x86/intel_rdt/mba_sc: Prepare for feedback loop
[linux-2.6-block.git] / arch / x86 / kernel / cpu / intel_rdt_monitor.c
CommitLineData
6a445edc
VS
1/*
2 * Resource Director Technology(RDT)
3 * - Monitoring code
4 *
5 * Copyright (C) 2017 Intel Corporation
6 *
7 * Author:
8 * Vikas Shivappa <vikas.shivappa@intel.com>
9 *
10 * This replaces the cqm.c based on perf but we reuse a lot of
11 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2, as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * More information about RDT be found in the Intel (R) x86 Architecture
23 * Software Developer Manual June 2016, volume 3, section 17.17.
24 */
25
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <asm/cpu_device_id.h>
29#include "intel_rdt.h"
30
edf6fa1c
VS
31#define MSR_IA32_QM_CTR 0x0c8e
32#define MSR_IA32_QM_EVTSEL 0x0c8d
33
6a445edc
VS
34struct rmid_entry {
35 u32 rmid;
24247aee 36 int busy;
6a445edc
VS
37 struct list_head list;
38};
39
40/**
41 * @rmid_free_lru A least recently used list of free RMIDs
42 * These RMIDs are guaranteed to have an occupancy less than the
43 * threshold occupancy
44 */
45static LIST_HEAD(rmid_free_lru);
46
47/**
24247aee 48 * @rmid_limbo_count count of currently unused but (potentially)
6a445edc 49 * dirty RMIDs.
24247aee 50 * This counts RMIDs that no one is currently using but that
6a445edc
VS
51 * may have a occupancy value > intel_cqm_threshold. User can change
52 * the threshold occupancy value.
53 */
5fd88b60 54static unsigned int rmid_limbo_count;
6a445edc
VS
55
56/**
57 * @rmid_entry - The entry in the limbo and free lists.
58 */
59static struct rmid_entry *rmid_ptrs;
60
61/*
62 * Global boolean for rdt_monitor which is true if any
63 * resource monitoring is enabled.
64 */
65bool rdt_mon_capable;
66
67/*
68 * Global to indicate which monitoring events are enabled.
69 */
70unsigned int rdt_mon_features;
71
72/*
73 * This is the threshold cache occupancy at which we will consider an
74 * RMID available for re-allocation.
75 */
76unsigned int intel_cqm_threshold;
77
78static inline struct rmid_entry *__rmid_entry(u32 rmid)
79{
80 struct rmid_entry *entry;
81
82 entry = &rmid_ptrs[rmid];
83 WARN_ON(entry->rmid != rmid);
84
85 return entry;
86}
87
edf6fa1c
VS
88static u64 __rmid_read(u32 rmid, u32 eventid)
89{
90 u64 val;
91
92 /*
93 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
94 * with a valid event code for supported resource type and the bits
95 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
96 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
97 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
98 * are error bits.
99 */
100 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
101 rdmsrl(MSR_IA32_QM_CTR, val);
102
103 return val;
104}
105
24247aee 106static bool rmid_dirty(struct rmid_entry *entry)
edf6fa1c 107{
24247aee 108 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
edf6fa1c 109
24247aee 110 return val >= intel_cqm_threshold;
edf6fa1c
VS
111}
112
113/*
24247aee
VS
114 * Check the RMIDs that are marked as busy for this domain. If the
115 * reported LLC occupancy is below the threshold clear the busy bit and
116 * decrement the count. If the busy count gets to zero on an RMID, we
117 * free the RMID
edf6fa1c 118 */
24247aee 119void __check_limbo(struct rdt_domain *d, bool force_free)
edf6fa1c 120{
24247aee 121 struct rmid_entry *entry;
edf6fa1c 122 struct rdt_resource *r;
24247aee 123 u32 crmid = 1, nrmid;
edf6fa1c
VS
124
125 r = &rdt_resources_all[RDT_RESOURCE_L3];
126
edf6fa1c 127 /*
24247aee
VS
128 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
129 * are marked as busy for occupancy < threshold. If the occupancy
130 * is less than the threshold decrement the busy counter of the
131 * RMID and move it to the free list when the counter reaches 0.
