x86: use cpumask_var_t in acpi/boot.c
[linux-block.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
fe27cb35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
f3f47a67 36#include <linux/ftrace.h>
1da177e4
LT
37
38#include <linux/acpi.h>
39#include <acpi/processor.h>
40
fe27cb35 41#include <asm/io.h>
dde9f7ba 42#include <asm/msr.h>
fe27cb35
VP
43#include <asm/processor.h>
44#include <asm/cpufeature.h>
45#include <asm/delay.h>
46#include <asm/uaccess.h>
47
1da177e4
LT
48#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
dde9f7ba
VP
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
dfde5d62 61#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 62
fe27cb35 63struct acpi_cpufreq_data {
64be7eed
VP
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
dfde5d62 66 unsigned int max_freq;
64be7eed
VP
67 unsigned int resume;
68 unsigned int cpu_feature;
1da177e4
LT
69};
70
ea348f3e 71static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
50109292
FY
73/* acpi_perf_data is a pointer to percpu data. */
74static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
75
76static struct cpufreq_driver acpi_cpufreq_driver;
77
d395bf12
VP
78static unsigned int acpi_pstate_strict;
79
dde9f7ba
VP
80static int check_est_cpu(unsigned int cpuid)
81{
92cb7612 82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
83
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 85 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
86 return 0;
87
88 return 1;
89}
90
dde9f7ba 91static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 92{
64be7eed
VP
93 struct acpi_processor_performance *perf;
94 int i;
fe27cb35
VP
95
96 perf = data->acpi_data;
97
95dd7227 98 for (i=0; i<perf->state_count; i++) {
fe27cb35
VP
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
101 }
102 return 0;
103}
104
dde9f7ba
VP
105static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
106{
107 int i;
a6f6e6e6 108 struct acpi_processor_performance *perf;
dde9f7ba
VP
109
110 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
111 perf = data->acpi_data;
112
95dd7227 113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 114 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
115 return data->freq_table[i].frequency;
116 }
117 return data->freq_table[0].frequency;
118}
119
dde9f7ba
VP
120static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
121{
122 switch (data->cpu_feature) {
64be7eed 123 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 124 return extract_msr(val, data);
64be7eed 125 case SYSTEM_IO_CAPABLE:
dde9f7ba 126 return extract_io(val, data);
64be7eed 127 default:
dde9f7ba
VP
128 return 0;
129 }
130}
131
dde9f7ba
VP
132struct msr_addr {
133 u32 reg;
134};
135
fe27cb35
VP
136struct io_addr {
137 u16 port;
138 u8 bit_width;
139};
140
dde9f7ba
VP
141typedef union {
142 struct msr_addr msr;
143 struct io_addr io;
144} drv_addr_union;
145
fe27cb35 146struct drv_cmd {
dde9f7ba 147 unsigned int type;
fe27cb35 148 cpumask_t mask;
dde9f7ba 149 drv_addr_union addr;
fe27cb35
VP
150 u32 val;
151};
152
153static void do_drv_read(struct drv_cmd *cmd)
1da177e4 154{
dde9f7ba
VP
155 u32 h;
156
157 switch (cmd->type) {
64be7eed 158 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
159 rdmsr(cmd->addr.msr.reg, cmd->val, h);
160 break;
64be7eed 161 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
162 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
163 &cmd->val,
164 (u32)cmd->addr.io.bit_width);
dde9f7ba 165 break;
64be7eed 166 default:
dde9f7ba
VP
167 break;
168 }
fe27cb35 169}
1da177e4 170
fe27cb35
VP
171static void do_drv_write(struct drv_cmd *cmd)
172{
13424f65 173 u32 lo, hi;
dde9f7ba
VP
174
175 switch (cmd->type) {
