraint still honored */
63b14649 634 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
635 break;
636
637 /* not already used */
638 if (test_bit(hwc->idx, used_mask))
639 break;
640
8113070d
SE
641 set_bit(hwc->idx, used_mask);
642 if (assign)
643 assign[i] = hwc->idx;
644 }
c933c1a6 645 if (i == n)
8113070d
SE
646 goto done;
647
648 /*
649 * begin slow path
650 */
651
652 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
653
1da53e02
SE
654 /*
655 * weight = number of possible counters
656 *
657 * 1 = most constrained, only works on one counter
658 * wmax = least constrained, works on any counter
659 *
660 * assign events to counters starting with most
661 * constrained events.
662 */
663 wmax = x86_pmu.num_events;
664
665 /*
666 * when fixed event counters are present,
667 * wmax is incremented by 1 to account
668 * for one more choice
669 */
670 if (x86_pmu.num_events_fixed)
671 wmax++;
672
8113070d 673 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 674 /* for each event */
8113070d 675 for (i = 0; num && i < n; i++) {
81269a08 676 c = constraints[i];
1da53e02
SE
677 hwc = &cpuc->event_list[i]->hw;
678
272d30be 679 if (c->weight != w)
1da53e02
SE
680 continue;
681
63b14649 682 for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
683 if (!test_bit(j, used_mask))
684 break;
685 }
686
687 if (j == X86_PMC_IDX_MAX)
688 break;
1da53e02 689
8113070d
SE
690 set_bit(j, used_mask);
691
1da53e02
SE
692 if (assign)
693 assign[i] = j;
694 num--;
695 }
696 }
8113070d 697done:
1da53e02
SE
698 /*
699 * scheduling failed or is just a simulation,
700 * free resources if necessary
701 */
702 if (!assign || num) {
703 for (i = 0; i < n; i++) {
704 if (x86_pmu.put_event_constraints)
705 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
706 }
707 }
708 return num ? -ENOSPC : 0;
709}
710
711/*
712 * dogrp: true if must collect siblings events (group)
713 * returns total number of events and error code
714 */
715static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
716{
717 struct perf_event *event;
718 int n, max_count;
719
720 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
721
722 /* current number of events already accepted */
723 n = cpuc->n_events;
724
725 if (is_x86_event(leader)) {
726 if (n >= max_count)
727 return -ENOSPC;
728 cpuc->event_list[n] = leader;
729 n++;
730 }
731 if (!dogrp)
732 return n;
733
734 list_for_each_entry(event, &leader->sibling_list, group_entry) {
735 if (!is_x86_event(event) ||
8113070d 736 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
737 continue;
738
739 if (n >= max_count)
740 return -ENOSPC;
741
742 cpuc->event_list[n] = event;
743 n++;
744 }
745 return n;
746}
747
1da53e02 748static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 749 struct cpu_hw_events *cpuc, int i)
1da53e02 750{
447a194b
SE
751 struct hw_perf_event *hwc = &event->hw;
752
753 hwc->idx = cpuc->assign[i];
754 hwc->last_cpu = smp_processor_id();
755 hwc->last_tag = ++cpuc->tags[i];
1da53e02
SE
756
757 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
758 hwc->config_base = 0;
759 hwc->event_base = 0;
760 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
761 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
762 /*
763 * We set it so that event_base + idx in wrmsr/rdmsr maps to
764 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
765 */
766 hwc->event_base =
767 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
768 } else {
769 hwc->config_base = x86_pmu.eventsel;
770 hwc->event_base = x86_pmu.perfctr;
771 }
772}
773
447a194b
SE
774static inline int match_prev_assignment(struct hw_perf_event *hwc,
775 struct cpu_hw_events *cpuc,
776 int i)
777{
778 return hwc->idx == cpuc->assign[i] &&
779 hwc->last_cpu == smp_processor_id() &&
780 hwc->last_tag == cpuc->tags[i];
781}
782
d76a0812 783static void x86_pmu_stop(struct perf_event *event);
2e841873 784
9e35ad38 785void hw_perf_enable(void)
ee06094f 786{
1da53e02
SE
787 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
788 struct perf_event *event;
789 struct hw_perf_event *hwc;
790 int i;
791
85cf9dba 792 if (!x86_pmu_initialized())
2b9ff0db 793 return;