edf6fa1c 132 */
24247aee
VS
133 for (;;) {
134 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
135 if (nrmid >= r->num_rmid)
136 break;
137
138 entry = __rmid_entry(nrmid);
139 if (force_free || !rmid_dirty(entry)) {
140 clear_bit(entry->rmid, d->rmid_busy_llc);
141 if (!--entry->busy) {
142 rmid_limbo_count--;
edf6fa1c 143 list_add_tail(&entry->list, &rmid_free_lru);
edf6fa1c
VS
144 }
145 }
24247aee 146 crmid = nrmid + 1;
edf6fa1c 147 }
24247aee 148}
edf6fa1c 149
24247aee
VS
150bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
151{
152 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
edf6fa1c
VS
153}
154
155/*
156 * As of now the RMIDs allocation is global.
157 * However we keep track of which packages the RMIDs
158 * are used to optimize the limbo list management.
159 */
160int alloc_rmid(void)
161{
162 struct rmid_entry *entry;
edf6fa1c
VS
163
164 lockdep_assert_held(&rdtgroup_mutex);
165
24247aee
VS
166 if (list_empty(&rmid_free_lru))
167 return rmid_limbo_count ? -EBUSY : -ENOSPC;
edf6fa1c
VS
168
169 entry = list_first_entry(&rmid_free_lru,
170 struct rmid_entry, list);
171 list_del(&entry->list);
172
173 return entry->rmid;
174}
175
176static void add_rmid_to_limbo(struct rmid_entry *entry)
177{
178 struct rdt_resource *r;
179 struct rdt_domain *d;
24247aee 180 int cpu;
edf6fa1c
VS
181 u64 val;
182
183 r = &rdt_resources_all[RDT_RESOURCE_L3];
184
24247aee 185 entry->busy = 0;
edf6fa1c
VS
186 cpu = get_cpu();
187 list_for_each_entry(d, &r->domains, list) {
188 if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
189 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
190 if (val <= intel_cqm_threshold)
191 continue;
192 }
24247aee
VS
193
194 /*
195 * For the first limbo RMID in the domain,
196 * setup up the limbo worker.
197 */
198 if (!has_busy_rmid(r, d))
199 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
edf6fa1c 200 set_bit(entry->rmid, d->rmid_busy_llc);
24247aee 201 entry->busy++;
edf6fa1c
VS
202 }
203 put_cpu();
204
24247aee
VS
205 if (entry->busy)
206 rmid_limbo_count++;
207 else
edf6fa1c 208 list_add_tail(&entry->list, &rmid_free_lru);
edf6fa1c
VS
209}
210
211void free_rmid(u32 rmid)
212{
213 struct rmid_entry *entry;
214
215 if (!rmid)
216 return;
217
218 lockdep_assert_held(&rdtgroup_mutex);
219
220 entry = __rmid_entry(rmid);
221
222 if (is_llc_occupancy_enabled())
223 add_rmid_to_limbo(entry);
224 else
225 list_add_tail(&entry->list, &rmid_free_lru);
226}
227
ba0f26d8
VS
228static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
229{
230 u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
231
232 chunks = (cur_msr << shift) - (prev_msr << shift);
233 return chunks >>= shift;
234}
235
d89b7379
VS
236static int __mon_event_count(u32 rmid, struct rmid_read *rr)
237{
9f52425b 238 struct mbm_state *m;
ba0f26d8 239 u64 chunks, tval;
d89b7379
VS
240
241 tval = __rmid_read(rmid, rr->evtid);
242 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
243 rr->val = tval;
244 return -EINVAL;
245 }
246 switch (rr->evtid) {
247 case QOS_L3_OCCUP_EVENT_ID:
248 rr->val += tval;
249 return 0;
9f52425b
TL
250 case QOS_L3_MBM_TOTAL_EVENT_ID:
251 m = &rr->d->mbm_total[rmid];
252 break;
253 case QOS_L3_MBM_LOCAL_EVENT_ID:
254 m = &rr->d->mbm_local[rmid];
255 break;
d89b7379
VS
256 default:
257 /*
258 * Code would never reach here because
259 * an invalid event id would fail the __rmid_read.
