perf_event: x86: Deduplicate the disable code
[linux-block.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
74193ef0 24#include <linux/highmem.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
241771ef 27
241771ef 28#include <asm/apic.h>
d7d59fb3 29#include <asm/stacktrace.h>
4e935e47 30#include <asm/nmi.h>
241771ef 31
cdd6c482 32static u64 perf_event_mask __read_mostly;
703e937c 33
cdd6c482
IM
34/* The maximal number of PEBS events: */
35#define MAX_PEBS_EVENTS 4
30dd568c
MM
36
37/* The size of a BTS record in bytes: */
38#define BTS_RECORD_SIZE 24
39
40/* The size of a per-cpu BTS buffer in bytes: */
5622f295 41#define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
30dd568c
MM
42
43/* The BTS overflow threshold in bytes from the end of the buffer: */
5622f295 44#define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
30dd568c
MM
45
46
47/*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50#define X86_DEBUGCTL_TR (1 << 6)
51#define X86_DEBUGCTL_BTS (1 << 7)
52#define X86_DEBUGCTL_BTINT (1 << 8)
53#define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54#define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56/*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
cdd6c482 70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
30dd568c
MM
71};
72
1da53e02 73struct event_constraint {
c91e0f5d
PZ
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
76 u64 idxmsk64[1];
77 };
1da53e02
SE
78 int code;
79 int cmask;
272d30be 80 int weight;
1da53e02
SE
81};
82
cdd6c482 83struct cpu_hw_events {
1da53e02 84 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 85 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
4b39fd96 86 unsigned long interrupts;
b0f3f28e 87 int enabled;
30dd568c 88 struct debug_store *ds;
241771ef 89
1da53e02
SE
90 int n_events;
91 int n_added;
92 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
93 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
b690081d
SE
94};
95
184f412c 96#define EVENT_CONSTRAINT(c, n, m) { \
c91e0f5d
PZ
97 { .idxmsk64[0] = (n) }, \
98 .code = (c), \
99 .cmask = (m), \
272d30be 100 .weight = HWEIGHT64((u64)(n)), \
c91e0f5d 101}
b690081d 102
184f412c
IM
103#define INTEL_EVENT_CONSTRAINT(c, n) EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
104#define FIXED_EVENT_CONSTRAINT(c, n) EVENT_CONSTRAINT(c, n, INTEL_ARCH_FIXED_MASK)
8433be11 105
184f412c 106#define EVENT_CONSTRAINT_END EVENT_CONSTRAINT(0, 0, 0)
8433be11 107
184f412c 108#define for_each_event_constraint(e, c) for ((e) = (c); (e)->cmask; (e)++)
b690081d 109
241771ef 110/*
5f4ec28f 111 * struct x86_pmu - generic x86 pmu
241771ef 112 */
5f4ec28f 113struct x86_pmu {
faa28ae0
RR
114 const char *name;
115 int version;
a3288106 116 int (*handle_irq)(struct pt_regs *);
9e35ad38
PZ
117 void (*disable_all)(void);
118 void (*enable_all)(void);
cdd6c482
IM
119 void (*enable)(struct hw_perf_event *, int);
120 void (*disable)(struct hw_perf_event *, int);
169e41eb
JSR
121 unsigned eventsel;
122 unsigned perfctr;
b0f3f28e
PZ
123 u64 (*event_map)(int);
124 u64 (*raw_event)(u64);
169e41eb 125 int max_events;
cdd6c482
IM
126 int num_events;
127 int num_events_fixed;
128 int event_bits;
129 u64 event_mask;
04da8a43 130 int apic;
c619b8ff 131 u64 max_period;
9e35ad38 132 u64 intel_ctrl;
30dd568c
MM
133 void (*enable_bts)(u64 config);
134 void (*disable_bts)(void);
63b14649
PZ
135
136 struct event_constraint *
137 (*get_event_constraints)(struct cpu_hw_events *cpuc,
138 struct perf_event *event);
139
c91e0f5d
PZ
140 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
141 struct perf_event *event);
63b14649 142 struct event_constraint *event_constraints;
b56a3802
JSR
143};
144
4a06bd85 145static struct x86_pmu x86_pmu __read_mostly;
b56a3802 146
cdd6c482 147static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
148 .enabled = 1,
149};
241771ef 150
1da53e02
SE
151static int x86_perf_event_set_period(struct perf_event *event,
152 struct hw_perf_event *hwc, int idx);
b690081d 153
11d1578f
VW
154/*
155 * Not sure about some of these
156 */
157static const u64 p6_perfmon_event_map[] =
158{
159 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
160 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
f64ccccb
IM
161 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
162 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
11d1578f
VW
163 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
164 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
165 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
166};
167
dfc65094 168static u64 p6_pmu_event_map(int hw_event)
11d1578f 169{
dfc65094 170 return p6_perfmon_event_map[hw_event];
11d1578f
VW
171}
172
9c74fb50 173/*
cdd6c482 174 * Event setting that is specified not to count anything.
9c74fb50
PZ
175 * We use this to effectively disable a counter.
176 *
177 * L2_RQSTS with 0 MESI unit mask.
178 */
cdd6c482 179#define P6_NOP_EVENT 0x0000002EULL
9c74fb50 180
dfc65094 181static u64 p6_pmu_raw_event(u64 hw_event)
11d1578f
VW
182{
183#define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
184#define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
185#define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
186#define P6_EVNTSEL_INV_MASK 0x00800000ULL
cdd6c482 187#define P6_EVNTSEL_REG_MASK 0xFF000000ULL
11d1578f
VW
188
189#define P6_EVNTSEL_MASK \
190 (P6_EVNTSEL_EVENT_MASK | \
191 P6_EVNTSEL_UNIT_MASK | \
192 P6_EVNTSEL_EDGE_MASK | \
193 P6_EVNTSEL_INV_MASK | \
cdd6c482 194 P6_EVNTSEL_REG_MASK)
11d1578f 195
dfc65094 196 return hw_event & P6_EVNTSEL_MASK;
11d1578f
VW
197}
198
1da53e02 199static struct event_constraint intel_p6_event_constraints[] =
b690081d 200{
8433be11
PZ
201 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */
202 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
203 INTEL_EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */
204 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
205 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
206 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
b690081d
SE
207 EVENT_CONSTRAINT_END
208};
11d1578f 209
b56a3802
JSR
210/*
211 * Intel PerfMon v3. Used on Core2 and later.
212 */
b0f3f28e 213static const u64 intel_perfmon_event_map[] =
241771ef 214{
f4dbfa8f
PZ
215 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
216 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
217 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
218 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
219 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
220 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
221 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
241771ef
IM
222};
223
1da53e02
SE
224static struct event_constraint intel_core_event_constraints[] =
225{
8433be11
PZ
226 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
227 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
228 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
229 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
230 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
231 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
232 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
233 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
234 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
235 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
236 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
b690081d
SE
237 EVENT_CONSTRAINT_END
238};
239
1da53e02
SE
240static struct event_constraint intel_nehalem_event_constraints[] =
241{
8433be11
PZ
242 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
243 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
244 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
245 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
246 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
247 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
248 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
249 INTEL_EVENT_CONSTRAINT(0x4c, 0x3), /* LOAD_HIT_PRE */
250 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
251 INTEL_EVENT_CONSTRAINT(0x52, 0x3), /* L1D_CACHE_PREFETCH_LOCK_FB_HIT */
252 INTEL_EVENT_CONSTRAINT(0x53, 0x3), /* L1D_CACHE_LOCK_FB_HIT */
253 INTEL_EVENT_CONSTRAINT(0xc5, 0x3), /* CACHE_LOCK_CYCLES */
1da53e02
SE
254 EVENT_CONSTRAINT_END
255};
256
257static struct event_constraint intel_gen_event_constraints[] =
258{
8433be11
PZ
259 FIXED_EVENT_CONSTRAINT(0xc0, (0x3|(1ULL<<32))), /* INSTRUCTIONS_RETIRED */
260 FIXED_EVENT_CONSTRAINT(0x3c, (0x3|(1ULL<<33))), /* UNHALTED_CORE_CYCLES */
b690081d
SE
261 EVENT_CONSTRAINT_END
262};
263
dfc65094 264static u64 intel_pmu_event_map(int hw_event)
b56a3802 265{
dfc65094 266 return intel_perfmon_event_map[hw_event];
b56a3802 267}
241771ef 268
8326f44d 269/*
dfc65094 270 * Generalized hw caching related hw_event table, filled
8326f44d 271 * in on a per model basis. A value of 0 means
dfc65094
IM
272 * 'not supported', -1 means 'hw_event makes no sense on
273 * this CPU', any other value means the raw hw_event
8326f44d
IM
274 * ID.
