Make /dev/zero reads interruptible by signals
[linux-block.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
3a58df35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
12922110 36#include <trace/power.h>
1da177e4
LT
37
38#include <linux/acpi.h>
3a58df35
DJ
39#include <linux/io.h>
40#include <linux/delay.h>
41#include <linux/uaccess.h>
42
1da177e4
LT
43#include <acpi/processor.h>
44
dde9f7ba 45#include <asm/msr.h>
fe27cb35
VP
46#include <asm/processor.h>
47#include <asm/cpufeature.h>
fe27cb35 48
3a58df35
DJ
49#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
1da177e4
LT
51
52MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54MODULE_LICENSE("GPL");
55
dde9f7ba
VP
56enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
60};
61
62#define INTEL_MSR_RANGE (0xffff)
dfde5d62 63#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 64
fe27cb35 65struct acpi_cpufreq_data {
64be7eed
VP
66 struct acpi_processor_performance *acpi_data;
67 struct cpufreq_frequency_table *freq_table;
68 unsigned int resume;
69 unsigned int cpu_feature;
1da177e4
LT
70};
71
ea348f3e 72static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
73
093f13e2
PV
74struct acpi_msr_data {
75 u64 saved_aperf, saved_mperf;
76};
77
78static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
79
b5f9fd0f
JB
80DEFINE_TRACE(power_mark);
81
50109292
FY
82/* acpi_perf_data is a pointer to percpu data. */
83static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
84
85static struct cpufreq_driver acpi_cpufreq_driver;
86
d395bf12
VP
87static unsigned int acpi_pstate_strict;
88
dde9f7ba
VP
89static int check_est_cpu(unsigned int cpuid)
90{
92cb7612 91 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
92
93 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 94 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
95 return 0;
96
97 return 1;
98}
99
dde9f7ba 100static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 101{
64be7eed
VP
102 struct acpi_processor_performance *perf;
103 int i;
fe27cb35
VP
104
105 perf = data->acpi_data;
106
3a58df35 107 for (i = 0; i < perf->state_count; i++) {
fe27cb35
VP
108 if (value == perf->states[i].status)
109 return data->freq_table[i].frequency;
110 }
111 return 0;
112}
113
dde9f7ba
VP
114static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
115{
116 int i;
a6f6e6e6 117 struct acpi_processor_performance *perf;
dde9f7ba
VP
118
119 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
120 perf = data->acpi_data;
121
3a58df35 122 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 123 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
124 return data->freq_table[i].frequency;
125 }
126 return data->freq_table[0].frequency;
127}
128
dde9f7ba
VP
129static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
130{
131 switch (data->cpu_feature) {
64be7eed 132 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 133 return extract_msr(val, data);
64be7eed 134 case SYSTEM_IO_CAPABLE:
dde9f7ba 135 return extract_io(val, data);
64be7eed 136 default:
dde9f7ba
VP
137 return 0;
138 }
139}
140
dde9f7ba
VP
141struct msr_addr {
142 u32 reg;
143};
144
fe27cb35
VP
145struct io_addr {
146 u16 port;
147 u8 bit_width;
148};
149
150struct drv_cmd {
dde9f7ba 151 unsigned int type;
bfa318ad 152 const struct cpumask *mask;
3a58df35
DJ
153 union {
154 struct msr_addr msr;
155 struct io_addr io;
156 } addr;
fe27cb35
VP
157 u32 val;
158};
159
01599fca
AM
160/* Called via smp_call_function_single(), on the target CPU */
161static void do_drv_read(void *_cmd)
1da177e4 162{
72859081 163 struct drv_cmd *cmd = _cmd;
dde9f7ba
VP
164 u32 h;
165
166 switch (cmd->type) {
64be7eed 167 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
168 rdmsr(cmd->addr.msr.reg, cmd->val, h);
169 break;
64be7eed 170 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
171 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
172 &cmd->val,
173 (u32)cmd->addr.io.bit_width);
dde9f7ba 174 break;
64be7eed 175 default:
dde9f7ba
VP
176 break;
177 }
fe27cb35 178}
1da177e4 179
01599fca
AM
180/* Called via smp_call_function_many(), on the target CPUs */
