x86/amd-iommu: Move compl-wait command building to own function
[linux-2.6-block.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
a66022c4 21#include <linux/bitmap.h>
5a0e3ad6 22#include <linux/slab.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
657cbb6b
JR
76static struct iommu_dev_data *get_dev_data(struct device *dev)
77{
78 return dev->archdata.iommu;
79}
80
71c70984
JR
81/*
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
84 */
85static struct dma_ops_domain *find_protection_domain(u16 devid)
86{
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
90
91 if (list_empty(&iommu_pd_list))
92 return NULL;
93
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
95
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
101 }
102 }
103
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105
106 return ret;
107}
108
98fc5a69
JR
109/*
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
112 */
113static bool check_device(struct device *dev)
114{
115 u16 devid;
116
117 if (!dev || !dev->dma_mask)
118 return false;
119
120 /* No device or no PCI device */
339d3261 121 if (dev->bus != &pci_bus_type)
98fc5a69
JR
122 return false;
123
124 devid = get_device_id(dev);
125
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
129
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
132
133 return true;
134}
135
657cbb6b
JR
136static int iommu_init_device(struct device *dev)
137{
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
141
142 if (dev->archdata.iommu)
143 return 0;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
148
b00d3bcf
JR
149 dev_data->dev = dev;
150
657cbb6b
JR
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
156
24100055
JR
157 atomic_set(&dev_data->bind, 0);
158
657cbb6b
JR
159 dev->archdata.iommu = dev_data;
160
161
162 return 0;
163}
164
165static void iommu_uninit_device(struct device *dev)
166{
167 kfree(dev->archdata.iommu);
168}
b7cc9554
JR
169
170void __init amd_iommu_uninit_devices(void)
171{
172 struct pci_dev *pdev = NULL;
173
174 for_each_pci_dev(pdev) {
175
176 if (!check_device(&pdev->dev))
177 continue;
178
179 iommu_uninit_device(&pdev->dev);
180 }
181}
182
183int __init amd_iommu_init_devices(void)
184{
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
187
188 for_each_pci_dev(pdev) {
189
190 if (!check_device(&pdev->dev))
191 continue;
192
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
196 }
197
198 return 0;
199
200out_free:
201
202 amd_iommu_uninit_devices();
203
204 return ret;
205}
7f26508b
JR
206#ifdef CONFIG_AMD_IOMMU_STATS
207
208/*
209 * Initialization code for statistics collection
210 */
211
da49f6df 212DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 213DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 214DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 215DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 216DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 217DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 218DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 219DECLARE_STATS_COUNTER(cross_page);
f57d98ae 220DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 221DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 222DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 223DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 224
7f26508b 225static struct dentry *stats_dir;
7f26508b
JR
226static struct dentry *de_fflush;
227
228static void amd_iommu_stats_add(struct __iommu_counter *cnt)
229{
230 if (stats_dir == NULL)
231 return;
232
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
235}
236
237static void amd_iommu_stats_init(void)
238{
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
242
7f26508b
JR
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
245
246 amd_iommu_stats_add(&compl_wait);
0f2a86f2 247 amd_iommu_stats_add(&cnt_map_single);
146a6917 248 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 249 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 250 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 251 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 252 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 253 amd_iommu_stats_add(&cross_page);
f57d98ae 254 amd_iommu_stats_add(&domain_flush_single);
18811f55 255 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 256 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 257 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
258}
259
260#endif
261
a80dc3e0
JR
262/****************************************************************************
263 *
264 * Interrupt handling functions
265 *
266 ****************************************************************************/
267
e3e59876
JR
268static void dump_dte_entry(u16 devid)
269{
270 int i;
271
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
275}
276
945b4ac4
JR
277static void dump_command(unsigned long phys_addr)
278{
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
281
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
284}
285
a345b23b 286static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
287{
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
294
4c6f40d4 295 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
296
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
e3e59876 303 dump_dte_entry(devid);
90008ee4
JR
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
8eed9833 325 iommu->reset_in_progress = true;
a345b23b 326 reset_iommu_command_buffer(iommu);
945b4ac4 327 dump_command(address);
90008ee4
JR
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
347 }
348}
349
350static void iommu_poll_events(struct amd_iommu *iommu)
351{
352 u32 head, tail;
353 unsigned long flags;
354
355 spin_lock_irqsave(&iommu->lock, flags);
356
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
359
360 while (head != tail) {
a345b23b 361 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
363 }
364
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
366
367 spin_unlock_irqrestore(&iommu->lock, flags);
368}
369
a80dc3e0
JR
370irqreturn_t amd_iommu_int_handler(int irq, void *data)
371{
90008ee4
JR
372 struct amd_iommu *iommu;
373
3bd22172 374 for_each_iommu(iommu)
90008ee4
JR
375 iommu_poll_events(iommu);
376
377 return IRQ_HANDLED;
a80dc3e0
JR
378}
379
431b2a20
JR
380/****************************************************************************
381 *
382 * IOMMU command queuing functions
383 *
384 ****************************************************************************/
385
ded46737
JR
386static void build_completion_wait(struct iommu_cmd *cmd)
387{
388 memset(cmd, 0, sizeof(*cmd));
389 cmd->data[0] = CMD_COMPL_WAIT_INT_MASK;
390 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
391}
392
431b2a20
JR
393/*
394 * Writes the command to the IOMMUs command buffer and informs the
395 * hardware about the new command. Must be called with iommu->lock held.
396 */
d6449536 397static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
398{
399 u32 tail, head;
400 u8 *target;
401
549c90dc 402 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
a19ae1ec 403 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 404 target = iommu->cmd_buf + tail;
a19ae1ec
JR
405 memcpy_toio(target, cmd, sizeof(*cmd));
406 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
407 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
408 if (tail == head)
409 return -ENOMEM;
410 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
411
412 return 0;
413}
414
431b2a20
JR
415/*
416 * General queuing function for commands. Takes iommu->lock and calls
417 * __iommu_queue_command().
418 */
d6449536 419static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
420{
421 unsigned long flags;
422 int ret;
423
424 spin_lock_irqsave(&iommu->lock, flags);
425 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 426 if (!ret)
0cfd7aa9 427 iommu->need_sync = true;
a19ae1ec
JR
428 spin_unlock_irqrestore(&iommu->lock, flags);
429
430 return ret;
431}
432
8d201968
JR
433/*
434 * This function waits until an IOMMU has completed a completion
435 * wait command
436 */
437static void __iommu_wait_for_completion(struct amd_iommu *iommu)
438{
439 int ready = 0;
440 unsigned status = 0;
441 unsigned long i = 0;
442
da49f6df
JR
443 INC_STATS_COUNTER(compl_wait);
444
8d201968
JR
445 while (!ready && (i < EXIT_LOOP_COUNT)) {
446 ++i;
447 /* wait for the bit to become one */
448 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
449 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
450 }
451
452 /* set bit back to zero */
453 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
454 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
455
8eed9833
JR
456 if (unlikely(i == EXIT_LOOP_COUNT))
457 iommu->reset_in_progress = true;
8d201968
JR
458}
459
460/*
461 * This function queues a completion wait command into the command
462 * buffer of an IOMMU
463 */
464static int __iommu_completion_wait(struct amd_iommu *iommu)
465{
466 struct iommu_cmd cmd;
467
ded46737 468 build_completion_wait(&cmd);
8d201968
JR
469
470 return __iommu_queue_command(iommu, &cmd);
471}
472
431b2a20
JR
473/*
474 * This function is called whenever we need to ensure that the IOMMU has
475 * completed execution of all commands we sent. It sends a
476 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
477 * us about that by writing a value to a physical address we pass with
478 * the command.
479 */
a19ae1ec
JR
480static int iommu_completion_wait(struct amd_iommu *iommu)
481{
8d201968
JR
482 int ret = 0;
483 unsigned long flags;
a19ae1ec 484
7e4f88da
JR
485 spin_lock_irqsave(&iommu->lock, flags);
486
09ee17eb
JR
487 if (!iommu->need_sync)
488 goto out;
489
8d201968 490 ret = __iommu_completion_wait(iommu);
09ee17eb 491
0cfd7aa9 492 iommu->need_sync = false;
a19ae1ec
JR
493
494 if (ret)
7e4f88da 495 goto out;
a19ae1ec 496
8d201968 497 __iommu_wait_for_completion(iommu);
84df8175 498
7e4f88da
JR
499out:
500 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec 501
8eed9833
JR
502 if (iommu->reset_in_progress)
503 reset_iommu_command_buffer(iommu);
504
a19ae1ec
JR
505 return 0;
506}
507
0518a3a4
JR
508static void iommu_flush_complete(struct protection_domain *domain)
509{
510 int i;
511
512 for (i = 0; i < amd_iommus_present; ++i) {
513 if (!domain->dev_iommu[i])
514 continue;
515
516 /*
517 * Devices of this domain are behind this IOMMU
518 * We need to wait for completion of all commands.