1a6e21f7
PZ
794
795 if (cpuc->enabled)
796 return;
797
1da53e02
SE
798 if (cpuc->n_added) {
799 /*
800 * apply assignment obtained either from
801 * hw_perf_group_sched_in() or x86_pmu_enable()
802 *
803 * step1: save events moving to new counters
804 * step2: reprogram moved events into new counters
805 */
806 for (i = 0; i < cpuc->n_events; i++) {
807
808 event = cpuc->event_list[i];
809 hwc = &event->hw;
810
447a194b
SE
811 /*
812 * we can avoid reprogramming counter if:
813 * - assigned same counter as last time
814 * - running on same CPU as last time
815 * - no other event has used the counter since
816 */
817 if (hwc->idx == -1 ||
818 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
819 continue;
820
d76a0812 821 x86_pmu_stop(event);
1da53e02
SE
822
823 hwc->idx = -1;
824 }
825
826 for (i = 0; i < cpuc->n_events; i++) {
827
828 event = cpuc->event_list[i];
829 hwc = &event->hw;
830
831 if (hwc->idx == -1) {
447a194b 832 x86_assign_hw_event(event, cpuc, i);
1da53e02
SE
833 x86_perf_event_set_period(event, hwc, hwc->idx);
834 }
835 /*
836 * need to mark as active because x86_pmu_disable()
447a194b 837 * clear active_mask and events[] yet it preserves
1da53e02
SE
838 * idx
839 */
840 set_bit(hwc->idx, cpuc->active_mask);
841 cpuc->events[hwc->idx] = event;
842
843 x86_pmu.enable(hwc, hwc->idx);
844 perf_event_update_userpage(event);
845 }
846 cpuc->n_added = 0;
847 perf_events_lapic_init();
848 }
1a6e21f7
PZ
849
850 cpuc->enabled = 1;
851 barrier();
852
9e35ad38 853 x86_pmu.enable_all();
ee06094f 854}
ee06094f 855
8c48e444 856static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
b0f3f28e 857{
11d1578f 858 (void)checking_wrmsrl(hwc->config_base + idx,
bb1165d6 859 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
b0f3f28e
PZ
860}
861
cdd6c482 862static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
b0f3f28e 863{
11d1578f 864 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
b0f3f28e
PZ
865}
866
245b2e70 867static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 868
ee06094f
IM
869/*
870 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 871 * To be called with the event disabled in hw:
ee06094f 872 */
e4abb5d4 873static int
cdd6c482
IM
874x86_perf_event_set_period(struct perf_event *event,
875 struct hw_perf_event *hwc, int idx)
241771ef 876{
2f18d1e8 877 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4
PZ
878 s64 period = hwc->sample_period;
879 int err, ret = 0;
ee06094f 880
30dd568c
MM
881 if (idx == X86_PMC_IDX_FIXED_BTS)
882 return 0;
883
ee06094f 884 /*
af901ca1 885 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
886 */
887 if (unlikely(left <= -period)) {
888 left = period;
889 atomic64_set(&hwc->period_left, left);
9e350de3 890 hwc->last_period = period;
e4abb5d4 891 ret = 1;
ee06094f
IM
892 }
893
894 if (unlikely(left <= 0)) {
895 left += period;
896 atomic64_set(&hwc->period_left, left);
9e350de3 897 hwc->last_period = period;
e4abb5d4 898 ret = 1;
ee06094f 899 }
1c80f4b5 900 /*
dfc65094 901 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
902 */
903 if (unlikely(left < 2))
904 left = 2;
241771ef 905
e4abb5d4
PZ
906 if (left > x86_pmu.max_period)
907 left = x86_pmu.max_period;
908
245b2e70 909 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
910
911 /*
cdd6c482 912 * The hw event starts counting from this event offset,
ee06094f
IM
913 * mark it to be able to extra future deltas:
914 */
2f18d1e8 915 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 916
cdd6c482
IM
917 err = checking_wrmsrl(hwc->event_base + idx,
918 (u64)(-left) & x86_pmu.event_mask);
e4abb5d4 919
cdd6c482 920 perf_event_update_userpage(event);
194002b2 921
e4abb5d4 922 return ret;
2f18d1e8
IM
923}
924
8c48e444 925static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
7c90cc45 926{
cdd6c482 927 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45 928 if (cpuc->enabled)
8c48e444 929 __x86_pmu_enable_event(hwc, idx);
241771ef
IM
930}
931
b690081d 932/*
1da53e02
SE
933 * activate a single event
934 *
935 * The event is added to the group of enabled events
936 * but only if it can be scehduled with existing events.
