include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[linux-2.6-block.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
f6e2e6b6
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
f6e2e6b6 22#include <linux/list.h>
5a0e3ad6 23#include <linux/slab.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6 27#include <asm/pci-direct.h>
6a9401a7 28#include <asm/amd_iommu_proto.h>
f6e2e6b6 29#include <asm/amd_iommu_types.h>
c6da992e 30#include <asm/amd_iommu.h>
46a7fa27 31#include <asm/iommu.h>
1d9b16d1 32#include <asm/gart.h>
ea1b0d39 33#include <asm/x86_init.h>
f6e2e6b6
JR
34
35/*
36 * definitions for the ACPI scanning code
37 */
f6e2e6b6 38#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
39
40#define ACPI_IVHD_TYPE 0x10
41#define ACPI_IVMD_TYPE_ALL 0x20
42#define ACPI_IVMD_TYPE 0x21
43#define ACPI_IVMD_TYPE_RANGE 0x22
44
45#define IVHD_DEV_ALL 0x01
46#define IVHD_DEV_SELECT 0x02
47#define IVHD_DEV_SELECT_RANGE_START 0x03
48#define IVHD_DEV_RANGE_END 0x04
49#define IVHD_DEV_ALIAS 0x42
50#define IVHD_DEV_ALIAS_RANGE 0x43
51#define IVHD_DEV_EXT_SELECT 0x46
52#define IVHD_DEV_EXT_SELECT_RANGE 0x47
53
6da7342f
JR
54#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
55#define IVHD_FLAG_PASSPW_EN_MASK 0x02
56#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
57#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
58
59#define IVMD_FLAG_EXCL_RANGE 0x08
60#define IVMD_FLAG_UNITY_MAP 0x01
61
62#define ACPI_DEVFLAG_INITPASS 0x01
63#define ACPI_DEVFLAG_EXTINT 0x02
64#define ACPI_DEVFLAG_NMI 0x04
65#define ACPI_DEVFLAG_SYSMGT1 0x10
66#define ACPI_DEVFLAG_SYSMGT2 0x20
67#define ACPI_DEVFLAG_LINT0 0x40
68#define ACPI_DEVFLAG_LINT1 0x80
69#define ACPI_DEVFLAG_ATSDIS 0x10000000
70
b65233a9
JR
71/*
72 * ACPI table definitions
73 *
74 * These data structures are laid over the table to parse the important values
75 * out of it.
76 */
77
78/*
79 * structure describing one IOMMU in the ACPI table. Typically followed by one
80 * or more ivhd_entrys.
81 */
f6e2e6b6
JR
82struct ivhd_header {
83 u8 type;
84 u8 flags;
85 u16 length;
86 u16 devid;
87 u16 cap_ptr;
88 u64 mmio_phys;
89 u16 pci_seg;
90 u16 info;
91 u32 reserved;
92} __attribute__((packed));
93
b65233a9
JR
94/*
95 * A device entry describing which devices a specific IOMMU translates and
96 * which requestor ids they use.
97 */
f6e2e6b6
JR
98struct ivhd_entry {
99 u8 type;
100 u16 devid;
101 u8 flags;
102 u32 ext;
103} __attribute__((packed));
104
b65233a9
JR
105/*
106 * An AMD IOMMU memory definition structure. It defines things like exclusion
107 * ranges for devices and regions that should be unity mapped.
108 */
f6e2e6b6
JR
109struct ivmd_header {
110 u8 type;
111 u8 flags;
112 u16 length;
113 u16 devid;
114 u16 aux;
115 u64 resv;
116 u64 range_start;
117 u64 range_length;
118} __attribute__((packed));
119
fefda117
JR
120bool amd_iommu_dump;
121
c1cbebee
JR
122static int __initdata amd_iommu_detected;
123
b65233a9
JR
124u16 amd_iommu_last_bdf; /* largest PCI device id we have
125 to handle */
2e22847f 126LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 127 we find in ACPI */
afa9fdc2 128bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 129
2e22847f 130LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 131 system */
928abd25 132
bb52777e
JR
133/* Array to assign indices to IOMMUs*/
134struct amd_iommu *amd_iommus[MAX_IOMMUS];
135int amd_iommus_present;
136
318afd41
JR
137/* IOMMUs have a non-present cache? */
138bool amd_iommu_np_cache __read_mostly;
139
0f764806
JR
140/*
141 * Set to true if ACPI table parsing and hardware intialization went properly
142 */
143static bool amd_iommu_initialized;
144
aeb26f55
JR
145/*
146 * List of protection domains - used during resume
147 */
148LIST_HEAD(amd_iommu_pd_list);
149spinlock_t amd_iommu_pd_lock;
150
b65233a9
JR
151/*
152 * Pointer to the device table which is shared by all AMD IOMMUs
153 * it is indexed by the PCI device id or the HT unit id and contains
154 * information about the domain the device belongs to as well as the
155 * page table root pointer.
156 */
928abd25 157struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
158
159/*
160 * The alias table is a driver specific data structure which contains the
161 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
162 * More than one device can share the same requestor id.
