x86/intel_rdt: Ensure requested schemata respects mode
[linux-block.git] / arch / x86 / kernel / cpu / intel_rdt_rdtgroup.c
CommitLineData
5ff193fb
FY
1/*
2 * User interface for Resource Alloction in Resource Director Technology(RDT)
3 *
4 * Copyright (C) 2016 Intel Corporation
5 *
6 * Author: Fenghua Yu <fenghua.yu@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * More information about RDT be found in the Intel (R) x86 Architecture
18 * Software Developer Manual.
19 */
20
21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
12e0110c 23#include <linux/cpu.h>
5ff193fb
FY
24#include <linux/fs.h>
25#include <linux/sysfs.h>
26#include <linux/kernfs.h>
9b3a7fd0 27#include <linux/seq_buf.h>
4e978d06 28#include <linux/seq_file.h>
3f07c014 29#include <linux/sched/signal.h>
29930025 30#include <linux/sched/task.h>
5ff193fb 31#include <linux/slab.h>
e02737d5 32#include <linux/task_work.h>
5ff193fb
FY
33
34#include <uapi/linux/magic.h>
35
05830204
VS
36#include <asm/intel_rdt_sched.h>
37#include "intel_rdt.h"
5ff193fb 38
4af4a88e
VS
39DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
40DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
1b5c0b75 41DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
cb2200e9 42static struct kernfs_root *rdt_root;
5ff193fb
FY
43struct rdtgroup rdtgroup_default;
44LIST_HEAD(rdt_all_groups);
45
4e978d06
FY
46/* Kernel fs node for "info" directory under root */
47static struct kernfs_node *kn_info;
48
4af4a88e
VS
49/* Kernel fs node for "mon_groups" directory under root */
50static struct kernfs_node *kn_mongrp;
51
52/* Kernel fs node for "mon_data" directory under root */
53static struct kernfs_node *kn_mondata;
54
9b3a7fd0
TL
55static struct seq_buf last_cmd_status;
56static char last_cmd_status_buf[512];
57
58void rdt_last_cmd_clear(void)
59{
60 lockdep_assert_held(&rdtgroup_mutex);
61 seq_buf_clear(&last_cmd_status);
62}
63
64void rdt_last_cmd_puts(const char *s)
65{
66 lockdep_assert_held(&rdtgroup_mutex);
67 seq_buf_puts(&last_cmd_status, s);
68}
69
70void rdt_last_cmd_printf(const char *fmt, ...)
71{
72 va_list ap;
73
74 va_start(ap, fmt);
75 lockdep_assert_held(&rdtgroup_mutex);
76 seq_buf_vprintf(&last_cmd_status, fmt, ap);
77 va_end(ap);
78}
79
60cf5e10
FY
80/*
81 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
82 * we can keep a bitmap of free CLOSIDs in a single integer.
83 *
84 * Using a global CLOSID across all resources has some advantages and
85 * some drawbacks:
86 * + We can simply set "current->closid" to assign a task to a resource
87 * group.
88 * + Context switch code can avoid extra memory references deciding which
89 * CLOSID to load into the PQR_ASSOC MSR
90 * - We give up some options in configuring resource groups across multi-socket
91 * systems.
92 * - Our choices on how to configure each resource become progressively more
93 * limited as the number of resources grows.
94 */
95static int closid_free_map;
96
97static void closid_init(void)
98{
99 struct rdt_resource *r;
100 int rdt_min_closid = 32;
101
102 /* Compute rdt_min_closid across all resources */
1b5c0b75 103 for_each_alloc_enabled_rdt_resource(r)
60cf5e10
FY
104 rdt_min_closid = min(rdt_min_closid, r->num_closid);
105
106 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
107
108 /* CLOSID 0 is always reserved for the default group */
109 closid_free_map &= ~1;
110}
111
cb2200e9 112static int closid_alloc(void)
60cf5e10 113{
0734ded1 114 u32 closid = ffs(closid_free_map);
60cf5e10
FY
115
116 if (closid == 0)
117 return -ENOSPC;
118 closid--;
119 closid_free_map &= ~(1 << closid);
120
121 return closid;
122}
123
024d15be 124void closid_free(int closid)
60cf5e10
FY
125{
126 closid_free_map |= 1 << closid;
127}
128
0b9aa656
RC
129/**
130 * closid_allocated - test if provided closid is in use
131 * @closid: closid to be tested
132 *
133 * Return: true if @closid is currently associated with a resource group,
134 * false if @closid is free
135 */
95f0b77e 136static bool closid_allocated(unsigned int closid)
0b9aa656
RC
137{
138 return (closid_free_map & (1 << closid)) == 0;
139}
140
472ef09b
RC
141/**
142 * rdtgroup_mode_by_closid - Return mode of resource group with closid
143 * @closid: closid if the resource group
144 *
145 * Each resource group is associated with a @closid. Here the mode
146 * of a resource group can be queried by searching for it using its closid.
147 *
148 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
149 */
150enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
151{
152 struct rdtgroup *rdtgrp;
153
154 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
155 if (rdtgrp->closid == closid)
156 return rdtgrp->mode;
157 }
158
159 return RDT_NUM_MODES;
160}
161
d48d7a57
RC
162static const char * const rdt_mode_str[] = {
163 [RDT_MODE_SHAREABLE] = "shareable",
414dd2b4 164 [RDT_MODE_EXCLUSIVE] = "exclusive",
d48d7a57
RC
165};
166
167/**
168 * rdtgroup_mode_str - Return the string representation of mode
169 * @mode: the resource group mode as &enum rdtgroup_mode
170 *
171 * Return: string representation of valid mode, "unknown" otherwise
172 */
173static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
174{
175 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
176 return "unknown";
177
178 return rdt_mode_str[mode];
179}
180
4e978d06
FY
181/* set uid and gid of rdtgroup dirs and files to that of the creator */
182static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
183{
184 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
185 .ia_uid = current_fsuid(),
186 .ia_gid = current_fsgid(), };
187
188 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
189 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
190 return 0;
191
192 return kernfs_setattr(kn, &iattr);
193}
194
195static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
196{
197 struct kernfs_node *kn;
198 int ret;
199
200 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
201 0, rft->kf_ops, rft, NULL, NULL);
202 if (IS_ERR(kn))
203 return PTR_ERR(kn);
204
205 ret = rdtgroup_kn_set_ugid(kn);
206 if (ret) {
207 kernfs_remove(kn);
208 return ret;
209 }
210
211 return 0;
212}
213
4e978d06
FY
214static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
215{
216 struct kernfs_open_file *of = m->private;
217 struct rftype *rft = of->kn->priv;
218
219 if (rft->seq_show)
220 return rft->seq_show(of, m, arg);
221 return 0;
222}
223
224static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
225 size_t nbytes, loff_t off)
226{
227 struct rftype *rft = of->kn->priv;
228
229 if (rft->write)
230 return rft->write(of, buf, nbytes, off);
231
232 return -EINVAL;
233}
234
235static struct kernfs_ops rdtgroup_kf_single_ops = {
236 .atomic_write_len = PAGE_SIZE,
237 .write = rdtgroup_file_write,
238 .seq_show = rdtgroup_seqfile_show,
239};
240
d89b7379
VS
241static struct kernfs_ops kf_mondata_ops = {
242 .atomic_write_len = PAGE_SIZE,
243 .seq_show = rdtgroup_mondata_show,
244};
245
4ffa3c97
JO
246static bool is_cpu_list(struct kernfs_open_file *of)
247{
248 struct rftype *rft = of->kn->priv;
249
250 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
251}
252
12e0110c
TL
253static int rdtgroup_cpus_show(struct kernfs_open_file *of,
254 struct seq_file *s, void *v)
255{
256 struct rdtgroup *rdtgrp;
257 int ret = 0;
258
259 rdtgrp = rdtgroup_kn_lock_live(of->kn);
260
4ffa3c97
JO
261 if (rdtgrp) {
262 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
263 cpumask_pr_args(&rdtgrp->cpu_mask));
264 } else {
12e0110c 265 ret = -ENOENT;
4ffa3c97 266 }
12e0110c
TL
267 rdtgroup_kn_unlock(of->kn);
268
269 return ret;
270}
271
f4107702
FY
272/*
273 * This is safe against intel_rdt_sched_in() called from __switch_to()
274 * because __switch_to() is executed with interrupts disabled. A local call
a9fcf862 275 * from update_closid_rmid() is proteced against __switch_to() because
f4107702
FY
276 * preemption is disabled.
277 */
a9fcf862 278static void update_cpu_closid_rmid(void *info)
f4107702 279{
b09d981b
VS
280 struct rdtgroup *r = info;
281
a9fcf862 282 if (r) {
a9110b55
VS
283 this_cpu_write(pqr_state.default_closid, r->closid);
284 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
a9fcf862 285 }
b09d981b 286
f4107702
FY
287 /*
288 * We cannot unconditionally write the MSR because the current
289 * executing task might have its own closid selected. Just reuse
290 * the context switch code.
291 */
292 intel_rdt_sched_in();
293}
294
0efc89be
FY
295/*
296 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
297 *
b09d981b 298 * Per task closids/rmids must have been set up before calling this function.