519 */
520 iommu_completion_wait(amd_iommus[i]);
521 }
522}
523
431b2a20
JR
524/*
525 * Command send function for invalidating a device table entry
526 */
3fa43655
JR
527static int iommu_flush_device(struct device *dev)
528{
529 struct amd_iommu *iommu;
b00d3bcf 530 struct iommu_cmd cmd;
3fa43655
JR
531 u16 devid;
532
533 devid = get_device_id(dev);
534 iommu = amd_iommu_rlookup_table[devid];
535
b00d3bcf
JR
536 /* Build command */
537 memset(&cmd, 0, sizeof(cmd));
538 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
539 cmd.data[0] = devid;
540
541 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
542}
543
237b6f33
JR
544static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
545 u16 domid, int pde, int s)
546{
547 memset(cmd, 0, sizeof(*cmd));
548 address &= PAGE_MASK;
549 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
550 cmd->data[1] |= domid;
551 cmd->data[2] = lower_32_bits(address);
552 cmd->data[3] = upper_32_bits(address);
553 if (s) /* size bit - we flush more than one 4kb page */
554 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
555 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
556 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
557}
558
431b2a20
JR
559/*
560 * Generic command send function for invalidaing TLB entries
561 */
a19ae1ec
JR
562static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
563 u64 address, u16 domid, int pde, int s)
564{
d6449536 565 struct iommu_cmd cmd;
ee2fa743 566 int ret;
a19ae1ec 567
237b6f33 568 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 569
ee2fa743
JR
570 ret = iommu_queue_command(iommu, &cmd);
571
ee2fa743 572 return ret;
a19ae1ec
JR
573}
574
431b2a20
JR
575/*
576 * TLB invalidation function which is called from the mapping functions.
577 * It invalidates a single PTE if the range to flush is within a single
578 * page. Otherwise it flushes the whole TLB of the IOMMU.
579 */
6de8ad9b
JR
580static void __iommu_flush_pages(struct protection_domain *domain,
581 u64 address, size_t size, int pde)
a19ae1ec 582{
6de8ad9b 583 int s = 0, i;
dcd1e92e 584 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
585
586 address &= PAGE_MASK;
587
999ba417
JR
588 if (pages > 1) {
589 /*
590 * If we have to flush more than one page, flush all
591 * TLB entries for this domain
592 */
593 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
594 s = 1;
a19ae1ec
JR
595 }
596
999ba417 597
6de8ad9b
JR
598 for (i = 0; i < amd_iommus_present; ++i) {
599 if (!domain->dev_iommu[i])
600 continue;
601
602 /*
603 * Devices of this domain are behind this IOMMU
604 * We need a TLB flush
605 */
606 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
607 domain->id, pde, s);
608 }
609
610 return;
611}
612
613static void iommu_flush_pages(struct protection_domain *domain,
614 u64 address, size_t size)
615{
616 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 617}
b6c02715 618
1c655773 619/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 620static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 621{
dcd1e92e 622 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
623}
624
42a49f96 625/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 626static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 627{
dcd1e92e 628 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
629}
630
b00d3bcf 631
43f49609 632/*
b00d3bcf 633 * This function flushes the DTEs for all devices in domain
43f49609 634 */
b00d3bcf
JR
635static void iommu_flush_domain_devices(struct protection_domain *domain)
636{
637 struct iommu_dev_data *dev_data;
638 unsigned long flags;
639
640 spin_lock_irqsave(&domain->lock, flags);
641
642 list_for_each_entry(dev_data, &domain->dev_list, list)
643 iommu_flush_device(dev_data->dev);
644
645 spin_unlock_irqrestore(&domain->lock, flags);
646}
647
648static void iommu_flush_all_domain_devices(void)
43f49609 649{
09b42804 650 struct protection_domain *domain;
e394d72a 651 unsigned long flags;
18811f55 652
09b42804 653 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 654
09b42804 655 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
b00d3bcf 656 iommu_flush_domain_devices(domain);
09b42804 657 iommu_flush_complete(domain);
bfd1be18 658 }
e394d72a 659
09b42804 660 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
661}
662
b00d3bcf
JR
663void amd_iommu_flush_all_devices(void)
664{
665 iommu_flush_all_domain_devices();
666}
667
09b42804
JR
668/*
669 * This function uses heavy locking and may disable irqs for some time. But
670 * this is no issue because it is only called during resume.
671 */
bfd1be18 672void amd_iommu_flush_all_domains(void)
e394d72a 673{
e3306664 674 struct protection_domain *domain;
09b42804
JR
675 unsigned long flags;
676
677 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 678
e3306664 679 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 680 spin_lock(&domain->lock);
e3306664
JR
681 iommu_flush_tlb_pde(domain);
682 iommu_flush_complete(domain);
09b42804 683 spin_unlock(&domain->lock);
e3306664 684 }
09b42804
JR
685
686 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
687}
688
a345b23b
JR
689static void reset_iommu_command_buffer(struct amd_iommu *iommu)
690{
691 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
692
b26e81b8
JR
693 if (iommu->reset_in_progress)
694 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
695
a345b23b 696 amd_iommu_reset_cmd_buffer(iommu);
b00d3bcf
JR
697 amd_iommu_flush_all_devices();
698 amd_iommu_flush_all_domains();
b26e81b8
JR
699
700 iommu->reset_in_progress = false;
a345b23b
JR
701}
702
431b2a20
JR
703/****************************************************************************
704 *
705 * The functions below are used the create the page table mappings for
706 * unity mapped regions.
707 *
708 ****************************************************************************/
709
308973d3
JR
710/*
711 * This function is used to add another level to an IO page table. Adding
712 * another level increases the size of the address space by 9 bits to a size up
713 * to 64 bits.
714 */
715static bool increase_address_space(struct protection_domain *domain,
716 gfp_t gfp)
717{
718 u64 *pte;
719
720 if (domain->mode == PAGE_MODE_6_LEVEL)
721 /* address space already 64 bit large */
722 return false;
723
724 pte = (void *)get_zeroed_page(gfp);
725 if (!pte)
726 return false;
727
728 *pte = PM_LEVEL_PDE(domain->mode,
729 virt_to_phys(domain->pt_root));
730 domain->pt_root = pte;
731 domain->mode += 1;
732 domain->updated = true;
733
734 return true;
735}
736
737static u64 *alloc_pte(struct protection_domain *domain,
738 unsigned long address,
cbb9d729 739 unsigned long page_size,
308973d3
JR
740 u64 **pte_page,
741 gfp_t gfp)
742{
cbb9d729 743 int level, end_lvl;
308973d3 744 u64 *pte, *page;
cbb9d729
JR
745
746 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
747
748 while (address > PM_LEVEL_SIZE(domain->mode))
749 increase_address_space(domain, gfp);
750
cbb9d729
JR
751 level = domain->mode - 1;
752 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
753 address = PAGE_SIZE_ALIGN(address, page_size);
754 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
755
756 while (level > end_lvl) {
757 if (!IOMMU_PTE_PRESENT(*pte)) {
758 page = (u64 *)get_zeroed_page(gfp);
759 if (!page)
760 return NULL;
761 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
762 }
763
cbb9d729
JR
764 /* No level skipping support yet */
765 if (PM_PTE_LEVEL(*pte) != level)
766 return NULL;
767
308973d3
JR
768 level -= 1;
769
770 pte = IOMMU_PTE_PAGE(*pte);
771
772 if (pte_page && level == end_lvl)
773 *pte_page = pte;
774
775 pte = &pte[PM_LEVEL_INDEX(level, address)];
776 }
777
778 return pte;
779}
780
781/*
782 * This function checks if there is a PTE for a given dma address. If
783 * there is one, it returns the pointer to it.
784 */
24cd7723 785static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
786{
787 int level;
788 u64 *pte;
789
24cd7723
JR
790 if (address > PM_LEVEL_SIZE(domain->mode))
791 return NULL;
792
793 level = domain->mode - 1;
794 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 795
24cd7723
JR
796 while (level > 0) {
797
798 /* Not Present */
308973d3
JR
799 if (!IOMMU_PTE_PRESENT(*pte))
800 return NULL;
801
24cd7723
JR
802 /* Large PTE */
803 if (PM_PTE_LEVEL(*pte) == 0x07) {
804 unsigned long pte_mask, __pte;
805
806 /*
807 * If we have a series of large PTEs, make
808 * sure to return a pointer to the first one.
809 */
810 pte_mask = PTE_PAGE_SIZE(*pte);
811 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
812 __pte = ((unsigned long)pte) & pte_mask;
813
814 return (u64 *)__pte;
815 }
816
817 /* No level skipping support yet */
818 if (PM_PTE_LEVEL(*pte) != level)
819 return NULL;
820
308973d3
JR
821 level -= 1;
822
24cd7723 823 /* Walk to the next level */
308973d3
JR
824 pte = IOMMU_PTE_PAGE(*pte);
825 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
826 }
827
828 return pte;
829}
830
431b2a20
JR
831/*
832 * Generic mapping functions. It maps a physical address into a DMA
833 * address space. It allocates the page table pages if necessary.
834 * In the future it can be extended to a generic mapping function
835 * supporting all features of AMD IOMMU page tables like level skipping
836 * and full 64 bit address spaces.
