x86/amd-iommu: Remove iommu_flush_domain function
[linux-2.6-block.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
7f26508b
JR
74#ifdef CONFIG_AMD_IOMMU_STATS
75
76/*
77 * Initialization code for statistics collection
78 */
79
da49f6df 80DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 81DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 82DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 83DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 84DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 85DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 86DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 87DECLARE_STATS_COUNTER(cross_page);
f57d98ae 88DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 89DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 90DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 91DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 92
7f26508b
JR
93static struct dentry *stats_dir;
94static struct dentry *de_isolate;
95static struct dentry *de_fflush;
96
97static void amd_iommu_stats_add(struct __iommu_counter *cnt)
98{
99 if (stats_dir == NULL)
100 return;
101
102 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
103 &cnt->value);
104}
105
106static void amd_iommu_stats_init(void)
107{
108 stats_dir = debugfs_create_dir("amd-iommu", NULL);
109 if (stats_dir == NULL)
110 return;
111
112 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
113 (u32 *)&amd_iommu_isolate);
114
115 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
116 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
117
118 amd_iommu_stats_add(&compl_wait);
0f2a86f2 119 amd_iommu_stats_add(&cnt_map_single);
146a6917 120 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 121 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 122 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 123 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 124 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 125 amd_iommu_stats_add(&cross_page);
f57d98ae 126 amd_iommu_stats_add(&domain_flush_single);
18811f55 127 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 128 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 129 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
130}
131
132#endif
133
431b2a20 134/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
135static int iommu_has_npcache(struct amd_iommu *iommu)
136{
ae9b9403 137 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
138}
139
a80dc3e0
JR
140/****************************************************************************
141 *
142 * Interrupt handling functions
143 *
144 ****************************************************************************/
145
e3e59876
JR
146static void dump_dte_entry(u16 devid)
147{
148 int i;
149
150 for (i = 0; i < 8; ++i)
151 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
152 amd_iommu_dev_table[devid].data[i]);
153}
154
945b4ac4
JR
155static void dump_command(unsigned long phys_addr)
156{
157 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
158 int i;
159
160 for (i = 0; i < 4; ++i)
161 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
162}
163
a345b23b 164static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
165{
166 u32 *event = __evt;
167 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
168 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
169 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
170 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
171 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
172
4c6f40d4 173 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
174
175 switch (type) {
176 case EVENT_TYPE_ILL_DEV:
177 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
178 "address=0x%016llx flags=0x%04x]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address, flags);
e3e59876 181 dump_dte_entry(devid);
90008ee4
JR
182 break;
183 case EVENT_TYPE_IO_FAULT:
184 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
185 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 domid, address, flags);
188 break;
189 case EVENT_TYPE_DEV_TAB_ERR:
190 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
191 "address=0x%016llx flags=0x%04x]\n",
192 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
193 address, flags);
194 break;
195 case EVENT_TYPE_PAGE_TAB_ERR:
196 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
197 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
198 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
199 domid, address, flags);
200 break;
201 case EVENT_TYPE_ILL_CMD:
202 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 203 reset_iommu_command_buffer(iommu);
945b4ac4 204 dump_command(address);
90008ee4
JR
205 break;
206 case EVENT_TYPE_CMD_HARD_ERR:
207 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
208 "flags=0x%04x]\n", address, flags);
209 break;
210 case EVENT_TYPE_IOTLB_INV_TO:
211 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
212 "address=0x%016llx]\n",
213 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
214 address);
215 break;
216 case EVENT_TYPE_INV_DEV_REQ:
217 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
218 "address=0x%016llx flags=0x%04x]\n",
219 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
220 address, flags);
221 break;
222 default:
223 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
224 }
225}
226
227static void iommu_poll_events(struct amd_iommu *iommu)
228{
229 u32 head, tail;
230 unsigned long flags;
231
232 spin_lock_irqsave(&iommu->lock, flags);
233
234 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
235 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
236
237 while (head != tail) {
a345b23b 238 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
239 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
240 }
241
242 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
243
244 spin_unlock_irqrestore(&iommu->lock, flags);
245}
246
a80dc3e0
JR
247irqreturn_t amd_iommu_int_handler(int irq, void *data)
248{
90008ee4
JR
249 struct amd_iommu *iommu;
250
3bd22172 251 for_each_iommu(iommu)
90008ee4
JR
252 iommu_poll_events(iommu);
253
254 return IRQ_HANDLED;
a80dc3e0
JR
255}
256
431b2a20
JR
257/****************************************************************************
258 *
259 * IOMMU command queuing functions
260 *
261 ****************************************************************************/
262
263/*
264 * Writes the command to the IOMMUs command buffer and informs the
265 * hardware about the new command. Must be called with iommu->lock held.