163 */
928abd25 164u16 *amd_iommu_alias_table;
b65233a9
JR
165
166/*
167 * The rlookup table is used to find the IOMMU which is responsible
168 * for a specific device. It is also indexed by the PCI device id.
169 */
928abd25 170struct amd_iommu **amd_iommu_rlookup_table;
b65233a9 171
b65233a9
JR
172/*
173 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
174 * to know which ones are already in use.
175 */
928abd25
JR
176unsigned long *amd_iommu_pd_alloc_bitmap;
177
b65233a9
JR
178static u32 dev_table_size; /* size of the device table */
179static u32 alias_table_size; /* size of the alias table */
180static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 181
208ec8c9
JR
182static inline void update_last_devid(u16 devid)
183{
184 if (devid > amd_iommu_last_bdf)
185 amd_iommu_last_bdf = devid;
186}
187
c571484e
JR
188static inline unsigned long tbl_size(int entry_size)
189{
190 unsigned shift = PAGE_SHIFT +
421f909c 191 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
192
193 return 1UL << shift;
194}
195
b65233a9
JR
196/****************************************************************************
197 *
198 * AMD IOMMU MMIO register space handling functions
199 *
200 * These functions are used to program the IOMMU device registers in
201 * MMIO space required for that driver.
202 *
203 ****************************************************************************/
3e8064ba 204
b65233a9
JR
205/*
206 * This function set the exclusion range in the IOMMU. DMA accesses to the
207 * exclusion range are passed through untranslated
208 */
05f92db9 209static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
210{
211 u64 start = iommu->exclusion_start & PAGE_MASK;
212 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
213 u64 entry;
214
215 if (!iommu->exclusion_start)
216 return;
217
218 entry = start | MMIO_EXCL_ENABLE_MASK;
219 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
220 &entry, sizeof(entry));
221
222 entry = limit;
223 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
224 &entry, sizeof(entry));
225}
226
b65233a9 227/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
228static void __init iommu_set_device_table(struct amd_iommu *iommu)
229{
f609891f 230 u64 entry;
b2026aa2
JR
231
232 BUG_ON(iommu->mmio_base == NULL);
233
234 entry = virt_to_phys(amd_iommu_dev_table);
235 entry |= (dev_table_size >> 12) - 1;
236 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
237 &entry, sizeof(entry));
238}
239
b65233a9 240/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 241static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
242{
243 u32 ctrl;
244
245 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
246 ctrl |= (1 << bit);
247 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
248}
249
ca020711 250static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
251{
252 u32 ctrl;
253
199d0d50 254 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
255 ctrl &= ~(1 << bit);
256 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
257}
258
b65233a9 259/* Function to enable the hardware */
05f92db9 260static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 261{
4c6f40d4 262 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 263 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
264
265 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
266}
267
92ac4320 268static void iommu_disable(struct amd_iommu *iommu)
126c52be 269{
a8c485bb
CW
270 /* Disable command buffer */
271 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
272
273 /* Disable event logging and event interrupts */
274 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
275 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
276
277 /* Disable IOMMU hardware itself */
92ac4320 278 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
279}
280
b65233a9
JR
281/*
282 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
283 * the system has one.
284 */
6c56747b
JR
285static u8 * __init iommu_map_mmio_space(u64 address)
286{
287 u8 *ret;
288
289 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
290 return NULL;
291
292 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
293 if (ret != NULL)
294 return ret;
295
296 release_mem_region(address, MMIO_REGION_LENGTH);
297
298 return NULL;
299}
300
301static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
302{
303 if (iommu->mmio_base)
304 iounmap(iommu->mmio_base);
305 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
306}
307
b65233a9
JR
308/****************************************************************************
309 *
310 * The functions below belong to the first pass of AMD IOMMU ACPI table
311 * parsing. In this pass we try to find out the highest device id this
312 * code has to handle. Upon this information the size of the shared data
313 * structures is determined later.
314 *
315 ****************************************************************************/
316
b514e555
JR
317/*
318 * This function calculates the length of a given IVHD entry
319 */
320static inline int ivhd_entry_length(u8 *ivhd)
321{
322 return 0x04 << (*ivhd >> 6);
323}
324
b65233a9
JR
325/*
326 * This function reads the last device id the IOMMU has to handle from the PCI
327 * capability header for this IOMMU
328 */
3e8064ba
JR
329static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
330{
331 u32 cap;
332
333 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 334 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
335
336 return 0;
337}
338
b65233a9
JR
339/*
340 * After reading the highest device id from the IOMMU PCI capability header
341 * this function looks if there is a higher device id defined in the ACPI table
342 */
3e8064ba
JR
343static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
344{
345 u8 *p = (void *)h, *end = (void *)h;
346 struct ivhd_entry *dev;
347
348 p += sizeof(*h);
349 end += h->length;
350
351 find_last_devid_on_pci(PCI_BUS(h->devid),
352 PCI_SLOT(h->devid),
353 PCI_FUNC(h->devid),
354 h->cap_ptr);
355
356 while (p < end) {
357 dev = (struct ivhd_entry *)p;
358 switch (dev->type) {
359 case IVHD_DEV_SELECT:
360 case IVHD_DEV_RANGE_END:
361 case IVHD_DEV_ALIAS:
362 case IVHD_DEV_EXT_SELECT:
b65233a9 363 /* all the above subfield types refer to device ids */
208ec8c9 364 update_last_devid(dev->devid);
3e8064ba
JR
365 break;
366 default:
367 break;
368 }
b514e555 369 p += ivhd_entry_length(p);
3e8064ba
JR
370 }
371
372 WARN_ON(p != end);
373
374 return 0;
375}
376
b65233a9
JR
377/*
378 * Iterate over all IVHD entries in the ACPI table and find the highest device
379 * id which we need to handle. This is the first of three functions which parse
380 * the ACPI table. So we check the checksum here.