0efc89be
FY
299 */
300static void
a9fcf862 301update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
f4107702
FY
302{
303 int cpu = get_cpu();
304
305 if (cpumask_test_cpu(cpu, cpu_mask))
a9fcf862
VS
306 update_cpu_closid_rmid(r);
307 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
f4107702
FY
308 put_cpu();
309}
310
a9fcf862
VS
311static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
312 cpumask_var_t tmpmask)
313{
314 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
315 struct list_head *head;
316
317 /* Check whether cpus belong to parent ctrl group */
318 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
94457b36
TL
319 if (cpumask_weight(tmpmask)) {
320 rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
a9fcf862 321 return -EINVAL;
94457b36 322 }
a9fcf862
VS
323
324 /* Check whether cpus are dropped from this group */
325 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
326 if (cpumask_weight(tmpmask)) {
327 /* Give any dropped cpus to parent rdtgroup */
328 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
329 update_closid_rmid(tmpmask, prgrp);
330 }
331
332 /*
333 * If we added cpus, remove them from previous group that owned them
334 * and update per-cpu rmid
335 */
336 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
337 if (cpumask_weight(tmpmask)) {
338 head = &prgrp->mon.crdtgrp_list;
339 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
340 if (crgrp == rdtgrp)
341 continue;
342 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
343 tmpmask);
344 }
345 update_closid_rmid(tmpmask, rdtgrp);
346 }
347
348 /* Done pushing/pulling - update this group with new mask */
349 cpumask_copy(&rdtgrp->cpu_mask, newmask);
350
351 return 0;
352}
353
354static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
355{
356 struct rdtgroup *crgrp;
357
358 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
359 /* update the child mon group masks as well*/
360 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
361 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
362}
363
b09d981b 364static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
a9fcf862 365 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
b09d981b 366{
a9fcf862
VS
367 struct rdtgroup *r, *crgrp;
368 struct list_head *head;
b09d981b
VS
369
370 /* Check whether cpus are dropped from this group */
371 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
372 if (cpumask_weight(tmpmask)) {
373 /* Can't drop from default group */
94457b36
TL
374 if (rdtgrp == &rdtgroup_default) {
375 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
b09d981b 376 return -EINVAL;
94457b36 377 }
b09d981b
VS
378
379 /* Give any dropped cpus to rdtgroup_default */
380 cpumask_or(&rdtgroup_default.cpu_mask,
381 &rdtgroup_default.cpu_mask, tmpmask);
a9fcf862 382 update_closid_rmid(tmpmask, &rdtgroup_default);
b09d981b
VS
383 }
384
385 /*
a9fcf862
VS
386 * If we added cpus, remove them from previous group and
387 * the prev group's child groups that owned them
388 * and update per-cpu closid/rmid.
b09d981b
VS
389 */
390 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
391 if (cpumask_weight(tmpmask)) {
392 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
393 if (r == rdtgrp)
394 continue;
a9fcf862
VS
395 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
396 if (cpumask_weight(tmpmask1))
397 cpumask_rdtgrp_clear(r, tmpmask1);
b09d981b 398 }
a9fcf862 399 update_closid_rmid(tmpmask, rdtgrp);
b09d981b
VS
400 }
401
402 /* Done pushing/pulling - update this group with new mask */
403 cpumask_copy(&rdtgrp->cpu_mask, newmask);
404
a9fcf862
VS
405 /*
406 * Clear child mon group masks since there is a new parent mask
407 * now and update the rmid for the cpus the child lost.
408 */
409 head = &rdtgrp->mon.crdtgrp_list;
410 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
411 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
412 update_closid_rmid(tmpmask, rdtgrp);
413 cpumask_clear(&crgrp->cpu_mask);
414 }
415
b09d981b
VS
416 return 0;
417}
418
12e0110c
TL
419static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
420 char *buf, size_t nbytes, loff_t off)
421{
a9fcf862 422 cpumask_var_t tmpmask, newmask, tmpmask1;
b09d981b 423 struct rdtgroup *rdtgrp;
f4107702 424 int ret;
12e0110c
TL
425
426 if (!buf)
427 return -EINVAL;
428
429 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
430 return -ENOMEM;
431 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
432 free_cpumask_var(tmpmask);
433 return -ENOMEM;
434 }
a9fcf862
VS
435 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
436 free_cpumask_var(tmpmask);
437 free_cpumask_var(newmask);
438 return -ENOMEM;
439 }
a2584e1d 440
12e0110c 441 rdtgrp = rdtgroup_kn_lock_live(of->kn);
94457b36 442 rdt_last_cmd_clear();
12e0110c
TL
443 if (!rdtgrp) {
444 ret = -ENOENT;
94457b36 445 rdt_last_cmd_puts("directory was removed\n");
12e0110c
TL
446 goto unlock;
447 }
448
4ffa3c97
JO
449 if (is_cpu_list(of))
450 ret = cpulist_parse(buf, newmask);
451 else
452 ret = cpumask_parse(buf, newmask);
453
94457b36
TL
454 if (ret) {
455 rdt_last_cmd_puts("bad cpu list/mask\n");
12e0110c 456 goto unlock;
94457b36 457 }
12e0110c 458
12e0110c
TL
459 /* check that user didn't specify any offline cpus */
460 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
461 if (cpumask_weight(tmpmask)) {
462 ret = -EINVAL;
94457b36 463 rdt_last_cmd_puts("can only assign online cpus\n");
a2584e1d 464 goto unlock;
12e0110c
TL
465 }
466
b09d981b 467 if (rdtgrp->type == RDTCTRL_GROUP)
a9fcf862
VS
468 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
469 else if (rdtgrp->type == RDTMON_GROUP)
470 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
b09d981b
VS
471 else
472 ret = -EINVAL;
12e0110c 473
12e0110c
TL
474unlock:
475 rdtgroup_kn_unlock(of->kn);
476 free_cpumask_var(tmpmask);
477 free_cpumask_var(newmask);
a9fcf862 478 free_cpumask_var(tmpmask1);
12e0110c
TL
479
480 return ret ?: nbytes;
481}
482
e02737d5
FY
483struct task_move_callback {
484 struct callback_head work;
485 struct rdtgroup *rdtgrp;
486};
487
488static void move_myself(struct callback_head *head)
489{
490 struct task_move_callback *callback;
491 struct rdtgroup *rdtgrp;
492
493 callback = container_of(head, struct task_move_callback, work);
494 rdtgrp = callback->rdtgrp;
495
496 /*
497 * If resource group was deleted before this task work callback
498 * was invoked, then assign the task to root group and free the
499 * resource group.
500 */
501 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
502 (rdtgrp->flags & RDT_DELETED)) {
503 current->closid = 0;
d6aaba61 504 current->rmid = 0;
e02737d5
FY
505 kfree(rdtgrp);
506 }
507
74fcdae1 508 preempt_disable();
4f341a5e
FY
509 /* update PQR_ASSOC MSR to make resource group go into effect */
510 intel_rdt_sched_in();
74fcdae1 511 preempt_enable();
4f341a5e 512
e02737d5
FY
513 kfree(callback);
514}
515
516static int __rdtgroup_move_task(struct task_struct *tsk,
517 struct rdtgroup *rdtgrp)
518{
519 struct task_move_callback *callback;
520 int ret;
521
522 callback = kzalloc(sizeof(*callback), GFP_KERNEL);
523 if (!callback)
524 return -ENOMEM;
525 callback->work.func = move_myself;
526 callback->rdtgrp = rdtgrp;
527
528 /*
529 * Take a refcount, so rdtgrp cannot be freed before the
530 * callback has been invoked.
531 */
532 atomic_inc(&rdtgrp->waitcount);
533 ret = task_work_add(tsk, &callback->work, true);
534 if (ret) {
535 /*
536 * Task is exiting. Drop the refcount and free the callback.
537 * No need to check the refcount as the group cannot be
538 * deleted before the write function unlocks rdtgroup_mutex.
539 */
540 atomic_dec(&rdtgrp->waitcount);
541 kfree(callback);
29e74f35 542 rdt_last_cmd_puts("task exited\n");
e02737d5 543 } else {
d6aaba61
VS
544 /*
545 * For ctrl_mon groups move both closid and rmid.
546 * For monitor groups, can move the tasks only from
547 * their parent CTRL group.
548 */
549 if (rdtgrp->type == RDTCTRL_GROUP) {
550 tsk->closid = rdtgrp->closid;
551 tsk->rmid = rdtgrp->mon.rmid;
552 } else if (rdtgrp->type == RDTMON_GROUP) {
29e74f35 553 if (rdtgrp->mon.parent->closid == tsk->closid) {
d6aaba61 554 tsk->rmid = rdtgrp->mon.rmid;
29e74f35
TL
555 } else {
556 rdt_last_cmd_puts("Can't move task to different control group\n");
d6aaba61 557 ret = -EINVAL;
29e74f35 558 }
d6aaba61 559 }
e02737d5
FY
560 }
561 return ret;
562}
563
564static int rdtgroup_task_write_permission(struct task_struct *task,
565 struct kernfs_open_file *of)
566{
567 const struct cred *tcred = get_task_cred(task);
568 const struct cred *cred = current_cred();
569 int ret = 0;
570
571 /*
572 * Even if we're attaching all tasks in the thread group, we only
573 * need to check permissions on one of them.