181static void do_drv_write(void *_cmd)
fe27cb35 182{
72859081 183 struct drv_cmd *cmd = _cmd;
13424f65 184 u32 lo, hi;
dde9f7ba
VP
185
186 switch (cmd->type) {
64be7eed 187 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
188 rdmsr(cmd->addr.msr.reg, lo, hi);
189 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
190 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 191 break;
64be7eed 192 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
193 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
194 cmd->val,
195 (u32)cmd->addr.io.bit_width);
dde9f7ba 196 break;
64be7eed 197 default:
dde9f7ba
VP
198 break;
199 }
fe27cb35 200}
1da177e4 201
95dd7227 202static void drv_read(struct drv_cmd *cmd)
fe27cb35 203{
fe27cb35
VP
204 cmd->val = 0;
205
01599fca 206 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
fe27cb35
VP
207}
208
209static void drv_write(struct drv_cmd *cmd)
210{
ea34f43a
LT
211 int this_cpu;
212
213 this_cpu = get_cpu();
214 if (cpumask_test_cpu(this_cpu, cmd->mask))
215 do_drv_write(cmd);
01599fca 216 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
ea34f43a 217 put_cpu();
fe27cb35 218}
1da177e4 219
4d8bb537 220static u32 get_cur_val(const struct cpumask *mask)
fe27cb35 221{
64be7eed
VP
222 struct acpi_processor_performance *perf;
223 struct drv_cmd cmd;
1da177e4 224
4d8bb537 225 if (unlikely(cpumask_empty(mask)))
fe27cb35 226 return 0;
1da177e4 227
4d8bb537 228 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
dde9f7ba
VP
229 case SYSTEM_INTEL_MSR_CAPABLE:
230 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
231 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
232 break;
233 case SYSTEM_IO_CAPABLE:
234 cmd.type = SYSTEM_IO_CAPABLE;
4d8bb537 235 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
dde9f7ba
VP
236 cmd.addr.io.port = perf->control_register.address;
237 cmd.addr.io.bit_width = perf->control_register.bit_width;
238 break;
239 default:
240 return 0;
241 }
242
bfa318ad 243 cmd.mask = mask;
fe27cb35 244 drv_read(&cmd);
1da177e4 245
fe27cb35
VP
246 dprintk("get_cur_val = %u\n", cmd.val);
247
248 return cmd.val;
249}
1da177e4 250
e4f69372 251struct perf_pair {
e39ad415
MT
252 union {
253 struct {
254 u32 lo;
255 u32 hi;
256 } split;
257 u64 whole;
e4f69372 258 } aperf, mperf;
e39ad415
MT
259};
260
01599fca
AM
261/* Called via smp_call_function_single(), on the target CPU */
262static void read_measured_perf_ctrs(void *_cur)
e39ad415 263{
e4f69372 264 struct perf_pair *cur = _cur;
e39ad415 265
e4f69372
VP
266 rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
267 rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
e39ad415
MT
268}
269
dfde5d62
VP
270/*
271 * Return the measured active (C0) frequency on this CPU since last call
272 * to this function.
273 * Input: cpu number
274 * Return: Average CPU frequency in terms of max frequency (zero on error)
275 *
276 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
277 * over a period of time, while CPU is in C0 state.
278 * IA32_MPERF counts at the rate of max advertised frequency
279 * IA32_APERF counts at the rate of actual CPU frequency
280 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
281 * no meaning should be associated with absolute values of these MSRs.
282 */
bf0b90e3 283static unsigned int get_measured_perf(struct cpufreq_policy *policy,
284 unsigned int cpu)
dfde5d62 285{
18b2646f 286 struct perf_pair readin, cur;
dfde5d62
VP
287 unsigned int perf_percent;
288 unsigned int retval;
289
1c98aa74 290 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
dfde5d62 291 return 0;
dfde5d62 292
18b2646f 293 cur.aperf.whole = readin.aperf.whole -
093f13e2 294 per_cpu(msr_data, cpu).saved_aperf;
18b2646f 295 cur.mperf.whole = readin.mperf.whole -
093f13e2
PV
296 per_cpu(msr_data, cpu).saved_mperf;
297 per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
298 per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
18b2646f 299
dfde5d62
VP
300#ifdef __i386__
301 /*
302 * We dont want to do 64 bit divide with 32 bit kernel
303 * Get an approximate value. Return failure in case we cannot get
304 * an approximate value.