937 *
938 * Called with PMU disabled. If successful and return value 1,
939 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
940 */
941static int x86_pmu_enable(struct perf_event *event)
942{
943 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
944 struct hw_perf_event *hwc;
945 int assign[X86_PMC_IDX_MAX];
946 int n, n0, ret;
fe9081cc 947
1da53e02 948 hwc = &event->hw;
fe9081cc 949
1da53e02
SE
950 n0 = cpuc->n_events;
951 n = collect_events(cpuc, event, false);
952 if (n < 0)
953 return n;
53b441a5 954
1da53e02
SE
955 ret = x86_schedule_events(cpuc, n, assign);
956 if (ret)
957 return ret;
958 /*
959 * copy new assignment, now we know it is possible
960 * will be used by hw_perf_enable()
961 */
962 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 963
1da53e02
SE
964 cpuc->n_events = n;
965 cpuc->n_added = n - n0;
95cdd2e7
IM
966
967 return 0;
241771ef
IM
968}
969
d76a0812
SE
970static int x86_pmu_start(struct perf_event *event)
971{
972 struct hw_perf_event *hwc = &event->hw;
973
974 if (hwc->idx == -1)
975 return -EAGAIN;
976
977 x86_perf_event_set_period(event, hwc, hwc->idx);
978 x86_pmu.enable(hwc, hwc->idx);
979
980 return 0;
981}
982
cdd6c482 983static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 984{
cdd6c482
IM
985 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
986 struct hw_perf_event *hwc = &event->hw;
a78ac325
PZ
987
988 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cdd6c482 989 cpuc->events[hwc->idx] != event))
a78ac325
PZ
990 return;
991
992 x86_pmu.enable(hwc, hwc->idx);
993}
994
cdd6c482 995void perf_event_print_debug(void)
241771ef 996{
2f18d1e8 997 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
cdd6c482 998 struct cpu_hw_events *cpuc;
5bb9efe3 999 unsigned long flags;
1e125676
IM
1000 int cpu, idx;
1001
cdd6c482 1002 if (!x86_pmu.num_events)
1e125676 1003 return;
241771ef 1004
5bb9efe3 1005 local_irq_save(flags);
241771ef
IM
1006
1007 cpu = smp_processor_id();
cdd6c482 1008 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1009
faa28ae0 1010 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1011 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1012 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1013 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1014 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1015
1016 pr_info("\n");
1017 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1018 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1019 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1020 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
f87ad35d 1021 }
1da53e02 1022 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1023
cdd6c482 1024 for (idx = 0; idx < x86_pmu.num_events; idx++) {
4a06bd85
RR
1025 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1026 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1027
245b2e70 1028 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1029
a1ef58f4 1030 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1031 cpu, idx, pmc_ctrl);
a1ef58f4 1032 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1033 cpu, idx, pmc_count);
a1ef58f4 1034 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1035 cpu, idx, prev_left);
241771ef 1036 }
cdd6c482 1037 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2f18d1e8
IM
1038 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1039
a1ef58f4 1040 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1041 cpu, idx, pmc_count);
1042 }
5bb9efe3 1043 local_irq_restore(flags);
241771ef
IM
1044}
1045
d76a0812 1046static void x86_pmu_stop(struct perf_event *event)
241771ef 1047{
d76a0812 1048 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1049 struct hw_perf_event *hwc = &event->hw;
2e841873 1050 int idx = hwc->idx;
241771ef 1051
09534238
RR
1052 /*
1053 * Must be done before we disable, otherwise the nmi handler
1054 * could reenable again:
1055 */
43f6201a 1056 clear_bit(idx, cpuc->active_mask);
d4369891 1057 x86_pmu.disable(hwc, idx);