275 */
276
277#define C(x) PERF_COUNT_HW_CACHE_##x
278
279static u64 __read_mostly hw_cache_event_ids
280 [PERF_COUNT_HW_CACHE_MAX]
281 [PERF_COUNT_HW_CACHE_OP_MAX]
282 [PERF_COUNT_HW_CACHE_RESULT_MAX];
283
db48cccc 284static __initconst u64 nehalem_hw_cache_event_ids
8326f44d
IM
285 [PERF_COUNT_HW_CACHE_MAX]
286 [PERF_COUNT_HW_CACHE_OP_MAX]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
288{
289 [ C(L1D) ] = {
290 [ C(OP_READ) ] = {
291 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
292 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
296 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
300 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
301 },
302 },
303 [ C(L1I ) ] = {
304 [ C(OP_READ) ] = {
fecc8ac8 305 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
8326f44d
IM
306 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = -1,
310 [ C(RESULT_MISS) ] = -1,
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = 0x0,
314 [ C(RESULT_MISS) ] = 0x0,
315 },
316 },
8be6e8f3 317 [ C(LL ) ] = {
8326f44d
IM
318 [ C(OP_READ) ] = {
319 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
320 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
321 },
322 [ C(OP_WRITE) ] = {
323 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
324 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
325 },
326 [ C(OP_PREFETCH) ] = {
8be6e8f3
PZ
327 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
328 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
8326f44d
IM
329 },
330 },
331 [ C(DTLB) ] = {
332 [ C(OP_READ) ] = {
333 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
335 },
336 [ C(OP_WRITE) ] = {
337 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
339 },
340 [ C(OP_PREFETCH) ] = {
341 [ C(RESULT_ACCESS) ] = 0x0,
342 [ C(RESULT_MISS) ] = 0x0,
343 },
344 },
345 [ C(ITLB) ] = {
346 [ C(OP_READ) ] = {
347 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
fecc8ac8 348 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
8326f44d
IM
349 },
350 [ C(OP_WRITE) ] = {
351 [ C(RESULT_ACCESS) ] = -1,
352 [ C(RESULT_MISS) ] = -1,
353 },
354 [ C(OP_PREFETCH) ] = {
355 [ C(RESULT_ACCESS) ] = -1,
356 [ C(RESULT_MISS) ] = -1,
357 },
358 },
359 [ C(BPU ) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
362 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
363 },
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = -1,
366 [ C(RESULT_MISS) ] = -1,
367 },
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = -1,
370 [ C(RESULT_MISS) ] = -1,
371 },
372 },
373};
374
db48cccc 375static __initconst u64 core2_hw_cache_event_ids
8326f44d
IM
376 [PERF_COUNT_HW_CACHE_MAX]
377 [PERF_COUNT_HW_CACHE_OP_MAX]
378 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
379{
0312af84
TG
380 [ C(L1D) ] = {
381 [ C(OP_READ) ] = {
382 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
383 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
384 },
385 [ C(OP_WRITE) ] = {
386 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
387 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
388 },
389 [ C(OP_PREFETCH) ] = {
390 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
391 [ C(RESULT_MISS) ] = 0,
392 },
393 },
394 [ C(L1I ) ] = {
395 [ C(OP_READ) ] = {
396 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
397 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
398 },
399 [ C(OP_WRITE) ] = {
400 [ C(RESULT_ACCESS) ] = -1,
401 [ C(RESULT_MISS) ] = -1,
402 },
403 [ C(OP_PREFETCH) ] = {
404 [ C(RESULT_ACCESS) ] = 0,
405 [ C(RESULT_MISS) ] = 0,
406 },
407 },
8be6e8f3 408 [ C(LL ) ] = {
0312af84
TG
409 [ C(OP_READ) ] = {
410 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
411 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
412 },
413 [ C(OP_WRITE) ] = {
414 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
415 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
416 },
417 [ C(OP_PREFETCH) ] = {
418 [ C(RESULT_ACCESS) ] = 0,
419 [ C(RESULT_MISS) ] = 0,
420 },
421 },
422 [ C(DTLB) ] = {
423 [ C(OP_READ) ] = {
424 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
425 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
426 },
427 [ C(OP_WRITE) ] = {
428 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
429 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
430 },
431 [ C(OP_PREFETCH) ] = {
432 [ C(RESULT_ACCESS) ] = 0,
433 [ C(RESULT_MISS) ] = 0,
434 },
435 },
436 [ C(ITLB) ] = {
437 [ C(OP_READ) ] = {
438 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
439 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
440 },
441 [ C(OP_WRITE) ] = {
442 [ C(RESULT_ACCESS) ] = -1,
443 [ C(RESULT_MISS) ] = -1,
444 },
445 [ C(OP_PREFETCH) ] = {
446 [ C(RESULT_ACCESS) ] = -1,
447 [ C(RESULT_MISS) ] = -1,
448 },
449 },
450 [ C(BPU ) ] = {
451 [ C(OP_READ) ] = {
452 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
453 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
454 },
455 [ C(OP_WRITE) ] = {
456 [ C(RESULT_ACCESS) ] = -1,
457 [ C(RESULT_MISS) ] = -1,
458 },
459 [ C(OP_PREFETCH) ] = {
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
462 },
463 },
8326f44d
IM
464};
465
db48cccc 466static __initconst u64 atom_hw_cache_event_ids
8326f44d
IM
467 [PERF_COUNT_HW_CACHE_MAX]
468 [PERF_COUNT_HW_CACHE_OP_MAX]
469 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
470{
ad689220
TG
471 [ C(L1D) ] = {
472 [ C(OP_READ) ] = {
473 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
474 [ C(RESULT_MISS) ] = 0,
475 },
476 [ C(OP_WRITE) ] = {
fecc8ac8 477 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
ad689220
TG
478 [ C(RESULT_MISS) ] = 0,
479 },
480 [ C(OP_PREFETCH) ] = {
481 [ C(RESULT_ACCESS) ] = 0x0,
482 [ C(RESULT_MISS) ] = 0,
483 },
484 },
485 [ C(L1I ) ] = {
486 [ C(OP_READ) ] = {
fecc8ac8
YW
487 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
488 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
ad689220
TG
489 },
490 [ C(OP_WRITE) ] = {
491 [ C(RESULT_ACCESS) ] = -1,
492 [ C(RESULT_MISS) ] = -1,
493 },
494 [ C(OP_PREFETCH) ] = {
495 [ C(RESULT_ACCESS) ] = 0,
496 [ C(RESULT_MISS) ] = 0,
497 },
498 },
8be6e8f3 499 [ C(LL ) ] = {
ad689220
TG
500 [ C(OP_READ) ] = {
501 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
502 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
503 },
504 [ C(OP_WRITE) ] = {
505 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
506 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
507 },
508 [ C(OP_PREFETCH) ] = {
509 [ C(RESULT_ACCESS) ] = 0,
510 [ C(RESULT_MISS) ] = 0,
511 },
512 },
513 [ C(DTLB) ] = {
514 [ C(OP_READ) ] = {
fecc8ac8 515 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
ad689220
TG
516 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
517 },
518 [ C(OP_WRITE) ] = {
fecc8ac8 519 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
ad689220
TG
520 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
521 },
522 [ C(OP_PREFETCH) ] = {
523 [ C(RESULT_ACCESS) ] = 0,
524 [ C(RESULT_MISS) ] = 0,
525 },
526 },
527 [ C(ITLB) ] = {
528 [ C(OP_READ) ] = {
529 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
530 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
531 },
532 [ C(OP_WRITE) ] = {
533 [ C(RESULT_ACCESS) ] = -1,
534 [ C(RESULT_MISS) ] = -1,
535 },
536 [ C(OP_PREFETCH) ] = {
537 [ C(RESULT_ACCESS) ] = -1,
538 [ C(RESULT_MISS) ] = -1,
539 },
540 },
541 [ C(BPU ) ] = {
542 [ C(OP_READ) ] = {
543 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
544 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
545 },
546 [ C(OP_WRITE) ] = {
547 [ C(RESULT_ACCESS) ] = -1,
548 [ C(RESULT_MISS) ] = -1,
549 },
550 [ C(OP_PREFETCH) ] = {
551 [ C(RESULT_ACCESS) ] = -1,
552 [ C(RESULT_MISS) ] = -1,
553 },
554 },
8326f44d
IM
555};
556
dfc65094 557static u64 intel_pmu_raw_event(u64 hw_event)
b0f3f28e 558{
82bae4f8
PZ
559#define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
560#define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
ff99be57
PZ
561#define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
562#define CORE_EVNTSEL_INV_MASK 0x00800000ULL
fe9081cc 563#define CORE_EVNTSEL_REG_MASK 0xFF000000ULL
b0f3f28e 564
128f048f 565#define CORE_EVNTSEL_MASK \
1da53e02
SE
566 (INTEL_ARCH_EVTSEL_MASK | \
567 INTEL_ARCH_UNIT_MASK | \
568 INTEL_ARCH_EDGE_MASK | \
569 INTEL_ARCH_INV_MASK | \
570 INTEL_ARCH_CNT_MASK)
b0f3f28e 571
dfc65094 572 return hw_event & CORE_EVNTSEL_MASK;
b0f3f28e
PZ
573}
574
db48cccc 575static __initconst u64 amd_hw_cache_event_ids
f86748e9
TG
576 [PERF_COUNT_HW_CACHE_MAX]
577 [PERF_COUNT_HW_CACHE_OP_MAX]
578 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
579{
580 [ C(L1D) ] = {
581 [ C(OP_READ) ] = {
f4db43a3
JSR
582 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
583 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
f86748e9
TG
584 },
585 [ C(OP_WRITE) ] = {
d9f2a5ec 586 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
f86748e9
TG
587 [ C(RESULT_MISS) ] = 0,
588 },
589 [ C(OP_PREFETCH) ] = {
f4db43a3
JSR
590 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
591 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
f86748e9
TG
592 },
593 },
594 [ C(L1I ) ] = {
595 [ C(OP_READ) ] = {
596 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
597 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
598 },
599 [ C(OP_WRITE) ] = {
600 [ C(RESULT_ACCESS) ] = -1,
601 [ C(RESULT_MISS) ] = -1,
602 },
603 [ C(OP_PREFETCH) ] = {
f4db43a3 604 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
f86748e9
TG
605 [ C(RESULT_MISS) ] = 0,
606 },
607 },
8be6e8f3 608 [ C(LL ) ] = {
f86748e9 609 [ C(OP_READ) ] = {
f4db43a3
JSR
610 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
611 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
f86748e9
TG
612 },
613 [ C(OP_WRITE) ] = {
f4db43a3 614 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
f86748e9
TG
615 [ C(RESULT_MISS) ] = 0,
616 },
617 [ C(OP_PREFETCH) ] = {
618 [ C(RESULT_ACCESS) ] = 0,
619 [ C(RESULT_MISS) ] = 0,
620 },
621 },
622 [ C(DTLB) ] = {
623 [ C(OP_READ) ] = {
f4db43a3
JSR
624 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
625 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
f86748e9
TG
626 },
627 [ C(OP_WRITE) ] = {
628 [ C(RESULT_ACCESS) ] = 0,
629 [ C(RESULT_MISS) ] = 0,
630 },
631 [ C(OP_PREFETCH) ] = {
632 [ C(RESULT_ACCESS) ] = 0,
633 [ C(RESULT_MISS) ] = 0,
634 },
635 },
636 [ C(ITLB) ] = {
637 [ C(OP_READ) ] = {
638 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
639 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
640 },
641 [ C(OP_WRITE) ] = {
642 [ C(RESULT_ACCESS) ] = -1,
643 [ C(RESULT_MISS) ] = -1,
644 },
645 [ C(OP_PREFETCH) ] = {
646 [ C(RESULT_ACCESS) ] = -1,
647 [ C(RESULT_MISS) ] = -1,
648 },
649 },
650 [ C(BPU ) ] = {
651 [ C(OP_READ) ] = {
652 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
653 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
654 },
655 [ C(OP_WRITE) ] = {
656 [ C(RESULT_ACCESS) ] = -1,
657 [ C(RESULT_MISS) ] = -1,
658 },
659 [ C(OP_PREFETCH) ] = {
660 [ C(RESULT_ACCESS) ] = -1,
661 [ C(RESULT_MISS) ] = -1,
662 },
663 },
664};
665
f87ad35d
JSR
666/*
667 * AMD Performance Monitor K7 and later.
668 */
b0f3f28e 669static const u64 amd_perfmon_event_map[] =
f87ad35d 670{
f4dbfa8f
PZ
671 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
672 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
673 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
674 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
675 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
676 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
f87ad35d
JSR
677};
678
dfc65094 679static u64 amd_pmu_event_map(int hw_event)
f87ad35d 680{
dfc65094 681 return amd_perfmon_event_map[hw_event];
f87ad35d
JSR
682}
683
dfc65094 684static u64 amd_pmu_raw_event(u64 hw_event)
b0f3f28e 685{
82bae4f8
PZ
686#define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
687#define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
ff99be57
PZ
688#define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
689#define K7_EVNTSEL_INV_MASK 0x000800000ULL
cdd6c482 690#define K7_EVNTSEL_REG_MASK 0x0FF000000ULL
b0f3f28e
PZ
691
692#define K7_EVNTSEL_MASK \
693 (K7_EVNTSEL_EVENT_MASK | \
694 K7_EVNTSEL_UNIT_MASK | \
ff99be57
PZ
695 K7_EVNTSEL_EDGE_MASK | \
696 K7_EVNTSEL_INV_MASK | \
cdd6c482 697 K7_EVNTSEL_REG_MASK)
b0f3f28e 698
dfc65094 699 return hw_event & K7_EVNTSEL_MASK;
b0f3f28e
PZ
700}
701
ee06094f 702/*
cdd6c482
IM
703 * Propagate event elapsed time into the generic event.
704 * Can only be executed on the CPU where the event is active.
ee06094f
IM
705 * Returns the delta events processed.