837 */
38e817fe
JR
838static int iommu_map_page(struct protection_domain *dom,
839 unsigned long bus_addr,
840 unsigned long phys_addr,
abdc5eb3 841 int prot,
cbb9d729 842 unsigned long page_size)
bd0e5211 843{
8bda3092 844 u64 __pte, *pte;
cbb9d729 845 int i, count;
abdc5eb3 846
bad1cac2 847 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
848 return -EINVAL;
849
cbb9d729
JR
850 bus_addr = PAGE_ALIGN(bus_addr);
851 phys_addr = PAGE_ALIGN(phys_addr);
852 count = PAGE_SIZE_PTE_COUNT(page_size);
853 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
854
855 for (i = 0; i < count; ++i)
856 if (IOMMU_PTE_PRESENT(pte[i]))
857 return -EBUSY;
bd0e5211 858
cbb9d729
JR
859 if (page_size > PAGE_SIZE) {
860 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
861 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
862 } else
863 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 864
bd0e5211
JR
865 if (prot & IOMMU_PROT_IR)
866 __pte |= IOMMU_PTE_IR;
867 if (prot & IOMMU_PROT_IW)
868 __pte |= IOMMU_PTE_IW;
869
cbb9d729
JR
870 for (i = 0; i < count; ++i)
871 pte[i] = __pte;
bd0e5211 872
04bfdd84
JR
873 update_domain(dom);
874
bd0e5211
JR
875 return 0;
876}
877
24cd7723
JR
878static unsigned long iommu_unmap_page(struct protection_domain *dom,
879 unsigned long bus_addr,
880 unsigned long page_size)
eb74ff6c 881{
24cd7723
JR
882 unsigned long long unmap_size, unmapped;
883 u64 *pte;
884
885 BUG_ON(!is_power_of_2(page_size));
886
887 unmapped = 0;
eb74ff6c 888
24cd7723
JR
889 while (unmapped < page_size) {
890
891 pte = fetch_pte(dom, bus_addr);
892
893 if (!pte) {
894 /*
895 * No PTE for this address
896 * move forward in 4kb steps
897 */
898 unmap_size = PAGE_SIZE;
899 } else if (PM_PTE_LEVEL(*pte) == 0) {
900 /* 4kb PTE found for this address */
901 unmap_size = PAGE_SIZE;
902 *pte = 0ULL;
903 } else {
904 int count, i;
905
906 /* Large PTE found which maps this address */
907 unmap_size = PTE_PAGE_SIZE(*pte);
908 count = PAGE_SIZE_PTE_COUNT(unmap_size);
909 for (i = 0; i < count; i++)
910 pte[i] = 0ULL;
911 }
912
913 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
914 unmapped += unmap_size;
915 }
916
917 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 918
24cd7723 919 return unmapped;
eb74ff6c 920}
eb74ff6c 921
431b2a20
JR
922/*
923 * This function checks if a specific unity mapping entry is needed for
924 * this specific IOMMU.
925 */
bd0e5211
JR
926static int iommu_for_unity_map(struct amd_iommu *iommu,
927 struct unity_map_entry *entry)
928{
929 u16 bdf, i;
930
931 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
932 bdf = amd_iommu_alias_table[i];
933 if (amd_iommu_rlookup_table[bdf] == iommu)
934 return 1;
935 }
936
937 return 0;
938}
939
431b2a20
JR
940/*
941 * This function actually applies the mapping to the page table of the
942 * dma_ops domain.
943 */
bd0e5211
JR
944static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
945 struct unity_map_entry *e)
946{
947 u64 addr;
948 int ret;
949
950 for (addr = e->address_start; addr < e->address_end;
951 addr += PAGE_SIZE) {
abdc5eb3 952 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 953 PAGE_SIZE);
bd0e5211
JR
954 if (ret)
955 return ret;
956 /*
957 * if unity mapping is in aperture range mark the page
958 * as allocated in the aperture
959 */
960 if (addr < dma_dom->aperture_size)
c3239567 961 __set_bit(addr >> PAGE_SHIFT,
384de729 962 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
963 }
964
965 return 0;
966}
967
171e7b37
JR
968/*
969 * Init the unity mappings for a specific IOMMU in the system
970 *
971 * Basically iterates over all unity mapping entries and applies them to
972 * the default domain DMA of that IOMMU if necessary.
973 */
974static int iommu_init_unity_mappings(struct amd_iommu *iommu)
975{
976 struct unity_map_entry *entry;
977 int ret;
978
979 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
980 if (!iommu_for_unity_map(iommu, entry))
981 continue;
982 ret = dma_ops_unity_map(iommu->default_dom, entry);
983 if (ret)
984 return ret;
985 }
986
987 return 0;
988}
989
431b2a20
JR
990/*
991 * Inits the unity mappings required for a specific device
992 */
bd0e5211
JR
993static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
994 u16 devid)
995{
996 struct unity_map_entry *e;
997 int ret;
998
999 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1000 if (!(devid >= e->devid_start && devid <= e->devid_end))
1001 continue;
1002 ret = dma_ops_unity_map(dma_dom, e);
1003 if (ret)
1004 return ret;
1005 }
1006
1007 return 0;
1008}
1009
431b2a20
JR
1010/****************************************************************************
1011 *
1012 * The next functions belong to the address allocator for the dma_ops
1013 * interface functions. They work like the allocators in the other IOMMU
1014 * drivers. Its basically a bitmap which marks the allocated pages in
1015 * the aperture. Maybe it could be enhanced in the future to a more
1016 * efficient allocator.
1017 *
1018 ****************************************************************************/
d3086444 1019
431b2a20 1020/*
384de729 1021 * The address allocator core functions.
431b2a20
JR
1022 *
1023 * called with domain->lock held
1024 */
384de729 1025
171e7b37
JR
1026/*
1027 * Used to reserve address ranges in the aperture (e.g. for exclusion
1028 * ranges.
1029 */
1030static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1031 unsigned long start_page,
1032 unsigned int pages)
1033{
1034 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1035
1036 if (start_page + pages > last_page)
1037 pages = last_page - start_page;
1038
1039 for (i = start_page; i < start_page + pages; ++i) {
1040 int index = i / APERTURE_RANGE_PAGES;
1041 int page = i % APERTURE_RANGE_PAGES;
1042 __set_bit(page, dom->aperture[index]->bitmap);
1043 }
1044}
1045
9cabe89b
JR
1046/*
1047 * This function is used to add a new aperture range to an existing
1048 * aperture in case of dma_ops domain allocation or address allocation
1049 * failure.
1050 */
576175c2 1051static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1052 bool populate, gfp_t gfp)
1053{
1054 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1055 struct amd_iommu *iommu;
d91afd15 1056 unsigned long i;
9cabe89b 1057
f5e9705c
JR
1058#ifdef CONFIG_IOMMU_STRESS
1059 populate = false;
1060#endif
1061
9cabe89b
JR
1062 if (index >= APERTURE_MAX_RANGES)
1063 return -ENOMEM;
1064
1065 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1066 if (!dma_dom->aperture[index])
1067 return -ENOMEM;
1068
1069 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1070 if (!dma_dom->aperture[index]->bitmap)
1071 goto out_free;
1072
1073 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1074
1075 if (populate) {
1076 unsigned long address = dma_dom->aperture_size;
1077 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1078 u64 *pte, *pte_page;
1079
1080 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1081 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1082 &pte_page, gfp);
1083 if (!pte)
1084 goto out_free;
1085
1086 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1087
1088 address += APERTURE_RANGE_SIZE / 64;
1089 }
1090 }
1091
1092 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1093
b595076a 1094 /* Initialize the exclusion range if necessary */
576175c2
JR
1095 for_each_iommu(iommu) {
1096 if (iommu->exclusion_start &&
1097 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1098 && iommu->exclusion_start < dma_dom->aperture_size) {
1099 unsigned long startpage;
1100 int pages = iommu_num_pages(iommu->exclusion_start,
1101 iommu->exclusion_length,
1102 PAGE_SIZE);
1103 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1104 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1105 }
00cd122a
JR
1106 }
1107
1108 /*
1109 * Check for areas already mapped as present in the new aperture
1110 * range and mark those pages as reserved in the allocator. Such
1111 * mappings may already exist as a result of requested unity
1112 * mappings for devices.
1113 */
1114 for (i = dma_dom->aperture[index]->offset;
1115 i < dma_dom->aperture_size;
1116 i += PAGE_SIZE) {
24cd7723 1117 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1118 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1119 continue;
1120
1121 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1122 }
1123
04bfdd84
JR
1124 update_domain(&dma_dom->domain);
1125
9cabe89b
JR
1126 return 0;
1127
1128out_free:
04bfdd84
JR
1129 update_domain(&dma_dom->domain);
1130
9cabe89b
JR
1131 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1132
1133 kfree(dma_dom->aperture[index]);
1134 dma_dom->aperture[index] = NULL;
1135
1136 return -ENOMEM;
1137}
1138
384de729
JR
1139static unsigned long dma_ops_area_alloc(struct device *dev,
1140 struct dma_ops_domain *dom,
1141 unsigned int pages,
1142 unsigned long align_mask,
1143 u64 dma_mask,
1144 unsigned long start)
1145{
803b8cb4 1146 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1147 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1148 int i = start >> APERTURE_RANGE_SHIFT;
1149 unsigned long boundary_size;
1150 unsigned long address = -1;
1151 unsigned long limit;
1152
803b8cb4
JR
1153 next_bit >>= PAGE_SHIFT;
1154
384de729
JR
1155 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1156 PAGE_SIZE) >> PAGE_SHIFT;
1157
1158 for (;i < max_index; ++i) {
1159 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1160
1161 if (dom->aperture[i]->offset >= dma_mask)
1162 break;
1163
1164 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1165 dma_mask >> PAGE_SHIFT);
1166
1167 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1168 limit, next_bit, pages, 0,
1169 boundary_size, align_mask);
1170 if (address != -1) {
1171 address = dom->aperture[i]->offset +
1172 (address << PAGE_SHIFT);
803b8cb4 1173 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1174 break;
1175 }
1176
1177 next_bit = 0;
1178 }
1179
1180 return address;
1181}
1182
d3086444
JR
1183static unsigned long dma_ops_alloc_addresses(struct device *dev,
1184 struct dma_ops_domain *dom,
6d4f343f 1185 unsigned int pages,
832a90c3
JR
1186 unsigned long align_mask,
1187 u64 dma_mask)
d3086444 1188{
d3086444 1189 unsigned long address;
d3086444 1190
fe16f088
JR
1191#ifdef CONFIG_IOMMU_STRESS
1192 dom->next_address = 0;
1193 dom->need_flush = true;
1194#endif
d3086444 1195
384de729 1196 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1197 dma_mask, dom->next_address);
d3086444 1198
1c655773 1199 if (address == -1) {
803b8cb4 1200 dom->next_address = 0;
384de729
JR
1201 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1202 dma_mask, 0);
1c655773
JR
1203 dom->need_flush = true;
1204 }
d3086444 1205
384de729 1206 if (unlikely(address == -1))
8fd524b3 1207 address = DMA_ERROR_CODE;
d3086444
JR
1208
1209 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1210
1211 return address;
1212}
1213
431b2a20
JR
1214/*
1215 * The address free function.