305 */
e4f69372 306 if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
dfde5d62
VP
307 int shift_count;
308 u32 h;
309
e4f69372 310 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
dfde5d62
VP
311 shift_count = fls(h);
312
e4f69372
VP
313 cur.aperf.whole >>= shift_count;
314 cur.mperf.whole >>= shift_count;
dfde5d62
VP
315 }
316
e4f69372 317 if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
dfde5d62 318 int shift_count = 7;
e4f69372
VP
319 cur.aperf.split.lo >>= shift_count;
320 cur.mperf.split.lo >>= shift_count;
dfde5d62
VP
321 }
322
e4f69372
VP
323 if (cur.aperf.split.lo && cur.mperf.split.lo)
324 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
95dd7227 325 else
dfde5d62 326 perf_percent = 0;
dfde5d62
VP
327
328#else
e4f69372 329 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
dfde5d62 330 int shift_count = 7;
e4f69372
VP
331 cur.aperf.whole >>= shift_count;
332 cur.mperf.whole >>= shift_count;
dfde5d62
VP
333 }
334
e4f69372
VP
335 if (cur.aperf.whole && cur.mperf.whole)
336 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
95dd7227 337 else
dfde5d62 338 perf_percent = 0;
dfde5d62
VP
339
340#endif
341
d876dfbb 342 retval = (policy->cpuinfo.max_freq * perf_percent) / 100;
dfde5d62 343
dfde5d62
VP
344 return retval;
345}
346
fe27cb35
VP
347static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
348{
ea348f3e 349 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 350 unsigned int freq;
e56a727b 351 unsigned int cached_freq;
fe27cb35
VP
352
353 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
354
355 if (unlikely(data == NULL ||
64be7eed 356 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 357 return 0;
1da177e4
LT
358 }
359
e56a727b 360 cached_freq = data->freq_table[data->acpi_data->state].frequency;
e39ad415 361 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
e56a727b
VP
362 if (freq != cached_freq) {
363 /*
364 * The dreaded BIOS frequency change behind our back.
365 * Force set the frequency on next target call.
366 */
367 data->resume = 1;
368 }
369
fe27cb35 370 dprintk("cur freq = %u\n", freq);
1da177e4 371
fe27cb35 372 return freq;
1da177e4
LT
373}
374
72859081 375static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
64be7eed 376 struct acpi_cpufreq_data *data)
fe27cb35 377{
64be7eed
VP
378 unsigned int cur_freq;
379 unsigned int i;
1da177e4 380
3a58df35 381 for (i = 0; i < 100; i++) {
fe27cb35
VP
382 cur_freq = extract_freq(get_cur_val(mask), data);
383 if (cur_freq == freq)
384 return 1;
385 udelay(10);
386 }
387 return 0;
388}
389
390static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 391 unsigned int target_freq, unsigned int relation)
1da177e4 392{
ea348f3e 393 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
394 struct acpi_processor_performance *perf;
395 struct cpufreq_freqs freqs;
64be7eed 396 struct drv_cmd cmd;
8edc59d9
VP
397 unsigned int next_state = 0; /* Index into freq_table */
398 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
399 unsigned int i;
400 int result = 0;
f3f47a67 401 struct power_trace it;
fe27cb35
VP
402
403 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
404
405 if (unlikely(data == NULL ||
95dd7227 406 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
407 return -ENODEV;
408 }
1da177e4 409
fe27cb35 410 perf = data->acpi_data;
1da177e4 411 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
412 data->freq_table,
413 target_freq,
414 relation, &next_state);
4d8bb537
MT
415 if (unlikely(result)) {
416 result = -ENODEV;
417 goto out;
418 }
1da177e4 419
fe27cb35 420 next_perf_state = data->freq_table[next_state].index;
7650b281 421 if (perf->state == next_perf_state) {
fe27cb35 422 if (unlikely(data->resume)) {
64be7eed
VP
423 dprintk("Called after resume, resetting to P%d\n",
424 next_perf_state);
fe27cb35
VP
425 data->resume = 0;
426 } else {
64be7eed
VP
427 dprintk("Already at target state (P%d)\n",
428 next_perf_state);
4d8bb537 429 goto out;
fe27cb35 430 }
09b4d1ee
VP
431 }
432
f3f47a67
AV
433 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
434
64be7eed
VP
435 switch (data->cpu_feature) {
436 case SYSTEM_INTEL_MSR_CAPABLE:
437 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
438 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 439 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
440 break;
441 case SYSTEM_IO_CAPABLE:
442 cmd.type = SYSTEM_IO_CAPABLE;
443 cmd.addr.io.port = perf->control_register.address;
444 cmd.addr.io.bit_width = perf->control_register.bit_width;
445 cmd.val = (u32) perf->states[next_perf_state].control;
446 break;
447 default:
4d8bb537
MT
448 result = -ENODEV;
449 goto out;
64be7eed 450 }
09b4d1ee 451
4d8bb537 452 /* cpufreq holds the hotplug lock, so we are safe from here on */
fe27cb35 453 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
bfa318ad 454 cmd.mask = policy->cpus;
fe27cb35 455 else
bfa318ad 456 cmd.mask = cpumask_of(policy->cpu);
09b4d1ee 457
8edc59d9
VP
458 freqs.old = perf->states[perf->state].core_frequency * 1000;
459 freqs.new = data->freq_table[next_state].frequency;
4d8bb537 460 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
461 freqs.cpu = i;
462 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 463 }
1da177e4 464
fe27cb35 465 drv_write(&cmd);
09b4d1ee 466
fe27cb35 467 if (acpi_pstate_strict) {
4d8bb537 468 if (!check_freqs(cmd.mask, freqs.new, data)) {
fe27cb35 469 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 470 policy->cpu);
4d8bb537
MT
471 result = -EAGAIN;
472 goto out;
09b4d1ee
VP
473 }
474 }
475
4d8bb537 476 for_each_cpu(i, cmd.mask) {
fe27cb35
VP
477 freqs.cpu = i;
478 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
479 }
480 perf->state = next_perf_state;
481
4d8bb537 482out:
fe27cb35 483 return result;
1da177e4
LT
484}
485
64be7eed 486static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 487{
ea348f3e 488 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
489
490 dprintk("acpi_cpufreq_verify\n");
491
fe27cb35 492 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
493}
494
1da177e4 495static unsigned long
64be7eed 496acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 497{
64be7eed 498 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 499
1da177e4
LT
500 if (cpu_khz) {
501 /* search the closest match to cpu_khz */
502 unsigned int i;
503 unsigned long freq;
09b4d1ee 504 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 505
3a58df35 506 for (i = 0; i < (perf->state_count-1); i++) {
1da177e4 507 freq = freqn;
95dd7227 508 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 509 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 510 perf->state = i;
64be7eed 511 return freq;
1da177e4
LT
512 }
513 }
95dd7227 514 perf->state = perf->state_count-1;
64be7eed 515 return freqn;
09b4d1ee 516 } else {
1da177e4 517 /* assume CPU is at P0... */
09b4d1ee
VP
518 perf->state = 0;
519 return perf->states[0].core_frequency * 1000;
520 }
1da177e4
LT
521}
522
2fdf66b4
RR
523static void free_acpi_perf_data(void)
524{
525 unsigned int i;
526
527 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
528 for_each_possible_cpu(i)
529 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
530 ->shared_cpu_map);
531 free_percpu(acpi_perf_data);
532}
533
09b4d1ee
VP
534/*
535 * acpi_cpufreq_early_init - initialize ACPI P-States library
536 *
537 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
538 * in order to determine correct frequency and voltage pairings. We can
539 * do _PDC and _PSD and find out the processor dependency for the
540 * actual init that will happen later...
541 */
50109292 542static int __init acpi_cpufreq_early_init(void)
09b4d1ee 543{
2fdf66b4 544 unsigned int i;
09b4d1ee
VP
545 dprintk("acpi_cpufreq_early_init\n");
546
50109292
FY
547 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
548 if (!acpi_perf_data) {
549 dprintk("Memory allocation error for acpi_perf_data.\n");
550 return -ENOMEM;
09b4d1ee 551 }
2fdf66b4 552 for_each_possible_cpu(i) {
eaa95840 553 if (!zalloc_cpumask_var_node(
80855f73
MT
554 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
555 GFP_KERNEL, cpu_to_node(i))) {
2fdf66b4
RR
556
557 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
558 free_acpi_perf_data();
559 return -ENOMEM;
560 }
561 }
09b4d1ee
VP
562
563 /* Do initialization in ACPI core */
fe27cb35
VP
564 acpi_processor_preregister_performance(acpi_perf_data);
565 return 0;
09b4d1ee
VP
566}
567
95625b8f 568#ifdef CONFIG_SMP
8adcc0c6
VP
569/*
570 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
571 * or do it in BIOS firmware and won't inform about it to OS. If not
572 * detected, this has a side effect of making CPU run at a different speed
573 * than OS intended it to run at. Detect it and handle it cleanly.