574 */
575 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
576 !uid_eq(cred->euid, tcred->uid) &&
29e74f35
TL
577 !uid_eq(cred->euid, tcred->suid)) {
578 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
e02737d5 579 ret = -EPERM;
29e74f35 580 }
e02737d5
FY
581
582 put_cred(tcred);
583 return ret;
584}
585
586static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
587 struct kernfs_open_file *of)
588{
589 struct task_struct *tsk;
590 int ret;
591
592 rcu_read_lock();
593 if (pid) {
594 tsk = find_task_by_vpid(pid);
595 if (!tsk) {
596 rcu_read_unlock();
29e74f35 597 rdt_last_cmd_printf("No task %d\n", pid);
e02737d5
FY
598 return -ESRCH;
599 }
600 } else {
601 tsk = current;
602 }
603
604 get_task_struct(tsk);
605 rcu_read_unlock();
606
607 ret = rdtgroup_task_write_permission(tsk, of);
608 if (!ret)
609 ret = __rdtgroup_move_task(tsk, rdtgrp);
610
611 put_task_struct(tsk);
612 return ret;
613}
614
615static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
616 char *buf, size_t nbytes, loff_t off)
617{
618 struct rdtgroup *rdtgrp;
619 int ret = 0;
620 pid_t pid;
621
622 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
623 return -EINVAL;
624 rdtgrp = rdtgroup_kn_lock_live(of->kn);
29e74f35 625 rdt_last_cmd_clear();
e02737d5
FY
626
627 if (rdtgrp)
628 ret = rdtgroup_move_task(pid, rdtgrp, of);
629 else
630 ret = -ENOENT;
631
632 rdtgroup_kn_unlock(of->kn);
633
634 return ret ?: nbytes;
635}
636
637static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
638{
639 struct task_struct *p, *t;
640
641 rcu_read_lock();
642 for_each_process_thread(p, t) {
d6aaba61
VS
643 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
644 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
e02737d5
FY
645 seq_printf(s, "%d\n", t->pid);
646 }
647 rcu_read_unlock();
648}
649
650static int rdtgroup_tasks_show(struct kernfs_open_file *of,
651 struct seq_file *s, void *v)
652{
653 struct rdtgroup *rdtgrp;
654 int ret = 0;
655
656 rdtgrp = rdtgroup_kn_lock_live(of->kn);
657 if (rdtgrp)
658 show_rdt_tasks(rdtgrp, s);
659 else
660 ret = -ENOENT;
661 rdtgroup_kn_unlock(of->kn);
662
663 return ret;
664}
665
9b3a7fd0
TL
666static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
667 struct seq_file *seq, void *v)
668{
669 int len;
670
671 mutex_lock(&rdtgroup_mutex);
672 len = seq_buf_used(&last_cmd_status);
673 if (len)
674 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
675 else
676 seq_puts(seq, "ok\n");
677 mutex_unlock(&rdtgroup_mutex);
678 return 0;
679}
680
4e978d06
FY
681static int rdt_num_closids_show(struct kernfs_open_file *of,
682 struct seq_file *seq, void *v)
683{
684 struct rdt_resource *r = of->kn->parent->priv;
685
686 seq_printf(seq, "%d\n", r->num_closid);
4e978d06
FY
687 return 0;
688}
689
2545e9f5 690static int rdt_default_ctrl_show(struct kernfs_open_file *of,
4e978d06
FY
691 struct seq_file *seq, void *v)
692{
693 struct rdt_resource *r = of->kn->parent->priv;
694
2545e9f5 695 seq_printf(seq, "%x\n", r->default_ctrl);
4e978d06
FY
696 return 0;
697}
698
53a114a6
SL
699static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
700 struct seq_file *seq, void *v)
701{
702 struct rdt_resource *r = of->kn->parent->priv;
703
d3e11b4d 704 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
db69ef65
VS
705 return 0;
706}
707
0dd2d749
FY
708static int rdt_shareable_bits_show(struct kernfs_open_file *of,
709 struct seq_file *seq, void *v)
710{
711 struct rdt_resource *r = of->kn->parent->priv;
712
713 seq_printf(seq, "%x\n", r->cache.shareable_bits);
714 return 0;
715}
716
db69ef65
VS
717static int rdt_min_bw_show(struct kernfs_open_file *of,
718 struct seq_file *seq, void *v)
719{
720 struct rdt_resource *r = of->kn->parent->priv;
53a114a6 721
db69ef65
VS
722 seq_printf(seq, "%u\n", r->membw.min_bw);
723 return 0;
724}
725
d4ab3320
VS
726static int rdt_num_rmids_show(struct kernfs_open_file *of,
727 struct seq_file *seq, void *v)
728{
729 struct rdt_resource *r = of->kn->parent->priv;
730
731 seq_printf(seq, "%d\n", r->num_rmid);
732
733 return 0;
734}
735
736static int rdt_mon_features_show(struct kernfs_open_file *of,
737 struct seq_file *seq, void *v)
738{
739 struct rdt_resource *r = of->kn->parent->priv;
740 struct mon_evt *mevt;
741
742 list_for_each_entry(mevt, &r->evt_list, list)
743 seq_printf(seq, "%s\n", mevt->name);
744
745 return 0;
746}
747
db69ef65
VS
748static int rdt_bw_gran_show(struct kernfs_open_file *of,
749 struct seq_file *seq, void *v)
750{
751 struct rdt_resource *r = of->kn->parent->priv;
752
753 seq_printf(seq, "%u\n", r->membw.bw_gran);
754 return 0;
755}
756
757static int rdt_delay_linear_show(struct kernfs_open_file *of,
758 struct seq_file *seq, void *v)
759{
760 struct rdt_resource *r = of->kn->parent->priv;
761
762 seq_printf(seq, "%u\n", r->membw.delay_linear);
53a114a6
SL
763 return 0;
764}
765
d4ab3320
VS
766static int max_threshold_occ_show(struct kernfs_open_file *of,
767 struct seq_file *seq, void *v)
768{
769 struct rdt_resource *r = of->kn->parent->priv;
770
771 seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
772
773 return 0;
774}
775
776static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
777 char *buf, size_t nbytes, loff_t off)
778{
779 struct rdt_resource *r = of->kn->parent->priv;
780 unsigned int bytes;
781 int ret;
782
783 ret = kstrtouint(buf, 0, &bytes);
784 if (ret)
785 return ret;
786
787 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
788 return -EINVAL;
789
790 intel_cqm_threshold = bytes / r->mon_scale;
791
5707b46a 792 return nbytes;
d4ab3320
VS
793}
794
d48d7a57
RC
795/*
796 * rdtgroup_mode_show - Display mode of this resource group
797 */
798static int rdtgroup_mode_show(struct kernfs_open_file *of,
799 struct seq_file *s, void *v)
800{
801 struct rdtgroup *rdtgrp;
802
803 rdtgrp = rdtgroup_kn_lock_live(of->kn);
804 if (!rdtgrp) {
805 rdtgroup_kn_unlock(of->kn);
806 return -ENOENT;
807 }
808
809 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
810
811 rdtgroup_kn_unlock(of->kn);
812 return 0;
813}
814
49f7b4ef
RC
815/**
816 * rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
817 * @r: Resource to which domain instance @d belongs.
818 * @d: The domain instance for which @closid is being tested.
819 * @cbm: Capacity bitmask being tested.
820 * @closid: Intended closid for @cbm.
821 * @exclusive: Only check if overlaps with exclusive resource groups
822 *
823 * Checks if provided @cbm intended to be used for @closid on domain
824 * @d overlaps with any other closids or other hardware usage associated
825 * with this domain. If @exclusive is true then only overlaps with
826 * resource groups in exclusive mode will be considered. If @exclusive
827 * is false then overlaps with any resource group or hardware entities
828 * will be considered.
829 *
830 * Return: false if CBM does not overlap, true if it does.
831 */
9ab9aa15
RC
832bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
833 u32 _cbm, int closid, bool exclusive)
49f7b4ef
RC
834{
835 unsigned long *cbm = (unsigned long *)&_cbm;
836 unsigned long *ctrl_b;
837 enum rdtgrp_mode mode;
838 u32 *ctrl;
839 int i;
840
841 /* Check for any overlap with regions used by hardware directly */
842 if (!exclusive) {
843 if (bitmap_intersects(cbm,
844 (unsigned long *)&r->cache.shareable_bits,
845 r->cache.cbm_len))
846 return true;
847 }
848
849 /* Check for overlap with other resource groups */
850 ctrl = d->ctrl_val;
851 for (i = 0; i < r->num_closid; i++, ctrl++) {
852 ctrl_b = (unsigned long *)ctrl;
853 if (closid_allocated(i) && i != closid) {
854 if (bitmap_intersects(cbm, ctrl_b, r->cache.cbm_len)) {
855 mode = rdtgroup_mode_by_closid(i);
856 if (exclusive) {
857 if (mode == RDT_MODE_EXCLUSIVE)
858 return true;
859 continue;
860 }
861 return true;
862 }
863 }
864 }
865
866 return false;
867}
868
869/**
870 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
871 *
872 * An exclusive resource group implies that there should be no sharing of
873 * its allocated resources. At the time this group is considered to be
874 * exclusive this test can determine if its current schemata supports this
875 * setting by testing for overlap with all other resource groups.
876 *
877 * Return: true if resource group can be exclusive, false if there is overlap
878 * with allocations of other resource groups and thus this resource group
879 * cannot be exclusive.