1216 *
1217 * called with domain->lock held
1218 */
d3086444
JR
1219static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1220 unsigned long address,
1221 unsigned int pages)
1222{
384de729
JR
1223 unsigned i = address >> APERTURE_RANGE_SHIFT;
1224 struct aperture_range *range = dom->aperture[i];
80be308d 1225
384de729
JR
1226 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1227
47bccd6b
JR
1228#ifdef CONFIG_IOMMU_STRESS
1229 if (i < 4)
1230 return;
1231#endif
80be308d 1232
803b8cb4 1233 if (address >= dom->next_address)
80be308d 1234 dom->need_flush = true;
384de729
JR
1235
1236 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1237
a66022c4 1238 bitmap_clear(range->bitmap, address, pages);
384de729 1239
d3086444
JR
1240}
1241
431b2a20
JR
1242/****************************************************************************
1243 *
1244 * The next functions belong to the domain allocation. A domain is
1245 * allocated for every IOMMU as the default domain. If device isolation
1246 * is enabled, every device get its own domain. The most important thing
1247 * about domains is the page table mapping the DMA address space they
1248 * contain.
1249 *
1250 ****************************************************************************/
1251
aeb26f55
JR
1252/*
1253 * This function adds a protection domain to the global protection domain list
1254 */
1255static void add_domain_to_list(struct protection_domain *domain)
1256{
1257 unsigned long flags;
1258
1259 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1260 list_add(&domain->list, &amd_iommu_pd_list);
1261 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1262}
1263
1264/*
1265 * This function removes a protection domain to the global
1266 * protection domain list
1267 */
1268static void del_domain_from_list(struct protection_domain *domain)
1269{
1270 unsigned long flags;
1271
1272 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1273 list_del(&domain->list);
1274 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1275}
1276
ec487d1a
JR
1277static u16 domain_id_alloc(void)
1278{
1279 unsigned long flags;
1280 int id;
1281
1282 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1283 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1284 BUG_ON(id == 0);
1285 if (id > 0 && id < MAX_DOMAIN_ID)
1286 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1287 else
1288 id = 0;
1289 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1290
1291 return id;
1292}
1293
a2acfb75
JR
1294static void domain_id_free(int id)
1295{
1296 unsigned long flags;
1297
1298 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1299 if (id > 0 && id < MAX_DOMAIN_ID)
1300 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1301 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1302}
a2acfb75 1303
86db2e5d 1304static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1305{
1306 int i, j;
1307 u64 *p1, *p2, *p3;
1308
86db2e5d 1309 p1 = domain->pt_root;
ec487d1a
JR
1310
1311 if (!p1)
1312 return;
1313
1314 for (i = 0; i < 512; ++i) {
1315 if (!IOMMU_PTE_PRESENT(p1[i]))
1316 continue;
1317
1318 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1319 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1320 if (!IOMMU_PTE_PRESENT(p2[j]))
1321 continue;
1322 p3 = IOMMU_PTE_PAGE(p2[j]);
1323 free_page((unsigned long)p3);
1324 }
1325
1326 free_page((unsigned long)p2);
1327 }
1328
1329 free_page((unsigned long)p1);
86db2e5d
JR
1330
1331 domain->pt_root = NULL;
ec487d1a
JR
1332}
1333
431b2a20
JR
1334/*
1335 * Free a domain, only used if something went wrong in the
1336 * allocation path and we need to free an already allocated page table
1337 */
ec487d1a
JR
1338static void dma_ops_domain_free(struct dma_ops_domain *dom)
1339{
384de729
JR
1340 int i;
1341
ec487d1a
JR
1342 if (!dom)
1343 return;
1344
aeb26f55
JR
1345 del_domain_from_list(&dom->domain);
1346
86db2e5d 1347 free_pagetable(&dom->domain);
ec487d1a 1348
384de729
JR
1349 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1350 if (!dom->aperture[i])
1351 continue;
1352 free_page((unsigned long)dom->aperture[i]->bitmap);
1353 kfree(dom->aperture[i]);
1354 }
ec487d1a
JR
1355
1356 kfree(dom);
1357}
1358
431b2a20
JR
1359/*
1360 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1361 * It also initializes the page table and the address allocator data
431b2a20
JR
1362 * structures required for the dma_ops interface
1363 */
87a64d52 1364static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1365{
1366 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1367
1368 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1369 if (!dma_dom)
1370 return NULL;
1371
1372 spin_lock_init(&dma_dom->domain.lock);
1373
1374 dma_dom->domain.id = domain_id_alloc();
1375 if (dma_dom->domain.id == 0)
1376 goto free_dma_dom;
7c392cbe 1377 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1378 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1379 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1380 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1381 dma_dom->domain.priv = dma_dom;
1382 if (!dma_dom->domain.pt_root)
1383 goto free_dma_dom;
ec487d1a 1384
1c655773 1385 dma_dom->need_flush = false;
bd60b735 1386 dma_dom->target_dev = 0xffff;
1c655773 1387
aeb26f55
JR
1388 add_domain_to_list(&dma_dom->domain);
1389
576175c2 1390 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1391 goto free_dma_dom;
ec487d1a 1392
431b2a20 1393 /*
ec487d1a
JR
1394 * mark the first page as allocated so we never return 0 as
1395 * a valid dma-address. So we can use 0 as error value
431b2a20 1396 */
384de729 1397 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1398 dma_dom->next_address = 0;
ec487d1a 1399
ec487d1a
JR
1400
1401 return dma_dom;
1402
1403free_dma_dom:
1404 dma_ops_domain_free(dma_dom);
1405
1406 return NULL;
1407}
1408
5b28df6f
JR
1409/*
1410 * little helper function to check whether a given protection domain is a
1411 * dma_ops domain
1412 */
1413static bool dma_ops_domain(struct protection_domain *domain)
1414{
1415 return domain->flags & PD_DMA_OPS_MASK;
1416}
1417
407d733e 1418static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1419{
b20ac0d4 1420 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1421
38ddf41b
JR
1422 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1423 << DEV_ENTRY_MODE_SHIFT;
1424 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1425
b20ac0d4 1426 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1427 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1428 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
15898bbc
JR
1429}
1430
1431static void clear_dte_entry(u16 devid)
1432{
15898bbc
JR
1433 /* remove entry from the device table seen by the hardware */
1434 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1435 amd_iommu_dev_table[devid].data[1] = 0;
1436 amd_iommu_dev_table[devid].data[2] = 0;
1437
1438 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1439}
1440
1441static void do_attach(struct device *dev, struct protection_domain *domain)
1442{
1443 struct iommu_dev_data *dev_data;
1444 struct amd_iommu *iommu;
1445 u16 devid;
1446
1447 devid = get_device_id(dev);
1448 iommu = amd_iommu_rlookup_table[devid];
1449 dev_data = get_dev_data(dev);
1450
1451 /* Update data structures */
1452 dev_data->domain = domain;
1453 list_add(&dev_data->list, &domain->dev_list);
1454 set_dte_entry(devid, domain);
1455
1456 /* Do reference counting */
1457 domain->dev_iommu[iommu->index] += 1;
1458 domain->dev_cnt += 1;
1459
1460 /* Flush the DTE entry */
3fa43655 1461 iommu_flush_device(dev);
7f760ddd
JR
1462}
1463
1464static void do_detach(struct device *dev)
1465{
1466 struct iommu_dev_data *dev_data;
1467 struct amd_iommu *iommu;
1468 u16 devid;
1469
1470 devid = get_device_id(dev);
1471 iommu = amd_iommu_rlookup_table[devid];
1472 dev_data = get_dev_data(dev);
15898bbc
JR
1473
1474 /* decrease reference counters */
7f760ddd
JR
1475 dev_data->domain->dev_iommu[iommu->index] -= 1;
1476 dev_data->domain->dev_cnt -= 1;
1477
1478 /* Update data structures */
1479 dev_data->domain = NULL;
1480 list_del(&dev_data->list);
1481 clear_dte_entry(devid);
15898bbc 1482
7f760ddd 1483 /* Flush the DTE entry */
3fa43655 1484 iommu_flush_device(dev);
2b681faf
JR
1485}
1486
1487/*
1488 * If a device is not yet associated with a domain, this function does
1489 * assigns it visible for the hardware
1490 */
15898bbc
JR
1491static int __attach_device(struct device *dev,
1492 struct protection_domain *domain)
2b681faf 1493{
657cbb6b 1494 struct iommu_dev_data *dev_data, *alias_data;
84fe6c19 1495 int ret;
657cbb6b 1496
657cbb6b
JR
1497 dev_data = get_dev_data(dev);
1498 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1499
657cbb6b
JR
1500 if (!alias_data)
1501 return -EINVAL;
15898bbc 1502
2b681faf
JR
1503 /* lock domain */
1504 spin_lock(&domain->lock);
1505
15898bbc 1506 /* Some sanity checks */
84fe6c19 1507 ret = -EBUSY;
657cbb6b
JR
1508 if (alias_data->domain != NULL &&
1509 alias_data->domain != domain)
84fe6c19 1510 goto out_unlock;
eba6ac60 1511
657cbb6b
JR
1512 if (dev_data->domain != NULL &&
1513 dev_data->domain != domain)
84fe6c19 1514 goto out_unlock;
15898bbc
JR
1515
1516 /* Do real assignment */
7f760ddd
JR
1517 if (dev_data->alias != dev) {
1518 alias_data = get_dev_data(dev_data->alias);
1519 if (alias_data->domain == NULL)
1520 do_attach(dev_data->alias, domain);
24100055
JR
1521
1522 atomic_inc(&alias_data->bind);
657cbb6b 1523 }
15898bbc 1524
7f760ddd
JR
1525 if (dev_data->domain == NULL)
1526 do_attach(dev, domain);
eba6ac60 1527
24100055
JR
1528 atomic_inc(&dev_data->bind);
1529
84fe6c19
JL
1530 ret = 0;
1531
1532out_unlock:
1533
eba6ac60
JR
1534 /* ready */
1535 spin_unlock(&domain->lock);
15898bbc 1536
84fe6c19 1537 return ret;
0feae533 1538}
b20ac0d4 1539
407d733e
JR
1540/*
1541 * If a device is not yet associated with a domain, this function does
1542 * assigns it visible for the hardware
1543 */
15898bbc
JR
1544static int attach_device(struct device *dev,
1545 struct protection_domain *domain)
0feae533 1546{
eba6ac60 1547 unsigned long flags;
15898bbc 1548 int ret;
eba6ac60
JR
1549
1550 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1551 ret = __attach_device(dev, domain);
b20ac0d4
JR
1552 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1553
0feae533
JR
1554 /*
1555 * We might boot into a crash-kernel here. The crashed kernel
1556 * left the caches in the IOMMU dirty. So we have to flush
1557 * here to evict all dirty stuff.