64be7eed 176 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
177 rdmsr(cmd->addr.msr.reg, lo, hi);
178 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 180 break;
64be7eed 181 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
182 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183 cmd->val,
184 (u32)cmd->addr.io.bit_width);
dde9f7ba 185 break;
64be7eed 186 default:
dde9f7ba
VP
187 break;
188 }
fe27cb35 189}
1da177e4 190
95dd7227 191static void drv_read(struct drv_cmd *cmd)
fe27cb35 192{
64be7eed 193 cpumask_t saved_mask = current->cpus_allowed;
fe27cb35
VP
194 cmd->val = 0;
195
fc0e4748 196 set_cpus_allowed_ptr(current, &cmd->mask);
fe27cb35 197 do_drv_read(cmd);
fc0e4748 198 set_cpus_allowed_ptr(current, &saved_mask);
fe27cb35
VP
199}
200
201static void drv_write(struct drv_cmd *cmd)
202{
64be7eed
VP
203 cpumask_t saved_mask = current->cpus_allowed;
204 unsigned int i;
fe27cb35 205
334ef7a7 206 for_each_cpu_mask_nr(i, cmd->mask) {
0bc3cc03 207 set_cpus_allowed_ptr(current, &cpumask_of_cpu(i));
fe27cb35 208 do_drv_write(cmd);
1da177e4
LT
209 }
210
fc0e4748 211 set_cpus_allowed_ptr(current, &saved_mask);
fe27cb35
VP
212 return;
213}
1da177e4 214
fc0e4748 215static u32 get_cur_val(const cpumask_t *mask)
fe27cb35 216{
64be7eed
VP
217 struct acpi_processor_performance *perf;
218 struct drv_cmd cmd;
1da177e4 219
fc0e4748 220 if (unlikely(cpus_empty(*mask)))
fe27cb35 221 return 0;
1da177e4 222
fc0e4748 223 switch (per_cpu(drv_data, first_cpu(*mask))->cpu_feature) {
dde9f7ba
VP
224 case SYSTEM_INTEL_MSR_CAPABLE:
225 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
226 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
227 break;
228 case SYSTEM_IO_CAPABLE:
229 cmd.type = SYSTEM_IO_CAPABLE;
fc0e4748 230 perf = per_cpu(drv_data, first_cpu(*mask))->acpi_data;
dde9f7ba
VP
231 cmd.addr.io.port = perf->control_register.address;
232 cmd.addr.io.bit_width = perf->control_register.bit_width;
233 break;
234 default:
235 return 0;
236 }
237
fc0e4748 238 cmd.mask = *mask;
1da177e4 239
fe27cb35 240 drv_read(&cmd);
1da177e4 241
fe27cb35
VP
242 dprintk("get_cur_val = %u\n", cmd.val);
243
244 return cmd.val;
245}
1da177e4 246
dfde5d62
VP
247/*
248 * Return the measured active (C0) frequency on this CPU since last call
249 * to this function.
250 * Input: cpu number
251 * Return: Average CPU frequency in terms of max frequency (zero on error)
252 *
253 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
254 * over a period of time, while CPU is in C0 state.
255 * IA32_MPERF counts at the rate of max advertised frequency
256 * IA32_APERF counts at the rate of actual CPU frequency
257 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
258 * no meaning should be associated with absolute values of these MSRs.
259 */
bf0b90e3 260static unsigned int get_measured_perf(struct cpufreq_policy *policy,
261 unsigned int cpu)
dfde5d62
VP
262{
263 union {
264 struct {
265 u32 lo;
266 u32 hi;
267 } split;
268 u64 whole;
269 } aperf_cur, mperf_cur;
270
271 cpumask_t saved_mask;
272 unsigned int perf_percent;
273 unsigned int retval;
274
275 saved_mask = current->cpus_allowed;
0bc3cc03 276 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
dfde5d62
VP
277 if (get_cpu() != cpu) {
278 /* We were not able to run on requested processor */
279 put_cpu();
280 return 0;
281 }
282
283 rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
284 rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
285
286 wrmsr(MSR_IA32_APERF, 0,0);
287 wrmsr(MSR_IA32_MPERF, 0,0);
288
289#ifdef __i386__
290 /*
291 * We dont want to do 64 bit divide with 32 bit kernel
292 * Get an approximate value. Return failure in case we cannot get
293 * an approximate value.