381 */
3e8064ba
JR
382static int __init find_last_devid_acpi(struct acpi_table_header *table)
383{
384 int i;
385 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
386 struct ivhd_header *h;
387
388 /*
389 * Validate checksum here so we don't need to do it when
390 * we actually parse the table
391 */
392 for (i = 0; i < table->length; ++i)
393 checksum += p[i];
394 if (checksum != 0)
395 /* ACPI table corrupt */
396 return -ENODEV;
397
398 p += IVRS_HEADER_LENGTH;
399
400 end += table->length;
401 while (p < end) {
402 h = (struct ivhd_header *)p;
403 switch (h->type) {
404 case ACPI_IVHD_TYPE:
405 find_last_devid_from_ivhd(h);
406 break;
407 default:
408 break;
409 }
410 p += h->length;
411 }
412 WARN_ON(p != end);
413
414 return 0;
415}
416
b65233a9
JR
417/****************************************************************************
418 *
419 * The following functions belong the the code path which parses the ACPI table
420 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
421 * data structures, initialize the device/alias/rlookup table and also
422 * basically initialize the hardware.
423 *
424 ****************************************************************************/
425
426/*
427 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
428 * write commands to that buffer later and the IOMMU will execute them
429 * asynchronously
430 */
b36ca91e
JR
431static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
432{
d0312b21 433 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 434 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
435
436 if (cmd_buf == NULL)
437 return NULL;
438
439 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
440
58492e12
JR
441 return cmd_buf;
442}
443
93f1cc67
JR
444/*
445 * This function resets the command buffer if the IOMMU stopped fetching
446 * commands from it.
447 */
448void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
449{
450 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
451
452 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
453 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
454
455 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
456}
457
58492e12
JR
458/*
459 * This function writes the command buffer address to the hardware and
460 * enables it.
461 */
462static void iommu_enable_command_buffer(struct amd_iommu *iommu)
463{
464 u64 entry;
465
466 BUG_ON(iommu->cmd_buf == NULL);
467
468 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 469 entry |= MMIO_CMD_SIZE_512;
58492e12 470
b36ca91e 471 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 472 &entry, sizeof(entry));
b36ca91e 473
93f1cc67 474 amd_iommu_reset_cmd_buffer(iommu);
b36ca91e
JR
475}
476
477static void __init free_command_buffer(struct amd_iommu *iommu)
478{
23c1713f
JR
479 free_pages((unsigned long)iommu->cmd_buf,
480 get_order(iommu->cmd_buf_size));
b36ca91e
JR
481}
482
335503e5
JR
483/* allocates the memory where the IOMMU will log its events to */
484static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
485{
335503e5
JR
486 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
487 get_order(EVT_BUFFER_SIZE));
488
489 if (iommu->evt_buf == NULL)
490 return NULL;
491
1bc6f838
JR
492 iommu->evt_buf_size = EVT_BUFFER_SIZE;
493
58492e12
JR
494 return iommu->evt_buf;
495}
496
497static void iommu_enable_event_buffer(struct amd_iommu *iommu)
498{
499 u64 entry;
500
501 BUG_ON(iommu->evt_buf == NULL);
502
335503e5 503 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 504
335503e5
JR
505 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
506 &entry, sizeof(entry));
507
09067207
JR
508 /* set head and tail to zero manually */
509 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
510 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
511
58492e12 512 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
513}
514
515static void __init free_event_buffer(struct amd_iommu *iommu)
516{
517 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
518}
519
b65233a9 520/* sets a specific bit in the device table entry. */
3566b778
JR
521static void set_dev_entry_bit(u16 devid, u8 bit)
522{
523 int i = (bit >> 5) & 0x07;
524 int _bit = bit & 0x1f;
525
526 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
527}
528
c5cca146
JR
529static int get_dev_entry_bit(u16 devid, u8 bit)
530{
531 int i = (bit >> 5) & 0x07;
532 int _bit = bit & 0x1f;
533
534 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
535}
536
537
538void amd_iommu_apply_erratum_63(u16 devid)
539{
540 int sysmgt;
541
542 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
543 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
544