880 */
881static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
882{
883 int closid = rdtgrp->closid;
884 struct rdt_resource *r;
885 struct rdt_domain *d;
886
887 for_each_alloc_enabled_rdt_resource(r) {
888 list_for_each_entry(d, &r->domains, list) {
889 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
890 rdtgrp->closid, false))
891 return false;
892 }
893 }
894
895 return true;
896}
897
898/**
899 * rdtgroup_mode_write - Modify the resource group's mode
900 *
901 */
d48d7a57
RC
902static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
903 char *buf, size_t nbytes, loff_t off)
904{
905 struct rdtgroup *rdtgrp;
906 enum rdtgrp_mode mode;
907 int ret = 0;
908
909 /* Valid input requires a trailing newline */
910 if (nbytes == 0 || buf[nbytes - 1] != '\n')
911 return -EINVAL;
912 buf[nbytes - 1] = '\0';
913
914 rdtgrp = rdtgroup_kn_lock_live(of->kn);
915 if (!rdtgrp) {
916 rdtgroup_kn_unlock(of->kn);
917 return -ENOENT;
918 }
919
920 rdt_last_cmd_clear();
921
922 mode = rdtgrp->mode;
923
49f7b4ef
RC
924 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
925 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE))
d48d7a57
RC
926 goto out;
927
928 if (!strcmp(buf, "shareable")) {
929 rdtgrp->mode = RDT_MODE_SHAREABLE;
49f7b4ef
RC
930 } else if (!strcmp(buf, "exclusive")) {
931 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
932 rdt_last_cmd_printf("schemata overlaps\n");
933 ret = -EINVAL;
934 goto out;
935 }
936 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
d48d7a57
RC
937 } else {
938 rdt_last_cmd_printf("unknown/unsupported mode\n");
939 ret = -EINVAL;
940 }
941
942out:
943 rdtgroup_kn_unlock(of->kn);
944 return ret ?: nbytes;
945}
946
4e978d06 947/* rdtgroup information files for one cache resource. */
5dc1d5c6 948static struct rftype res_common_files[] = {
9b3a7fd0
TL
949 {
950 .name = "last_cmd_status",
951 .mode = 0444,
952 .kf_ops = &rdtgroup_kf_single_ops,
953 .seq_show = rdt_last_cmd_status_show,
954 .fflags = RF_TOP_INFO,
955 },
4e978d06
FY
956 {
957 .name = "num_closids",
958 .mode = 0444,
959 .kf_ops = &rdtgroup_kf_single_ops,
960 .seq_show = rdt_num_closids_show,
5dc1d5c6 961 .fflags = RF_CTRL_INFO,
4e978d06 962 },
d4ab3320
VS
963 {
964 .name = "mon_features",
965 .mode = 0444,
966 .kf_ops = &rdtgroup_kf_single_ops,
967 .seq_show = rdt_mon_features_show,
968 .fflags = RF_MON_INFO,
969 },
970 {
971 .name = "num_rmids",
972 .mode = 0444,
973 .kf_ops = &rdtgroup_kf_single_ops,
974 .seq_show = rdt_num_rmids_show,
975 .fflags = RF_MON_INFO,
976 },
4e978d06
FY
977 {
978 .name = "cbm_mask",
979 .mode = 0444,
980 .kf_ops = &rdtgroup_kf_single_ops,
2545e9f5 981 .seq_show = rdt_default_ctrl_show,
5dc1d5c6 982 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
4e978d06 983 },
53a114a6
SL
984 {
985 .name = "min_cbm_bits",
986 .mode = 0444,
987 .kf_ops = &rdtgroup_kf_single_ops,
988 .seq_show = rdt_min_cbm_bits_show,
5dc1d5c6 989 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
db69ef65 990 },
0dd2d749
FY
991 {
992 .name = "shareable_bits",
993 .mode = 0444,
994 .kf_ops = &rdtgroup_kf_single_ops,
995 .seq_show = rdt_shareable_bits_show,
996 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
997 },
db69ef65
VS
998 {
999 .name = "min_bandwidth",
1000 .mode = 0444,
1001 .kf_ops = &rdtgroup_kf_single_ops,
1002 .seq_show = rdt_min_bw_show,
5dc1d5c6 1003 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
db69ef65
VS
1004 },
1005 {
1006 .name = "bandwidth_gran",
1007 .mode = 0444,
1008 .kf_ops = &rdtgroup_kf_single_ops,
1009 .seq_show = rdt_bw_gran_show,
5dc1d5c6 1010 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
db69ef65
VS
1011 },
1012 {
1013 .name = "delay_linear",
1014 .mode = 0444,
1015 .kf_ops = &rdtgroup_kf_single_ops,
1016 .seq_show = rdt_delay_linear_show,
5dc1d5c6
T
1017 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1018 },
d4ab3320
VS
1019 {
1020 .name = "max_threshold_occupancy",
1021 .mode = 0644,
1022 .kf_ops = &rdtgroup_kf_single_ops,
1023 .write = max_threshold_occ_write,
1024 .seq_show = max_threshold_occ_show,
1025 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1026 },
5dc1d5c6
T
1027 {
1028 .name = "cpus",
1029 .mode = 0644,
1030 .kf_ops = &rdtgroup_kf_single_ops,
1031 .write = rdtgroup_cpus_write,
1032 .seq_show = rdtgroup_cpus_show,
1033 .fflags = RFTYPE_BASE,
1034 },
1035 {
1036 .name = "cpus_list",
1037 .mode = 0644,
1038 .kf_ops = &rdtgroup_kf_single_ops,
1039 .write = rdtgroup_cpus_write,
1040 .seq_show = rdtgroup_cpus_show,
1041 .flags = RFTYPE_FLAGS_CPUS_LIST,
1042 .fflags = RFTYPE_BASE,
1043 },
1044 {
1045 .name = "tasks",
1046 .mode = 0644,
1047 .kf_ops = &rdtgroup_kf_single_ops,
1048 .write = rdtgroup_tasks_write,
1049 .seq_show = rdtgroup_tasks_show,
1050 .fflags = RFTYPE_BASE,
1051 },
1052 {
1053 .name = "schemata",
1054 .mode = 0644,
1055 .kf_ops = &rdtgroup_kf_single_ops,
1056 .write = rdtgroup_schemata_write,
1057 .seq_show = rdtgroup_schemata_show,
1058 .fflags = RF_CTRL_BASE,
db69ef65 1059 },
d48d7a57
RC
1060 {
1061 .name = "mode",
1062 .mode = 0644,
1063 .kf_ops = &rdtgroup_kf_single_ops,
1064 .write = rdtgroup_mode_write,
1065 .seq_show = rdtgroup_mode_show,
1066 .fflags = RF_CTRL_BASE,
1067 },
db69ef65
VS
1068};
1069
5dc1d5c6 1070static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
db69ef65 1071{
5dc1d5c6
T
1072 struct rftype *rfts, *rft;
1073 int ret, len;
1074
1075 rfts = res_common_files;
1076 len = ARRAY_SIZE(res_common_files);
1077
1078 lockdep_assert_held(&rdtgroup_mutex);
1079
1080 for (rft = rfts; rft < rfts + len; rft++) {
1081 if ((fflags & rft->fflags) == rft->fflags) {
1082 ret = rdtgroup_add_file(kn, rft);
1083 if (ret)
1084 goto error;
1085 }
1086 }
1087
1088 return 0;
1089error:
1090 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1091 while (--rft >= rfts) {
1092 if ((fflags & rft->fflags) == rft->fflags)
1093 kernfs_remove_by_name(kn, rft->name);
1094 }
1095 return ret;
db69ef65
VS
1096}
1097
5dc1d5c6
T
1098static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1099 unsigned long fflags)
6a507a6a 1100{
5dc1d5c6
T
1101 struct kernfs_node *kn_subdir;
1102 int ret;
1103
1104 kn_subdir = kernfs_create_dir(kn_info, name,
1105 kn_info->mode, r);
1106 if (IS_ERR(kn_subdir))
1107 return PTR_ERR(kn_subdir);
1108
1109 kernfs_get(kn_subdir);
1110 ret = rdtgroup_kn_set_ugid(kn_subdir);
1111 if (ret)
1112 return ret;
1113
1114 ret = rdtgroup_add_files(kn_subdir, fflags);
1115 if (!ret)
1116 kernfs_activate(kn_subdir);
1117
1118 return ret;
6a507a6a
VS
1119}
1120
4e978d06
FY
1121static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1122{
4e978d06 1123 struct rdt_resource *r;
5dc1d5c6 1124 unsigned long fflags;
d4ab3320 1125 char name[32];
5dc1d5c6 1126 int ret;
4e978d06
FY
1127
1128 /* create the directory */
1129 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1130 if (IS_ERR(kn_info))
1131 return PTR_ERR(kn_info);
1132 kernfs_get(kn_info);
1133
9b3a7fd0
TL
1134 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1135 if (ret)
1136 goto out_destroy;
1137
1b5c0b75 1138 for_each_alloc_enabled_rdt_resource(r) {
5dc1d5c6
T
1139 fflags = r->fflags | RF_CTRL_INFO;
1140 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
4e978d06
FY
1141 if (ret)
1142 goto out_destroy;
4e978d06 1143 }
d4ab3320
VS
1144
1145 for_each_mon_enabled_rdt_resource(r) {
1146 fflags = r->fflags | RF_MON_INFO;
1147 sprintf(name, "%s_MON", r->name);
1148 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1149 if (ret)
1150 goto out_destroy;
1151 }
1152
4e978d06
FY
1153 /*
1154 * This extra ref will be put in kernfs_remove() and guarantees
1155 * that @rdtgrp->kn is always accessible.
1156 */
1157 kernfs_get(kn_info);
1158
1159 ret = rdtgroup_kn_set_ugid(kn_info);
1160 if (ret)
1161 goto out_destroy;
1162
1163 kernfs_activate(kn_info);
1164
1165 return 0;
1166
1167out_destroy:
1168 kernfs_remove(kn_info);
1169 return ret;
1170}
1171
c7d9aac6
VS
1172static int
1173mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1174 char *name, struct kernfs_node **dest_kn)
1175{
1176 struct kernfs_node *kn;
1177 int ret;
1178
1179 /* create the directory */
1180 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1181 if (IS_ERR(kn))
1182 return PTR_ERR(kn);
1183
1184 if (dest_kn)
1185 *dest_kn = kn;
1186
1187 /*
1188 * This extra ref will be put in kernfs_remove() and guarantees
1189 * that @rdtgrp->kn is always accessible.
1190 */
1191 kernfs_get(kn);
1192
1193 ret = rdtgroup_kn_set_ugid(kn);
1194 if (ret)
1195 goto out_destroy;
1196
1197 kernfs_activate(kn);
1198
1199 return 0;
1200
1201out_destroy:
1202 kernfs_remove(kn);
1203 return ret;
1204}
99adde9b 1205
5ff193fb
FY
1206static void l3_qos_cfg_update(void *arg)
1207{
1208 bool *enable = arg;
1209
1210 wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1211}
1212
99adde9b 1213static void l2_qos_cfg_update(void *arg)
5ff193fb 1214{
99adde9b
FY
1215 bool *enable = arg;
1216
1217 wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1218}
1219
19c635ab
VS
1220static inline bool is_mba_linear(void)
1221{
1222 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1223}
1224
99adde9b
FY
1225static int set_cache_qos_cfg(int level, bool enable)
1226{
1227 void (*update)(void *arg);
1228 struct rdt_resource *r_l;
5ff193fb
FY
1229 cpumask_var_t cpu_mask;
1230 struct rdt_domain *d;
1231 int cpu;
1232
1233 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1234 return -ENOMEM;
1235
99adde9b
FY
1236 if (level == RDT_RESOURCE_L3)
1237 update = l3_qos_cfg_update;
1238 else if (level == RDT_RESOURCE_L2)
1239 update = l2_qos_cfg_update;
1240 else
1241 return -EINVAL;
1242
1243 r_l = &rdt_resources_all[level];
1244 list_for_each_entry(d, &r_l->domains, list) {
5ff193fb
FY
1245 /* Pick one CPU from each domain instance to update MSR */
1246 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1247 }
1248 cpu = get_cpu();
1249 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1250 if (cpumask_test_cpu(cpu, cpu_mask))
99adde9b 1251 update(&enable);
5ff193fb 1252 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
99adde9b 1253 smp_call_function_many(cpu_mask, update, &enable, 1);
5ff193fb
FY
1254 put_cpu();
1255
1256 free_cpumask_var(cpu_mask);
1257
1258 return 0;
1259}
1260
19c635ab
VS
1261/*
1262 * Enable or disable the MBA software controller
1263 * which helps user specify bandwidth in MBps.
1264 * MBA software controller is supported only if
1265 * MBM is supported and MBA is in linear scale.