574 */
575static int bios_with_sw_any_bug;
576
1855256c 577static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
578{
579 bios_with_sw_any_bug = 1;
580 return 0;
581}
582
1855256c 583static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
584 {
585 .callback = sw_any_bug_found,
586 .ident = "Supermicro Server X6DLP",
587 .matches = {
588 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
589 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
590 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
591 },
592 },
593 { }
594};
95625b8f 595#endif
8adcc0c6 596
64be7eed 597static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 598{
64be7eed
VP
599 unsigned int i;
600 unsigned int valid_states = 0;
601 unsigned int cpu = policy->cpu;
602 struct acpi_cpufreq_data *data;
64be7eed 603 unsigned int result = 0;
92cb7612 604 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 605 struct acpi_processor_performance *perf;
1da177e4 606
1da177e4 607 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 608
fe27cb35 609 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 610 if (!data)
64be7eed 611 return -ENOMEM;
1da177e4 612
b36128c8 613 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
ea348f3e 614 per_cpu(drv_data, cpu) = data;
1da177e4 615
95dd7227 616 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 617 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 618
fe27cb35 619 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
620 if (result)
621 goto err_free;
622
09b4d1ee 623 perf = data->acpi_data;
09b4d1ee 624 policy->shared_type = perf->shared_type;
95dd7227 625
46f18e3a 626 /*
95dd7227 627 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
628 * coordination is required.
629 */
630 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 631 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
835481d9 632 cpumask_copy(policy->cpus, perf->shared_cpu_map);
8adcc0c6 633 }
835481d9 634 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
8adcc0c6
VP
635
636#ifdef CONFIG_SMP
637 dmi_check_system(sw_any_bug_dmi_table);
835481d9 638 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
8adcc0c6 639 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
835481d9 640 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
8adcc0c6
VP
641 }
642#endif
09b4d1ee 643
1da177e4 644 /* capability check */
09b4d1ee 645 if (perf->state_count <= 1) {
1da177e4
LT
646 dprintk("No P-States\n");
647 result = -ENODEV;
648 goto err_unreg;
649 }
09b4d1ee 650
fe27cb35
VP
651 if (perf->control_register.space_id != perf->status_register.space_id) {
652 result = -ENODEV;
653 goto err_unreg;
654 }
655
656 switch (perf->control_register.space_id) {
64be7eed 657 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 658 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
659 data->cpu_feature = SYSTEM_IO_CAPABLE;
660 break;
64be7eed 661 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
662 dprintk("HARDWARE addr space\n");
663 if (!check_est_cpu(cpu)) {
664 result = -ENODEV;
665 goto err_unreg;
666 }
667 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 668 break;
64be7eed 669 default:
fe27cb35 670 dprintk("Unknown addr space %d\n",
64be7eed 671 (u32) (perf->control_register.space_id));
1da177e4
LT
672 result = -ENODEV;
673 goto err_unreg;
674 }
675
95dd7227
DJ
676 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
677 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
678 if (!data->freq_table) {
679 result = -ENOMEM;
680 goto err_unreg;
681 }
682
683 /* detect transition latency */
684 policy->cpuinfo.transition_latency = 0;
3a58df35 685 for (i = 0; i < perf->state_count; i++) {
64be7eed
VP
686 if ((perf->states[i].transition_latency * 1000) >
687 policy->cpuinfo.transition_latency)
688 policy->cpuinfo.transition_latency =
689 perf->states[i].transition_latency * 1000;
1da177e4 690 }
1da177e4 691
a59d1637
PV
692 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
693 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
694 policy->cpuinfo.transition_latency > 20 * 1000) {
a59d1637 695 policy->cpuinfo.transition_latency = 20 * 1000;
61c8c67e
JP
696 printk_once(KERN_INFO
697 "P-state transition latency capped at 20 uS\n");
a59d1637
PV
698 }
699
1da177e4 700 /* table init */
3a58df35
DJ
701 for (i = 0; i < perf->state_count; i++) {
702 if (i > 0 && perf->states[i].core_frequency >=
3cdf552b 703 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
704 continue;
705
706 data->freq_table[valid_states].index = i;
707 data->freq_table[valid_states].frequency =
64be7eed 708 perf->states[i].core_frequency * 1000;