241771ef 1058
ee06094f 1059 /*
cdd6c482 1060 * Drain the remaining delta count out of a event
ee06094f
IM
1061 * that we are disabling:
1062 */
cdd6c482 1063 x86_perf_event_update(event, hwc, idx);
30dd568c 1064
cdd6c482 1065 cpuc->events[idx] = NULL;
2e841873
PZ
1066}
1067
1068static void x86_pmu_disable(struct perf_event *event)
1069{
1070 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1071 int i;
1072
d76a0812 1073 x86_pmu_stop(event);
194002b2 1074
1da53e02
SE
1075 for (i = 0; i < cpuc->n_events; i++) {
1076 if (event == cpuc->event_list[i]) {
1077
1078 if (x86_pmu.put_event_constraints)
1079 x86_pmu.put_event_constraints(cpuc, event);
1080
1081 while (++i < cpuc->n_events)
1082 cpuc->event_list[i-1] = cpuc->event_list[i];
1083
1084 --cpuc->n_events;
6c9687ab 1085 break;
1da53e02
SE
1086 }
1087 }
cdd6c482 1088 perf_event_update_userpage(event);
241771ef
IM
1089}
1090
8c48e444 1091static int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1092{
df1a132b 1093 struct perf_sample_data data;
cdd6c482
IM
1094 struct cpu_hw_events *cpuc;
1095 struct perf_event *event;
1096 struct hw_perf_event *hwc;
11d1578f 1097 int idx, handled = 0;
9029a5e3
IM
1098 u64 val;
1099
df1a132b 1100 data.addr = 0;
5e855db5 1101 data.raw = NULL;
df1a132b 1102
cdd6c482 1103 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1104
cdd6c482 1105 for (idx = 0; idx < x86_pmu.num_events; idx++) {
43f6201a 1106 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1107 continue;
962bf7a6 1108
cdd6c482
IM
1109 event = cpuc->events[idx];
1110 hwc = &event->hw;
a4016a79 1111
cdd6c482
IM
1112 val = x86_perf_event_update(event, hwc, idx);
1113 if (val & (1ULL << (x86_pmu.event_bits - 1)))
48e22d56 1114 continue;
962bf7a6 1115
9e350de3 1116 /*
cdd6c482 1117 * event overflow
9e350de3
PZ
1118 */
1119 handled = 1;
cdd6c482 1120 data.period = event->hw.last_period;
9e350de3 1121
cdd6c482 1122 if (!x86_perf_event_set_period(event, hwc, idx))
e4abb5d4
PZ
1123 continue;
1124
cdd6c482 1125 if (perf_event_overflow(event, 1, &data, regs))
8c48e444 1126 x86_pmu.disable(hwc, idx);
a29aa8a7 1127 }
962bf7a6 1128
9e350de3
PZ
1129 if (handled)
1130 inc_irq_stat(apic_perf_irqs);
1131
a29aa8a7
RR
1132 return handled;
1133}
39d81eab 1134
b6276f35
PZ
1135void smp_perf_pending_interrupt(struct pt_regs *regs)
1136{
1137 irq_enter();
1138 ack_APIC_irq();
1139 inc_irq_stat(apic_pending_irqs);
cdd6c482 1140 perf_event_do_pending();
b6276f35
PZ
1141 irq_exit();
1142}
1143
cdd6c482 1144void set_perf_event_pending(void)
b6276f35 1145{
04da8a43 1146#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
1147 if (!x86_pmu.apic || !x86_pmu_initialized())
1148 return;
1149
b6276f35 1150 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 1151#endif
b6276f35
PZ
1152}
1153
cdd6c482 1154void perf_events_lapic_init(void)
241771ef 1155{
04da8a43
IM
1156#ifdef CONFIG_X86_LOCAL_APIC
1157 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1158 return;
85cf9dba 1159
241771ef 1160 /*
c323d95f 1161 * Always use NMI for PMU
241771ef 1162 */
c323d95f 1163 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1164#endif
241771ef
IM
1165}
1166
1167static int __kprobes
cdd6c482 1168perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
1169 unsigned long cmd, void *__args)
1170{
1171 struct die_args *args = __args;
1172 struct pt_regs *regs;
b0f3f28e 1173
cdd6c482 1174 if (!atomic_read(&active_events))
63a809a2
PZ
1175 return NOTIFY_DONE;
1176
b0f3f28e
PZ
1177 switch (cmd) {
1178 case DIE_NMI:
1179 case DIE_NMI_IPI:
1180 break;
241771ef 1181
b0f3f28e 1182 default:
241771ef 1183 return NOTIFY_DONE;
b0f3f28e 1184 }
241771ef
IM
1185
1186 regs = args->regs;
1187
04da8a43 1188#ifdef CONFIG_X86_LOCAL_APIC
241771ef 1189 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1190#endif
a4016a79
PZ
1191 /*
1192 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 1193 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
1194 *
1195 * If the first NMI handles both, the latter will be empty and daze
1196 * the CPU.