1266 */
1267static int set_mba_sc(bool mba_sc)
1268{
1269 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1bd2a63b 1270 struct rdt_domain *d;
19c635ab
VS
1271
1272 if (!is_mbm_enabled() || !is_mba_linear() ||
1273 mba_sc == is_mba_sc(r))
1274 return -EINVAL;
1275
1276 r->membw.mba_sc = mba_sc;
1bd2a63b
VS
1277 list_for_each_entry(d, &r->domains, list)
1278 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
19c635ab
VS
1279
1280 return 0;
1281}
1282
99adde9b 1283static int cdp_enable(int level, int data_type, int code_type)
5ff193fb 1284{
99adde9b
FY
1285 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1286 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1287 struct rdt_resource *r_l = &rdt_resources_all[level];
5ff193fb
FY
1288 int ret;
1289
99adde9b
FY
1290 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1291 !r_lcode->alloc_capable)
5ff193fb
FY
1292 return -EINVAL;
1293
99adde9b 1294 ret = set_cache_qos_cfg(level, true);
5ff193fb 1295 if (!ret) {
99adde9b
FY
1296 r_l->alloc_enabled = false;
1297 r_ldata->alloc_enabled = true;
1298 r_lcode->alloc_enabled = true;
5ff193fb
FY
1299 }
1300 return ret;
1301}
1302
99adde9b
FY
1303static int cdpl3_enable(void)
1304{
1305 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1306 RDT_RESOURCE_L3CODE);
1307}
1308
1309static int cdpl2_enable(void)
5ff193fb 1310{
99adde9b
FY
1311 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1312 RDT_RESOURCE_L2CODE);
1313}
1314
1315static void cdp_disable(int level, int data_type, int code_type)
1316{
1317 struct rdt_resource *r = &rdt_resources_all[level];
5ff193fb 1318
1b5c0b75 1319 r->alloc_enabled = r->alloc_capable;
5ff193fb 1320
99adde9b
FY
1321 if (rdt_resources_all[data_type].alloc_enabled) {
1322 rdt_resources_all[data_type].alloc_enabled = false;
1323 rdt_resources_all[code_type].alloc_enabled = false;
1324 set_cache_qos_cfg(level, false);
5ff193fb
FY
1325 }
1326}
1327
99adde9b
FY
1328static void cdpl3_disable(void)
1329{
1330 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1331}
1332
1333static void cdpl2_disable(void)
1334{
1335 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1336}
1337
1338static void cdp_disable_all(void)
1339{
1340 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1341 cdpl3_disable();
1342 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1343 cdpl2_disable();
1344}
1345
5ff193fb
FY
1346static int parse_rdtgroupfs_options(char *data)
1347{
1348 char *token, *o = data;
1349 int ret = 0;
1350
1351 while ((token = strsep(&o, ",")) != NULL) {
99adde9b
FY
1352 if (!*token) {
1353 ret = -EINVAL;
1354 goto out;
1355 }
5ff193fb 1356
99adde9b
FY
1357 if (!strcmp(token, "cdp")) {
1358 ret = cdpl3_enable();
1359 if (ret)
1360 goto out;
1361 } else if (!strcmp(token, "cdpl2")) {
1362 ret = cdpl2_enable();
1363 if (ret)
1364 goto out;
19c635ab
VS
1365 } else if (!strcmp(token, "mba_MBps")) {
1366 ret = set_mba_sc(true);
1367 if (ret)
1368 goto out;
99adde9b
FY
1369 } else {
1370 ret = -EINVAL;
1371 goto out;
1372 }
5ff193fb
FY
1373 }
1374
99adde9b
FY
1375 return 0;
1376
1377out:
1378 pr_err("Invalid mount option \"%s\"\n", token);
1379
5ff193fb
FY
1380 return ret;
1381}
1382
60cf5e10
FY
1383/*
1384 * We don't allow rdtgroup directories to be created anywhere
1385 * except the root directory. Thus when looking for the rdtgroup
1386 * structure for a kernfs node we are either looking at a directory,
1387 * in which case the rdtgroup structure is pointed at by the "priv"
1388 * field, otherwise we have a file, and need only look to the parent
1389 * to find the rdtgroup.
1390 */
1391static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1392{
f57b3087
FY
1393 if (kernfs_type(kn) == KERNFS_DIR) {
1394 /*
1395 * All the resource directories use "kn->priv"
1396 * to point to the "struct rdtgroup" for the
1397 * resource. "info" and its subdirectories don't
1398 * have rdtgroup structures, so return NULL here.
1399 */
1400 if (kn == kn_info || kn->parent == kn_info)
1401 return NULL;
1402 else
1403 return kn->priv;
1404 } else {
60cf5e10 1405 return kn->parent->priv;
f57b3087 1406 }
60cf5e10
FY
1407}
1408
1409struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1410{
1411 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1412
f57b3087
FY
1413 if (!rdtgrp)
1414 return NULL;
1415
60cf5e10
FY
1416 atomic_inc(&rdtgrp->waitcount);
1417 kernfs_break_active_protection(kn);
1418
1419 mutex_lock(&rdtgroup_mutex);
1420
1421 /* Was this group deleted while we waited? */
1422 if (rdtgrp->flags & RDT_DELETED)
1423 return NULL;
1424
1425 return rdtgrp;
1426}
1427
1428void rdtgroup_kn_unlock(struct kernfs_node *kn)
1429{
1430 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1431
f57b3087
FY
1432 if (!rdtgrp)
1433 return;
1434
60cf5e10
FY
1435 mutex_unlock(&rdtgroup_mutex);
1436
1437 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1438 (rdtgrp->flags & RDT_DELETED)) {
1439 kernfs_unbreak_active_protection(kn);
49ec8f5b 1440 kernfs_put(rdtgrp->kn);
60cf5e10
FY
1441 kfree(rdtgrp);
1442 } else {
1443 kernfs_unbreak_active_protection(kn);
1444 }
1445}
1446
4af4a88e
VS
1447static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1448 struct rdtgroup *prgrp,
1449 struct kernfs_node **mon_data_kn);
1450
5ff193fb
FY
1451static struct dentry *rdt_mount(struct file_system_type *fs_type,
1452 int flags, const char *unused_dev_name,
1453 void *data)
1454{
e3302683
VS
1455 struct rdt_domain *dom;
1456 struct rdt_resource *r;
5ff193fb
FY
1457 struct dentry *dentry;
1458 int ret;
1459
87943db7 1460 cpus_read_lock();
5ff193fb
FY
1461 mutex_lock(&rdtgroup_mutex);
1462 /*
1463 * resctrl file system can only be mounted once.
1464 */
4af4a88e 1465 if (static_branch_unlikely(&rdt_enable_key)) {
5ff193fb
FY
1466 dentry = ERR_PTR(-EBUSY);
1467 goto out;
1468 }
1469
1470 ret = parse_rdtgroupfs_options(data);
1471 if (ret) {
1472 dentry = ERR_PTR(ret);
1473 goto out_cdp;
1474 }
1475
60cf5e10
FY
1476 closid_init();
1477
4e978d06 1478 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
7bff0af5
SL
1479 if (ret) {
1480 dentry = ERR_PTR(ret);
4e978d06 1481 goto out_cdp;
7bff0af5 1482 }
4e978d06 1483
4af4a88e
VS
1484 if (rdt_mon_capable) {
1485 ret = mongroup_create_dir(rdtgroup_default.kn,
1486 NULL, "mon_groups",
1487 &kn_mongrp);
1488 if (ret) {
1489 dentry = ERR_PTR(ret);
1490 goto out_info;
1491 }
1492 kernfs_get(kn_mongrp);
1493
1494 ret = mkdir_mondata_all(rdtgroup_default.kn,
1495 &rdtgroup_default, &kn_mondata);
1496 if (ret) {
1497 dentry = ERR_PTR(ret);
1498 goto out_mongrp;
1499 }
1500 kernfs_get(kn_mondata);
1501 rdtgroup_default.mon.mon_data_kn = kn_mondata;
1502 }
1503
32206ab3
RC
1504 ret = rdt_pseudo_lock_init();
1505 if (ret) {
1506 dentry = ERR_PTR(ret);
1507 goto out_mondata;
1508 }
1509
5ff193fb
FY
1510 dentry = kernfs_mount(fs_type, flags, rdt_root,
1511 RDTGROUP_SUPER_MAGIC, NULL);
1512 if (IS_ERR(dentry))
32206ab3 1513 goto out_psl;
4af4a88e
VS
1514
1515 if (rdt_alloc_capable)
87943db7 1516 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
4af4a88e 1517 if (rdt_mon_capable)
87943db7 1518 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
5ff193fb 1519
4af4a88e 1520 if (rdt_alloc_capable || rdt_mon_capable)
87943db7 1521 static_branch_enable_cpuslocked(&rdt_enable_key);
e3302683
VS
1522
1523 if (is_mbm_enabled()) {
1524 r = &rdt_resources_all[RDT_RESOURCE_L3];
1525 list_for_each_entry(dom, &r->domains, list)
bbc4615e 1526 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
e3302683
VS
1527 }
1528
5ff193fb
FY
1529 goto out;
1530
32206ab3
RC
1531out_psl:
1532 rdt_pseudo_lock_release();
4af4a88e
VS
1533out_mondata:
1534 if (rdt_mon_capable)
1535 kernfs_remove(kn_mondata);
1536out_mongrp:
1537 if (rdt_mon_capable)
1538 kernfs_remove(kn_mongrp);
1539out_info:
79298acc 1540 kernfs_remove(kn_info);
5ff193fb 1541out_cdp:
99adde9b 1542 cdp_disable_all();
5ff193fb 1543out:
9b3a7fd0 1544 rdt_last_cmd_clear();
5ff193fb 1545 mutex_unlock(&rdtgroup_mutex);
87943db7 1546 cpus_read_unlock();
5ff193fb
FY
1547
1548 return dentry;
1549}
1550
2545e9f5 1551static int reset_all_ctrls(struct rdt_resource *r)
5ff193fb
FY
1552{
1553 struct msr_param msr_param;
1554 cpumask_var_t cpu_mask;
1555 struct rdt_domain *d;
1556 int i, cpu;
1557
1558 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1559 return -ENOMEM;
1560
1561 msr_param.res = r;
1562 msr_param.low = 0;
1563 msr_param.high = r->num_closid;
1564
1565 /*
1566 * Disable resource control for this resource by setting all
1567 * CBMs in all domains to the maximum mask value. Pick one CPU
1568 * from each domain to update the MSRs below.