706 */
4b7bfd0d 707static u64
cdd6c482
IM
708x86_perf_event_update(struct perf_event *event,
709 struct hw_perf_event *hwc, int idx)
ee06094f 710{
cdd6c482 711 int shift = 64 - x86_pmu.event_bits;
ec3232bd
PZ
712 u64 prev_raw_count, new_raw_count;
713 s64 delta;
ee06094f 714
30dd568c
MM
715 if (idx == X86_PMC_IDX_FIXED_BTS)
716 return 0;
717
ee06094f 718 /*
cdd6c482 719 * Careful: an NMI might modify the previous event value.
ee06094f
IM
720 *
721 * Our tactic to handle this is to first atomically read and
722 * exchange a new raw count - then add that new-prev delta
cdd6c482 723 * count to the generic event atomically:
ee06094f
IM
724 */
725again:
726 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 727 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
728
729 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
730 new_raw_count) != prev_raw_count)
731 goto again;
732
733 /*
734 * Now we have the new raw value and have updated the prev
735 * timestamp already. We can now calculate the elapsed delta
cdd6c482 736 * (event-)time and add that to the generic event.
ee06094f
IM
737 *
738 * Careful, not all hw sign-extends above the physical width
ec3232bd 739 * of the count.
ee06094f 740 */
ec3232bd
PZ
741 delta = (new_raw_count << shift) - (prev_raw_count << shift);
742 delta >>= shift;
ee06094f 743
cdd6c482 744 atomic64_add(delta, &event->count);
ee06094f 745 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
746
747 return new_raw_count;
ee06094f
IM
748}
749
cdd6c482 750static atomic_t active_events;
4e935e47
PZ
751static DEFINE_MUTEX(pmc_reserve_mutex);
752
753static bool reserve_pmc_hardware(void)
754{
04da8a43 755#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
756 int i;
757
758 if (nmi_watchdog == NMI_LOCAL_APIC)
759 disable_lapic_nmi_watchdog();
760
cdd6c482 761 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 762 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
763 goto perfctr_fail;
764 }
765
cdd6c482 766 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 767 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
768 goto eventsel_fail;
769 }
04da8a43 770#endif
4e935e47
PZ
771
772 return true;
773
04da8a43 774#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
775eventsel_fail:
776 for (i--; i >= 0; i--)
4a06bd85 777 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 778
cdd6c482 779 i = x86_pmu.num_events;
4e935e47
PZ
780
781perfctr_fail:
782 for (i--; i >= 0; i--)
4a06bd85 783 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
784
785 if (nmi_watchdog == NMI_LOCAL_APIC)
786 enable_lapic_nmi_watchdog();
787
788 return false;
04da8a43 789#endif
4e935e47
PZ
790}
791
792static void release_pmc_hardware(void)
793{
04da8a43 794#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
795 int i;
796
cdd6c482 797 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85
RR
798 release_perfctr_nmi(x86_pmu.perfctr + i);
799 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
800 }
801
802 if (nmi_watchdog == NMI_LOCAL_APIC)
803 enable_lapic_nmi_watchdog();
04da8a43 804#endif
4e935e47
PZ
805}
806
30dd568c
MM
807static inline bool bts_available(void)
808{
809 return x86_pmu.enable_bts != NULL;
810}
811
812static inline void init_debug_store_on_cpu(int cpu)
813{
cdd6c482 814 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
815
816 if (!ds)
817 return;
818
819 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
596da17f 820 (u32)((u64)(unsigned long)ds),
821 (u32)((u64)(unsigned long)ds >> 32));
30dd568c
MM
822}
823
824static inline void fini_debug_store_on_cpu(int cpu)
825{
cdd6c482 826 if (!per_cpu(cpu_hw_events, cpu).ds)
30dd568c
MM
827 return;
828
829 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
830}
831
832static void release_bts_hardware(void)
833{
834 int cpu;
835
836 if (!bts_available())
837 return;
838
839 get_online_cpus();
840
841 for_each_online_cpu(cpu)
842 fini_debug_store_on_cpu(cpu);
843
844 for_each_possible_cpu(cpu) {
cdd6c482 845 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
846
847 if (!ds)
848 continue;
849
cdd6c482 850 per_cpu(cpu_hw_events, cpu).ds = NULL;
30dd568c 851
596da17f 852 kfree((void *)(unsigned long)ds->bts_buffer_base);
30dd568c
MM
853 kfree(ds);
854 }
855
856 put_online_cpus();
857}
858
859static int reserve_bts_hardware(void)
860{
861 int cpu, err = 0;
862
863 if (!bts_available())
747b50aa 864 return 0;
30dd568c
MM
865
866 get_online_cpus();
867
868 for_each_possible_cpu(cpu) {
869 struct debug_store *ds;
870 void *buffer;
871
872 err = -ENOMEM;
873 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
874 if (unlikely(!buffer))
875 break;
876
877 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
878 if (unlikely(!ds)) {
879 kfree(buffer);
880 break;
881 }
882
596da17f 883 ds->bts_buffer_base = (u64)(unsigned long)buffer;
30dd568c
MM
884 ds->bts_index = ds->bts_buffer_base;
885 ds->bts_absolute_maximum =
886 ds->bts_buffer_base + BTS_BUFFER_SIZE;
887 ds->bts_interrupt_threshold =
888 ds->bts_absolute_maximum - BTS_OVFL_TH;
889
cdd6c482 890 per_cpu(cpu_hw_events, cpu).ds = ds;
30dd568c
MM
891 err = 0;
892 }
893
894 if (err)
895 release_bts_hardware();
896 else {
897 for_each_online_cpu(cpu)
898 init_debug_store_on_cpu(cpu);
899 }
900
901 put_online_cpus();
902
903 return err;
904}
905
cdd6c482 906static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 907{
cdd6c482 908 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 909 release_pmc_hardware();
30dd568c 910 release_bts_hardware();
4e935e47
PZ
911 mutex_unlock(&pmc_reserve_mutex);
912 }
913}
914
85cf9dba
RR
915static inline int x86_pmu_initialized(void)
916{
917 return x86_pmu.handle_irq != NULL;
918}
919
8326f44d 920static inline int
cdd6c482 921set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
922{
923 unsigned int cache_type, cache_op, cache_result;
924 u64 config, val;
925
926 config = attr->config;
927
928 cache_type = (config >> 0) & 0xff;
929 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
930 return -EINVAL;
931
932 cache_op = (config >> 8) & 0xff;
933 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
934 return -EINVAL;
935
936 cache_result = (config >> 16) & 0xff;
937 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
938 return -EINVAL;
939
940 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
941
942 if (val == 0)
943 return -ENOENT;
944
945 if (val == -1)
946 return -EINVAL;
947
948 hwc->config |= val;
949
950 return 0;
951}
952
30dd568c
MM
953static void intel_pmu_enable_bts(u64 config)
954{
955 unsigned long debugctlmsr;
956
957 debugctlmsr = get_debugctlmsr();
958
959 debugctlmsr |= X86_DEBUGCTL_TR;
960 debugctlmsr |= X86_DEBUGCTL_BTS;
961 debugctlmsr |= X86_DEBUGCTL_BTINT;
962
963 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
964 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;
965
966 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
967 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;
968
969 update_debugctlmsr(debugctlmsr);
970}
971
972static void intel_pmu_disable_bts(void)
973{
cdd6c482 974 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
30dd568c
MM
975 unsigned long debugctlmsr;
976
977 if (!cpuc->ds)
978 return;
979
980 debugctlmsr = get_debugctlmsr();
981
982 debugctlmsr &=
983 ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
984 X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);
985
986 update_debugctlmsr(debugctlmsr);
987}
988
241771ef 989/*
0d48696f 990 * Setup the hardware configuration for a given attr_type
241771ef 991 */
cdd6c482 992static int __hw_perf_event_init(struct perf_event *event)
241771ef 993{
cdd6c482
IM
994 struct perf_event_attr *attr = &event->attr;
995 struct hw_perf_event *hwc = &event->hw;
9c74fb50 996 u64 config;
4e935e47 997 int err;
241771ef 998
85cf9dba
RR
999 if (!x86_pmu_initialized())
1000 return -ENODEV;
241771ef 1001
4e935e47 1002 err = 0;
cdd6c482 1003 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 1004 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1005 if (atomic_read(&active_events) == 0) {
30dd568c
MM
1006 if (!reserve_pmc_hardware())
1007 err = -EBUSY;
1008 else
747b50aa 1009 err = reserve_bts_hardware();
30dd568c
MM
1010 }
1011 if (!err)
cdd6c482 1012 atomic_inc(&active_events);
4e935e47
PZ
1013 mutex_unlock(&pmc_reserve_mutex);
1014 }
1015 if (err)
1016 return err;
1017
cdd6c482 1018 event->destroy = hw_perf_event_destroy;
a1792cda 1019
241771ef 1020 /*
0475f9ea 1021 * Generate PMC IRQs:
241771ef
IM
1022 * (keep 'enabled' bit clear for now)
1023 */
0475f9ea 1024 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
241771ef 1025
b690081d
SE
1026 hwc->idx = -1;
1027
241771ef 1028 /*
0475f9ea 1029 * Count user and OS events unless requested not to.
241771ef 1030 */
0d48696f 1031 if (!attr->exclude_user)
0475f9ea 1032 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
0d48696f 1033 if (!attr->exclude_kernel)
241771ef 1034 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
0475f9ea 1035
bd2b5b12 1036 if (!hwc->sample_period) {
b23f3325 1037 hwc->sample_period = x86_pmu.max_period;
9e350de3 1038 hwc->last_period = hwc->sample_period;
bd2b5b12 1039 atomic64_set(&hwc->period_left, hwc->sample_period);
04da8a43
IM
1040 } else {
1041 /*
1042 * If we have a PMU initialized but no APIC
1043 * interrupts, we cannot sample hardware
cdd6c482
IM
1044 * events (user-space has to fall back and
1045 * sample via a hrtimer based software event):
04da8a43
IM
1046 */
1047 if (!x86_pmu.apic)
1048 return -EOPNOTSUPP;
bd2b5b12 1049 }
d2517a49 1050
241771ef 1051 /*
dfc65094 1052 * Raw hw_event type provide the config in the hw_event structure
241771ef 1053 */
a21ca2ca
IM
1054 if (attr->type == PERF_TYPE_RAW) {
1055 hwc->config |= x86_pmu.raw_event(attr->config);
8326f44d 1056 return 0;
241771ef 1057 }
241771ef 1058
8326f44d
IM
1059 if (attr->type == PERF_TYPE_HW_CACHE)
1060 return set_ext_hw_attr(hwc, attr);
1061
1062 if (attr->config >= x86_pmu.max_events)
1063 return -EINVAL;
9c74fb50 1064
8326f44d
IM
1065 /*
1066 * The generic map:
1067 */
9c74fb50
PZ
1068 config = x86_pmu.event_map(attr->config);
1069
1070 if (config == 0)
1071 return -ENOENT;
1072
1073 if (config == -1LL)
1074 return -EINVAL;
1075
747b50aa 1076 /*
1077 * Branch tracing:
1078 */
1079 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1653192f 1080 (hwc->sample_period == 1)) {
1081 /* BTS is not supported by this architecture. */
1082 if (!bts_available())
1083 return -EOPNOTSUPP;
1084
1085 /* BTS is currently only allowed for user-mode. */
1086 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1087 return -EOPNOTSUPP;
1088 }
747b50aa 1089
9c74fb50 1090 hwc->config |= config;
4e935e47 1091
241771ef
IM
1092 return 0;
1093}
1094
11d1578f
VW
1095static void p6_pmu_disable_all(void)
1096{
cdd6c482 1097 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9c74fb50 1098 u64 val;
11d1578f
VW
1099
1100 if (!cpuc->enabled)
1101 return;
1102
1103 cpuc->enabled = 0;
1104 barrier();
1105
1106 /* p6 only has one enable register */
1107 rdmsrl(MSR_P6_EVNTSEL0, val);
1108 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1109 wrmsrl(MSR_P6_EVNTSEL0, val);
1110}
1111
9e35ad38 1112static void intel_pmu_disable_all(void)
4ac13294 1113{
cdd6c482 1114 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
30dd568c
MM
1115
1116 if (!cpuc->enabled)
1117 return;
1118
1119 cpuc->enabled = 0;
1120 barrier();
1121
862a1a5f 1122 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
30dd568c
MM
1123
1124 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1125 intel_pmu_disable_bts();
241771ef 1126}
b56a3802 1127
9e35ad38 1128static void amd_pmu_disable_all(void)
f87ad35d 1129{
cdd6c482 1130 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
1131 int idx;
1132
1133 if (!cpuc->enabled)
1134 return;
b0f3f28e 1135
b0f3f28e 1136 cpuc->enabled = 0;
60b3df9c
PZ
1137 /*
1138 * ensure we write the disable before we start disabling the
cdd6c482 1139 * events proper, so that amd_pmu_enable_event() does the
5f4ec28f 1140 * right thing.