1558 */
dcd1e92e 1559 iommu_flush_tlb_pde(domain);
15898bbc
JR
1560
1561 return ret;
b20ac0d4
JR
1562}
1563
355bf553
JR
1564/*
1565 * Removes a device from a protection domain (unlocked)
1566 */
15898bbc 1567static void __detach_device(struct device *dev)
355bf553 1568{
657cbb6b 1569 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1570 struct iommu_dev_data *alias_data;
2ca76279 1571 struct protection_domain *domain;
7c392cbe 1572 unsigned long flags;
c4596114 1573
7f760ddd 1574 BUG_ON(!dev_data->domain);
355bf553 1575
2ca76279
JR
1576 domain = dev_data->domain;
1577
1578 spin_lock_irqsave(&domain->lock, flags);
24100055 1579
7f760ddd 1580 if (dev_data->alias != dev) {
24100055 1581 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1582 if (atomic_dec_and_test(&alias_data->bind))
1583 do_detach(dev_data->alias);
24100055
JR
1584 }
1585
7f760ddd
JR
1586 if (atomic_dec_and_test(&dev_data->bind))
1587 do_detach(dev);
1588
2ca76279 1589 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1590
1591 /*
1592 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1593 * passthrough domain if it is detached from any other domain.
1594 * Make sure we can deassign from the pt_domain itself.
21129f78 1595 */
d3ad9373
JR
1596 if (iommu_pass_through &&
1597 (dev_data->domain == NULL && domain != pt_domain))
15898bbc 1598 __attach_device(dev, pt_domain);
355bf553
JR
1599}
1600
1601/*
1602 * Removes a device from a protection domain (with devtable_lock held)
1603 */
15898bbc 1604static void detach_device(struct device *dev)
355bf553
JR
1605{
1606 unsigned long flags;
1607
1608 /* lock device table */
1609 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1610 __detach_device(dev);
355bf553
JR
1611 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1612}
e275a2a0 1613
15898bbc
JR
1614/*
1615 * Find out the protection domain structure for a given PCI device. This
1616 * will give us the pointer to the page table root for example.
1617 */
1618static struct protection_domain *domain_for_device(struct device *dev)
1619{
1620 struct protection_domain *dom;
657cbb6b 1621 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1622 unsigned long flags;
1623 u16 devid, alias;
1624
657cbb6b
JR
1625 devid = get_device_id(dev);
1626 alias = amd_iommu_alias_table[devid];
1627 dev_data = get_dev_data(dev);
1628 alias_data = get_dev_data(dev_data->alias);
1629 if (!alias_data)
1630 return NULL;
15898bbc
JR
1631
1632 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1633 dom = dev_data->domain;
15898bbc 1634 if (dom == NULL &&
657cbb6b
JR
1635 alias_data->domain != NULL) {
1636 __attach_device(dev, alias_data->domain);
1637 dom = alias_data->domain;
15898bbc
JR
1638 }
1639
1640 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1641
1642 return dom;
1643}
1644
e275a2a0
JR
1645static int device_change_notifier(struct notifier_block *nb,
1646 unsigned long action, void *data)
1647{
1648 struct device *dev = data;
98fc5a69 1649 u16 devid;
e275a2a0
JR
1650 struct protection_domain *domain;
1651 struct dma_ops_domain *dma_domain;
1652 struct amd_iommu *iommu;
1ac4cbbc 1653 unsigned long flags;
e275a2a0 1654
98fc5a69
JR
1655 if (!check_device(dev))
1656 return 0;
e275a2a0 1657
98fc5a69
JR
1658 devid = get_device_id(dev);
1659 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1660
1661 switch (action) {
c1eee67b 1662 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1663
1664 domain = domain_for_device(dev);
1665
e275a2a0
JR
1666 if (!domain)
1667 goto out;
a1ca331c
JR
1668 if (iommu_pass_through)
1669 break;
15898bbc 1670 detach_device(dev);
1ac4cbbc
JR
1671 break;
1672 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1673
1674 iommu_init_device(dev);
1675
1676 domain = domain_for_device(dev);
1677
1ac4cbbc
JR
1678 /* allocate a protection domain if a device is added */
1679 dma_domain = find_protection_domain(devid);
1680 if (dma_domain)
1681 goto out;
87a64d52 1682 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1683 if (!dma_domain)
1684 goto out;
1685 dma_domain->target_dev = devid;
1686
1687 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1688 list_add_tail(&dma_domain->list, &iommu_pd_list);
1689 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1690
e275a2a0 1691 break;
657cbb6b
JR
1692 case BUS_NOTIFY_DEL_DEVICE:
1693
1694 iommu_uninit_device(dev);
1695
e275a2a0
JR
1696 default:
1697 goto out;
1698 }
1699
3fa43655 1700 iommu_flush_device(dev);
e275a2a0
JR
1701 iommu_completion_wait(iommu);
1702
1703out:
1704 return 0;
1705}
1706
b25ae679 1707static struct notifier_block device_nb = {
e275a2a0
JR
1708 .notifier_call = device_change_notifier,
1709};
355bf553 1710
8638c491
JR
1711void amd_iommu_init_notifier(void)
1712{
1713 bus_register_notifier(&pci_bus_type, &device_nb);
1714}
1715
431b2a20
JR
1716/*****************************************************************************
1717 *
1718 * The next functions belong to the dma_ops mapping/unmapping code.
1719 *
1720 *****************************************************************************/
1721
1722/*
1723 * In the dma_ops path we only have the struct device. This function
1724 * finds the corresponding IOMMU, the protection domain and the
1725 * requestor id for a given device.
1726 * If the device is not yet associated with a domain this is also done
1727 * in this function.