260 */
261 return -EINVAL;
262 }
a4de1dfd
VS
263
264 if (rr->first) {
ba0f26d8
VS
265 memset(m, 0, sizeof(struct mbm_state));
266 m->prev_bw_msr = m->prev_msr = tval;
a4de1dfd
VS
267 return 0;
268 }
269
ba0f26d8 270 chunks = mbm_overflow_count(m->prev_msr, tval);
9f52425b
TL
271 m->chunks += chunks;
272 m->prev_msr = tval;
273
274 rr->val += m->chunks;
275 return 0;
d89b7379
VS
276}
277
ba0f26d8
VS
278/*
279 * Supporting function to calculate the memory bandwidth
280 * and delta bandwidth in MBps.
281 */
282static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
283{
284 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
285 struct mbm_state *m = &rr->d->mbm_local[rmid];
286 u64 tval, cur_bw, chunks;
287
288 tval = __rmid_read(rmid, rr->evtid);
289 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
290 return;
291
292 chunks = mbm_overflow_count(m->prev_bw_msr, tval);
293 m->chunks_bw += chunks;
294 m->chunks = m->chunks_bw;
295 cur_bw = (chunks * r->mon_scale) >> 20;
296
297 if (m->delta_comp)
298 m->delta_bw = abs(cur_bw - m->prev_bw);
299 m->delta_comp = false;
300 m->prev_bw = cur_bw;
301 m->prev_bw_msr = tval;
302}
303
d89b7379
VS
304/*
305 * This is called via IPI to read the CQM/MBM counters
306 * on a domain.
307 */
308void mon_event_count(void *info)
309{
310 struct rdtgroup *rdtgrp, *entry;
311 struct rmid_read *rr = info;
312 struct list_head *head;
313
314 rdtgrp = rr->rgrp;
315
316 if (__mon_event_count(rdtgrp->mon.rmid, rr))
317 return;
318
319 /*
320 * For Ctrl groups read data from child monitor groups.
321 */
322 head = &rdtgrp->mon.crdtgrp_list;
323
324 if (rdtgrp->type == RDTCTRL_GROUP) {
325 list_for_each_entry(entry, head, mon.crdtgrp_list) {
326 if (__mon_event_count(entry->mon.rmid, rr))
327 return;
328 }
329 }
330}
4af4a88e 331
e3302683
VS
332static void mbm_update(struct rdt_domain *d, int rmid)
333{
334 struct rmid_read rr;
335
336 rr.first = false;
337 rr.d = d;
338
339 /*
340 * This is protected from concurrent reads from user
341 * as both the user and we hold the global mutex.
342 */
343 if (is_mbm_total_enabled()) {
344 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
345 __mon_event_count(rmid, &rr);
346 }
347 if (is_mbm_local_enabled()) {
348 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
349 __mon_event_count(rmid, &rr);
350 }
351}
352
24247aee
VS
353/*
354 * Handler to scan the limbo list and move the RMIDs
355 * to free list whose occupancy < threshold_occupancy.