60b3df9c 1141 */
b0f3f28e 1142 barrier();
f87ad35d 1143
cdd6c482 1144 for (idx = 0; idx < x86_pmu.num_events; idx++) {
b0f3f28e
PZ
1145 u64 val;
1146
43f6201a 1147 if (!test_bit(idx, cpuc->active_mask))
4295ee62 1148 continue;
f87ad35d 1149 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
4295ee62
RR
1150 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
1151 continue;
1152 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1153 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
f87ad35d 1154 }
f87ad35d
JSR
1155}
1156
9e35ad38 1157void hw_perf_disable(void)
b56a3802 1158{
1da53e02
SE
1159 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1160
85cf9dba 1161 if (!x86_pmu_initialized())
9e35ad38 1162 return;
1da53e02
SE
1163
1164 if (cpuc->enabled)
1165 cpuc->n_added = 0;
1166
1167 x86_pmu.disable_all();
b56a3802 1168}
241771ef 1169
11d1578f
VW
1170static void p6_pmu_enable_all(void)
1171{
cdd6c482 1172 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
11d1578f
VW
1173 unsigned long val;
1174
1175 if (cpuc->enabled)
1176 return;
1177
1178 cpuc->enabled = 1;
1179 barrier();
1180
1181 /* p6 only has one enable register */
1182 rdmsrl(MSR_P6_EVNTSEL0, val);
1183 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1184 wrmsrl(MSR_P6_EVNTSEL0, val);
1185}
1186
9e35ad38 1187static void intel_pmu_enable_all(void)
b56a3802 1188{
cdd6c482 1189 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
30dd568c
MM
1190
1191 if (cpuc->enabled)
1192 return;
1193
1194 cpuc->enabled = 1;
1195 barrier();
1196
9e35ad38 1197 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
30dd568c
MM
1198
1199 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
cdd6c482
IM
1200 struct perf_event *event =
1201 cpuc->events[X86_PMC_IDX_FIXED_BTS];
30dd568c 1202
cdd6c482 1203 if (WARN_ON_ONCE(!event))
30dd568c
MM
1204 return;
1205
cdd6c482 1206 intel_pmu_enable_bts(event->hw.config);
30dd568c 1207 }
b56a3802
JSR
1208}
1209
9e35ad38 1210static void amd_pmu_enable_all(void)
f87ad35d 1211{
cdd6c482 1212 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
1213 int idx;
1214
9e35ad38 1215 if (cpuc->enabled)
b0f3f28e
PZ
1216 return;
1217
9e35ad38
PZ
1218 cpuc->enabled = 1;
1219 barrier();
1220
cdd6c482
IM
1221 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1222 struct perf_event *event = cpuc->events[idx];
4295ee62 1223 u64 val;
b0f3f28e 1224
43f6201a 1225 if (!test_bit(idx, cpuc->active_mask))
4295ee62 1226 continue;
984b838c 1227
cdd6c482 1228 val = event->hw.config;
4295ee62
RR
1229 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1230 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
f87ad35d
JSR
1231 }
1232}
1233
1da53e02
SE
1234static const struct pmu pmu;
1235
1236static inline int is_x86_event(struct perf_event *event)
1237{
1238 return event->pmu == &pmu;
1239}
1240
1241static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1242{
63b14649 1243 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 1244 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 1245 int i, j, w, wmax, num = 0;
1da53e02
SE
1246 struct hw_perf_event *hwc;
1247
1248 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1249
1250 for (i = 0; i < n; i++) {
63b14649
PZ
1251 constraints[i] =
1252 x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
1da53e02
SE
1253 }
1254
8113070d
SE
1255 /*
1256 * fastpath, try to reuse previous register
1257 */
c933c1a6 1258 for (i = 0; i < n; i++) {
8113070d 1259 hwc = &cpuc->event_list[i]->hw;
81269a08 1260 c = constraints[i];
8113070d
SE
1261
1262 /* never assigned */
1263 if (hwc->idx == -1)
1264 break;
1265
1266 /* constraint still honored */
63b14649 1267 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
1268 break;
1269
1270 /* not already used */
1271 if (test_bit(hwc->idx, used_mask))
1272 break;
1273
8113070d
SE
1274 set_bit(hwc->idx, used_mask);
1275 if (assign)
1276 assign[i] = hwc->idx;
1277 }
c933c1a6 1278 if (i == n)
8113070d
SE
1279 goto done;
1280
1281 /*
1282 * begin slow path
1283 */
1284
1285 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1286
1da53e02
SE
1287 /*
1288 * weight = number of possible counters
1289 *
1290 * 1 = most constrained, only works on one counter
1291 * wmax = least constrained, works on any counter
1292 *
1293 * assign events to counters starting with most
1294 * constrained events.
1295 */
1296 wmax = x86_pmu.num_events;
1297
1298 /*
1299 * when fixed event counters are present,
1300 * wmax is incremented by 1 to account
1301 * for one more choice
1302 */
1303 if (x86_pmu.num_events_fixed)
1304 wmax++;
1305
8113070d 1306 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 1307 /* for each event */
8113070d 1308 for (i = 0; num && i < n; i++) {
81269a08 1309 c = constraints[i];
1da53e02
SE
1310 hwc = &cpuc->event_list[i]->hw;
1311
272d30be 1312 if (c->weight != w)
1da53e02
SE
1313 continue;
1314
63b14649 1315 for_each_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
1316 if (!test_bit(j, used_mask))
1317 break;
1318 }
1319
1320 if (j == X86_PMC_IDX_MAX)
1321 break;
1da53e02 1322
8113070d
SE
1323 set_bit(j, used_mask);
1324
1da53e02
SE
1325 if (assign)
1326 assign[i] = j;
1327 num--;
1328 }
1329 }
8113070d 1330done:
1da53e02
SE
1331 /*
1332 * scheduling failed or is just a simulation,
1333 * free resources if necessary
1334 */
1335 if (!assign || num) {
1336 for (i = 0; i < n; i++) {
1337 if (x86_pmu.put_event_constraints)
1338 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
1339 }
1340 }
1341 return num ? -ENOSPC : 0;
1342}
1343
1344/*
1345 * dogrp: true if must collect siblings events (group)
1346 * returns total number of events and error code
1347 */
1348static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1349{
1350 struct perf_event *event;
1351 int n, max_count;
1352
1353 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
1354
1355 /* current number of events already accepted */
1356 n = cpuc->n_events;
1357
1358 if (is_x86_event(leader)) {
1359 if (n >= max_count)
1360 return -ENOSPC;
1361 cpuc->event_list[n] = leader;
1362 n++;
1363 }
1364 if (!dogrp)
1365 return n;
1366
1367 list_for_each_entry(event, &leader->sibling_list, group_entry) {
1368 if (!is_x86_event(event) ||
8113070d 1369 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
1370 continue;
1371
1372 if (n >= max_count)
1373 return -ENOSPC;
1374
1375 cpuc->event_list[n] = event;
1376 n++;
1377 }
1378 return n;
1379}
1380
1381
1382static inline void x86_assign_hw_event(struct perf_event *event,
1383 struct hw_perf_event *hwc, int idx)
1384{
1385 hwc->idx = idx;
1386
1387 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
1388 hwc->config_base = 0;
1389 hwc->event_base = 0;
1390 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
1391 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1392 /*
1393 * We set it so that event_base + idx in wrmsr/rdmsr maps to
1394 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1395 */
1396 hwc->event_base =
1397 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1398 } else {
1399 hwc->config_base = x86_pmu.eventsel;
1400 hwc->event_base = x86_pmu.perfctr;
1401 }
1402}
1403
2e841873
PZ
1404static void __x86_pmu_disable(struct perf_event *event, struct cpu_hw_events *cpuc);
1405
9e35ad38 1406void hw_perf_enable(void)
ee06094f 1407{
1da53e02
SE
1408 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1409 struct perf_event *event;
1410 struct hw_perf_event *hwc;
1411 int i;
1412
85cf9dba 1413 if (!x86_pmu_initialized())
2b9ff0db 1414 return;
1da53e02
SE
1415 if (cpuc->n_added) {
1416 /*
1417 * apply assignment obtained either from
1418 * hw_perf_group_sched_in() or x86_pmu_enable()
1419 *
1420 * step1: save events moving to new counters
1421 * step2: reprogram moved events into new counters
1422 */
1423 for (i = 0; i < cpuc->n_events; i++) {
1424
1425 event = cpuc->event_list[i];
1426 hwc = &event->hw;
1427
1428 if (hwc->idx == -1 || hwc->idx == cpuc->assign[i])
1429 continue;
1430
2e841873 1431 __x86_pmu_disable(event, cpuc);
1da53e02
SE
1432
1433 hwc->idx = -1;
1434 }
1435
1436 for (i = 0; i < cpuc->n_events; i++) {
1437
1438 event = cpuc->event_list[i];
1439 hwc = &event->hw;
1440
1441 if (hwc->idx == -1) {
1442 x86_assign_hw_event(event, hwc, cpuc->assign[i]);
1443 x86_perf_event_set_period(event, hwc, hwc->idx);
1444 }
1445 /*
1446 * need to mark as active because x86_pmu_disable()
1447 * clear active_mask and eventsp[] yet it preserves
1448 * idx
1449 */
1450 set_bit(hwc->idx, cpuc->active_mask);
1451 cpuc->events[hwc->idx] = event;
1452
1453 x86_pmu.enable(hwc, hwc->idx);
1454 perf_event_update_userpage(event);
1455 }
1456 cpuc->n_added = 0;
1457 perf_events_lapic_init();
1458 }
9e35ad38 1459 x86_pmu.enable_all();
ee06094f 1460}
ee06094f 1461
19d84dab 1462static inline u64 intel_pmu_get_status(void)
b0f3f28e
PZ
1463{
1464 u64 status;
1465
b7f8859a 1466 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
b0f3f28e 1467
b7f8859a 1468 return status;
b0f3f28e
PZ
1469}
1470
dee5d906 1471static inline void intel_pmu_ack_status(u64 ack)
b0f3f28e
PZ
1472{
1473 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1474}
1475
cdd6c482 1476static inline void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
b0f3f28e 1477{
11d1578f 1478 (void)checking_wrmsrl(hwc->config_base + idx,
7c90cc45 1479 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
b0f3f28e
PZ
1480}
1481
cdd6c482 1482static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
b0f3f28e 1483{
11d1578f 1484 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
b0f3f28e
PZ
1485}
1486
2f18d1e8 1487static inline void
cdd6c482 1488intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx)
2f18d1e8
IM
1489{
1490 int idx = __idx - X86_PMC_IDX_FIXED;
1491 u64 ctrl_val, mask;
2f18d1e8
IM
1492
1493 mask = 0xfULL << (idx * 4);