1728 */
94f6d190 1729static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1730{
94f6d190 1731 struct protection_domain *domain;
b20ac0d4 1732 struct dma_ops_domain *dma_dom;
94f6d190 1733 u16 devid = get_device_id(dev);
b20ac0d4 1734
f99c0f1c 1735 if (!check_device(dev))
94f6d190 1736 return ERR_PTR(-EINVAL);
b20ac0d4 1737
94f6d190
JR
1738 domain = domain_for_device(dev);
1739 if (domain != NULL && !dma_ops_domain(domain))
1740 return ERR_PTR(-EBUSY);
f99c0f1c 1741
94f6d190
JR
1742 if (domain != NULL)
1743 return domain;
b20ac0d4 1744
15898bbc 1745 /* Device not bount yet - bind it */
94f6d190 1746 dma_dom = find_protection_domain(devid);
15898bbc 1747 if (!dma_dom)
94f6d190
JR
1748 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1749 attach_device(dev, &dma_dom->domain);
15898bbc 1750 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1751 dma_dom->domain.id, dev_name(dev));
f91ba190 1752
94f6d190 1753 return &dma_dom->domain;
b20ac0d4
JR
1754}
1755
04bfdd84
JR
1756static void update_device_table(struct protection_domain *domain)
1757{
492667da 1758 struct iommu_dev_data *dev_data;
04bfdd84 1759
492667da
JR
1760 list_for_each_entry(dev_data, &domain->dev_list, list) {
1761 u16 devid = get_device_id(dev_data->dev);
1762 set_dte_entry(devid, domain);
04bfdd84
JR
1763 }
1764}
1765
1766static void update_domain(struct protection_domain *domain)
1767{
1768 if (!domain->updated)
1769 return;
1770
1771 update_device_table(domain);
b00d3bcf 1772 iommu_flush_domain_devices(domain);
601367d7 1773 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1774
1775 domain->updated = false;
1776}
1777
8bda3092
JR
1778/*
1779 * This function fetches the PTE for a given address in the aperture
1780 */
1781static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1782 unsigned long address)
1783{
384de729 1784 struct aperture_range *aperture;
8bda3092
JR
1785 u64 *pte, *pte_page;
1786
384de729
JR
1787 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1788 if (!aperture)
1789 return NULL;
1790
1791 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1792 if (!pte) {
cbb9d729 1793 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 1794 GFP_ATOMIC);
384de729
JR
1795 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1796 } else
8c8c143c 1797 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1798
04bfdd84 1799 update_domain(&dom->domain);
8bda3092
JR
1800
1801 return pte;
1802}
1803
431b2a20
JR
1804/*
1805 * This is the generic map function. It maps one 4kb page at paddr to
1806 * the given address in the DMA address space for the domain.
1807 */
680525e0 1808static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1809 unsigned long address,
1810 phys_addr_t paddr,
1811 int direction)
1812{
1813 u64 *pte, __pte;
1814
1815 WARN_ON(address > dom->aperture_size);
1816
1817 paddr &= PAGE_MASK;
1818
8bda3092 1819 pte = dma_ops_get_pte(dom, address);
53812c11 1820 if (!pte)
8fd524b3 1821 return DMA_ERROR_CODE;
cb76c322
JR
1822
1823 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1824
1825 if (direction == DMA_TO_DEVICE)
1826 __pte |= IOMMU_PTE_IR;
1827 else if (direction == DMA_FROM_DEVICE)
1828 __pte |= IOMMU_PTE_IW;
1829 else if (direction == DMA_BIDIRECTIONAL)
1830 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1831
1832 WARN_ON(*pte);
1833
1834 *pte = __pte;
1835
1836 return (dma_addr_t)address;
1837}
1838
431b2a20
JR
1839/*
1840 * The generic unmapping function for on page in the DMA address space.
1841 */
680525e0 1842static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1843 unsigned long address)
1844{
384de729 1845 struct aperture_range *aperture;
cb76c322
JR
1846 u64 *pte;
1847
1848 if (address >= dom->aperture_size)
1849 return;
1850
384de729
JR
1851 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1852 if (!aperture)
1853 return;
1854
1855 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1856 if (!pte)
1857 return;
cb76c322 1858
8c8c143c 1859 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1860
1861 WARN_ON(!*pte);
1862
1863 *pte = 0ULL;
1864}
1865
431b2a20
JR
1866/*
1867 * This function contains common code for mapping of a physically
24f81160
JR
1868 * contiguous memory region into DMA address space. It is used by all
1869 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1870 * Must be called with the domain lock held.
1871 */
cb76c322 1872static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1873 struct dma_ops_domain *dma_dom,
1874 phys_addr_t paddr,
1875 size_t size,
6d4f343f 1876 int dir,
832a90c3
JR
1877 bool align,
1878 u64 dma_mask)
cb76c322
JR
1879{
1880 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1881 dma_addr_t address, start, ret;
cb76c322 1882 unsigned int pages;
6d4f343f 1883 unsigned long align_mask = 0;
cb76c322
JR
1884 int i;
1885
e3c449f5 1886 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1887 paddr &= PAGE_MASK;
1888
8ecaf8f1
JR
1889 INC_STATS_COUNTER(total_map_requests);
1890
c1858976
JR
1891 if (pages > 1)
1892 INC_STATS_COUNTER(cross_page);
1893
6d4f343f
JR
1894 if (align)
1895 align_mask = (1UL << get_order(size)) - 1;
1896
11b83888 1897retry:
832a90c3
JR
1898 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1899 dma_mask);
8fd524b3 1900 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1901 /*
1902 * setting next_address here will let the address
1903 * allocator only scan the new allocated range in the
1904 * first run. This is a small optimization.
1905 */
1906 dma_dom->next_address = dma_dom->aperture_size;
1907
576175c2 1908 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1909 goto out;
1910
1911 /*
af901ca1 1912 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
1913 * allocation again
1914 */
1915 goto retry;
1916 }
cb76c322
JR
1917
1918 start = address;
1919 for (i = 0; i < pages; ++i) {
680525e0 1920 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1921 if (ret == DMA_ERROR_CODE)
53812c11
JR
1922 goto out_unmap;
1923
cb76c322
JR
1924 paddr += PAGE_SIZE;
1925 start += PAGE_SIZE;
1926 }
1927 address += offset;
1928
5774f7c5
JR
1929 ADD_STATS_COUNTER(alloced_io_mem, size);
1930
afa9fdc2 1931 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1932 iommu_flush_tlb(&dma_dom->domain);
1c655773 1933 dma_dom->need_flush = false;
318afd41 1934 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1935 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1936
cb76c322
JR
1937out:
1938 return address;
53812c11
JR
1939
1940out_unmap:
1941
1942 for (--i; i >= 0; --i) {
1943 start -= PAGE_SIZE;
680525e0 1944 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1945 }
1946
1947 dma_ops_free_addresses(dma_dom, address, pages);
1948
8fd524b3 1949 return DMA_ERROR_CODE;
cb76c322
JR
1950}
1951
431b2a20
JR
1952/*
1953 * Does the reverse of the __map_single function. Must be called with
1954 * the domain lock held too
1955 */
cd8c82e8 1956static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1957 dma_addr_t dma_addr,
1958 size_t size,
1959 int dir)
1960{
04e0463e 1961 dma_addr_t flush_addr;
cb76c322
JR
1962 dma_addr_t i, start;
1963 unsigned int pages;
1964
8fd524b3 1965 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1966 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1967 return;
1968
04e0463e 1969 flush_addr = dma_addr;
e3c449f5 1970 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1971 dma_addr &= PAGE_MASK;
1972 start = dma_addr;
1973
1974 for (i = 0; i < pages; ++i) {
680525e0 1975 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1976 start += PAGE_SIZE;
1977 }
1978
5774f7c5
JR
1979 SUB_STATS_COUNTER(alloced_io_mem, size);
1980
cb76c322 1981 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1982
80be308d 1983 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
04e0463e 1984 iommu_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
1985 dma_dom->need_flush = false;
1986 }
cb76c322
JR
1987}
1988
431b2a20
JR
1989/*
1990 * The exported map_single function for dma_ops.
1991 */
51491367
FT
1992static dma_addr_t map_page(struct device *dev, struct page *page,
1993 unsigned long offset, size_t size,
1994 enum dma_data_direction dir,
1995 struct dma_attrs *attrs)
4da70b9e
JR
1996{
1997 unsigned long flags;
4da70b9e 1998 struct protection_domain *domain;
4da70b9e 1999 dma_addr_t addr;
832a90c3 2000 u64 dma_mask;
51491367 2001 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2002
0f2a86f2
JR
2003 INC_STATS_COUNTER(cnt_map_single);
2004
94f6d190
JR
2005 domain = get_domain(dev);
2006 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2007 return (dma_addr_t)paddr;
94f6d190
JR
2008 else if (IS_ERR(domain))
2009 return DMA_ERROR_CODE;
4da70b9e 2010
f99c0f1c
JR
2011 dma_mask = *dev->dma_mask;
2012
4da70b9e 2013 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2014
cd8c82e8 2015 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2016 dma_mask);
8fd524b3 2017 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2018 goto out;
2019
0518a3a4 2020 iommu_flush_complete(domain);
4da70b9e
JR
2021
2022out:
2023 spin_unlock_irqrestore(&domain->lock, flags);
2024
2025 return addr;
2026}
2027
431b2a20
JR
2028/*
2029 * The exported unmap_single function for dma_ops.
2030 */
51491367
FT
2031static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2032 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2033{
2034 unsigned long flags;
4da70b9e 2035 struct protection_domain *domain;
4da70b9e 2036
146a6917
JR
2037 INC_STATS_COUNTER(cnt_unmap_single);
2038
94f6d190
JR
2039 domain = get_domain(dev);
2040 if (IS_ERR(domain))
5b28df6f
JR
2041 return;
2042
4da70b9e
JR
2043 spin_lock_irqsave(&domain->lock, flags);
2044
cd8c82e8 2045 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2046
0518a3a4 2047 iommu_flush_complete(domain);
4da70b9e
JR
2048
2049 spin_unlock_irqrestore(&domain->lock, flags);
2050}
2051
431b2a20
JR
2052/*
2053 * This is a special map_sg function which is used if we should map a
2054 * device which is not handled by an AMD IOMMU in the system.
2055 */
65b050ad
JR
2056static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2057 int nelems, int dir)
2058{
2059 struct scatterlist *s;
2060 int i;
2061
2062 for_each_sg(sglist, s, nelems, i) {
2063 s->dma_address = (dma_addr_t)sg_phys(s);
2064 s->dma_length = s->length;
2065 }
2066
2067 return nelems;
2068}
2069
431b2a20
JR
2070/*
2071 * The exported map_sg function for dma_ops (handles scatter-gather
2072 * lists).