356 */
357void cqm_handle_limbo(struct work_struct *work)
358{
359 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
360 int cpu = smp_processor_id();
361 struct rdt_resource *r;
362 struct rdt_domain *d;
363
364 mutex_lock(&rdtgroup_mutex);
365
366 r = &rdt_resources_all[RDT_RESOURCE_L3];
367 d = get_domain_from_cpu(cpu, r);
368
369 if (!d) {
370 pr_warn_once("Failure to get domain for limbo worker\n");
371 goto out_unlock;
372 }
373
374 __check_limbo(d, false);
375
376 if (has_busy_rmid(r, d))
377 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
378
379out_unlock:
380 mutex_unlock(&rdtgroup_mutex);
381}
382
383void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
384{
385 unsigned long delay = msecs_to_jiffies(delay_ms);
386 struct rdt_resource *r;
387 int cpu;
388
389 r = &rdt_resources_all[RDT_RESOURCE_L3];
390
391 cpu = cpumask_any(&dom->cpu_mask);
392 dom->cqm_work_cpu = cpu;
393
394 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
395}
396
e3302683
VS
397void mbm_handle_overflow(struct work_struct *work)
398{
399 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
400 struct rdtgroup *prgrp, *crgrp;
401 int cpu = smp_processor_id();
402 struct list_head *head;
403 struct rdt_domain *d;
404
405 mutex_lock(&rdtgroup_mutex);
406
407 if (!static_branch_likely(&rdt_enable_key))
408 goto out_unlock;
409
410 d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
411 if (!d)
412 goto out_unlock;
413
414 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
415 mbm_update(d, prgrp->mon.rmid);
416
417 head = &prgrp->mon.crdtgrp_list;
418 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
419 mbm_update(d, crgrp->mon.rmid);
420 }
421
422 schedule_delayed_work_on(cpu, &d->mbm_over, delay);
24247aee 423
e3302683
VS
424out_unlock:
425 mutex_unlock(&rdtgroup_mutex);
426}
427
bbc4615e 428void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
e3302683 429{
bbc4615e 430 unsigned long delay = msecs_to_jiffies(delay_ms);
e3302683
VS
431 int cpu;
432
433 if (!static_branch_likely(&rdt_enable_key))
434 return;
435 cpu = cpumask_any(&dom->cpu_mask);
436 dom->mbm_work_cpu = cpu;
437 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
438}
439
6a445edc
VS
440static int dom_data_init(struct rdt_resource *r)
441{
442 struct rmid_entry *entry = NULL;
443 int i, nr_rmids;
444
445 nr_rmids = r->num_rmid;
446 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
447 if (!rmid_ptrs)
448 return -ENOMEM;
449
450 for (i = 0; i < nr_rmids; i++) {
451 entry = &rmid_ptrs[i];
452 INIT_LIST_HEAD(&entry->list);
453
454 entry->rmid = i;
455 list_add_tail(&entry->list, &rmid_free_lru);
456 }
457
458 /*
459 * RMID 0 is special and is always allocated. It's used for all
460 * tasks that are not monitored.
461 */
462 entry = __rmid_entry(0);
463 list_del(&entry->list);
464
465 return 0;
466}
467
468static struct mon_evt llc_occupancy_event = {
469 .name = "llc_occupancy",
470 .evtid = QOS_L3_OCCUP_EVENT_ID,
471};
472
9f52425b
TL
473static struct mon_evt mbm_total_event = {
474 .name = "mbm_total_bytes",
475 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
476};
477
478static struct mon_evt mbm_local_event = {
479 .name = "mbm_local_bytes",
480 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
481};
482
6a445edc
VS
483/*
484 * Initialize the event list for the resource.
485 *
486 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
487 * because as per the SDM the total and local memory bandwidth
488 * are enumerated as part of L3 monitoring.
489 */
490static void l3_mon_evt_init(struct rdt_resource *r)
491{
492 INIT_LIST_HEAD(&r->evt_list);
493
494 if (is_llc_occupancy_enabled())
495 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
9f52425b
TL
496 if (is_mbm_total_enabled())
497 list_add_tail(&mbm_total_event.list, &r->evt_list);
498 if (is_mbm_local_enabled())
499 list_add_tail(&mbm_local_event.list, &r->evt_list);
6a445edc
VS
500}
501
502int rdt_get_mon_l3_config(struct rdt_resource *r)
503{
504 int ret;
505
506 r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
507 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
508
509 /*
510 * A reasonable upper limit on the max threshold is the number
511 * of lines tagged per RMID if all RMIDs have the same number of
512 * lines tagged in the LLC.
513 *
514 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
515 */
516 intel_cqm_threshold = boot_cpu_data.x86_cache_size * 1024 / r->num_rmid;
517
518 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
519 intel_cqm_threshold /= r->mon_scale;
520
521 ret = dom_data_init(r);
522 if (ret)
523 return ret;
524
525 l3_mon_evt_init(r);
526
527 r->mon_capable = true;
528 r->mon_enabled = true;
529
530 return 0;
531}