1569 */
1570 list_for_each_entry(d, &r->domains, list) {
1571 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1572
1573 for (i = 0; i < r->num_closid; i++)
2545e9f5 1574 d->ctrl_val[i] = r->default_ctrl;
5ff193fb
FY
1575 }
1576 cpu = get_cpu();
1577 /* Update CBM on this cpu if it's in cpu_mask. */
1578 if (cpumask_test_cpu(cpu, cpu_mask))
2545e9f5 1579 rdt_ctrl_update(&msr_param);
5ff193fb 1580 /* Update CBM on all other cpus in cpu_mask. */
2545e9f5 1581 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
5ff193fb
FY
1582 put_cpu();
1583
1584 free_cpumask_var(cpu_mask);
1585
1586 return 0;
1587}
1588
f3cbeaca
VS
1589static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
1590{
1591 return (rdt_alloc_capable &&
1592 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
1593}
1594
1595static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
1596{
1597 return (rdt_mon_capable &&
1598 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
1599}
1600
4e978d06 1601/*
0efc89be
FY
1602 * Move tasks from one to the other group. If @from is NULL, then all tasks
1603 * in the systems are moved unconditionally (used for teardown).
1604 *
1605 * If @mask is not NULL the cpus on which moved tasks are running are set
1606 * in that mask so the update smp function call is restricted to affected
1607 * cpus.
4e978d06 1608 */
0efc89be
FY
1609static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
1610 struct cpumask *mask)
4e978d06 1611{
e02737d5
FY
1612 struct task_struct *p, *t;
1613
e02737d5 1614 read_lock(&tasklist_lock);
0efc89be 1615 for_each_process_thread(p, t) {
f3cbeaca
VS
1616 if (!from || is_closid_match(t, from) ||
1617 is_rmid_match(t, from)) {
0efc89be 1618 t->closid = to->closid;
f3cbeaca
VS
1619 t->rmid = to->mon.rmid;
1620
0efc89be
FY
1621#ifdef CONFIG_SMP
1622 /*
1623 * This is safe on x86 w/o barriers as the ordering
1624 * of writing to task_cpu() and t->on_cpu is
1625 * reverse to the reading here. The detection is
1626 * inaccurate as tasks might move or schedule
1627 * before the smp function call takes place. In
1628 * such a case the function call is pointless, but
1629 * there is no other side effect.
1630 */
1631 if (mask && t->on_cpu)
1632 cpumask_set_cpu(task_cpu(t), mask);
1633#endif
1634 }
1635 }
e02737d5 1636 read_unlock(&tasklist_lock);
0efc89be
FY
1637}
1638
f3cbeaca
VS
1639static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
1640{
1641 struct rdtgroup *sentry, *stmp;
1642 struct list_head *head;
1643
1644 head = &rdtgrp->mon.crdtgrp_list;
1645 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
1646 free_rmid(sentry->mon.rmid);
1647 list_del(&sentry->mon.crdtgrp_list);
1648 kfree(sentry);
1649 }
1650}
1651
0efc89be
FY
1652/*
1653 * Forcibly remove all of subdirectories under root.
1654 */
1655static void rmdir_all_sub(void)
1656{
1657 struct rdtgroup *rdtgrp, *tmp;
1658
1659 /* Move all tasks to the default resource group */
1660 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
60cf5e10 1661
60cf5e10 1662 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
4af4a88e
VS
1663 /* Free any child rmids */
1664 free_all_child_rdtgrp(rdtgrp);
1665
60cf5e10
FY
1666 /* Remove each rdtgroup other than root */
1667 if (rdtgrp == &rdtgroup_default)
1668 continue;
c7cc0cc1
FY
1669
1670 /*
1671 * Give any CPUs back to the default group. We cannot copy
1672 * cpu_online_mask because a CPU might have executed the
1673 * offline callback already, but is still marked online.
1674 */
1675 cpumask_or(&rdtgroup_default.cpu_mask,
1676 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
1677
4af4a88e
VS
1678 free_rmid(rdtgrp->mon.rmid);
1679
60cf5e10
FY
1680 kernfs_remove(rdtgrp->kn);
1681 list_del(&rdtgrp->rdtgroup_list);
1682 kfree(rdtgrp);
1683 }
0efc89be 1684 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
a9fcf862 1685 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
0efc89be 1686
4e978d06 1687 kernfs_remove(kn_info);
4af4a88e
VS
1688 kernfs_remove(kn_mongrp);
1689 kernfs_remove(kn_mondata);
4e978d06
FY
1690}
1691
5ff193fb
FY
1692static void rdt_kill_sb(struct super_block *sb)
1693{
1694 struct rdt_resource *r;
1695
36b6f9fc 1696 cpus_read_lock();
5ff193fb
FY
1697 mutex_lock(&rdtgroup_mutex);
1698
19c635ab
VS
1699 set_mba_sc(false);
1700
5ff193fb 1701 /*Put everything back to default values. */
1b5c0b75 1702 for_each_alloc_enabled_rdt_resource(r)
2545e9f5 1703 reset_all_ctrls(r);
99adde9b 1704 cdp_disable_all();
4e978d06 1705 rmdir_all_sub();
472ef09b 1706 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
36b6f9fc
RC
1707 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
1708 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
1709 static_branch_disable_cpuslocked(&rdt_enable_key);
5ff193fb
FY
1710 kernfs_kill_sb(sb);
1711 mutex_unlock(&rdtgroup_mutex);
36b6f9fc 1712 cpus_read_unlock();
5ff193fb
FY
1713}
1714
1715static struct file_system_type rdt_fs_type = {
1716 .name = "resctrl",
1717 .mount = rdt_mount,
1718 .kill_sb = rdt_kill_sb,
1719};
1720
d89b7379
VS
1721static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
1722 void *priv)
1723{
1724 struct kernfs_node *kn;
1725 int ret = 0;
1726
1727 kn = __kernfs_create_file(parent_kn, name, 0444, 0,
1728 &kf_mondata_ops, priv, NULL, NULL);
1729 if (IS_ERR(kn))
1730 return PTR_ERR(kn);
1731
1732 ret = rdtgroup_kn_set_ugid(kn);
1733 if (ret) {
1734 kernfs_remove(kn);
1735 return ret;
1736 }
1737
1738 return ret;
1739}
1740
895c663e
VS
1741/*
1742 * Remove all subdirectories of mon_data of ctrl_mon groups
1743 * and monitor groups with given domain id.
1744 */
1745void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
1746{
1747 struct rdtgroup *prgrp, *crgrp;
1748 char name[32];
1749
1750 if (!r->mon_enabled)
1751 return;
1752
1753 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
1754 sprintf(name, "mon_%s_%02d", r->name, dom_id);
1755 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
1756
1757 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
1758 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
1759 }
1760}
1761
d89b7379
VS
1762static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
1763 struct rdt_domain *d,
1764 struct rdt_resource *r, struct rdtgroup *prgrp)
1765{
1766 union mon_data_bits priv;
1767 struct kernfs_node *kn;
1768 struct mon_evt *mevt;
a4de1dfd 1769 struct rmid_read rr;
d89b7379
VS
1770 char name[32];
1771 int ret;
1772
1773 sprintf(name, "mon_%s_%02d", r->name, d->id);
1774 /* create the directory */
1775 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1776 if (IS_ERR(kn))
1777 return PTR_ERR(kn);
1778
1779 /*
1780 * This extra ref will be put in kernfs_remove() and guarantees
1781 * that kn is always accessible.
1782 */
1783 kernfs_get(kn);
1784 ret = rdtgroup_kn_set_ugid(kn);
1785 if (ret)
1786 goto out_destroy;
1787
1788 if (WARN_ON(list_empty(&r->evt_list))) {
1789 ret = -EPERM;
1790 goto out_destroy;
1791 }
1792
1793 priv.u.rid = r->rid;
1794 priv.u.domid = d->id;
1795 list_for_each_entry(mevt, &r->evt_list, list) {
1796 priv.u.evtid = mevt->evtid;
1797 ret = mon_addfile(kn, mevt->name, priv.priv);
1798 if (ret)
1799 goto out_destroy;
a4de1dfd
VS
1800
1801 if (is_mbm_event(mevt->evtid))
1802 mon_event_read(&rr, d, prgrp, mevt->evtid, true);
d89b7379
VS
1803 }
1804 kernfs_activate(kn);
1805 return 0;
1806
1807out_destroy:
1808 kernfs_remove(kn);
1809 return ret;
1810}
1811
895c663e
VS
1812/*
1813 * Add all subdirectories of mon_data for "ctrl_mon" groups
1814 * and "monitor" groups with given domain id.
1815 */
1816void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
1817 struct rdt_domain *d)
1818{
1819 struct kernfs_node *parent_kn;
1820 struct rdtgroup *prgrp, *crgrp;
1821 struct list_head *head;
1822
1823 if (!r->mon_enabled)
1824 return;
1825
1826 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
1827 parent_kn = prgrp->mon.mon_data_kn;
1828 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
1829
1830 head = &prgrp->mon.crdtgrp_list;
1831 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
1832 parent_kn = crgrp->mon.mon_data_kn;
1833 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
1834 }
1835 }
1836}
1837
d89b7379
VS
1838static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
1839 struct rdt_resource *r,
1840 struct rdtgroup *prgrp)
1841{
1842 struct rdt_domain *dom;
1843 int ret;
1844
1845 list_for_each_entry(dom, &r->domains, list) {
1846 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
1847 if (ret)
1848 return ret;
1849 }
1850
1851 return 0;
1852}
1853
1854/*
1855 * This creates a directory mon_data which contains the monitored data.
1856 *
1857 * mon_data has one directory for each domain whic are named
1858 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
1859 * with L3 domain looks as below:
1860 * ./mon_data:
1861 * mon_L3_00
1862 * mon_L3_01
1863 * mon_L3_02
1864 * ...