2073 */
65b050ad 2074static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2075 int nelems, enum dma_data_direction dir,
2076 struct dma_attrs *attrs)
65b050ad
JR
2077{
2078 unsigned long flags;
65b050ad 2079 struct protection_domain *domain;
65b050ad
JR
2080 int i;
2081 struct scatterlist *s;
2082 phys_addr_t paddr;
2083 int mapped_elems = 0;
832a90c3 2084 u64 dma_mask;
65b050ad 2085
d03f067a
JR
2086 INC_STATS_COUNTER(cnt_map_sg);
2087
94f6d190
JR
2088 domain = get_domain(dev);
2089 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2090 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2091 else if (IS_ERR(domain))
2092 return 0;
dbcc112e 2093
832a90c3 2094 dma_mask = *dev->dma_mask;
65b050ad 2095
65b050ad
JR
2096 spin_lock_irqsave(&domain->lock, flags);
2097
2098 for_each_sg(sglist, s, nelems, i) {
2099 paddr = sg_phys(s);
2100
cd8c82e8 2101 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2102 paddr, s->length, dir, false,
2103 dma_mask);
65b050ad
JR
2104
2105 if (s->dma_address) {
2106 s->dma_length = s->length;
2107 mapped_elems++;
2108 } else
2109 goto unmap;
65b050ad
JR
2110 }
2111
0518a3a4 2112 iommu_flush_complete(domain);
65b050ad
JR
2113
2114out:
2115 spin_unlock_irqrestore(&domain->lock, flags);
2116
2117 return mapped_elems;
2118unmap:
2119 for_each_sg(sglist, s, mapped_elems, i) {
2120 if (s->dma_address)
cd8c82e8 2121 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2122 s->dma_length, dir);
2123 s->dma_address = s->dma_length = 0;
2124 }
2125
2126 mapped_elems = 0;
2127
2128 goto out;
2129}
2130
431b2a20
JR
2131/*
2132 * The exported map_sg function for dma_ops (handles scatter-gather
2133 * lists).
2134 */
65b050ad 2135static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2136 int nelems, enum dma_data_direction dir,
2137 struct dma_attrs *attrs)
65b050ad
JR
2138{
2139 unsigned long flags;
65b050ad
JR
2140 struct protection_domain *domain;
2141 struct scatterlist *s;
65b050ad
JR
2142 int i;
2143
55877a6b
JR
2144 INC_STATS_COUNTER(cnt_unmap_sg);
2145
94f6d190
JR
2146 domain = get_domain(dev);
2147 if (IS_ERR(domain))
5b28df6f
JR
2148 return;
2149
65b050ad
JR
2150 spin_lock_irqsave(&domain->lock, flags);
2151
2152 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2153 __unmap_single(domain->priv, s->dma_address,
65b050ad 2154 s->dma_length, dir);
65b050ad
JR
2155 s->dma_address = s->dma_length = 0;
2156 }
2157
0518a3a4 2158 iommu_flush_complete(domain);
65b050ad
JR
2159
2160 spin_unlock_irqrestore(&domain->lock, flags);
2161}
2162
431b2a20
JR
2163/*
2164 * The exported alloc_coherent function for dma_ops.
2165 */
5d8b53cf
JR
2166static void *alloc_coherent(struct device *dev, size_t size,
2167 dma_addr_t *dma_addr, gfp_t flag)
2168{
2169 unsigned long flags;
2170 void *virt_addr;
5d8b53cf 2171 struct protection_domain *domain;
5d8b53cf 2172 phys_addr_t paddr;
832a90c3 2173 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2174
c8f0fb36
JR
2175 INC_STATS_COUNTER(cnt_alloc_coherent);
2176
94f6d190
JR
2177 domain = get_domain(dev);
2178 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2179 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2180 *dma_addr = __pa(virt_addr);
2181 return virt_addr;
94f6d190
JR
2182 } else if (IS_ERR(domain))
2183 return NULL;
5d8b53cf 2184
f99c0f1c
JR
2185 dma_mask = dev->coherent_dma_mask;
2186 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2187 flag |= __GFP_ZERO;
5d8b53cf
JR
2188
2189 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2190 if (!virt_addr)
b25ae679 2191 return NULL;
5d8b53cf 2192
5d8b53cf
JR
2193 paddr = virt_to_phys(virt_addr);
2194
832a90c3
JR
2195 if (!dma_mask)
2196 dma_mask = *dev->dma_mask;
2197
5d8b53cf
JR
2198 spin_lock_irqsave(&domain->lock, flags);
2199
cd8c82e8 2200 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2201 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2202
8fd524b3 2203 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2204 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2205 goto out_free;
367d04c4 2206 }
5d8b53cf 2207
0518a3a4 2208 iommu_flush_complete(domain);
5d8b53cf 2209
5d8b53cf
JR
2210 spin_unlock_irqrestore(&domain->lock, flags);
2211
2212 return virt_addr;
5b28df6f
JR
2213
2214out_free:
2215
2216 free_pages((unsigned long)virt_addr, get_order(size));
2217
2218 return NULL;
5d8b53cf
JR
2219}
2220
431b2a20
JR
2221/*
2222 * The exported free_coherent function for dma_ops.
431b2a20 2223 */
5d8b53cf
JR
2224static void free_coherent(struct device *dev, size_t size,
2225 void *virt_addr, dma_addr_t dma_addr)
2226{
2227 unsigned long flags;
5d8b53cf 2228 struct protection_domain *domain;
5d8b53cf 2229
5d31ee7e
JR
2230 INC_STATS_COUNTER(cnt_free_coherent);
2231
94f6d190
JR
2232 domain = get_domain(dev);
2233 if (IS_ERR(domain))
5b28df6f
JR
2234 goto free_mem;
2235
5d8b53cf
JR
2236 spin_lock_irqsave(&domain->lock, flags);
2237
cd8c82e8 2238 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2239
0518a3a4 2240 iommu_flush_complete(domain);
5d8b53cf
JR
2241
2242 spin_unlock_irqrestore(&domain->lock, flags);
2243
2244free_mem:
2245 free_pages((unsigned long)virt_addr, get_order(size));
2246}
2247
b39ba6ad
JR
2248/*
2249 * This function is called by the DMA layer to find out if we can handle a
2250 * particular device. It is part of the dma_ops.
2251 */
2252static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2253{
420aef8a 2254 return check_device(dev);
b39ba6ad
JR
2255}
2256
c432f3df 2257/*
431b2a20
JR
2258 * The function for pre-allocating protection domains.
2259 *
c432f3df
JR
2260 * If the driver core informs the DMA layer if a driver grabs a device
2261 * we don't need to preallocate the protection domains anymore.
2262 * For now we have to.
2263 */
0e93dd88 2264static void prealloc_protection_domains(void)
c432f3df
JR
2265{
2266 struct pci_dev *dev = NULL;
2267 struct dma_ops_domain *dma_dom;
98fc5a69 2268 u16 devid;
c432f3df 2269
d18c69d3 2270 for_each_pci_dev(dev) {
98fc5a69
JR
2271
2272 /* Do we handle this device? */
2273 if (!check_device(&dev->dev))
c432f3df 2274 continue;
98fc5a69
JR
2275
2276 /* Is there already any domain for it? */
15898bbc 2277 if (domain_for_device(&dev->dev))
c432f3df 2278 continue;
98fc5a69
JR
2279
2280 devid = get_device_id(&dev->dev);
2281
87a64d52 2282 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2283 if (!dma_dom)
2284 continue;
2285 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2286 dma_dom->target_dev = devid;
2287
15898bbc 2288 attach_device(&dev->dev, &dma_dom->domain);
be831297 2289
bd60b735 2290 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2291 }
2292}
2293
160c1d8e 2294static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2295 .alloc_coherent = alloc_coherent,
2296 .free_coherent = free_coherent,
51491367
FT
2297 .map_page = map_page,
2298 .unmap_page = unmap_page,
6631ee9d
JR
2299 .map_sg = map_sg,
2300 .unmap_sg = unmap_sg,
b39ba6ad 2301 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2302};
2303
431b2a20
JR
2304/*
2305 * The function which clues the AMD IOMMU driver into dma_ops.
2306 */
f5325094
JR
2307
2308void __init amd_iommu_init_api(void)
2309{
2310 register_iommu(&amd_iommu_ops);
2311}
2312
6631ee9d
JR
2313int __init amd_iommu_init_dma_ops(void)
2314{
2315 struct amd_iommu *iommu;
6631ee9d
JR
2316 int ret;
2317
431b2a20
JR
2318 /*
2319 * first allocate a default protection domain for every IOMMU we
2320 * found in the system. Devices not assigned to any other
2321 * protection domain will be assigned to the default one.
2322 */
3bd22172 2323 for_each_iommu(iommu) {
87a64d52 2324 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2325 if (iommu->default_dom == NULL)
2326 return -ENOMEM;
e2dc14a2 2327 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2328 ret = iommu_init_unity_mappings(iommu);
2329 if (ret)
2330 goto free_domains;
2331 }
2332
431b2a20 2333 /*
8793abeb 2334 * Pre-allocate the protection domains for each device.