294 */
295 if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
296 int shift_count;
297 u32 h;
298
299 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
300 shift_count = fls(h);
301
302 aperf_cur.whole >>= shift_count;
303 mperf_cur.whole >>= shift_count;
304 }
305
306 if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
307 int shift_count = 7;
308 aperf_cur.split.lo >>= shift_count;
309 mperf_cur.split.lo >>= shift_count;
310 }
311
95dd7227 312 if (aperf_cur.split.lo && mperf_cur.split.lo)
dfde5d62 313 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
95dd7227 314 else
dfde5d62 315 perf_percent = 0;
dfde5d62
VP
316
317#else
318 if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
319 int shift_count = 7;
320 aperf_cur.whole >>= shift_count;
321 mperf_cur.whole >>= shift_count;
322 }
323
95dd7227 324 if (aperf_cur.whole && mperf_cur.whole)
dfde5d62 325 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
95dd7227 326 else
dfde5d62 327 perf_percent = 0;
dfde5d62
VP
328
329#endif
330
bf0b90e3 331 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
dfde5d62
VP
332
333 put_cpu();
fc0e4748 334 set_cpus_allowed_ptr(current, &saved_mask);
dfde5d62
VP
335
336 dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
337 return retval;
338}
339
fe27cb35
VP
340static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
341{
ea348f3e 342 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 343 unsigned int freq;
e56a727b 344 unsigned int cached_freq;
fe27cb35
VP
345
346 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
347
348 if (unlikely(data == NULL ||
64be7eed 349 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 350 return 0;
1da177e4
LT
351 }
352
e56a727b 353 cached_freq = data->freq_table[data->acpi_data->state].frequency;
0bc3cc03 354 freq = extract_freq(get_cur_val(&cpumask_of_cpu(cpu)), data);
e56a727b
VP
355 if (freq != cached_freq) {
356 /*
357 * The dreaded BIOS frequency change behind our back.
358 * Force set the frequency on next target call.
359 */
360 data->resume = 1;
361 }
362
fe27cb35 363 dprintk("cur freq = %u\n", freq);
1da177e4 364
fe27cb35 365 return freq;
1da177e4
LT
366}
367
fc0e4748 368static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
64be7eed 369 struct acpi_cpufreq_data *data)
fe27cb35 370{
64be7eed
VP
371 unsigned int cur_freq;
372 unsigned int i;
1da177e4 373
95dd7227 374 for (i=0; i<100; i++) {
fe27cb35
VP
375 cur_freq = extract_freq(get_cur_val(mask), data);
376 if (cur_freq == freq)
377 return 1;
378 udelay(10);
379 }
380 return 0;
381}
382
383static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 384 unsigned int target_freq, unsigned int relation)
1da177e4 385{
ea348f3e 386 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
387 struct acpi_processor_performance *perf;
388 struct cpufreq_freqs freqs;
389 cpumask_t online_policy_cpus;
390 struct drv_cmd cmd;
8edc59d9
VP
391 unsigned int next_state = 0; /* Index into freq_table */
392 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
393 unsigned int i;
394 int result = 0;
f3f47a67 395 struct power_trace it;
fe27cb35
VP
396
397 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
398
399 if (unlikely(data == NULL ||
95dd7227 400 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
401 return -ENODEV;
402 }
1da177e4 403
fe27cb35 404 perf = data->acpi_data;
1da177e4 405 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
406 data->freq_table,
407 target_freq,
408 relation, &next_state);
09b4d1ee 409 if (unlikely(result))
fe27cb35 410 return -ENODEV;
09b4d1ee 411
7e1f19e5 412#ifdef CONFIG_HOTPLUG_CPU
09b4d1ee
VP
413 /* cpufreq holds the hotplug lock, so we are safe from here on */
414 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
7e1f19e5
AM
415#else
416 online_policy_cpus = policy->cpus;
417#endif
1da177e4 418
fe27cb35 419 next_perf_state = data->freq_table[next_state].index;
7650b281 420 if (perf->state == next_perf_state) {
fe27cb35 421 if (unlikely(data->resume)) {
64be7eed
VP
422 dprintk("Called after resume, resetting to P%d\n",
423 next_perf_state);
fe27cb35
VP
424 data->resume = 0;