1865 *
1866 * Each domain directory has one file per event:
1867 * ./mon_L3_00/:
1868 * llc_occupancy
1869 *
1870 */
1871static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1872 struct rdtgroup *prgrp,
1873 struct kernfs_node **dest_kn)
1874{
1875 struct rdt_resource *r;
1876 struct kernfs_node *kn;
1877 int ret;
1878
1879 /*
1880 * Create the mon_data directory first.
1881 */
1882 ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
1883 if (ret)
1884 return ret;
1885
1886 if (dest_kn)
1887 *dest_kn = kn;
1888
1889 /*
1890 * Create the subdirectories for each domain. Note that all events
1891 * in a domain like L3 are grouped into a resource whose domain is L3
1892 */
1893 for_each_mon_enabled_rdt_resource(r) {
1894 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
1895 if (ret)
1896 goto out_destroy;
1897 }
1898
1899 return 0;
1900
1901out_destroy:
1902 kernfs_remove(kn);
1903 return ret;
1904}
1905
95f0b77e
RC
1906/**
1907 * cbm_ensure_valid - Enforce validity on provided CBM
1908 * @_val: Candidate CBM
1909 * @r: RDT resource to which the CBM belongs
1910 *
1911 * The provided CBM represents all cache portions available for use. This
1912 * may be represented by a bitmap that does not consist of contiguous ones
1913 * and thus be an invalid CBM.
1914 * Here the provided CBM is forced to be a valid CBM by only considering
1915 * the first set of contiguous bits as valid and clearing all bits.
1916 * The intention here is to provide a valid default CBM with which a new
1917 * resource group is initialized. The user can follow this with a
1918 * modification to the CBM if the default does not satisfy the
1919 * requirements.
1920 */
1921static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
1922{
1923 /*
1924 * Convert the u32 _val to an unsigned long required by all the bit
1925 * operations within this function. No more than 32 bits of this
1926 * converted value can be accessed because all bit operations are
1927 * additionally provided with cbm_len that is initialized during
1928 * hardware enumeration using five bits from the EAX register and
1929 * thus never can exceed 32 bits.
1930 */
1931 unsigned long *val = (unsigned long *)_val;
1932 unsigned int cbm_len = r->cache.cbm_len;
1933 unsigned long first_bit, zero_bit;
1934
1935 if (*val == 0)
1936 return;
1937
1938 first_bit = find_first_bit(val, cbm_len);
1939 zero_bit = find_next_zero_bit(val, cbm_len, first_bit);
1940
1941 /* Clear any remaining bits to ensure contiguous region */
1942 bitmap_clear(val, zero_bit, cbm_len - zero_bit);
1943}
1944
1945/**
1946 * rdtgroup_init_alloc - Initialize the new RDT group's allocations
1947 *
1948 * A new RDT group is being created on an allocation capable (CAT)
1949 * supporting system. Set this group up to start off with all usable
1950 * allocations. That is, all shareable and unused bits.
1951 *
1952 * All-zero CBM is invalid. If there are no more shareable bits available
1953 * on any domain then the entire allocation will fail.
1954 */
1955static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
1956{
1957 u32 used_b = 0, unused_b = 0;
1958 u32 closid = rdtgrp->closid;
1959 struct rdt_resource *r;
1960 enum rdtgrp_mode mode;
1961 struct rdt_domain *d;
1962 int i, ret;
1963 u32 *ctrl;
1964
1965 for_each_alloc_enabled_rdt_resource(r) {
1966 list_for_each_entry(d, &r->domains, list) {
1967 d->have_new_ctrl = false;
1968 d->new_ctrl = r->cache.shareable_bits;
1969 used_b = r->cache.shareable_bits;
1970 ctrl = d->ctrl_val;
1971 for (i = 0; i < r->num_closid; i++, ctrl++) {
1972 if (closid_allocated(i) && i != closid) {
1973 mode = rdtgroup_mode_by_closid(i);
1974 used_b |= *ctrl;
1975 if (mode == RDT_MODE_SHAREABLE)
1976 d->new_ctrl |= *ctrl;
1977 }
1978 }
1979 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
1980 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
1981 d->new_ctrl |= unused_b;
1982 /*
1983 * Force the initial CBM to be valid, user can
1984 * modify the CBM based on system availability.
1985 */
1986 cbm_ensure_valid(&d->new_ctrl, r);
1987 if (bitmap_weight((unsigned long *) &d->new_ctrl,
1988 r->cache.cbm_len) <
1989 r->cache.min_cbm_bits) {
1990 rdt_last_cmd_printf("no space on %s:%d\n",
1991 r->name, d->id);
1992 return -ENOSPC;
1993 }
1994 d->have_new_ctrl = true;
1995 }
1996 }
1997
1998 for_each_alloc_enabled_rdt_resource(r) {
1999 ret = update_domains(r, rdtgrp->closid);
2000 if (ret < 0) {
2001 rdt_last_cmd_puts("failed to initialize allocations\n");
2002 return ret;
2003 }
2004 rdtgrp->mode = RDT_MODE_SHAREABLE;
2005 }
2006
2007 return 0;
2008}
2009
65b4f403
VS
2010static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2011 struct kernfs_node *prgrp_kn,
2012 const char *name, umode_t mode,
c7d9aac6 2013 enum rdt_group_type rtype, struct rdtgroup **r)
60cf5e10 2014{
65b4f403 2015 struct rdtgroup *prdtgrp, *rdtgrp;
60cf5e10 2016 struct kernfs_node *kn;
65b4f403
VS
2017 uint files = 0;
2018 int ret;
60cf5e10 2019
65b4f403 2020 prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
cfd0f34e 2021 rdt_last_cmd_clear();
65b4f403 2022 if (!prdtgrp) {
60cf5e10 2023 ret = -ENODEV;
cfd0f34e 2024 rdt_last_cmd_puts("directory was removed\n");
60cf5e10
FY
2025 goto out_unlock;
2026 }
2027
60cf5e10
FY
2028 /* allocate the rdtgroup. */
2029 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2030 if (!rdtgrp) {
2031 ret = -ENOSPC;
cfd0f34e 2032 rdt_last_cmd_puts("kernel out of memory\n");
65b4f403 2033 goto out_unlock;
60cf5e10 2034 }
65b4f403 2035 *r = rdtgrp;
c7d9aac6
VS
2036 rdtgrp->mon.parent = prdtgrp;
2037 rdtgrp->type = rtype;
2038 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
60cf5e10
FY
2039
2040 /* kernfs creates the directory for rdtgrp */
65b4f403 2041 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
60cf5e10
FY
2042 if (IS_ERR(kn)) {
2043 ret = PTR_ERR(kn);
cfd0f34e 2044 rdt_last_cmd_puts("kernfs create error\n");
65b4f403 2045 goto out_free_rgrp;
60cf5e10
FY
2046 }
2047 rdtgrp->kn = kn;
2048
2049 /*
2050 * kernfs_remove() will drop the reference count on "kn" which
2051 * will free it. But we still need it to stick around for the
2052 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2053 * here, which will be dropped inside rdtgroup_kn_unlock().
2054 */
2055 kernfs_get(kn);
2056
2057 ret = rdtgroup_kn_set_ugid(kn);
cfd0f34e
TL
2058 if (ret) {
2059 rdt_last_cmd_puts("kernfs perm error\n");
60cf5e10 2060 goto out_destroy;
cfd0f34e 2061 }
60cf5e10 2062
c7d9aac6 2063 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
65b4f403 2064 ret = rdtgroup_add_files(kn, files);
cfd0f34e
TL
2065 if (ret) {
2066 rdt_last_cmd_puts("kernfs fill error\n");
12e0110c 2067 goto out_destroy;
cfd0f34e 2068 }
12e0110c 2069
c7d9aac6
VS
2070 if (rdt_mon_capable) {
2071 ret = alloc_rmid();
cfd0f34e
TL
2072 if (ret < 0) {
2073 rdt_last_cmd_puts("out of RMIDs\n");
c7d9aac6 2074 goto out_destroy;
cfd0f34e 2075 }
c7d9aac6 2076 rdtgrp->mon.rmid = ret;
d89b7379
VS
2077
2078 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
cfd0f34e
TL
2079 if (ret) {
2080 rdt_last_cmd_puts("kernfs subdir error\n");
d89b7379 2081 goto out_idfree;
cfd0f34e 2082 }
c7d9aac6 2083 }
60cf5e10
FY
2084 kernfs_activate(kn);
2085
65b4f403
VS
2086 /*
2087 * The caller unlocks the prgrp_kn upon success.
2088 */
2089 return 0;
60cf5e10 2090
d89b7379
VS
2091out_idfree:
2092 free_rmid(rdtgrp->mon.rmid);
60cf5e10
FY
2093out_destroy:
2094 kernfs_remove(rdtgrp->kn);
65b4f403 2095out_free_rgrp:
60cf5e10 2096 kfree(rdtgrp);
60cf5e10 2097out_unlock:
65b4f403
VS
2098 rdtgroup_kn_unlock(prgrp_kn);
2099 return ret;
2100}
2101
2102static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2103{
2104 kernfs_remove(rgrp->kn);
c7d9aac6 2105 free_rmid(rgrp->mon.rmid);
65b4f403
VS
2106 kfree(rgrp);
2107}
2108
c7d9aac6
VS
2109/*
2110 * Create a monitor group under "mon_groups" directory of a control
2111 * and monitor group(ctrl_mon). This is a resource group
2112 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2113 */
2114static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2115 struct kernfs_node *prgrp_kn,
2116 const char *name,
2117 umode_t mode)
2118{
2119 struct rdtgroup *rdtgrp, *prgrp;
2120 int ret;
2121
2122 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2123 &rdtgrp);
2124 if (ret)
2125 return ret;
2126
2127 prgrp = rdtgrp->mon.parent;
2128 rdtgrp->closid = prgrp->closid;
2129
2130 /*
2131 * Add the rdtgrp to the list of rdtgrps the parent
2132 * ctrl_mon group has to track.
2133 */
2134 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2135
2136 rdtgroup_kn_unlock(prgrp_kn);
2137 return ret;
2138}
2139
65b4f403
VS
2140/*
2141 * These are rdtgroups created under the root directory. Can be used
c7d9aac6 2142 * to allocate and monitor resources.