431b2a20 2335 */
8793abeb 2336 prealloc_protection_domains();
6631ee9d
JR
2337
2338 iommu_detected = 1;
75f1cdf1 2339 swiotlb = 0;
6631ee9d 2340
431b2a20 2341 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2342 dma_ops = &amd_iommu_dma_ops;
2343
7f26508b
JR
2344 amd_iommu_stats_init();
2345
6631ee9d
JR
2346 return 0;
2347
2348free_domains:
2349
3bd22172 2350 for_each_iommu(iommu) {
6631ee9d
JR
2351 if (iommu->default_dom)
2352 dma_ops_domain_free(iommu->default_dom);
2353 }
2354
2355 return ret;
2356}
6d98cd80
JR
2357
2358/*****************************************************************************
2359 *
2360 * The following functions belong to the exported interface of AMD IOMMU
2361 *
2362 * This interface allows access to lower level functions of the IOMMU
2363 * like protection domain handling and assignement of devices to domains
2364 * which is not possible with the dma_ops interface.
2365 *
2366 *****************************************************************************/
2367
6d98cd80
JR
2368static void cleanup_domain(struct protection_domain *domain)
2369{
492667da 2370 struct iommu_dev_data *dev_data, *next;
6d98cd80 2371 unsigned long flags;
6d98cd80
JR
2372
2373 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2374
492667da
JR
2375 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2376 struct device *dev = dev_data->dev;
2377
04e856c0 2378 __detach_device(dev);
492667da
JR
2379 atomic_set(&dev_data->bind, 0);
2380 }
6d98cd80
JR
2381
2382 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2383}
2384
2650815f
JR
2385static void protection_domain_free(struct protection_domain *domain)
2386{
2387 if (!domain)
2388 return;
2389
aeb26f55
JR
2390 del_domain_from_list(domain);
2391
2650815f
JR
2392 if (domain->id)
2393 domain_id_free(domain->id);
2394
2395 kfree(domain);
2396}
2397
2398static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2399{
2400 struct protection_domain *domain;
2401
2402 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2403 if (!domain)
2650815f 2404 return NULL;
c156e347
JR
2405
2406 spin_lock_init(&domain->lock);
5d214fe6 2407 mutex_init(&domain->api_lock);
c156e347
JR
2408 domain->id = domain_id_alloc();
2409 if (!domain->id)
2650815f 2410 goto out_err;
7c392cbe 2411 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2412
aeb26f55
JR
2413 add_domain_to_list(domain);
2414
2650815f
JR
2415 return domain;
2416
2417out_err:
2418 kfree(domain);
2419
2420 return NULL;
2421}
2422
2423static int amd_iommu_domain_init(struct iommu_domain *dom)
2424{
2425 struct protection_domain *domain;
2426
2427 domain = protection_domain_alloc();
2428 if (!domain)
c156e347 2429 goto out_free;
2650815f
JR
2430
2431 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2432 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2433 if (!domain->pt_root)
2434 goto out_free;
2435
2436 dom->priv = domain;
2437
2438 return 0;
2439
2440out_free:
2650815f 2441 protection_domain_free(domain);
c156e347
JR
2442
2443 return -ENOMEM;
2444}
2445
98383fc3
JR
2446static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2447{
2448 struct protection_domain *domain = dom->priv;
2449
2450 if (!domain)
2451 return;
2452
2453 if (domain->dev_cnt > 0)
2454 cleanup_domain(domain);
2455
2456 BUG_ON(domain->dev_cnt != 0);
2457
2458 free_pagetable(domain);
2459
8b408fe4 2460 protection_domain_free(domain);
98383fc3
JR
2461
2462 dom->priv = NULL;
2463}
2464
684f2888
JR
2465static void amd_iommu_detach_device(struct iommu_domain *dom,
2466 struct device *dev)
2467{
657cbb6b 2468 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2469 struct amd_iommu *iommu;
684f2888
JR
2470 u16 devid;
2471
98fc5a69 2472 if (!check_device(dev))
684f2888
JR
2473 return;
2474
98fc5a69 2475 devid = get_device_id(dev);
684f2888 2476
657cbb6b 2477 if (dev_data->domain != NULL)
15898bbc 2478 detach_device(dev);
684f2888
JR
2479
2480 iommu = amd_iommu_rlookup_table[devid];
2481 if (!iommu)
2482 return;
2483
3fa43655 2484 iommu_flush_device(dev);
684f2888
JR
2485 iommu_completion_wait(iommu);
2486}
2487
01106066
JR
2488static int amd_iommu_attach_device(struct iommu_domain *dom,
2489 struct device *dev)
2490{
2491 struct protection_domain *domain = dom->priv;
657cbb6b 2492 struct iommu_dev_data *dev_data;
01106066 2493 struct amd_iommu *iommu;
15898bbc 2494 int ret;
01106066
JR
2495 u16 devid;
2496
98fc5a69 2497 if (!check_device(dev))
01106066
JR
2498 return -EINVAL;
2499
657cbb6b
JR
2500 dev_data = dev->archdata.iommu;
2501
98fc5a69 2502 devid = get_device_id(dev);
01106066
JR
2503
2504 iommu = amd_iommu_rlookup_table[devid];
2505 if (!iommu)
2506 return -EINVAL;
2507
657cbb6b 2508 if (dev_data->domain)
15898bbc 2509 detach_device(dev);
01106066 2510
15898bbc 2511 ret = attach_device(dev, domain);
01106066
JR
2512
2513 iommu_completion_wait(iommu);
2514
15898bbc 2515 return ret;
01106066
JR
2516}
2517
468e2366
JR
2518static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2519 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 2520{
468e2366 2521 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 2522 struct protection_domain *domain = dom->priv;
c6229ca6
JR
2523 int prot = 0;
2524 int ret;
2525
2526 if (iommu_prot & IOMMU_READ)
2527 prot |= IOMMU_PROT_IR;
2528 if (iommu_prot & IOMMU_WRITE)
2529 prot |= IOMMU_PROT_IW;
2530
5d214fe6 2531 mutex_lock(&domain->api_lock);
795e74f7 2532 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2533 mutex_unlock(&domain->api_lock);
2534
795e74f7 2535 return ret;
c6229ca6
JR
2536}
2537
468e2366
JR
2538static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2539 int gfp_order)
eb74ff6c 2540{
eb74ff6c 2541 struct protection_domain *domain = dom->priv;
468e2366 2542 unsigned long page_size, unmap_size;
eb74ff6c 2543
468e2366 2544 page_size = 0x1000UL << gfp_order;
eb74ff6c 2545
5d214fe6 2546 mutex_lock(&domain->api_lock);
468e2366 2547 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 2548 mutex_unlock(&domain->api_lock);
eb74ff6c 2549
601367d7 2550 iommu_flush_tlb_pde(domain);
5d214fe6 2551
468e2366 2552 return get_order(unmap_size);
eb74ff6c
JR
2553}
2554
645c4c8d
JR
2555static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2556 unsigned long iova)
2557{
2558 struct protection_domain *domain = dom->priv;
f03152bb 2559 unsigned long offset_mask;
645c4c8d 2560 phys_addr_t paddr;
f03152bb 2561 u64 *pte, __pte;
645c4c8d 2562
24cd7723 2563 pte = fetch_pte(domain, iova);
645c4c8d 2564
a6d41a40 2565 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2566 return 0;
2567
f03152bb
JR
2568 if (PM_PTE_LEVEL(*pte) == 0)
2569 offset_mask = PAGE_SIZE - 1;
2570 else
2571 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2572
2573 __pte = *pte & PM_ADDR_MASK;
2574 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
2575
2576 return paddr;
2577}
2578
dbb9fd86
SY
2579static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2580 unsigned long cap)
2581{
80a506b8
JR
2582 switch (cap) {
2583 case IOMMU_CAP_CACHE_COHERENCY:
2584 return 1;
2585 }
2586
dbb9fd86
SY
2587 return 0;
2588}
2589
26961efe
JR
2590static struct iommu_ops amd_iommu_ops = {
2591 .domain_init = amd_iommu_domain_init,
2592 .domain_destroy = amd_iommu_domain_destroy,
2593 .attach_dev = amd_iommu_attach_device,
2594 .detach_dev = amd_iommu_detach_device,
468e2366
JR
2595 .map = amd_iommu_map,
2596 .unmap = amd_iommu_unmap,
26961efe 2597 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2598 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2599};
2600
0feae533
JR
2601/*****************************************************************************
2602 *
2603 * The next functions do a basic initialization of IOMMU for pass through
2604 * mode
2605 *
2606 * In passthrough mode the IOMMU is initialized and enabled but not used for
2607 * DMA-API translation.
2608 *
2609 *****************************************************************************/
2610
2611int __init amd_iommu_init_passthrough(void)
2612{
15898bbc 2613 struct amd_iommu *iommu;
0feae533 2614 struct pci_dev *dev = NULL;
15898bbc 2615 u16 devid;
0feae533 2616
af901ca1 2617 /* allocate passthrough domain */
0feae533
JR
2618 pt_domain = protection_domain_alloc();
2619 if (!pt_domain)
2620 return -ENOMEM;
2621
2622 pt_domain->mode |= PAGE_MODE_NONE;
2623
6c54aabd 2624 for_each_pci_dev(dev) {
98fc5a69 2625 if (!check_device(&dev->dev))
0feae533
JR
2626 continue;
2627
98fc5a69
JR
2628 devid = get_device_id(&dev->dev);
2629
15898bbc 2630 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2631 if (!iommu)
2632 continue;
2633
15898bbc 2634 attach_device(&dev->dev, pt_domain);
0feae533
JR
2635 }
2636
2637 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2638
2639 return 0;
2640}