266 */
d6449536 267static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
268{
269 u32 tail, head;
270 u8 *target;
271
272 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 273 target = iommu->cmd_buf + tail;
a19ae1ec
JR
274 memcpy_toio(target, cmd, sizeof(*cmd));
275 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
276 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
277 if (tail == head)
278 return -ENOMEM;
279 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
280
281 return 0;
282}
283
431b2a20
JR
284/*
285 * General queuing function for commands. Takes iommu->lock and calls
286 * __iommu_queue_command().
287 */
d6449536 288static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
289{
290 unsigned long flags;
291 int ret;
292
293 spin_lock_irqsave(&iommu->lock, flags);
294 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 295 if (!ret)
0cfd7aa9 296 iommu->need_sync = true;
a19ae1ec
JR
297 spin_unlock_irqrestore(&iommu->lock, flags);
298
299 return ret;
300}
301
8d201968
JR
302/*
303 * This function waits until an IOMMU has completed a completion
304 * wait command
305 */
306static void __iommu_wait_for_completion(struct amd_iommu *iommu)
307{
308 int ready = 0;
309 unsigned status = 0;
310 unsigned long i = 0;
311
da49f6df
JR
312 INC_STATS_COUNTER(compl_wait);
313
8d201968
JR
314 while (!ready && (i < EXIT_LOOP_COUNT)) {
315 ++i;
316 /* wait for the bit to become one */
317 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
318 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
319 }
320
321 /* set bit back to zero */
322 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
323 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
324
6a1eddd2
JR
325 if (unlikely(i == EXIT_LOOP_COUNT)) {
326 spin_unlock(&iommu->lock);
327 reset_iommu_command_buffer(iommu);
328 spin_lock(&iommu->lock);
329 }
8d201968
JR
330}
331
332/*
333 * This function queues a completion wait command into the command
334 * buffer of an IOMMU
335 */
336static int __iommu_completion_wait(struct amd_iommu *iommu)
337{
338 struct iommu_cmd cmd;
339
340 memset(&cmd, 0, sizeof(cmd));
341 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
342 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
343
344 return __iommu_queue_command(iommu, &cmd);
345}
346
431b2a20
JR
347/*
348 * This function is called whenever we need to ensure that the IOMMU has
349 * completed execution of all commands we sent. It sends a
350 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
351 * us about that by writing a value to a physical address we pass with
352 * the command.
353 */
a19ae1ec
JR
354static int iommu_completion_wait(struct amd_iommu *iommu)
355{
8d201968
JR
356 int ret = 0;
357 unsigned long flags;
a19ae1ec 358
7e4f88da
JR
359 spin_lock_irqsave(&iommu->lock, flags);
360
09ee17eb
JR
361 if (!iommu->need_sync)
362 goto out;
363
8d201968 364 ret = __iommu_completion_wait(iommu);
09ee17eb 365
0cfd7aa9 366 iommu->need_sync = false;
a19ae1ec
JR
367
368 if (ret)
7e4f88da 369 goto out;
a19ae1ec 370
8d201968 371 __iommu_wait_for_completion(iommu);
84df8175 372
7e4f88da
JR
373out:
374 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
375
376 return 0;
377}
378
0518a3a4
JR
379static void iommu_flush_complete(struct protection_domain *domain)
380{
381 int i;
382
383 for (i = 0; i < amd_iommus_present; ++i) {
384 if (!domain->dev_iommu[i])
385 continue;
386
387 /*
388 * Devices of this domain are behind this IOMMU
389 * We need to wait for completion of all commands.