1197 */
a3288106 1198 x86_pmu.handle_irq(regs);
241771ef 1199
a4016a79 1200 return NOTIFY_STOP;
241771ef
IM
1201}
1202
f22f54f4
PZ
1203static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1204 .notifier_call = perf_event_nmi_handler,
1205 .next = NULL,
1206 .priority = 1
1207};
1208
63b14649 1209static struct event_constraint unconstrained;
38331f62 1210static struct event_constraint emptyconstraint;
63b14649 1211
63b14649 1212static struct event_constraint *
f22f54f4 1213x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 1214{
63b14649 1215 struct event_constraint *c;
1da53e02 1216
1da53e02
SE
1217 if (x86_pmu.event_constraints) {
1218 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
1219 if ((event->hw.config & c->cmask) == c->code)
1220 return c;
1da53e02
SE
1221 }
1222 }
63b14649
PZ
1223
1224 return &unconstrained;
1da53e02
SE
1225}
1226
1da53e02 1227static int x86_event_sched_in(struct perf_event *event,
6e37738a 1228 struct perf_cpu_context *cpuctx)
1da53e02
SE
1229{
1230 int ret = 0;
1231
1232 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1233 event->oncpu = smp_processor_id();
1da53e02
SE
1234 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1235
1236 if (!is_x86_event(event))
1237 ret = event->pmu->enable(event);
1238
1239 if (!ret && !is_software_event(event))
1240 cpuctx->active_oncpu++;
1241
1242 if (!ret && event->attr.exclusive)
1243 cpuctx->exclusive = 1;
1244
1245 return ret;
1246}
1247
1248static void x86_event_sched_out(struct perf_event *event,
6e37738a 1249 struct perf_cpu_context *cpuctx)
1da53e02
SE
1250{
1251 event->state = PERF_EVENT_STATE_INACTIVE;
1252 event->oncpu = -1;
1253
1254 if (!is_x86_event(event))
1255 event->pmu->disable(event);
1256
1257 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1258
1259 if (!is_software_event(event))
1260 cpuctx->active_oncpu--;
1261
1262 if (event->attr.exclusive || !cpuctx->active_oncpu)
1263 cpuctx->exclusive = 0;
1264}
1265
1266/*
1267 * Called to enable a whole group of events.
1268 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1269 * Assumes the caller has disabled interrupts and has
1270 * frozen the PMU with hw_perf_save_disable.