65b4f403 2143 */
c7d9aac6
VS
2144static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2145 struct kernfs_node *prgrp_kn,
2146 const char *name, umode_t mode)
65b4f403
VS
2147{
2148 struct rdtgroup *rdtgrp;
2149 struct kernfs_node *kn;
2150 u32 closid;
2151 int ret;
2152
c7d9aac6
VS
2153 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2154 &rdtgrp);
65b4f403
VS
2155 if (ret)
2156 return ret;
2157
2158 kn = rdtgrp->kn;
2159 ret = closid_alloc();
cfd0f34e
TL
2160 if (ret < 0) {
2161 rdt_last_cmd_puts("out of CLOSIDs\n");
65b4f403 2162 goto out_common_fail;
cfd0f34e 2163 }
65b4f403 2164 closid = ret;
36e74d35 2165 ret = 0;
65b4f403
VS
2166
2167 rdtgrp->closid = closid;
95f0b77e
RC
2168 ret = rdtgroup_init_alloc(rdtgrp);
2169 if (ret < 0)
2170 goto out_id_free;
2171
65b4f403
VS
2172 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2173
c7d9aac6
VS
2174 if (rdt_mon_capable) {
2175 /*
2176 * Create an empty mon_groups directory to hold the subset
2177 * of tasks and cpus to monitor.
2178 */
2179 ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
cfd0f34e
TL
2180 if (ret) {
2181 rdt_last_cmd_puts("kernfs subdir error\n");
95f0b77e 2182 goto out_del_list;
cfd0f34e 2183 }
c7d9aac6
VS
2184 }
2185
65b4f403
VS
2186 goto out_unlock;
2187
95f0b77e
RC
2188out_del_list:
2189 list_del(&rdtgrp->rdtgroup_list);
c7d9aac6
VS
2190out_id_free:
2191 closid_free(closid);
65b4f403
VS
2192out_common_fail:
2193 mkdir_rdt_prepare_clean(rdtgrp);
2194out_unlock:
2195 rdtgroup_kn_unlock(prgrp_kn);
60cf5e10
FY
2196 return ret;
2197}
2198
c7d9aac6
VS
2199/*
2200 * We allow creating mon groups only with in a directory called "mon_groups"
2201 * which is present in every ctrl_mon group. Check if this is a valid
2202 * "mon_groups" directory.
2203 *
2204 * 1. The directory should be named "mon_groups".
2205 * 2. The mon group itself should "not" be named "mon_groups".
2206 * This makes sure "mon_groups" directory always has a ctrl_mon group
2207 * as parent.
2208 */
2209static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2210{
2211 return (!strcmp(kn->name, "mon_groups") &&
2212 strcmp(name, "mon_groups"));
2213}
2214
65b4f403
VS
2215static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2216 umode_t mode)
2217{
2218 /* Do not accept '\n' to avoid unparsable situation. */
2219 if (strchr(name, '\n'))
2220 return -EINVAL;
2221
2222 /*
2223 * If the parent directory is the root directory and RDT
c7d9aac6
VS
2224 * allocation is supported, add a control and monitoring
2225 * subdirectory
65b4f403
VS
2226 */
2227 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
c7d9aac6
VS
2228 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2229
2230 /*
2231 * If RDT monitoring is supported and the parent directory is a valid
2232 * "mon_groups" directory, add a monitoring subdirectory.
2233 */
2234 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2235 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
65b4f403
VS
2236
2237 return -EPERM;
2238}
2239
f3cbeaca
VS
2240static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2241 cpumask_var_t tmpmask)
2242{
2243 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2244 int cpu;
2245
2246 /* Give any tasks back to the parent group */
2247 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2248
2249 /* Update per cpu rmid of the moved CPUs first */
2250 for_each_cpu(cpu, &rdtgrp->cpu_mask)
a9110b55 2251 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
f3cbeaca
VS
2252 /*
2253 * Update the MSR on moved CPUs and CPUs which have moved
2254 * task running on them.
2255 */
2256 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2257 update_closid_rmid(tmpmask, NULL);
2258
2259 rdtgrp->flags = RDT_DELETED;
2260 free_rmid(rdtgrp->mon.rmid);
2261
2262 /*
2263 * Remove the rdtgrp from the parent ctrl_mon group's list
2264 */
2265 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2266 list_del(&rdtgrp->mon.crdtgrp_list);
2267
2268 /*
2269 * one extra hold on this, will drop when we kfree(rdtgrp)
2270 * in rdtgroup_kn_unlock()
2271 */
2272 kernfs_get(kn);
2273 kernfs_remove(rdtgrp->kn);
2274
2275 return 0;
2276}
2277
f9049547
VS
2278static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2279 cpumask_var_t tmpmask)
60cf5e10 2280{
f9049547 2281 int cpu;
60cf5e10 2282
e02737d5 2283 /* Give any tasks back to the default group */
0efc89be 2284 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
e02737d5 2285
12e0110c
TL
2286 /* Give any CPUs back to the default group */
2287 cpumask_or(&rdtgroup_default.cpu_mask,
2288 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
0efc89be 2289
f3cbeaca
VS
2290 /* Update per cpu closid and rmid of the moved CPUs first */
2291 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
a9110b55
VS
2292 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2293 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
f3cbeaca
VS
2294 }
2295
0efc89be
FY
2296 /*
2297 * Update the MSR on moved CPUs and CPUs which have moved
2298 * task running on them.
2299 */
2300 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
a9fcf862 2301 update_closid_rmid(tmpmask, NULL);
12e0110c 2302
60cf5e10
FY
2303 rdtgrp->flags = RDT_DELETED;
2304 closid_free(rdtgrp->closid);
f3cbeaca
VS
2305 free_rmid(rdtgrp->mon.rmid);
2306
2307 /*
2308 * Free all the child monitor group rmids.
2309 */
2310 free_all_child_rdtgrp(rdtgrp);
2311
60cf5e10
FY
2312 list_del(&rdtgrp->rdtgroup_list);
2313
2314 /*
2315 * one extra hold on this, will drop when we kfree(rdtgrp)
2316 * in rdtgroup_kn_unlock()
2317 */
2318 kernfs_get(kn);
2319 kernfs_remove(rdtgrp->kn);
f9049547
VS
2320
2321 return 0;
2322}
2323
2324static int rdtgroup_rmdir(struct kernfs_node *kn)
2325{
2326 struct kernfs_node *parent_kn = kn->parent;
2327 struct rdtgroup *rdtgrp;
2328 cpumask_var_t tmpmask;
2329 int ret = 0;
2330
2331 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2332 return -ENOMEM;
2333
2334 rdtgrp = rdtgroup_kn_lock_live(kn);
2335 if (!rdtgrp) {
2336 ret = -EPERM;
2337 goto out;
2338 }
2339
2340 /*
2341 * If the rdtgroup is a ctrl_mon group and parent directory
f3cbeaca
VS
2342 * is the root directory, remove the ctrl_mon group.
2343 *
2344 * If the rdtgroup is a mon group and parent directory
2345 * is a valid "mon_groups" directory, remove the mon group.
f9049547
VS
2346 */
2347 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn)
2348 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
f3cbeaca
VS
2349 else if (rdtgrp->type == RDTMON_GROUP &&
2350 is_mon_groups(parent_kn, kn->name))
2351 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
f9049547
VS
2352 else
2353 ret = -EPERM;
2354
0efc89be 2355out:
60cf5e10 2356 rdtgroup_kn_unlock(kn);
0efc89be
FY
2357 free_cpumask_var(tmpmask);
2358 return ret;
60cf5e10
FY
2359}
2360
76ae054c
SL
2361static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
2362{
1b5c0b75 2363 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
76ae054c
SL
2364 seq_puts(seq, ",cdp");
2365 return 0;
2366}
2367
5ff193fb 2368static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
76ae054c
SL
2369 .mkdir = rdtgroup_mkdir,
2370 .rmdir = rdtgroup_rmdir,
2371 .show_options = rdtgroup_show_options,
5ff193fb
FY
2372};
2373
2374static int __init rdtgroup_setup_root(void)
2375{
12e0110c
TL
2376 int ret;
2377
5ff193fb
FY
2378 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
2379 KERNFS_ROOT_CREATE_DEACTIVATED,
2380 &rdtgroup_default);
2381 if (IS_ERR(rdt_root))
2382 return PTR_ERR(rdt_root);
2383
2384 mutex_lock(&rdtgroup_mutex);
2385
2386 rdtgroup_default.closid = 0;
c7d9aac6
VS
2387 rdtgroup_default.mon.rmid = 0;
2388 rdtgroup_default.type = RDTCTRL_GROUP;
2389 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
2390
5ff193fb
FY
2391 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
2392
5dc1d5c6 2393 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
12e0110c
TL
2394 if (ret) {
2395 kernfs_destroy_root(rdt_root);
2396 goto out;
2397 }
2398
5ff193fb
FY
2399 rdtgroup_default.kn = rdt_root->kn;
2400 kernfs_activate(rdtgroup_default.kn);
2401
12e0110c 2402out:
5ff193fb
FY
2403 mutex_unlock(&rdtgroup_mutex);
2404
12e0110c 2405 return ret;
5ff193fb
FY
2406}
2407
2408/*
2409 * rdtgroup_init - rdtgroup initialization
2410 *
2411 * Setup resctrl file system including set up root, create mount point,
2412 * register rdtgroup filesystem, and initialize files under root directory.
2413 *
2414 * Return: 0 on success or -errno
2415 */
2416int __init rdtgroup_init(void)
2417{
2418 int ret = 0;
2419
9b3a7fd0
TL
2420 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
2421 sizeof(last_cmd_status_buf));
2422
5ff193fb
FY
2423 ret = rdtgroup_setup_root();
2424 if (ret)
2425 return ret;
2426
2427 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
2428 if (ret)
2429 goto cleanup_root;
2430
2431 ret = register_filesystem(&rdt_fs_type);
2432 if (ret)
2433 goto cleanup_mountpoint;
2434
2435 return 0;
2436
2437cleanup_mountpoint:
2438 sysfs_remove_mount_point(fs_kobj, "resctrl");
2439cleanup_root:
2440 kernfs_destroy_root(rdt_root);
2441
2442 return ret;
2443}