545 if (sysmgt == 0x01)
546 set_dev_entry_bit(devid, DEV_ENTRY_IW);
547}
548
5ff4789d
JR
549/* Writes the specific IOMMU for a device into the rlookup table */
550static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
551{
552 amd_iommu_rlookup_table[devid] = iommu;
553}
554
b65233a9
JR
555/*
556 * This function takes the device specific flags read from the ACPI
557 * table and sets up the device table entry with that information
558 */
5ff4789d
JR
559static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
560 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
561{
562 if (flags & ACPI_DEVFLAG_INITPASS)
563 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
564 if (flags & ACPI_DEVFLAG_EXTINT)
565 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
566 if (flags & ACPI_DEVFLAG_NMI)
567 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
568 if (flags & ACPI_DEVFLAG_SYSMGT1)
569 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
570 if (flags & ACPI_DEVFLAG_SYSMGT2)
571 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
572 if (flags & ACPI_DEVFLAG_LINT0)
573 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
574 if (flags & ACPI_DEVFLAG_LINT1)
575 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 576
c5cca146
JR
577 amd_iommu_apply_erratum_63(devid);
578
5ff4789d 579 set_iommu_for_device(iommu, devid);
3566b778
JR
580}
581
b65233a9
JR
582/*
583 * Reads the device exclusion range from ACPI and initialize IOMMU with
584 * it
585 */
3566b778
JR
586static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
587{
588 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
589
590 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
591 return;
592
593 if (iommu) {
b65233a9
JR
594 /*
595 * We only can configure exclusion ranges per IOMMU, not
596 * per device. But we can enable the exclusion range per
597 * device. This is done here
598 */
3566b778
JR
599 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
600 iommu->exclusion_start = m->range_start;
601 iommu->exclusion_length = m->range_length;
602 }
603}
604
b65233a9
JR
605/*
606 * This function reads some important data from the IOMMU PCI space and
607 * initializes the driver data structure with it. It reads the hardware
608 * capabilities and the first/last device entries
609 */
5d0c8e49
JR
610static void __init init_iommu_from_pci(struct amd_iommu *iommu)
611{
5d0c8e49 612 int cap_ptr = iommu->cap_ptr;
a80dc3e0 613 u32 range, misc;
5d0c8e49 614
3eaf28a1
JR
615 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
616 &iommu->cap);
617 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
618 &range);
a80dc3e0
JR
619 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
620 &misc);
5d0c8e49 621
d591b0a3
JR
622 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
623 MMIO_GET_FD(range));
624 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
625 MMIO_GET_LD(range));
a80dc3e0 626 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
627}
628
b65233a9
JR
629/*
630 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
631 * initializes the hardware and our data structures with it.
632 */
5d0c8e49
JR
633static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
634 struct ivhd_header *h)
635{
636 u8 *p = (u8 *)h;
637 u8 *end = p, flags = 0;
638 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
639 u32 ext_flags = 0;
58a3bee5 640 bool alias = false;
5d0c8e49
JR
641 struct ivhd_entry *e;
642
643 /*
644 * First set the recommended feature enable bits from ACPI
645 * into the IOMMU control registers
646 */
6da7342f 647 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
648 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
649 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
650
6da7342f 651 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
652 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
653 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
654
6da7342f 655 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
656 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
657 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
658
6da7342f 659 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
660 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
661 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
662
663 /*
664 * make IOMMU memory accesses cache coherent
665 */
666 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
667
668 /*
669 * Done. Now parse the device entries
670 */
671 p += sizeof(struct ivhd_header);
672 end += h->length;
673
42a698f4 674
5d0c8e49
JR
675 while (p < end) {
676 e = (struct ivhd_entry *)p;
677 switch (e->type) {
678 case IVHD_DEV_ALL:
42a698f4
JR
679
680 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
681 " last device %02x:%02x.%x flags: %02x\n",
682 PCI_BUS(iommu->first_device),
683 PCI_SLOT(iommu->first_device),
684 PCI_FUNC(iommu->first_device),
685 PCI_BUS(iommu->last_device),
686 PCI_SLOT(iommu->last_device),
687 PCI_FUNC(iommu->last_device),
688 e->flags);
689
5d0c8e49
JR
690 for (dev_i = iommu->first_device;
691 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
692 set_dev_entry_from_acpi(iommu, dev_i,
693 e->flags, 0);
5d0c8e49
JR
694 break;
695 case IVHD_DEV_SELECT:
42a698f4
JR
696
697 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
698 "flags: %02x\n",
699 PCI_BUS(e->devid),
700 PCI_SLOT(e->devid),
701 PCI_FUNC(e->devid),
702 e->flags);
703
5d0c8e49 704 devid = e->devid;
5ff4789d 705 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
706 break;
707 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
708
709 DUMP_printk(" DEV_SELECT_RANGE_START\t "
710 "devid: %02x:%02x.%x flags: %02x\n",
711 PCI_BUS(e->devid),
712 PCI_SLOT(e->devid),
713 PCI_FUNC(e->devid),
714 e->flags);
715
5d0c8e49
JR
716 devid_start = e->devid;
717 flags = e->flags;
718 ext_flags = 0;
58a3bee5 719 alias = false;
5d0c8e49
JR
720 break;
721 case IVHD_DEV_ALIAS:
42a698f4
JR
722
723 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
724 "flags: %02x devid_to: %02x:%02x.%x\n",
725 PCI_BUS(e->devid),
726 PCI_SLOT(e->devid),
727 PCI_FUNC(e->devid),
728 e->flags,
729 PCI_BUS(e->ext >> 8),
730 PCI_SLOT(e->ext >> 8),
731 PCI_FUNC(e->ext >> 8));
732
5d0c8e49
JR
733 devid = e->devid;
734 devid_to = e->ext >> 8;
7a6a3a08 735 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 736 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
737 amd_iommu_alias_table[devid] = devid_to;
738 break;
739 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
740
741 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
742 "devid: %02x:%02x.%x flags: %02x "
743 "devid_to: %02x:%02x.%x\n",
744 PCI_BUS(e->devid),
745 PCI_SLOT(e->devid),
746 PCI_FUNC(e->devid),
747 e->flags,
748 PCI_BUS(e->ext >> 8),
749 PCI_SLOT(e->ext >> 8),
750 PCI_FUNC(e->ext >> 8));
751
5d0c8e49
JR
752 devid_start = e->devid;
753 flags = e->flags;
754 devid_to = e->ext >> 8;
755 ext_flags = 0;
58a3bee5 756 alias = true;
5d0c8e49
JR
757 break;
758 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
759
760 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
761 "flags: %02x ext: %08x\n",
762 PCI_BUS(e->devid),
763 PCI_SLOT(e->devid),
764 PCI_FUNC(e->devid),
765 e->flags, e->ext);
766
5d0c8e49 767 devid = e->devid;
5ff4789d
JR
768 set_dev_entry_from_acpi(iommu, devid, e->flags,
769 e->ext);
5d0c8e49
JR
770 break;
771 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
772
773 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
774 "%02x:%02x.%x flags: %02x ext: %08x\n",
775 PCI_BUS(e->devid),
776 PCI_SLOT(e->devid),
777 PCI_FUNC(e->devid),
778 e->flags, e->ext);
779
5d0c8e49
JR
780 devid_start = e->devid;
781 flags = e->flags;
782 ext_flags = e->ext;
58a3bee5 783 alias = false;
5d0c8e49
JR
784 break;
785 case IVHD_DEV_RANGE_END:
42a698f4
JR
786
787 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
788 PCI_BUS(e->devid),
789 PCI_SLOT(e->devid),
790 PCI_FUNC(e->devid));
791
5d0c8e49
JR
792 devid = e->devid;
793 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 794 if (alias) {
5d0c8e49 795 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
796 set_dev_entry_from_acpi(iommu,
797 devid_to, flags, ext_flags);
798 }
799 set_dev_entry_from_acpi(iommu, dev_i,
800 flags, ext_flags);
5d0c8e49
JR
801 }
802 break;
803 default:
804 break;
805 }
806
b514e555 807 p += ivhd_entry_length(p);
5d0c8e49
JR
808 }
809}
810
b65233a9 811/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
812static int __init init_iommu_devices(struct amd_iommu *iommu)
813{
814 u16 i;
815
816 for (i = iommu->first_device; i <= iommu->last_device; ++i)
817 set_iommu_for_device(iommu, i);
818
819 return 0;
820}
821
e47d402d
JR
822static void __init free_iommu_one(struct amd_iommu *iommu)
823{
824 free_command_buffer(iommu);
335503e5 825 free_event_buffer(iommu);
e47d402d
JR
826 iommu_unmap_mmio_space(iommu);
827}
828
829static void __init free_iommu_all(void)
830{
831 struct amd_iommu *iommu, *next;
832
3bd22172 833 for_each_iommu_safe(iommu, next) {
e47d402d
JR
834 list_del(&iommu->list);
835 free_iommu_one(iommu);
836 kfree(iommu);
837 }
838}
839
b65233a9
JR
840/*
841 * This function clues the initialization function for one IOMMU
842 * together and also allocates the command buffer and programs the
843 * hardware. It does NOT enable the IOMMU. This is done afterwards.