fe27cb35 709 valid_states++;
1da177e4 710 }
3d4a7ef3 711 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 712 perf->state = 0;
1da177e4
LT
713
714 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 715 if (result)
1da177e4 716 goto err_freqfree;
1da177e4 717
d876dfbb
TR
718 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
719 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
720
a507ac4b 721 switch (perf->control_register.space_id) {
64be7eed 722 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
723 /* Current speed is unknown and not detectable by IO port */
724 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
725 break;
64be7eed 726 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 727 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 728 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 729 break;
64be7eed 730 default:
dde9f7ba
VP
731 break;
732 }
733
1da177e4
LT
734 /* notify BIOS that we exist */
735 acpi_processor_notify_smm(THIS_MODULE);
736
dfde5d62
VP
737 /* Check for APERF/MPERF support in hardware */
738 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
739 unsigned int ecx;
740 ecx = cpuid_ecx(6);
95dd7227 741 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 742 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
743 }
744
fe27cb35 745 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 746 for (i = 0; i < perf->state_count; i++)
1da177e4 747 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 748 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
749 (u32) perf->states[i].core_frequency,
750 (u32) perf->states[i].power,
751 (u32) perf->states[i].transition_latency);
1da177e4
LT
752
753 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 754
4b31e774
DB
755 /*
756 * the first call to ->target() should result in us actually
757 * writing something to the appropriate registers.
758 */
759 data->resume = 1;
64be7eed 760
fe27cb35 761 return result;
1da177e4 762
95dd7227 763err_freqfree:
1da177e4 764 kfree(data->freq_table);
95dd7227 765err_unreg:
09b4d1ee 766 acpi_processor_unregister_performance(perf, cpu);
95dd7227 767err_free:
1da177e4 768 kfree(data);
ea348f3e 769 per_cpu(drv_data, cpu) = NULL;
1da177e4 770
64be7eed 771 return result;
1da177e4
LT
772}
773
64be7eed 774static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 775{
ea348f3e 776 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 777
1da177e4
LT
778 dprintk("acpi_cpufreq_cpu_exit\n");
779
780 if (data) {
781 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 782 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
783 acpi_processor_unregister_performance(data->acpi_data,
784 policy->cpu);
1da177e4
LT
785 kfree(data);
786 }
787
64be7eed 788 return 0;
1da177e4
LT
789}
790
64be7eed 791static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 792{
ea348f3e 793 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 794
1da177e4
LT
795 dprintk("acpi_cpufreq_resume\n");
796
797 data->resume = 1;
798
64be7eed 799 return 0;
1da177e4
LT
800}
801
64be7eed 802static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
803 &cpufreq_freq_attr_scaling_available_freqs,
804 NULL,
805};
806
807static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
808 .verify = acpi_cpufreq_verify,
809 .target = acpi_cpufreq_target,
64be7eed
VP
810 .init = acpi_cpufreq_cpu_init,
811 .exit = acpi_cpufreq_cpu_exit,
812 .resume = acpi_cpufreq_resume,
813 .name = "acpi-cpufreq",
814 .owner = THIS_MODULE,
815 .attr = acpi_cpufreq_attr,
1da177e4
LT
816};
817
64be7eed 818static int __init acpi_cpufreq_init(void)
1da177e4 819{
50109292
FY
820 int ret;
821
ee297533
YL
822 if (acpi_disabled)
823 return 0;
824
1da177e4
LT
825 dprintk("acpi_cpufreq_init\n");
826
50109292
FY
827 ret = acpi_cpufreq_early_init();
828 if (ret)
829 return ret;
09b4d1ee 830
847aef6f
AM
831 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
832 if (ret)
2fdf66b4 833 free_acpi_perf_data();
847aef6f
AM
834
835 return ret;
1da177e4
LT
836}
837
64be7eed 838static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
839{
840 dprintk("acpi_cpufreq_exit\n");
841
842 cpufreq_unregister_driver(&acpi_cpufreq_driver);
843
50109292 844 free_percpu(acpi_perf_data);
1da177e4
LT
845}
846
d395bf12 847module_param(acpi_pstate_strict, uint, 0644);
64be7eed 848MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
849 "value 0 or non-zero. non-zero -> strict ACPI checks are "
850 "performed during frequency changes.");
1da177e4
LT
851
852late_initcall(acpi_cpufreq_init);
853module_exit(acpi_cpufreq_exit);
854
855MODULE_ALIAS("acpi");