1494
1495 rdmsrl(hwc->config_base, ctrl_val);
1496 ctrl_val &= ~mask;
11d1578f
VW
1497 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
1498}
1499
1500static inline void
cdd6c482 1501p6_pmu_disable_event(struct hw_perf_event *hwc, int idx)
11d1578f 1502{
cdd6c482
IM
1503 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1504 u64 val = P6_NOP_EVENT;
11d1578f 1505
9c74fb50
PZ
1506 if (cpuc->enabled)
1507 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
11d1578f
VW
1508
1509 (void)checking_wrmsrl(hwc->config_base + idx, val);
2f18d1e8
IM
1510}
1511
7e2ae347 1512static inline void
cdd6c482 1513intel_pmu_disable_event(struct hw_perf_event *hwc, int idx)
7e2ae347 1514{
30dd568c
MM
1515 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1516 intel_pmu_disable_bts();
1517 return;
1518 }
1519
d4369891
RR
1520 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1521 intel_pmu_disable_fixed(hwc, idx);
1522 return;
1523 }
1524
cdd6c482 1525 x86_pmu_disable_event(hwc, idx);
d4369891
RR
1526}
1527
1528static inline void
cdd6c482 1529amd_pmu_disable_event(struct hw_perf_event *hwc, int idx)
d4369891 1530{
cdd6c482 1531 x86_pmu_disable_event(hwc, idx);
7e2ae347
IM
1532}
1533
245b2e70 1534static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1535
ee06094f
IM
1536/*
1537 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1538 * To be called with the event disabled in hw:
ee06094f 1539 */
e4abb5d4 1540static int
cdd6c482
IM
1541x86_perf_event_set_period(struct perf_event *event,
1542 struct hw_perf_event *hwc, int idx)
241771ef 1543{
2f18d1e8 1544 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4
PZ
1545 s64 period = hwc->sample_period;
1546 int err, ret = 0;
ee06094f 1547
30dd568c
MM
1548 if (idx == X86_PMC_IDX_FIXED_BTS)
1549 return 0;
1550
ee06094f 1551 /*
af901ca1 1552 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1553 */
1554 if (unlikely(left <= -period)) {
1555 left = period;
1556 atomic64_set(&hwc->period_left, left);
9e350de3 1557 hwc->last_period = period;
e4abb5d4 1558 ret = 1;
ee06094f
IM
1559 }
1560
1561 if (unlikely(left <= 0)) {
1562 left += period;
1563 atomic64_set(&hwc->period_left, left);
9e350de3 1564 hwc->last_period = period;
e4abb5d4 1565 ret = 1;
ee06094f 1566 }
1c80f4b5 1567 /*
dfc65094 1568 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1569 */
1570 if (unlikely(left < 2))
1571 left = 2;
241771ef 1572
e4abb5d4
PZ
1573 if (left > x86_pmu.max_period)
1574 left = x86_pmu.max_period;
1575
245b2e70 1576 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1577
1578 /*
cdd6c482 1579 * The hw event starts counting from this event offset,
ee06094f
IM
1580 * mark it to be able to extra future deltas:
1581 */
2f18d1e8 1582 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 1583
cdd6c482
IM
1584 err = checking_wrmsrl(hwc->event_base + idx,
1585 (u64)(-left) & x86_pmu.event_mask);
e4abb5d4 1586
cdd6c482 1587 perf_event_update_userpage(event);
194002b2 1588
e4abb5d4 1589 return ret;
2f18d1e8
IM
1590}
1591
1592static inline void
cdd6c482 1593intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx)
2f18d1e8
IM
1594{
1595 int idx = __idx - X86_PMC_IDX_FIXED;
1596 u64 ctrl_val, bits, mask;
1597 int err;
1598
1599 /*
0475f9ea
PM
1600 * Enable IRQ generation (0x8),
1601 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1602 * if requested:
2f18d1e8 1603 */
0475f9ea
PM
1604 bits = 0x8ULL;
1605 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1606 bits |= 0x2;
2f18d1e8
IM
1607 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1608 bits |= 0x1;
1609 bits <<= (idx * 4);
1610 mask = 0xfULL << (idx * 4);
1611
1612 rdmsrl(hwc->config_base, ctrl_val);
1613 ctrl_val &= ~mask;
1614 ctrl_val |= bits;
1615 err = checking_wrmsrl(hwc->config_base, ctrl_val);
7e2ae347
IM
1616}
1617
cdd6c482 1618static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx)
11d1578f 1619{
cdd6c482 1620 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
984b838c 1621 u64 val;
11d1578f 1622
984b838c 1623 val = hwc->config;
11d1578f 1624 if (cpuc->enabled)
984b838c
PZ
1625 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1626
1627 (void)checking_wrmsrl(hwc->config_base + idx, val);
11d1578f
VW
1628}
1629
1630
cdd6c482 1631static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx)
7e2ae347 1632{
30dd568c 1633 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
cdd6c482 1634 if (!__get_cpu_var(cpu_hw_events).enabled)
30dd568c
MM
1635 return;
1636
1637 intel_pmu_enable_bts(hwc->config);
1638 return;
1639 }
1640
7c90cc45
RR
1641 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1642 intel_pmu_enable_fixed(hwc, idx);
1643 return;
1644 }
1645
cdd6c482 1646 x86_pmu_enable_event(hwc, idx);
7c90cc45
RR
1647}
1648
cdd6c482 1649static void amd_pmu_enable_event(struct hw_perf_event *hwc, int idx)
7c90cc45 1650{
cdd6c482 1651 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45
RR
1652
1653 if (cpuc->enabled)
cdd6c482 1654 x86_pmu_enable_event(hwc, idx);
241771ef
IM
1655}
1656
b690081d 1657/*
1da53e02
SE
1658 * activate a single event
1659 *
1660 * The event is added to the group of enabled events
1661 * but only if it can be scehduled with existing events.
1662 *
1663 * Called with PMU disabled. If successful and return value 1,
1664 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
1665 */
1666static int x86_pmu_enable(struct perf_event *event)
1667{
1668 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1669 struct hw_perf_event *hwc;
1670 int assign[X86_PMC_IDX_MAX];
1671 int n, n0, ret;
fe9081cc 1672
1da53e02 1673 hwc = &event->hw;
fe9081cc 1674
1da53e02
SE
1675 n0 = cpuc->n_events;
1676 n = collect_events(cpuc, event, false);
1677 if (n < 0)
1678 return n;
53b441a5 1679
1da53e02
SE
1680 ret = x86_schedule_events(cpuc, n, assign);
1681 if (ret)
1682 return ret;
1683 /*
1684 * copy new assignment, now we know it is possible
1685 * will be used by hw_perf_enable()
1686 */
1687 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1688
1da53e02
SE
1689 cpuc->n_events = n;
1690 cpuc->n_added = n - n0;
95cdd2e7 1691
1da53e02
SE
1692 if (hwc->idx != -1)
1693 x86_perf_event_set_period(event, hwc, hwc->idx);
194002b2 1694
95cdd2e7 1695 return 0;
241771ef
IM
1696}
1697
cdd6c482 1698static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 1699{
cdd6c482
IM
1700 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1701 struct hw_perf_event *hwc = &event->hw;
a78ac325
PZ
1702
1703 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cdd6c482 1704 cpuc->events[hwc->idx] != event))
a78ac325
PZ
1705 return;
1706
1707 x86_pmu.enable(hwc, hwc->idx);
1708}
1709
cdd6c482 1710void perf_event_print_debug(void)
241771ef 1711{
2f18d1e8 1712 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
cdd6c482 1713 struct cpu_hw_events *cpuc;
5bb9efe3 1714 unsigned long flags;
1e125676
IM
1715 int cpu, idx;
1716
cdd6c482 1717 if (!x86_pmu.num_events)
1e125676 1718 return;
241771ef 1719
5bb9efe3 1720 local_irq_save(flags);
241771ef
IM
1721
1722 cpu = smp_processor_id();
cdd6c482 1723 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1724
faa28ae0 1725 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1726 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1727 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1728 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1729 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1730
1731 pr_info("\n");
1732 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1733 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1734 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1735 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
f87ad35d 1736 }
1da53e02 1737 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1738
cdd6c482 1739 for (idx = 0; idx < x86_pmu.num_events; idx++) {
4a06bd85
RR
1740 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1741 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1742
245b2e70 1743 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1744
a1ef58f4 1745 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1746 cpu, idx, pmc_ctrl);
a1ef58f4 1747 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1748 cpu, idx, pmc_count);
a1ef58f4 1749 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1750 cpu, idx, prev_left);
241771ef 1751 }
cdd6c482 1752 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2f18d1e8
IM
1753 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1754
a1ef58f4 1755 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1756 cpu, idx, pmc_count);
1757 }
5bb9efe3 1758 local_irq_restore(flags);
241771ef
IM
1759}
1760
cdd6c482 1761static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc)
30dd568c
MM
1762{
1763 struct debug_store *ds = cpuc->ds;
1764 struct bts_record {
1765 u64 from;
1766 u64 to;
1767 u64 flags;
1768 };
cdd6c482 1769 struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS];
596da17f 1770 struct bts_record *at, *top;
5622f295
MM
1771 struct perf_output_handle handle;
1772 struct perf_event_header header;
1773 struct perf_sample_data data;
1774 struct pt_regs regs;
30dd568c 1775
cdd6c482 1776 if (!event)
30dd568c
MM
1777 return;
1778
1779 if (!ds)
1780 return;
1781
596da17f 1782 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
1783 top = (struct bts_record *)(unsigned long)ds->bts_index;
30dd568c 1784
5622f295
MM
1785 if (top <= at)
1786 return;
1787
596da17f 1788 ds->bts_index = ds->bts_buffer_base;
1789
5622f295 1790
cdd6c482 1791 data.period = event->hw.last_period;
5622f295 1792 data.addr = 0;
5e855db5 1793 data.raw = NULL;
5622f295
MM
1794 regs.ip = 0;
1795
1796 /*
1797 * Prepare a generic sample, i.e. fill in the invariant fields.
1798 * We will overwrite the from and to address before we output
1799 * the sample.