844 */
e47d402d
JR
845static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
846{
847 spin_lock_init(&iommu->lock);
bb52777e
JR
848
849 /* Add IOMMU to internal data structures */
e47d402d 850 list_add_tail(&iommu->list, &amd_iommu_list);
bb52777e
JR
851 iommu->index = amd_iommus_present++;
852
853 if (unlikely(iommu->index >= MAX_IOMMUS)) {
854 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
855 return -ENOSYS;
856 }
857
858 /* Index is fine - add IOMMU to the array */
859 amd_iommus[iommu->index] = iommu;
e47d402d
JR
860
861 /*
862 * Copy data from ACPI table entry to the iommu struct
863 */
3eaf28a1
JR
864 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
865 if (!iommu->dev)
866 return 1;
867
e47d402d 868 iommu->cap_ptr = h->cap_ptr;
ee893c24 869 iommu->pci_seg = h->pci_seg;
e47d402d
JR
870 iommu->mmio_phys = h->mmio_phys;
871 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
872 if (!iommu->mmio_base)
873 return -ENOMEM;
874
e47d402d
JR
875 iommu->cmd_buf = alloc_command_buffer(iommu);
876 if (!iommu->cmd_buf)
877 return -ENOMEM;
878
335503e5
JR
879 iommu->evt_buf = alloc_event_buffer(iommu);
880 if (!iommu->evt_buf)
881 return -ENOMEM;
882
a80dc3e0
JR
883 iommu->int_enabled = false;
884
e47d402d
JR
885 init_iommu_from_pci(iommu);
886 init_iommu_from_acpi(iommu, h);
887 init_iommu_devices(iommu);
888
318afd41
JR
889 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
890 amd_iommu_np_cache = true;
891
8a66712b 892 return pci_enable_device(iommu->dev);
e47d402d
JR
893}
894
b65233a9
JR
895/*
896 * Iterates over all IOMMU entries in the ACPI table, allocates the
897 * IOMMU structure and initializes it with init_iommu_one()
898 */
e47d402d
JR
899static int __init init_iommu_all(struct acpi_table_header *table)
900{
901 u8 *p = (u8 *)table, *end = (u8 *)table;
902 struct ivhd_header *h;
903 struct amd_iommu *iommu;
904 int ret;
905
e47d402d
JR
906 end += table->length;
907 p += IVRS_HEADER_LENGTH;
908
909 while (p < end) {
910 h = (struct ivhd_header *)p;
911 switch (*p) {
912 case ACPI_IVHD_TYPE:
9c72041f 913
ae908c22 914 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
9c72041f
JR
915 "seg: %d flags: %01x info %04x\n",
916 PCI_BUS(h->devid), PCI_SLOT(h->devid),
917 PCI_FUNC(h->devid), h->cap_ptr,
918 h->pci_seg, h->flags, h->info);
919 DUMP_printk(" mmio-addr: %016llx\n",
920 h->mmio_phys);
921
e47d402d
JR
922 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
923 if (iommu == NULL)
924 return -ENOMEM;
925 ret = init_iommu_one(iommu, h);
926 if (ret)
927 return ret;
928 break;
929 default:
930 break;
931 }
932 p += h->length;
933
934 }
935 WARN_ON(p != end);
936
0f764806
JR
937 amd_iommu_initialized = true;
938
e47d402d
JR
939 return 0;
940}
941
a80dc3e0
JR
942/****************************************************************************
943 *
944 * The following functions initialize the MSI interrupts for all IOMMUs
945 * in the system. Its a bit challenging because there could be multiple
946 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
947 * pci_dev.
948 *
949 ****************************************************************************/
950
9f800de3 951static int iommu_setup_msi(struct amd_iommu *iommu)
a80dc3e0
JR
952{
953 int r;
a80dc3e0
JR
954
955 if (pci_enable_msi(iommu->dev))
956 return 1;
957
958 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
959 IRQF_SAMPLE_RANDOM,
4c6f40d4 960 "AMD-Vi",
a80dc3e0
JR
961 NULL);
962
963 if (r) {
964 pci_disable_msi(iommu->dev);
965 return 1;
966 }
967
fab6afa3 968 iommu->int_enabled = true;
58492e12
JR
969 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
970
a80dc3e0
JR
971 return 0;
972}
973
05f92db9 974static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
975{
976 if (iommu->int_enabled)
977 return 0;
978
d91cecdd 979 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
980 return iommu_setup_msi(iommu);
981
982 return 1;
983}
984
b65233a9
JR
985/****************************************************************************
986 *
987 * The next functions belong to the third pass of parsing the ACPI
988 * table. In this last pass the memory mapping requirements are
989 * gathered (like exclusion and unity mapping reanges).
990 *
991 ****************************************************************************/
992
be2a022c
JR
993static void __init free_unity_maps(void)
994{
995 struct unity_map_entry *entry, *next;
996
997 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
998 list_del(&entry->list);
999 kfree(entry);
1000 }
1001}
1002
b65233a9 1003/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
1004static int __init init_exclusion_range(struct ivmd_header *m)
1005{
1006 int i;
1007
1008 switch (m->type) {
1009 case ACPI_IVMD_TYPE:
1010 set_device_exclusion_range(m->devid, m);
1011 break;
1012 case ACPI_IVMD_TYPE_ALL:
3a61ec38 1013 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
1014 set_device_exclusion_range(i, m);
1015 break;
1016 case ACPI_IVMD_TYPE_RANGE:
1017 for (i = m->devid; i <= m->aux; ++i)
1018 set_device_exclusion_range(i, m);
1019 break;
1020 default:
1021 break;
1022 }
1023
1024 return 0;
1025}
1026
b65233a9 1027/* called for unity map ACPI definition */
be2a022c
JR
1028static int __init init_unity_map_range(struct ivmd_header *m)
1029{
1030 struct unity_map_entry *e = 0;
02acc43a 1031 char *s;