425 } else {
64be7eed
VP
426 dprintk("Already at target state (P%d)\n",
427 next_perf_state);
fe27cb35
VP
428 return 0;
429 }
09b4d1ee
VP
430 }
431
f3f47a67
AV
432 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
433
64be7eed
VP
434 switch (data->cpu_feature) {
435 case SYSTEM_INTEL_MSR_CAPABLE:
436 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
437 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 438 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
439 break;
440 case SYSTEM_IO_CAPABLE:
441 cmd.type = SYSTEM_IO_CAPABLE;
442 cmd.addr.io.port = perf->control_register.address;
443 cmd.addr.io.bit_width = perf->control_register.bit_width;
444 cmd.val = (u32) perf->states[next_perf_state].control;
445 break;
446 default:
447 return -ENODEV;
448 }
09b4d1ee 449
fe27cb35 450 cpus_clear(cmd.mask);
09b4d1ee 451
fe27cb35
VP
452 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
453 cmd.mask = online_policy_cpus;
454 else
455 cpu_set(policy->cpu, cmd.mask);
09b4d1ee 456
8edc59d9
VP
457 freqs.old = perf->states[perf->state].core_frequency * 1000;
458 freqs.new = data->freq_table[next_state].frequency;
334ef7a7 459 for_each_cpu_mask_nr(i, cmd.mask) {
fe27cb35
VP
460 freqs.cpu = i;
461 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 462 }
1da177e4 463
fe27cb35 464 drv_write(&cmd);
09b4d1ee 465
fe27cb35 466 if (acpi_pstate_strict) {
fc0e4748 467 if (!check_freqs(&cmd.mask, freqs.new, data)) {
fe27cb35 468 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 469 policy->cpu);
fe27cb35 470 return -EAGAIN;
09b4d1ee
VP
471 }
472 }
473
334ef7a7 474 for_each_cpu_mask_nr(i, cmd.mask) {
fe27cb35
VP
475 freqs.cpu = i;
476 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
477 }
478 perf->state = next_perf_state;
479
480 return result;
1da177e4
LT
481}
482
64be7eed 483static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 484{
ea348f3e 485 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
486
487 dprintk("acpi_cpufreq_verify\n");
488
fe27cb35 489 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
490}
491
1da177e4 492static unsigned long
64be7eed 493acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 494{
64be7eed 495 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 496
1da177e4
LT
497 if (cpu_khz) {
498 /* search the closest match to cpu_khz */
499 unsigned int i;
500 unsigned long freq;
09b4d1ee 501 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 502
95dd7227 503 for (i=0; i<(perf->state_count-1); i++) {
1da177e4 504 freq = freqn;
95dd7227 505 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 506 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 507 perf->state = i;
64be7eed 508 return freq;
1da177e4
LT
509 }
510 }
95dd7227 511 perf->state = perf->state_count-1;
64be7eed 512 return freqn;
09b4d1ee 513 } else {
1da177e4 514 /* assume CPU is at P0... */
09b4d1ee
VP
515 perf->state = 0;
516 return perf->states[0].core_frequency * 1000;
517 }
1da177e4
LT
518}
519
09b4d1ee
VP
520/*
521 * acpi_cpufreq_early_init - initialize ACPI P-States library
522 *
523 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
524 * in order to determine correct frequency and voltage pairings. We can
525 * do _PDC and _PSD and find out the processor dependency for the
526 * actual init that will happen later...
527 */
50109292 528static int __init acpi_cpufreq_early_init(void)
09b4d1ee 529{
09b4d1ee
VP
530 dprintk("acpi_cpufreq_early_init\n");
531
50109292
FY
532 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
533 if (!acpi_perf_data) {
534 dprintk("Memory allocation error for acpi_perf_data.\n");
535 return -ENOMEM;
09b4d1ee
VP
536 }
537
538 /* Do initialization in ACPI core */
fe27cb35
VP
539 acpi_processor_preregister_performance(acpi_perf_data);
540 return 0;
09b4d1ee
VP
541}
542
95625b8f 543#ifdef CONFIG_SMP
8adcc0c6
VP
544/*
545 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
546 * or do it in BIOS firmware and won't inform about it to OS. If not
547 * detected, this has a side effect of making CPU run at a different speed
548 * than OS intended it to run at. Detect it and handle it cleanly.