1800 */
cdd6c482 1801 perf_prepare_sample(&header, &data, event, &regs);
5622f295 1802
cdd6c482 1803 if (perf_output_begin(&handle, event,
5622f295
MM
1804 header.size * (top - at), 1, 1))
1805 return;
1806
596da17f 1807 for (; at < top; at++) {
5622f295
MM
1808 data.ip = at->from;
1809 data.addr = at->to;
30dd568c 1810
cdd6c482 1811 perf_output_sample(&handle, &header, &data, event);
30dd568c
MM
1812 }
1813
5622f295 1814 perf_output_end(&handle);
30dd568c
MM
1815
1816 /* There's new data available. */
cdd6c482
IM
1817 event->hw.interrupts++;
1818 event->pending_kill = POLL_IN;
30dd568c
MM
1819}
1820
2e841873 1821static void __x86_pmu_disable(struct perf_event *event, struct cpu_hw_events *cpuc)
241771ef 1822{
cdd6c482 1823 struct hw_perf_event *hwc = &event->hw;
2e841873 1824 int idx = hwc->idx;
241771ef 1825
09534238
RR
1826 /*
1827 * Must be done before we disable, otherwise the nmi handler
1828 * could reenable again:
1829 */
43f6201a 1830 clear_bit(idx, cpuc->active_mask);
d4369891 1831 x86_pmu.disable(hwc, idx);
241771ef 1832
ee06094f 1833 /*
cdd6c482 1834 * Drain the remaining delta count out of a event
ee06094f
IM
1835 * that we are disabling:
1836 */
cdd6c482 1837 x86_perf_event_update(event, hwc, idx);
30dd568c
MM
1838
1839 /* Drain the remaining BTS records. */
5622f295
MM
1840 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS))
1841 intel_pmu_drain_bts_buffer(cpuc);
30dd568c 1842
cdd6c482 1843 cpuc->events[idx] = NULL;
2e841873
PZ
1844}
1845
1846static void x86_pmu_disable(struct perf_event *event)
1847{
1848 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1849 int i;
1850
1851 __x86_pmu_disable(event, cpuc);
194002b2 1852
1da53e02
SE
1853 for (i = 0; i < cpuc->n_events; i++) {
1854 if (event == cpuc->event_list[i]) {
1855
1856 if (x86_pmu.put_event_constraints)
1857 x86_pmu.put_event_constraints(cpuc, event);
1858
1859 while (++i < cpuc->n_events)
1860 cpuc->event_list[i-1] = cpuc->event_list[i];
1861
1862 --cpuc->n_events;
6c9687ab 1863 break;
1da53e02
SE
1864 }
1865 }
cdd6c482 1866 perf_event_update_userpage(event);
241771ef
IM
1867}
1868
7e2ae347 1869/*
cdd6c482
IM
1870 * Save and restart an expired event. Called by NMI contexts,
1871 * so it has to be careful about preempting normal event ops:
7e2ae347 1872 */
cdd6c482 1873static int intel_pmu_save_and_restart(struct perf_event *event)
241771ef 1874{
cdd6c482 1875 struct hw_perf_event *hwc = &event->hw;
241771ef 1876 int idx = hwc->idx;
e4abb5d4 1877 int ret;
241771ef 1878
cdd6c482
IM
1879 x86_perf_event_update(event, hwc, idx);
1880 ret = x86_perf_event_set_period(event, hwc, idx);
7e2ae347 1881
cdd6c482
IM
1882 if (event->state == PERF_EVENT_STATE_ACTIVE)
1883 intel_pmu_enable_event(hwc, idx);
e4abb5d4
PZ
1884
1885 return ret;
241771ef
IM
1886}
1887
aaba9801
IM
1888static void intel_pmu_reset(void)
1889{
cdd6c482 1890 struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds;
aaba9801
IM
1891 unsigned long flags;
1892 int idx;
1893
cdd6c482 1894 if (!x86_pmu.num_events)
aaba9801
IM
1895 return;
1896
1897 local_irq_save(flags);
1898
1899 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1900
cdd6c482 1901 for (idx = 0; idx < x86_pmu.num_events; idx++) {
aaba9801
IM
1902 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1903 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1904 }
cdd6c482 1905 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
aaba9801
IM
1906 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1907 }
30dd568c
MM
1908 if (ds)
1909 ds->bts_index = ds->bts_buffer_base;
aaba9801
IM
1910
1911 local_irq_restore(flags);
1912}
1913
11d1578f
VW
1914static int p6_pmu_handle_irq(struct pt_regs *regs)
1915{
1916 struct perf_sample_data data;
cdd6c482
IM
1917 struct cpu_hw_events *cpuc;
1918 struct perf_event *event;
1919 struct hw_perf_event *hwc;
11d1578f
VW
1920 int idx, handled = 0;
1921 u64 val;
1922
11d1578f 1923 data.addr = 0;
5e855db5 1924 data.raw = NULL;
11d1578f 1925
cdd6c482 1926 cpuc = &__get_cpu_var(cpu_hw_events);
11d1578f 1927
cdd6c482 1928 for (idx = 0; idx < x86_pmu.num_events; idx++) {
11d1578f
VW
1929 if (!test_bit(idx, cpuc->active_mask))
1930 continue;
1931
cdd6c482
IM
1932 event = cpuc->events[idx];
1933 hwc = &event->hw;
11d1578f 1934
cdd6c482
IM
1935 val = x86_perf_event_update(event, hwc, idx);
1936 if (val & (1ULL << (x86_pmu.event_bits - 1)))
11d1578f
VW
1937 continue;
1938
1939 /*
cdd6c482 1940 * event overflow
11d1578f
VW
1941 */
1942 handled = 1;
cdd6c482 1943 data.period = event->hw.last_period;
11d1578f 1944
cdd6c482 1945 if (!x86_perf_event_set_period(event, hwc, idx))
11d1578f
VW
1946 continue;
1947
cdd6c482
IM
1948 if (perf_event_overflow(event, 1, &data, regs))
1949 p6_pmu_disable_event(hwc, idx);
11d1578f
VW
1950 }
1951
1952 if (handled)
1953 inc_irq_stat(apic_perf_irqs);
1954
1955 return handled;
1956}
aaba9801 1957
241771ef
IM
1958/*
1959 * This handler is triggered by the local APIC, so the APIC IRQ handling
1960 * rules apply:
1961 */
a3288106 1962static int intel_pmu_handle_irq(struct pt_regs *regs)
241771ef 1963{
df1a132b 1964 struct perf_sample_data data;
cdd6c482 1965 struct cpu_hw_events *cpuc;
11d1578f 1966 int bit, loops;
4b39fd96 1967 u64 ack, status;
9029a5e3 1968
df1a132b 1969 data.addr = 0;
5e855db5 1970 data.raw = NULL;
df1a132b 1971
cdd6c482 1972 cpuc = &__get_cpu_var(cpu_hw_events);
241771ef 1973
9e35ad38 1974 perf_disable();
5622f295 1975 intel_pmu_drain_bts_buffer(cpuc);
19d84dab 1976 status = intel_pmu_get_status();
9e35ad38
PZ
1977 if (!status) {
1978 perf_enable();
1979 return 0;
1980 }
87b9cf46 1981
9029a5e3 1982 loops = 0;
241771ef 1983again:
9029a5e3 1984 if (++loops > 100) {
cdd6c482
IM
1985 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1986 perf_event_print_debug();
aaba9801
IM
1987 intel_pmu_reset();
1988 perf_enable();
9029a5e3
IM
1989 return 1;
1990 }
1991
d278c484 1992 inc_irq_stat(apic_perf_irqs);
241771ef 1993 ack = status;
2f18d1e8 1994 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
cdd6c482 1995 struct perf_event *event = cpuc->events[bit];
241771ef
IM
1996
1997 clear_bit(bit, (unsigned long *) &status);
43f6201a 1998 if (!test_bit(bit, cpuc->active_mask))
241771ef
IM
1999 continue;
2000
cdd6c482 2001 if (!intel_pmu_save_and_restart(event))
e4abb5d4
PZ
2002 continue;
2003
cdd6c482 2004 data.period = event->hw.last_period;
60f916de 2005
cdd6c482
IM
2006 if (perf_event_overflow(event, 1, &data, regs))
2007 intel_pmu_disable_event(&event->hw, bit);
241771ef
IM
2008 }
2009
dee5d906 2010 intel_pmu_ack_status(ack);
241771ef
IM
2011
2012 /*
2013 * Repeat if there is more work to be done:
2014 */
19d84dab 2015 status = intel_pmu_get_status();
241771ef
IM
2016 if (status)
2017 goto again;
b0f3f28e 2018
48e22d56 2019 perf_enable();
9e35ad38
PZ
2020
2021 return 1;
1b023a96
MG
2022}
2023
a3288106 2024static int amd_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 2025{
df1a132b 2026 struct perf_sample_data data;
cdd6c482
IM
2027 struct cpu_hw_events *cpuc;
2028 struct perf_event *event;
2029 struct hw_perf_event *hwc;
11d1578f 2030 int idx, handled = 0;
9029a5e3
IM
2031 u64 val;
2032
df1a132b 2033 data.addr = 0;
5e855db5 2034 data.raw = NULL;
df1a132b 2035
cdd6c482 2036 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 2037
cdd6c482 2038 for (idx = 0; idx < x86_pmu.num_events; idx++) {
43f6201a 2039 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 2040 continue;
962bf7a6 2041
cdd6c482
IM
2042 event = cpuc->events[idx];
2043 hwc = &event->hw;
a4016a79 2044
cdd6c482
IM
2045 val = x86_perf_event_update(event, hwc, idx);
2046 if (val & (1ULL << (x86_pmu.event_bits - 1)))
48e22d56 2047 continue;
962bf7a6 2048
9e350de3 2049 /*
cdd6c482 2050 * event overflow
9e350de3
PZ
2051 */
2052 handled = 1;
cdd6c482 2053 data.period = event->hw.last_period;
9e350de3 2054
cdd6c482 2055 if (!x86_perf_event_set_period(event, hwc, idx))
e4abb5d4
PZ
2056 continue;
2057
cdd6c482
IM
2058 if (perf_event_overflow(event, 1, &data, regs))
2059 amd_pmu_disable_event(hwc, idx);
a29aa8a7 2060 }
962bf7a6 2061
9e350de3
PZ
2062 if (handled)
2063 inc_irq_stat(apic_perf_irqs);
2064
a29aa8a7
RR
2065 return handled;
2066}
39d81eab 2067
b6276f35
PZ
2068void smp_perf_pending_interrupt(struct pt_regs *regs)
2069{
2070 irq_enter();
2071 ack_APIC_irq();
2072 inc_irq_stat(apic_pending_irqs);
cdd6c482 2073 perf_event_do_pending();
b6276f35
PZ
2074 irq_exit();
2075}
2076
cdd6c482 2077void set_perf_event_pending(void)
b6276f35 2078{
04da8a43 2079#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
2080 if (!x86_pmu.apic || !x86_pmu_initialized())
2081 return;
2082
b6276f35 2083 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 2084#endif
b6276f35
PZ
2085}
2086
cdd6c482 2087void perf_events_lapic_init(void)
241771ef 2088{
04da8a43
IM
2089#ifdef CONFIG_X86_LOCAL_APIC
2090 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 2091 return;
85cf9dba 2092
241771ef 2093 /*
c323d95f 2094 * Always use NMI for PMU
241771ef 2095 */
c323d95f 2096 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 2097#endif
241771ef
IM
2098}
2099
2100static int __kprobes
cdd6c482 2101perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
2102 unsigned long cmd, void *__args)
2103{
2104 struct die_args *args = __args;
2105 struct pt_regs *regs;
b0f3f28e 2106
cdd6c482 2107 if (!atomic_read(&active_events))
63a809a2
PZ
2108 return NOTIFY_DONE;
2109
b0f3f28e
PZ
2110 switch (cmd) {
2111 case DIE_NMI:
2112 case DIE_NMI_IPI:
2113 break;
241771ef 2114
b0f3f28e 2115 default:
241771ef 2116 return NOTIFY_DONE;
b0f3f28e 2117 }
241771ef
IM
2118
2119 regs = args->regs;
2120
04da8a43 2121#ifdef CONFIG_X86_LOCAL_APIC
241771ef 2122 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 2123#endif
a4016a79
PZ
2124 /*
2125 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 2126 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
2127 *
2128 * If the first NMI handles both, the latter will be empty and daze
2129 * the CPU.