1271 *
1272 * called with PMU disabled. If successful and return value 1,
1273 * then guaranteed to call perf_enable() and hw_perf_enable()
1274 */
1275int hw_perf_group_sched_in(struct perf_event *leader,
1276 struct perf_cpu_context *cpuctx,
6e37738a 1277 struct perf_event_context *ctx)
1da53e02 1278{
6e37738a 1279 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1280 struct perf_event *sub;
1281 int assign[X86_PMC_IDX_MAX];
1282 int n0, n1, ret;
1283
1284 /* n0 = total number of events */
1285 n0 = collect_events(cpuc, leader, true);
1286 if (n0 < 0)
1287 return n0;
1288
1289 ret = x86_schedule_events(cpuc, n0, assign);
1290 if (ret)
1291 return ret;
1292
6e37738a 1293 ret = x86_event_sched_in(leader, cpuctx);
1da53e02
SE
1294 if (ret)
1295 return ret;
1296
1297 n1 = 1;
1298 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 1299 if (sub->state > PERF_EVENT_STATE_OFF) {
6e37738a 1300 ret = x86_event_sched_in(sub, cpuctx);
1da53e02
SE
1301 if (ret)
1302 goto undo;
1303 ++n1;
1304 }
1305 }
1306 /*
1307 * copy new assignment, now we know it is possible
1308 * will be used by hw_perf_enable()
1309 */
1310 memcpy(cpuc->assign, assign, n0*sizeof(int));
1311
1312 cpuc->n_events = n0;
1313 cpuc->n_added = n1;
1314 ctx->nr_active += n1;
1315
1316 /*
1317 * 1 means successful and events are active
1318 * This is not quite true because we defer
1319 * actual activation until hw_perf_enable() but
1320 * this way we* ensure caller won't try to enable
1321 * individual events
1322 */
1323 return 1;
1324undo:
6e37738a 1325 x86_event_sched_out(leader, cpuctx);
1da53e02
SE
1326 n0 = 1;
1327 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1328 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
6e37738a 1329 x86_event_sched_out(sub, cpuctx);
1da53e02
SE
1330 if (++n0 == n1)
1331 break;
1332 }
1333 }
1334 return ret;
1335}
1336
f22f54f4
PZ
1337#include "perf_event_amd.c"
1338#include "perf_event_p6.c"
1339#include "perf_event_intel.c"
f87ad35d 1340
12558038
CG
1341static void __init pmu_check_apic(void)
1342{
1343 if (cpu_has_apic)
1344 return;
1345
1346 x86_pmu.apic = 0;
1347 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1348 pr_info("no hardware sampling interrupt available.\n");
1349}
1350
cdd6c482 1351void __init init_hw_perf_events(void)
b56a3802 1352{
72eae04d
RR
1353 int err;
1354
cdd6c482 1355 pr_info("Performance Events: ");
1123e3ad 1356
b56a3802
JSR
1357 switch (boot_cpu_data.x86_vendor) {
1358 case X86_VENDOR_INTEL:
72eae04d 1359 err = intel_pmu_init();
b56a3802 1360 break;
f87ad35d 1361 case X86_VENDOR_AMD:
72eae04d 1362 err = amd_pmu_init();
f87ad35d 1363 break;
4138960a
RR
1364 default:
1365 return;
b56a3802 1366 }
1123e3ad 1367 if (err != 0) {
cdd6c482 1368 pr_cont("no PMU driver, software events only.\n");
b56a3802 1369 return;
1123e3ad 1370 }
b56a3802 1371
12558038
CG
1372 pmu_check_apic();
1373
1123e3ad 1374 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1375
cdd6c482
IM
1376 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1377 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1378 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1379 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
241771ef 1380 }
cdd6c482
IM
1381 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1382 perf_max_events = x86_pmu.num_events;
241771ef 1383
cdd6c482
IM
1384 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1385 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1386 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1387 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
703e937c 1388 }
862a1a5f 1389
cdd6c482
IM
1390 perf_event_mask |=
1391 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1392 x86_pmu.intel_ctrl = perf_event_mask;
241771ef 1393
cdd6c482
IM
1394 perf_events_lapic_init();
1395 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 1396
63b14649 1397 unconstrained = (struct event_constraint)
fce877e3
PZ
1398 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1399 0, x86_pmu.num_events);
63b14649 1400
57c0c15b
IM
1401 pr_info("... version: %d\n", x86_pmu.version);
1402 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1403 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1404 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1405 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1406 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1407 pr_info("... event mask: %016Lx\n", perf_event_mask);
241771ef 1408}
621a01ea 1409
cdd6c482 1410static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1411{
cdd6c482 1412 x86_perf_event_update(event, &event->hw, event->hw.idx);
ee06094f
IM
1413}
1414
4aeb0b42
RR
1415static const struct pmu pmu = {
1416 .enable = x86_pmu_enable,
1417 .disable = x86_pmu_disable,
d76a0812
SE
1418 .start = x86_pmu_start,
1419 .stop = x86_pmu_stop,
4aeb0b42 1420 .read = x86_pmu_read,
a78ac325 1421 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
1422};
1423
1da53e02
SE
1424/*
1425 * validate a single event group
1426 *
1427 * validation include:
184f412c
IM
1428 * - check events are compatible which each other
1429 * - events do not compete for the same counter
1430 * - number of events <= number of counters
1da53e02
SE
1431 *
1432 * validation ensures the group can be loaded onto the
1433 * PMU if it was the only group available.