549 */
550static int bios_with_sw_any_bug;
551
1855256c 552static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
553{
554 bios_with_sw_any_bug = 1;
555 return 0;
556}
557
1855256c 558static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
559 {
560 .callback = sw_any_bug_found,
561 .ident = "Supermicro Server X6DLP",
562 .matches = {
563 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
564 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
565 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
566 },
567 },
568 { }
569};
95625b8f 570#endif
8adcc0c6 571
64be7eed 572static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 573{
64be7eed
VP
574 unsigned int i;
575 unsigned int valid_states = 0;
576 unsigned int cpu = policy->cpu;
577 struct acpi_cpufreq_data *data;
64be7eed 578 unsigned int result = 0;
92cb7612 579 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 580 struct acpi_processor_performance *perf;
1da177e4 581
1da177e4 582 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 583
fe27cb35 584 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 585 if (!data)
64be7eed 586 return -ENOMEM;
1da177e4 587
50109292 588 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
ea348f3e 589 per_cpu(drv_data, cpu) = data;
1da177e4 590
95dd7227 591 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 592 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 593
fe27cb35 594 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
595 if (result)
596 goto err_free;
597
09b4d1ee 598 perf = data->acpi_data;
09b4d1ee 599 policy->shared_type = perf->shared_type;
95dd7227 600
46f18e3a 601 /*
95dd7227 602 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
603 * coordination is required.
604 */
605 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 606 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
46f18e3a 607 policy->cpus = perf->shared_cpu_map;
8adcc0c6 608 }
e8628dd0 609 policy->related_cpus = perf->shared_cpu_map;
8adcc0c6
VP
610
611#ifdef CONFIG_SMP
612 dmi_check_system(sw_any_bug_dmi_table);
613 if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
614 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
08357611 615 policy->cpus = per_cpu(cpu_core_map, cpu);
8adcc0c6
VP
616 }
617#endif
09b4d1ee 618
1da177e4 619 /* capability check */
09b4d1ee 620 if (perf->state_count <= 1) {
1da177e4
LT
621 dprintk("No P-States\n");
622 result = -ENODEV;
623 goto err_unreg;
624 }
09b4d1ee 625
fe27cb35
VP
626 if (perf->control_register.space_id != perf->status_register.space_id) {
627 result = -ENODEV;
628 goto err_unreg;
629 }
630
631 switch (perf->control_register.space_id) {
64be7eed 632 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 633 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
634 data->cpu_feature = SYSTEM_IO_CAPABLE;
635 break;
64be7eed 636 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
637 dprintk("HARDWARE addr space\n");
638 if (!check_est_cpu(cpu)) {
639 result = -ENODEV;
640 goto err_unreg;
641 }
642 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 643 break;
64be7eed 644 default:
fe27cb35 645 dprintk("Unknown addr space %d\n",
64be7eed 646 (u32) (perf->control_register.space_id));
1da177e4
LT
647 result = -ENODEV;
648 goto err_unreg;
649 }
650
95dd7227
DJ
651 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
652 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
653 if (!data->freq_table) {
654 result = -ENOMEM;
655 goto err_unreg;
656 }
657
658 /* detect transition latency */
659 policy->cpuinfo.transition_latency = 0;
95dd7227 660 for (i=0; i<perf->state_count; i++) {
64be7eed
VP
661 if ((perf->states[i].transition_latency * 1000) >
662 policy->cpuinfo.transition_latency)
663 policy->cpuinfo.transition_latency =
664 perf->states[i].transition_latency * 1000;
1da177e4 665 }
1da177e4 666
dfde5d62 667 data->max_freq = perf->states[0].core_frequency * 1000;
1da177e4 668 /* table init */
95dd7227 669 for (i=0; i<perf->state_count; i++) {
3cdf552b
ZR
670 if (i>0 && perf->states[i].core_frequency >=
671 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
672 continue;
673
674 data->freq_table[valid_states].index = i;
675 data->freq_table[valid_states].frequency =
64be7eed 676 perf->states[i].core_frequency * 1000;
fe27cb35 677 valid_states++;
1da177e4 678 }
3d4a7ef3 679 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 680 perf->state = 0;
1da177e4
LT
681
682 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 683 if (result)
1da177e4 684 goto err_freqfree;
1da177e4 685
a507ac4b 686 switch (perf->control_register.space_id) {
64be7eed 687 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
688 /* Current speed is unknown and not detectable by IO port */
689 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
690 break;
64be7eed 691 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 692 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 693 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 694 break;
64be7eed 695 default:
dde9f7ba
VP
696 break;
697 }
698
1da177e4
LT
699 /* notify BIOS that we exist */
700 acpi_processor_notify_smm(THIS_MODULE);
701
dfde5d62
VP
702 /* Check for APERF/MPERF support in hardware */
703 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
704 unsigned int ecx;
705 ecx = cpuid_ecx(6);
95dd7227 706 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 707 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
708 }
709
fe27cb35 710 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 711 for (i = 0; i < perf->state_count; i++)
1da177e4 712 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 713 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
714 (u32) perf->states[i].core_frequency,
715 (u32) perf->states[i].power,
716 (u32) perf->states[i].transition_latency);
1da177e4
LT
717
718 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 719
4b31e774
DB
720 /*
721 * the first call to ->target() should result in us actually
722 * writing something to the appropriate registers.