2130 */
a3288106 2131 x86_pmu.handle_irq(regs);
241771ef 2132
a4016a79 2133 return NOTIFY_STOP;
241771ef
IM
2134}
2135
63b14649
PZ
2136static struct event_constraint unconstrained;
2137
c91e0f5d
PZ
2138static struct event_constraint bts_constraint =
2139 EVENT_CONSTRAINT(0, 1ULL << X86_PMC_IDX_FIXED_BTS, 0);
1da53e02 2140
63b14649
PZ
2141static struct event_constraint *
2142intel_special_constraints(struct perf_event *event)
1da53e02
SE
2143{
2144 unsigned int hw_event;
2145
2146 hw_event = event->hw.config & INTEL_ARCH_EVENT_MASK;
2147
2148 if (unlikely((hw_event ==
2149 x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
2150 (event->hw.sample_period == 1))) {
2151
63b14649 2152 return &bts_constraint;
1da53e02 2153 }
63b14649 2154 return NULL;
1da53e02
SE
2155}
2156
63b14649
PZ
2157static struct event_constraint *
2158intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 2159{
63b14649 2160 struct event_constraint *c;
1da53e02 2161
63b14649
PZ
2162 c = intel_special_constraints(event);
2163 if (c)
2164 return c;
1da53e02
SE
2165
2166 if (x86_pmu.event_constraints) {
2167 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
2168 if ((event->hw.config & c->cmask) == c->code)
2169 return c;
1da53e02
SE
2170 }
2171 }
63b14649
PZ
2172
2173 return &unconstrained;
1da53e02
SE
2174}
2175
63b14649
PZ
2176static struct event_constraint *
2177amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 2178{
63b14649 2179 return &unconstrained;
1da53e02
SE
2180}
2181
2182static int x86_event_sched_in(struct perf_event *event,
2183 struct perf_cpu_context *cpuctx, int cpu)
2184{
2185 int ret = 0;
2186
2187 event->state = PERF_EVENT_STATE_ACTIVE;
2188 event->oncpu = cpu;
2189 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
2190
2191 if (!is_x86_event(event))
2192 ret = event->pmu->enable(event);
2193
2194 if (!ret && !is_software_event(event))
2195 cpuctx->active_oncpu++;
2196
2197 if (!ret && event->attr.exclusive)
2198 cpuctx->exclusive = 1;
2199
2200 return ret;
2201}
2202
2203static void x86_event_sched_out(struct perf_event *event,
2204 struct perf_cpu_context *cpuctx, int cpu)
2205{
2206 event->state = PERF_EVENT_STATE_INACTIVE;
2207 event->oncpu = -1;
2208
2209 if (!is_x86_event(event))
2210 event->pmu->disable(event);
2211
2212 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
2213
2214 if (!is_software_event(event))
2215 cpuctx->active_oncpu--;
2216
2217 if (event->attr.exclusive || !cpuctx->active_oncpu)
2218 cpuctx->exclusive = 0;
2219}
2220
2221/*
2222 * Called to enable a whole group of events.
2223 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
2224 * Assumes the caller has disabled interrupts and has
2225 * frozen the PMU with hw_perf_save_disable.
2226 *
2227 * called with PMU disabled. If successful and return value 1,
2228 * then guaranteed to call perf_enable() and hw_perf_enable()
2229 */
2230int hw_perf_group_sched_in(struct perf_event *leader,
2231 struct perf_cpu_context *cpuctx,
2232 struct perf_event_context *ctx, int cpu)
2233{
2234 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2235 struct perf_event *sub;
2236 int assign[X86_PMC_IDX_MAX];
2237 int n0, n1, ret;
2238
2239 /* n0 = total number of events */
2240 n0 = collect_events(cpuc, leader, true);
2241 if (n0 < 0)
2242 return n0;
2243
2244 ret = x86_schedule_events(cpuc, n0, assign);
2245 if (ret)
2246 return ret;
2247
2248 ret = x86_event_sched_in(leader, cpuctx, cpu);
2249 if (ret)
2250 return ret;
2251
2252 n1 = 1;
2253 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 2254 if (sub->state > PERF_EVENT_STATE_OFF) {
1da53e02
SE
2255 ret = x86_event_sched_in(sub, cpuctx, cpu);
2256 if (ret)
2257 goto undo;
2258 ++n1;
2259 }
2260 }
2261 /*
2262 * copy new assignment, now we know it is possible
2263 * will be used by hw_perf_enable()
2264 */
2265 memcpy(cpuc->assign, assign, n0*sizeof(int));
2266
2267 cpuc->n_events = n0;
2268 cpuc->n_added = n1;
2269 ctx->nr_active += n1;
2270
2271 /*
2272 * 1 means successful and events are active
2273 * This is not quite true because we defer
2274 * actual activation until hw_perf_enable() but
2275 * this way we* ensure caller won't try to enable
2276 * individual events
2277 */
2278 return 1;
2279undo:
2280 x86_event_sched_out(leader, cpuctx, cpu);
2281 n0 = 1;
2282 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2283 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
2284 x86_event_sched_out(sub, cpuctx, cpu);
2285 if (++n0 == n1)
2286 break;
2287 }
2288 }
2289 return ret;
2290}
2291
cdd6c482
IM
2292static __read_mostly struct notifier_block perf_event_nmi_notifier = {
2293 .notifier_call = perf_event_nmi_handler,
5b75af0a
MG
2294 .next = NULL,
2295 .priority = 1
241771ef
IM
2296};
2297
db48cccc 2298static __initconst struct x86_pmu p6_pmu = {
11d1578f
VW
2299 .name = "p6",
2300 .handle_irq = p6_pmu_handle_irq,
2301 .disable_all = p6_pmu_disable_all,
2302 .enable_all = p6_pmu_enable_all,
cdd6c482
IM
2303 .enable = p6_pmu_enable_event,
2304 .disable = p6_pmu_disable_event,
11d1578f
VW
2305 .eventsel = MSR_P6_EVNTSEL0,
2306 .perfctr = MSR_P6_PERFCTR0,
2307 .event_map = p6_pmu_event_map,
2308 .raw_event = p6_pmu_raw_event,
2309 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
04da8a43 2310 .apic = 1,
11d1578f
VW
2311 .max_period = (1ULL << 31) - 1,
2312 .version = 0,
cdd6c482 2313 .num_events = 2,
11d1578f 2314 /*
cdd6c482 2315 * Events have 40 bits implemented. However they are designed such
11d1578f 2316 * that bits [32-39] are sign extensions of bit 31. As such the
cdd6c482 2317 * effective width of a event for P6-like PMU is 32 bits only.
11d1578f
VW
2318 *
2319 * See IA-32 Intel Architecture Software developer manual Vol 3B
2320 */
cdd6c482
IM
2321 .event_bits = 32,
2322 .event_mask = (1ULL << 32) - 1,
1da53e02
SE
2323 .get_event_constraints = intel_get_event_constraints,
2324 .event_constraints = intel_p6_event_constraints
11d1578f
VW
2325};
2326
db48cccc 2327static __initconst struct x86_pmu intel_pmu = {
faa28ae0 2328 .name = "Intel",
39d81eab 2329 .handle_irq = intel_pmu_handle_irq,
9e35ad38
PZ
2330 .disable_all = intel_pmu_disable_all,
2331 .enable_all = intel_pmu_enable_all,
cdd6c482
IM
2332 .enable = intel_pmu_enable_event,
2333 .disable = intel_pmu_disable_event,
b56a3802
JSR
2334 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2335 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5f4ec28f
RR
2336 .event_map = intel_pmu_event_map,
2337 .raw_event = intel_pmu_raw_event,
b56a3802 2338 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
04da8a43 2339 .apic = 1,
c619b8ff
RR
2340 /*
2341 * Intel PMCs cannot be accessed sanely above 32 bit width,
2342 * so we install an artificial 1<<31 period regardless of
cdd6c482 2343 * the generic event period:
c619b8ff
RR
2344 */
2345 .max_period = (1ULL << 31) - 1,
30dd568c
MM
2346 .enable_bts = intel_pmu_enable_bts,
2347 .disable_bts = intel_pmu_disable_bts,
1da53e02 2348 .get_event_constraints = intel_get_event_constraints
b56a3802
JSR
2349};
2350
db48cccc 2351static __initconst struct x86_pmu amd_pmu = {
faa28ae0 2352 .name = "AMD",
39d81eab 2353 .handle_irq = amd_pmu_handle_irq,
9e35ad38
PZ
2354 .disable_all = amd_pmu_disable_all,
2355 .enable_all = amd_pmu_enable_all,
cdd6c482
IM
2356 .enable = amd_pmu_enable_event,
2357 .disable = amd_pmu_disable_event,
f87ad35d
JSR
2358 .eventsel = MSR_K7_EVNTSEL0,
2359 .perfctr = MSR_K7_PERFCTR0,
5f4ec28f
RR
2360 .event_map = amd_pmu_event_map,
2361 .raw_event = amd_pmu_raw_event,
f87ad35d 2362 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
cdd6c482
IM
2363 .num_events = 4,
2364 .event_bits = 48,
2365 .event_mask = (1ULL << 48) - 1,
04da8a43 2366 .apic = 1,
c619b8ff
RR
2367 /* use highest bit to detect overflow */
2368 .max_period = (1ULL << 47) - 1,
1da53e02 2369 .get_event_constraints = amd_get_event_constraints
f87ad35d
JSR
2370};
2371
db48cccc 2372static __init int p6_pmu_init(void)
11d1578f 2373{
11d1578f
VW
2374 switch (boot_cpu_data.x86_model) {
2375 case 1:
2376 case 3: /* Pentium Pro */
2377 case 5:
2378 case 6: /* Pentium II */
2379 case 7:
2380 case 8:
2381 case 11: /* Pentium III */
11d1578f
VW
2382 case 9:
2383 case 13:
f1c6a581
DQ
2384 /* Pentium M */
2385 break;
11d1578f
VW
2386 default:
2387 pr_cont("unsupported p6 CPU model %d ",
2388 boot_cpu_data.x86_model);
2389 return -ENODEV;
2390 }
2391
04da8a43
IM
2392 x86_pmu = p6_pmu;
2393
11d1578f
VW
2394 return 0;
2395}
2396
db48cccc 2397static __init int intel_pmu_init(void)
241771ef 2398{
7bb497bd 2399 union cpuid10_edx edx;
241771ef 2400 union cpuid10_eax eax;
703e937c 2401 unsigned int unused;
7bb497bd 2402 unsigned int ebx;
faa28ae0 2403 int version;
241771ef 2404
11d1578f
VW
2405 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2406 /* check for P6 processor family */
2407 if (boot_cpu_data.x86 == 6) {
2408 return p6_pmu_init();
2409 } else {
72eae04d 2410 return -ENODEV;
11d1578f
VW
2411 }
2412 }
da1a776b 2413
241771ef
IM
2414 /*
2415 * Check whether the Architectural PerfMon supports
dfc65094 2416 * Branch Misses Retired hw_event or not.