be2a022c
JR
1032
1033 e = kzalloc(sizeof(*e), GFP_KERNEL);
1034 if (e == NULL)
1035 return -ENOMEM;
1036
1037 switch (m->type) {
1038 default:
0bc252f4
JR
1039 kfree(e);
1040 return 0;
be2a022c 1041 case ACPI_IVMD_TYPE:
02acc43a 1042 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
1043 e->devid_start = e->devid_end = m->devid;
1044 break;
1045 case ACPI_IVMD_TYPE_ALL:
02acc43a 1046 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1047 e->devid_start = 0;
1048 e->devid_end = amd_iommu_last_bdf;
1049 break;
1050 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1051 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1052 e->devid_start = m->devid;
1053 e->devid_end = m->aux;
1054 break;
1055 }
1056 e->address_start = PAGE_ALIGN(m->range_start);
1057 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1058 e->prot = m->flags >> 1;
1059
02acc43a
JR
1060 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1061 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1062 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1063 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1064 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1065 e->address_start, e->address_end, m->flags);
1066
be2a022c
JR
1067 list_add_tail(&e->list, &amd_iommu_unity_map);
1068
1069 return 0;
1070}
1071
b65233a9 1072/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1073static int __init init_memory_definitions(struct acpi_table_header *table)
1074{
1075 u8 *p = (u8 *)table, *end = (u8 *)table;
1076 struct ivmd_header *m;
1077
be2a022c
JR
1078 end += table->length;
1079 p += IVRS_HEADER_LENGTH;
1080
1081 while (p < end) {
1082 m = (struct ivmd_header *)p;
1083 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1084 init_exclusion_range(m);
1085 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1086 init_unity_map_range(m);
1087
1088 p += m->length;
1089 }
1090
1091 return 0;
1092}
1093
9f5f5fb3
JR
1094/*
1095 * Init the device table to not allow DMA access for devices and
1096 * suppress all page faults
1097 */
1098static void init_device_table(void)
1099{
1100 u16 devid;
1101
1102 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1103 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1104 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1105 }
1106}
1107
b65233a9
JR
1108/*
1109 * This function finally enables all IOMMUs found in the system after
1110 * they have been initialized
1111 */
05f92db9 1112static void enable_iommus(void)
8736197b
JR
1113{
1114 struct amd_iommu *iommu;
1115
3bd22172 1116 for_each_iommu(iommu) {
a8c485bb 1117 iommu_disable(iommu);
58492e12
JR
1118 iommu_set_device_table(iommu);
1119 iommu_enable_command_buffer(iommu);
1120 iommu_enable_event_buffer(iommu);
8736197b 1121 iommu_set_exclusion_range(iommu);
a80dc3e0 1122 iommu_init_msi(iommu);
8736197b
JR
1123 iommu_enable(iommu);
1124 }
1125}
1126
92ac4320
JR
1127static void disable_iommus(void)
1128{
1129 struct amd_iommu *iommu;
1130
1131 for_each_iommu(iommu)
1132 iommu_disable(iommu);
1133}
1134
7441e9cb
JR
1135/*
1136 * Suspend/Resume support
1137 * disable suspend until real resume implemented
1138 */
1139
1140static int amd_iommu_resume(struct sys_device *dev)
1141{
736501ee
JR
1142 /* re-load the hardware */
1143 enable_iommus();
1144
1145 /*
1146 * we have to flush after the IOMMUs are enabled because a
1147 * disabled IOMMU will never execute the commands we send
1148 */
736501ee 1149 amd_iommu_flush_all_devices();
6a047d8b 1150 amd_iommu_flush_all_domains();
736501ee 1151
7441e9cb
JR
1152 return 0;
1153}
1154
1155static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1156{
736501ee
JR
1157 /* disable IOMMUs to go out of the way for BIOS */
1158 disable_iommus();
1159
1160 return 0;
7441e9cb
JR
1161}
1162
1163static struct sysdev_class amd_iommu_sysdev_class = {
1164 .name = "amd_iommu",
1165 .suspend = amd_iommu_suspend,
1166 .resume = amd_iommu_resume,
1167};
1168
1169static struct sys_device device_amd_iommu = {
1170 .id = 0,
1171 .cls = &amd_iommu_sysdev_class,
1172};
1173
b65233a9
JR
1174/*
1175 * This is the core init function for AMD IOMMU hardware in the system.
1176 * This function is called from the generic x86 DMA layer initialization
1177 * code.
1178 *
1179 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1180 * three times:
1181 *
1182 * 1 pass) Find the highest PCI device id the driver has to handle.
1183 * Upon this information the size of the data structures is
1184 * determined that needs to be allocated.
1185 *
1186 * 2 pass) Initialize the data structures just allocated with the
1187 * information in the ACPI table about available AMD IOMMUs
1188 * in the system. It also maps the PCI devices in the
1189 * system to specific IOMMUs
1190 *
1191 * 3 pass) After the basic data structures are allocated and
1192 * initialized we update them with information about memory
1193 * remapping requirements parsed out of the ACPI table in
1194 * this last pass.
1195 *
1196 * After that the hardware is initialized and ready to go. In the last
1197 * step we do some Linux specific things like registering the driver in
1198 * the dma_ops interface and initializing the suspend/resume support
1199 * functions. Finally it prints some information about AMD IOMMUs and
1200 * the driver state and enables the hardware.