723 */
724 data->resume = 1;
64be7eed 725
fe27cb35 726 return result;
1da177e4 727
95dd7227 728err_freqfree:
1da177e4 729 kfree(data->freq_table);
95dd7227 730err_unreg:
09b4d1ee 731 acpi_processor_unregister_performance(perf, cpu);
95dd7227 732err_free:
1da177e4 733 kfree(data);
ea348f3e 734 per_cpu(drv_data, cpu) = NULL;
1da177e4 735
64be7eed 736 return result;
1da177e4
LT
737}
738
64be7eed 739static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 740{
ea348f3e 741 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 742
1da177e4
LT
743 dprintk("acpi_cpufreq_cpu_exit\n");
744
745 if (data) {
746 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 747 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
748 acpi_processor_unregister_performance(data->acpi_data,
749 policy->cpu);
1da177e4
LT
750 kfree(data);
751 }
752
64be7eed 753 return 0;
1da177e4
LT
754}
755
64be7eed 756static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 757{
ea348f3e 758 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 759
1da177e4
LT
760 dprintk("acpi_cpufreq_resume\n");
761
762 data->resume = 1;
763
64be7eed 764 return 0;
1da177e4
LT
765}
766
64be7eed 767static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
768 &cpufreq_freq_attr_scaling_available_freqs,
769 NULL,
770};
771
772static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
773 .verify = acpi_cpufreq_verify,
774 .target = acpi_cpufreq_target,
64be7eed
VP
775 .init = acpi_cpufreq_cpu_init,
776 .exit = acpi_cpufreq_cpu_exit,
777 .resume = acpi_cpufreq_resume,
778 .name = "acpi-cpufreq",
779 .owner = THIS_MODULE,
780 .attr = acpi_cpufreq_attr,
1da177e4
LT
781};
782
64be7eed 783static int __init acpi_cpufreq_init(void)
1da177e4 784{
50109292
FY
785 int ret;
786
ee297533
YL
787 if (acpi_disabled)
788 return 0;
789
1da177e4
LT
790 dprintk("acpi_cpufreq_init\n");
791
50109292
FY
792 ret = acpi_cpufreq_early_init();
793 if (ret)
794 return ret;
09b4d1ee 795
847aef6f
AM
796 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
797 if (ret)
798 free_percpu(acpi_perf_data);
799
800 return ret;
1da177e4
LT
801}
802
64be7eed 803static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
804{
805 dprintk("acpi_cpufreq_exit\n");
806
807 cpufreq_unregister_driver(&acpi_cpufreq_driver);
808
50109292 809 free_percpu(acpi_perf_data);
1da177e4
LT
810}
811
d395bf12 812module_param(acpi_pstate_strict, uint, 0644);
64be7eed 813MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
814 "value 0 or non-zero. non-zero -> strict ACPI checks are "
815 "performed during frequency changes.");
1da177e4
LT
816
817late_initcall(acpi_cpufreq_init);
818module_exit(acpi_cpufreq_exit);
819
820MODULE_ALIAS("acpi");