241771ef 2417 */
703e937c 2418 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
241771ef 2419 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
72eae04d 2420 return -ENODEV;
241771ef 2421
faa28ae0
RR
2422 version = eax.split.version_id;
2423 if (version < 2)
72eae04d 2424 return -ENODEV;
7bb497bd 2425
1123e3ad
IM
2426 x86_pmu = intel_pmu;
2427 x86_pmu.version = version;
cdd6c482
IM
2428 x86_pmu.num_events = eax.split.num_events;
2429 x86_pmu.event_bits = eax.split.bit_width;
2430 x86_pmu.event_mask = (1ULL << eax.split.bit_width) - 1;
066d7dea
IM
2431
2432 /*
cdd6c482
IM
2433 * Quirk: v2 perfmon does not report fixed-purpose events, so
2434 * assume at least 3 events:
066d7dea 2435 */
cdd6c482 2436 x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3);
b56a3802 2437
8326f44d 2438 /*
1123e3ad 2439 * Install the hw-cache-events table:
8326f44d
IM
2440 */
2441 switch (boot_cpu_data.x86_model) {
dc81081b
YW
2442 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2443 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2444 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2445 case 29: /* six-core 45 nm xeon "Dunnington" */
8326f44d 2446 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
820a6442 2447 sizeof(hw_cache_event_ids));
8326f44d 2448
1da53e02 2449 x86_pmu.event_constraints = intel_core_event_constraints;
1123e3ad 2450 pr_cont("Core2 events, ");
8326f44d 2451 break;
8326f44d
IM
2452 case 26:
2453 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
820a6442 2454 sizeof(hw_cache_event_ids));
8326f44d 2455
1da53e02 2456 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1123e3ad 2457 pr_cont("Nehalem/Corei7 events, ");
8326f44d
IM
2458 break;
2459 case 28:
2460 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
820a6442 2461 sizeof(hw_cache_event_ids));
8326f44d 2462
1da53e02 2463 x86_pmu.event_constraints = intel_gen_event_constraints;
1123e3ad 2464 pr_cont("Atom events, ");
8326f44d 2465 break;
1da53e02
SE
2466 default:
2467 /*
2468 * default constraints for v2 and up
2469 */
2470 x86_pmu.event_constraints = intel_gen_event_constraints;
2471 pr_cont("generic architected perfmon, ");
8326f44d 2472 }
72eae04d 2473 return 0;
b56a3802
JSR
2474}
2475
db48cccc 2476static __init int amd_pmu_init(void)
f87ad35d 2477{
4d2be126
JSR
2478 /* Performance-monitoring supported from K7 and later: */
2479 if (boot_cpu_data.x86 < 6)
2480 return -ENODEV;
2481
4a06bd85 2482 x86_pmu = amd_pmu;
f86748e9 2483
f4db43a3
JSR
2484 /* Events are common for all AMDs */
2485 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
2486 sizeof(hw_cache_event_ids));
f86748e9 2487
72eae04d 2488 return 0;
f87ad35d
JSR
2489}
2490
12558038
CG
2491static void __init pmu_check_apic(void)
2492{
2493 if (cpu_has_apic)
2494 return;
2495
2496 x86_pmu.apic = 0;
2497 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
2498 pr_info("no hardware sampling interrupt available.\n");
2499}
2500
cdd6c482 2501void __init init_hw_perf_events(void)
b56a3802 2502{
72eae04d
RR
2503 int err;
2504
cdd6c482 2505 pr_info("Performance Events: ");
1123e3ad 2506
b56a3802
JSR
2507 switch (boot_cpu_data.x86_vendor) {
2508 case X86_VENDOR_INTEL:
72eae04d 2509 err = intel_pmu_init();
b56a3802 2510 break;
f87ad35d 2511 case X86_VENDOR_AMD:
72eae04d 2512 err = amd_pmu_init();
f87ad35d 2513 break;
4138960a
RR
2514 default:
2515 return;
b56a3802 2516 }
1123e3ad 2517 if (err != 0) {
cdd6c482 2518 pr_cont("no PMU driver, software events only.\n");
b56a3802 2519 return;
1123e3ad 2520 }
b56a3802 2521
12558038
CG
2522 pmu_check_apic();
2523
1123e3ad 2524 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 2525
cdd6c482
IM
2526 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
2527 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2528 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
2529 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
241771ef 2530 }
cdd6c482
IM
2531 perf_event_mask = (1 << x86_pmu.num_events) - 1;
2532 perf_max_events = x86_pmu.num_events;
241771ef 2533
cdd6c482
IM
2534 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
2535 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2536 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
2537 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
703e937c 2538 }
862a1a5f 2539
cdd6c482
IM
2540 perf_event_mask |=
2541 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
2542 x86_pmu.intel_ctrl = perf_event_mask;
241771ef 2543
cdd6c482
IM
2544 perf_events_lapic_init();
2545 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 2546
63b14649
PZ
2547 unconstrained = (struct event_constraint)
2548 EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1, 0);
2549
57c0c15b
IM
2550 pr_info("... version: %d\n", x86_pmu.version);
2551 pr_info("... bit width: %d\n", x86_pmu.event_bits);
2552 pr_info("... generic registers: %d\n", x86_pmu.num_events);
2553 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
2554 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2555 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
2556 pr_info("... event mask: %016Lx\n", perf_event_mask);
241771ef 2557}
621a01ea 2558
cdd6c482 2559static inline void x86_pmu_read(struct perf_event *event)
ee06094f 2560{
cdd6c482 2561 x86_perf_event_update(event, &event->hw, event->hw.idx);
ee06094f
IM
2562}
2563
4aeb0b42
RR
2564static const struct pmu pmu = {
2565 .enable = x86_pmu_enable,
2566 .disable = x86_pmu_disable,
2567 .read = x86_pmu_read,
a78ac325 2568 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
2569};
2570
1da53e02
SE
2571/*
2572 * validate a single event group
2573 *
2574 * validation include:
184f412c
IM
2575 * - check events are compatible which each other
2576 * - events do not compete for the same counter
2577 * - number of events <= number of counters
1da53e02
SE
2578 *
2579 * validation ensures the group can be loaded onto the
2580 * PMU if it was the only group available.
2581 */
fe9081cc
PZ
2582static int validate_group(struct perf_event *event)
2583{
1da53e02 2584 struct perf_event *leader = event->group_leader;
502568d5
PZ
2585 struct cpu_hw_events *fake_cpuc;
2586 int ret, n;
fe9081cc 2587
502568d5
PZ
2588 ret = -ENOMEM;
2589 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
2590 if (!fake_cpuc)
2591 goto out;
fe9081cc 2592
1da53e02
SE
2593 /*
2594 * the event is not yet connected with its
2595 * siblings therefore we must first collect
2596 * existing siblings, then add the new event
2597 * before we can simulate the scheduling
2598 */
502568d5
PZ
2599 ret = -ENOSPC;
2600 n = collect_events(fake_cpuc, leader, true);
1da53e02 2601 if (n < 0)
502568d5 2602 goto out_free;
fe9081cc 2603
502568d5
PZ
2604 fake_cpuc->n_events = n;
2605 n = collect_events(fake_cpuc, event, false);
1da53e02 2606 if (n < 0)
502568d5 2607 goto out_free;
fe9081cc 2608
502568d5 2609 fake_cpuc->n_events = n;
1da53e02 2610
502568d5
PZ
2611 ret = x86_schedule_events(fake_cpuc, n, NULL);
2612
2613out_free:
2614 kfree(fake_cpuc);
2615out:
2616 return ret;
fe9081cc
PZ
2617}
2618
cdd6c482 2619const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 2620{
8113070d 2621 const struct pmu *tmp;
621a01ea
IM
2622 int err;
2623
cdd6c482 2624 err = __hw_perf_event_init(event);
fe9081cc 2625 if (!err) {
8113070d
SE
2626 /*
2627 * we temporarily connect event to its pmu
2628 * such that validate_group() can classify
2629 * it as an x86 event using is_x86_event()
2630 */
2631 tmp = event->pmu;
2632 event->pmu = &pmu;
2633
fe9081cc
PZ
2634 if (event->group_leader != event)
2635 err = validate_group(event);
8113070d
SE
2636
2637 event->pmu = tmp;
fe9081cc 2638 }
a1792cda 2639 if (err) {
cdd6c482
IM
2640 if (event->destroy)
2641 event->destroy(event);
9ea98e19 2642 return ERR_PTR(err);
a1792cda 2643 }
621a01ea 2644
4aeb0b42 2645 return &pmu;
621a01ea 2646}
d7d59fb3
PZ
2647
2648/*
2649 * callchain support
2650 */
2651
2652static inline
f9188e02 2653void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 2654{
f9188e02 2655 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
2656 entry->ip[entry->nr++] = ip;
2657}
2658
245b2e70
TH
2659static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
2660static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
2661
2662
2663static void
2664backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
2665{
2666 /* Ignore warnings */
2667}
2668
2669static void backtrace_warning(void *data, char *msg)
2670{
2671 /* Ignore warnings */
2672}
2673
2674static int backtrace_stack(void *data, char *name)
2675{
038e836e 2676 return 0;
d7d59fb3
PZ
2677}
2678
2679static void backtrace_address(void *data, unsigned long addr, int reliable)
2680{
2681 struct perf_callchain_entry *entry = data;
2682
2683 if (reliable)
2684 callchain_store(entry, addr);
2685}
2686
2687static const struct stacktrace_ops backtrace_ops = {
2688 .warning = backtrace_warning,
2689 .warning_symbol = backtrace_warning_symbol,
2690 .stack = backtrace_stack,
2691 .address = backtrace_address,
06d65bda 2692 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2693};
2694
038e836e
IM
2695#include "../dumpstack.h"
2696
d7d59fb3
PZ
2697static void
2698perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
2699{
f9188e02 2700 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 2701 callchain_store(entry, regs->ip);
d7d59fb3 2702
48b5ba9c 2703 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
2704}
2705
74193ef0
PZ
2706/*
2707 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
2708 */
2709static unsigned long
2710copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
d7d59fb3 2711{
74193ef0
PZ
2712 unsigned long offset, addr = (unsigned long)from;
2713 int type = in_nmi() ? KM_NMI : KM_IRQ0;
2714 unsigned long size, len = 0;
2715 struct page *page;
2716 void *map;
d7d59fb3
PZ
2717 int ret;
2718
74193ef0
PZ
2719 do {
2720 ret = __get_user_pages_fast(addr, 1, 0, &page);
2721 if (!ret)
2722 break;
d7d59fb3 2723
74193ef0
PZ
2724 offset = addr & (PAGE_SIZE - 1);
2725 size = min(PAGE_SIZE - offset, n - len);
d7d59fb3 2726
74193ef0
PZ
2727 map = kmap_atomic(page, type);
2728 memcpy(to, map+offset, size);
2729 kunmap_atomic(map, type);
2730 put_page(page);
2731
2732 len += size;
2733 to += size;
2734 addr += size;
2735
2736 } while (len < n);
2737
2738 return len;
2739}
2740
2741static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
2742{
2743 unsigned long bytes;
2744
2745 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
2746
2747 return bytes == sizeof(*frame);
d7d59fb3
PZ
2748}
2749
2750static void
2751perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
2752{
2753 struct stack_frame frame;
2754 const void __user *fp;
2755
5a6cec3a
IM
2756 if (!user_mode(regs))
2757 regs = task_pt_regs(current);
2758
74193ef0 2759 fp = (void __user *)regs->bp;
d7d59fb3 2760
f9188e02 2761 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
2762 callchain_store(entry, regs->ip);
2763
f9188e02 2764 while (entry->nr < PERF_MAX_STACK_DEPTH) {
038e836e 2765 frame.next_frame = NULL;
d7d59fb3
PZ
2766 frame.return_address = 0;
2767
2768 if (!copy_stack_frame(fp, &frame))
2769 break;
2770
5a6cec3a 2771 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
2772 break;
2773
2774 callchain_store(entry, frame.return_address);
038e836e 2775 fp = frame.next_frame;
d7d59fb3
PZ
2776 }
2777}
2778
2779static void
2780perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
2781{
2782 int is_user;
2783
2784 if (!regs)
2785 return;
2786
2787 is_user = user_mode(regs);
2788
d7d59fb3
PZ
2789 if (is_user && current->state != TASK_RUNNING)
2790 return;
2791
2792 if (!is_user)
2793 perf_callchain_kernel(regs, entry);
2794
2795 if (current->mm)
2796 perf_callchain_user(regs, entry);
2797}
2798
2799struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2800{
2801 struct perf_callchain_entry *entry;
2802
2803 if (in_nmi())
245b2e70 2804 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 2805 else
245b2e70 2806 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
2807
2808 entry->nr = 0;
2809
2810 perf_do_callchain(regs, entry);
2811
2812 return entry;
2813}
30dd568c 2814
cdd6c482 2815void hw_perf_event_setup_online(int cpu)
30dd568c
MM
2816{
2817 init_debug_store_on_cpu(cpu);
2818}