1201 */
ea1b0d39 1202static int __init amd_iommu_init(void)
fe74c9cf
JR
1203{
1204 int i, ret = 0;
1205
fe74c9cf
JR
1206 /*
1207 * First parse ACPI tables to find the largest Bus/Dev/Func
1208 * we need to handle. Upon this information the shared data
1209 * structures for the IOMMUs in the system will be allocated
1210 */
1211 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1212 return -ENODEV;
1213
c571484e
JR
1214 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1215 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1216 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1217
1218 ret = -ENOMEM;
1219
1220 /* Device table - directly used by all IOMMUs */
5dc8bff0 1221 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1222 get_order(dev_table_size));
1223 if (amd_iommu_dev_table == NULL)
1224 goto out;
1225
1226 /*
1227 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1228 * IOMMU see for that device
1229 */
1230 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1231 get_order(alias_table_size));
1232 if (amd_iommu_alias_table == NULL)
1233 goto free;
1234
1235 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1236 amd_iommu_rlookup_table = (void *)__get_free_pages(
1237 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1238 get_order(rlookup_table_size));
1239 if (amd_iommu_rlookup_table == NULL)
1240 goto free;
1241
5dc8bff0
JR
1242 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1243 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1244 get_order(MAX_DOMAIN_ID/8));
1245 if (amd_iommu_pd_alloc_bitmap == NULL)
1246 goto free;
1247
9f5f5fb3
JR
1248 /* init the device table */
1249 init_device_table();
1250
fe74c9cf 1251 /*
5dc8bff0 1252 * let all alias entries point to itself
fe74c9cf 1253 */
3a61ec38 1254 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1255 amd_iommu_alias_table[i] = i;
1256
fe74c9cf
JR
1257 /*
1258 * never allocate domain 0 because its used as the non-allocated and
1259 * error value placeholder
1260 */
1261 amd_iommu_pd_alloc_bitmap[0] = 1;
1262
aeb26f55
JR
1263 spin_lock_init(&amd_iommu_pd_lock);
1264
fe74c9cf
JR
1265 /*
1266 * now the data structures are allocated and basically initialized
1267 * start the real acpi table scan
1268 */
1269 ret = -ENODEV;
1270 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1271 goto free;
1272
0f764806
JR
1273 if (!amd_iommu_initialized)
1274 goto free;
1275
fe74c9cf
JR
1276 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1277 goto free;
1278
129d6aba 1279 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1280 if (ret)
1281 goto free;
1282
129d6aba 1283 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1284 if (ret)
1285 goto free;
1286
b7cc9554
JR
1287 ret = amd_iommu_init_devices();
1288 if (ret)
1289 goto free;
1290
4751a951
JR
1291 if (iommu_pass_through)
1292 ret = amd_iommu_init_passthrough();
1293 else
1294 ret = amd_iommu_init_dma_ops();
f5325094 1295
7441e9cb
JR
1296 if (ret)
1297 goto free;
1298
f5325094
JR
1299 amd_iommu_init_api();
1300
8638c491
JR
1301 amd_iommu_init_notifier();
1302
8736197b
JR
1303 enable_iommus();
1304
4751a951
JR
1305 if (iommu_pass_through)
1306 goto out;
1307
afa9fdc2 1308 if (amd_iommu_unmap_flush)
4c6f40d4 1309 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1310 else
4c6f40d4 1311 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1312
338bac52 1313 x86_platform.iommu_shutdown = disable_iommus;
fe74c9cf
JR
1314out:
1315 return ret;
1316
1317free:
b7cc9554
JR
1318
1319 amd_iommu_uninit_devices();
1320
d58befd3
JR
1321 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1322 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1323
9a836de0
JR
1324 free_pages((unsigned long)amd_iommu_rlookup_table,
1325 get_order(rlookup_table_size));
fe74c9cf 1326
9a836de0
JR
1327 free_pages((unsigned long)amd_iommu_alias_table,
1328 get_order(alias_table_size));
fe74c9cf 1329
9a836de0
JR
1330 free_pages((unsigned long)amd_iommu_dev_table,
1331 get_order(dev_table_size));
fe74c9cf
JR
1332
1333 free_iommu_all();
1334
1335 free_unity_maps();
1336
1337 goto out;
1338}
1339
b65233a9
JR
1340/****************************************************************************
1341 *
1342 * Early detect code. This code runs at IOMMU detection time in the DMA
1343 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1344 * IOMMUs
1345 *
1346 ****************************************************************************/
ae7877de
JR
1347static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1348{
1349 return 0;
1350}
1351
1352void __init amd_iommu_detect(void)
1353{
75f1cdf1 1354 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1355 return;
1356
ae7877de
JR
1357 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1358 iommu_detected = 1;
c1cbebee 1359 amd_iommu_detected = 1;
ea1b0d39 1360 x86_init.iommu.iommu_init = amd_iommu_init;
11bd04f6 1361
5d990b62
CW
1362 /* Make sure ACS will be enabled */
1363 pci_request_acs();
ae7877de
JR
1364 }
1365}
1366
b65233a9
JR
1367/****************************************************************************
1368 *
1369 * Parsing functions for the AMD IOMMU specific kernel command line
1370 * options.
1371 *
1372 ****************************************************************************/
1373
fefda117
JR
1374static int __init parse_amd_iommu_dump(char *str)
1375{
1376 amd_iommu_dump = true;
1377
1378 return 1;
1379}
1380
918ad6c5
JR
1381static int __init parse_amd_iommu_options(char *str)
1382{
1383 for (; *str; ++str) {
695b5676 1384 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1385 amd_iommu_unmap_flush = true;
918ad6c5
JR
1386 }
1387
1388 return 1;
1389}
1390
fefda117 1391__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1392__setup("amd_iommu=", parse_amd_iommu_options);