1434 */
fe9081cc
PZ
1435static int validate_group(struct perf_event *event)
1436{
1da53e02 1437 struct perf_event *leader = event->group_leader;
502568d5
PZ
1438 struct cpu_hw_events *fake_cpuc;
1439 int ret, n;
fe9081cc 1440
502568d5
PZ
1441 ret = -ENOMEM;
1442 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1443 if (!fake_cpuc)
1444 goto out;
fe9081cc 1445
1da53e02
SE
1446 /*
1447 * the event is not yet connected with its
1448 * siblings therefore we must first collect
1449 * existing siblings, then add the new event
1450 * before we can simulate the scheduling
1451 */
502568d5
PZ
1452 ret = -ENOSPC;
1453 n = collect_events(fake_cpuc, leader, true);
1da53e02 1454 if (n < 0)
502568d5 1455 goto out_free;
fe9081cc 1456
502568d5
PZ
1457 fake_cpuc->n_events = n;
1458 n = collect_events(fake_cpuc, event, false);
1da53e02 1459 if (n < 0)
502568d5 1460 goto out_free;
fe9081cc 1461
502568d5 1462 fake_cpuc->n_events = n;
1da53e02 1463
502568d5
PZ
1464 ret = x86_schedule_events(fake_cpuc, n, NULL);
1465
1466out_free:
1467 kfree(fake_cpuc);
1468out:
1469 return ret;
fe9081cc
PZ
1470}
1471
cdd6c482 1472const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 1473{
8113070d 1474 const struct pmu *tmp;
621a01ea
IM
1475 int err;
1476
cdd6c482 1477 err = __hw_perf_event_init(event);
fe9081cc 1478 if (!err) {
8113070d
SE
1479 /*
1480 * we temporarily connect event to its pmu
1481 * such that validate_group() can classify
1482 * it as an x86 event using is_x86_event()
1483 */
1484 tmp = event->pmu;
1485 event->pmu = &pmu;
1486
fe9081cc
PZ
1487 if (event->group_leader != event)
1488 err = validate_group(event);
8113070d
SE
1489
1490 event->pmu = tmp;
fe9081cc 1491 }
a1792cda 1492 if (err) {
cdd6c482
IM
1493 if (event->destroy)
1494 event->destroy(event);
9ea98e19 1495 return ERR_PTR(err);
a1792cda 1496 }
621a01ea 1497
4aeb0b42 1498 return &pmu;
621a01ea 1499}
d7d59fb3
PZ
1500
1501/*
1502 * callchain support
1503 */
1504
1505static inline
f9188e02 1506void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 1507{
f9188e02 1508 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
1509 entry->ip[entry->nr++] = ip;
1510}
1511
245b2e70
TH
1512static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1513static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
1514
1515
1516static void
1517backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1518{
1519 /* Ignore warnings */
1520}
1521
1522static void backtrace_warning(void *data, char *msg)
1523{
1524 /* Ignore warnings */
1525}
1526
1527static int backtrace_stack(void *data, char *name)
1528{
038e836e 1529 return 0;
d7d59fb3
PZ
1530}
1531
1532static void backtrace_address(void *data, unsigned long addr, int reliable)
1533{
1534 struct perf_callchain_entry *entry = data;
1535
1536 if (reliable)
1537 callchain_store(entry, addr);
1538}
1539
1540static const struct stacktrace_ops backtrace_ops = {
1541 .warning = backtrace_warning,
1542 .warning_symbol = backtrace_warning_symbol,
1543 .stack = backtrace_stack,
1544 .address = backtrace_address,
06d65bda 1545 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1546};
1547
038e836e
IM
1548#include "../dumpstack.h"
1549
d7d59fb3
PZ
1550static void
1551perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1552{
f9188e02 1553 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 1554 callchain_store(entry, regs->ip);
d7d59fb3 1555
48b5ba9c 1556 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
1557}
1558
74193ef0
PZ
1559/*
1560 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1561 */
1562static unsigned long
1563copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
d7d59fb3 1564{
74193ef0
PZ
1565 unsigned long offset, addr = (unsigned long)from;
1566 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1567 unsigned long size, len = 0;
1568 struct page *page;
1569 void *map;
d7d59fb3
PZ
1570 int ret;
1571
74193ef0
PZ
1572 do {
1573 ret = __get_user_pages_fast(addr, 1, 0, &page);
1574 if (!ret)
1575 break;
d7d59fb3 1576
74193ef0
PZ
1577 offset = addr & (PAGE_SIZE - 1);
1578 size = min(PAGE_SIZE - offset, n - len);
d7d59fb3 1579
74193ef0
PZ
1580 map = kmap_atomic(page, type);
1581 memcpy(to, map+offset, size);
1582 kunmap_atomic(map, type);
1583 put_page(page);
1584
1585 len += size;
1586 to += size;
1587 addr += size;
1588
1589 } while (len < n);
1590
1591 return len;
1592}
1593
1594static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1595{
1596 unsigned long bytes;
1597
1598 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1599
1600 return bytes == sizeof(*frame);
d7d59fb3
PZ
1601}
1602
1603static void
1604perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1605{
1606 struct stack_frame frame;
1607 const void __user *fp;
1608
5a6cec3a
IM
1609 if (!user_mode(regs))
1610 regs = task_pt_regs(current);
1611
74193ef0 1612 fp = (void __user *)regs->bp;
d7d59fb3 1613
f9188e02 1614 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
1615 callchain_store(entry, regs->ip);
1616
f9188e02 1617 while (entry->nr < PERF_MAX_STACK_DEPTH) {
038e836e 1618 frame.next_frame = NULL;
d7d59fb3
PZ
1619 frame.return_address = 0;
1620
1621 if (!copy_stack_frame(fp, &frame))
1622 break;
1623
5a6cec3a 1624 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
1625 break;
1626
1627 callchain_store(entry, frame.return_address);
038e836e 1628 fp = frame.next_frame;
d7d59fb3
PZ
1629 }
1630}
1631
1632static void
1633perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1634{
1635 int is_user;
1636
1637 if (!regs)
1638 return;
1639
1640 is_user = user_mode(regs);
1641
d7d59fb3
PZ
1642 if (is_user && current->state != TASK_RUNNING)
1643 return;
1644
1645 if (!is_user)
1646 perf_callchain_kernel(regs, entry);
1647
1648 if (current->mm)
1649 perf_callchain_user(regs, entry);
1650}
1651
1652struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1653{
1654 struct perf_callchain_entry *entry;
1655
1656 if (in_nmi())
245b2e70 1657 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 1658 else
245b2e70 1659 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
1660
1661 entry->nr = 0;
1662
1663 perf_do_callchain(regs, entry);
1664
1665 return entry;
1666}
30dd568c 1667
cdd6c482 1668void hw_perf_event_setup_online(int cpu)
30dd568c
MM
1669{
1670 init_debug_store_on_cpu(cpu);
38331f62
SE
1671
1672 switch (boot_cpu_data.x86_vendor) {
1673 case X86_VENDOR_AMD:
1674 amd_pmu_cpu_online(cpu);
1675 break;
1676 default:
1677 return;
1678 }
1679}
1680
1681void hw_perf_event_setup_offline(int cpu)
1682{
1683 init_debug_store_on_cpu(cpu);
1684
1685 switch (boot_cpu_data.x86_vendor) {
1686 case X86_VENDOR_AMD:
1687 amd_pmu_cpu_offline(cpu);
1688 break;
1689 default:
1690 return;
1691 }
30dd568c 1692}