390 */
391 iommu_completion_wait(amd_iommus[i]);
392 }
393}
394
431b2a20
JR
395/*
396 * Command send function for invalidating a device table entry
397 */
a19ae1ec
JR
398static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
399{
d6449536 400 struct iommu_cmd cmd;
ee2fa743 401 int ret;
a19ae1ec
JR
402
403 BUG_ON(iommu == NULL);
404
405 memset(&cmd, 0, sizeof(cmd));
406 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
407 cmd.data[0] = devid;
408
ee2fa743
JR
409 ret = iommu_queue_command(iommu, &cmd);
410
ee2fa743 411 return ret;
a19ae1ec
JR
412}
413
237b6f33
JR
414static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
415 u16 domid, int pde, int s)
416{
417 memset(cmd, 0, sizeof(*cmd));
418 address &= PAGE_MASK;
419 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
420 cmd->data[1] |= domid;
421 cmd->data[2] = lower_32_bits(address);
422 cmd->data[3] = upper_32_bits(address);
423 if (s) /* size bit - we flush more than one 4kb page */
424 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
425 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
426 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
427}
428
431b2a20
JR
429/*
430 * Generic command send function for invalidaing TLB entries
431 */
a19ae1ec
JR
432static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
433 u64 address, u16 domid, int pde, int s)
434{
d6449536 435 struct iommu_cmd cmd;
ee2fa743 436 int ret;
a19ae1ec 437
237b6f33 438 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 439
ee2fa743
JR
440 ret = iommu_queue_command(iommu, &cmd);
441
ee2fa743 442 return ret;
a19ae1ec
JR
443}
444
431b2a20
JR
445/*
446 * TLB invalidation function which is called from the mapping functions.
447 * It invalidates a single PTE if the range to flush is within a single
448 * page. Otherwise it flushes the whole TLB of the IOMMU.
449 */
6de8ad9b
JR
450static void __iommu_flush_pages(struct protection_domain *domain,
451 u64 address, size_t size, int pde)
a19ae1ec 452{
6de8ad9b 453 int s = 0, i;
dcd1e92e 454 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
455
456 address &= PAGE_MASK;
457
999ba417
JR
458 if (pages > 1) {
459 /*
460 * If we have to flush more than one page, flush all
461 * TLB entries for this domain
462 */
463 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
464 s = 1;
a19ae1ec
JR
465 }
466
999ba417 467
6de8ad9b
JR
468 for (i = 0; i < amd_iommus_present; ++i) {
469 if (!domain->dev_iommu[i])
470 continue;
471
472 /*
473 * Devices of this domain are behind this IOMMU
474 * We need a TLB flush
475 */
476 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
477 domain->id, pde, s);
478 }
479
480 return;
481}
482
483static void iommu_flush_pages(struct protection_domain *domain,
484 u64 address, size_t size)
485{
486 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 487}
b6c02715 488
1c655773 489/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 490static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 491{
dcd1e92e 492 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
493}
494
42a49f96 495/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 496static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 497{
dcd1e92e 498 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
499}
500
43f49609 501/*
e394d72a 502 * This function flushes one domain on one IOMMU
43f49609 503 */
e394d72a 504static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
43f49609 505{
43f49609 506 struct iommu_cmd cmd;
e394d72a 507 unsigned long flags;
18811f55 508
43f49609
JR
509 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
510 domid, 1, 1);
511
e394d72a
JR
512 spin_lock_irqsave(&iommu->lock, flags);
513 __iommu_queue_command(iommu, &cmd);
514 __iommu_completion_wait(iommu);
515 __iommu_wait_for_completion(iommu);
516 spin_unlock_irqrestore(&iommu->lock, flags);
43f49609 517}
43f49609 518
e394d72a 519static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
bfd1be18
JR
520{
521 int i;
522
523 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
524 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
525 continue;
e394d72a 526 flush_domain_on_iommu(iommu, i);
bfd1be18 527 }
e394d72a
JR
528
529}
530
bfd1be18 531void amd_iommu_flush_all_domains(void)
e394d72a
JR
532{
533 struct amd_iommu *iommu;
534
535 for_each_iommu(iommu)
536 flush_all_domains_on_iommu(iommu);
bfd1be18
JR
537}
538
d586d785 539static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
540{
541 int i;
542
d586d785
JR
543 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
544 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 545 continue;
d586d785
JR
546
547 iommu_queue_inv_dev_entry(iommu, i);
548 iommu_completion_wait(iommu);
bfd1be18
JR
549 }
550}
551
6a0dbcbe 552static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
553{
554 struct amd_iommu *iommu;
555 int i;
556
557 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
558 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
559 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
560 continue;
561
562 iommu = amd_iommu_rlookup_table[i];
563 if (!iommu)
564 continue;
565
566 iommu_queue_inv_dev_entry(iommu, i);
567 iommu_completion_wait(iommu);
568 }
569}
570
a345b23b
JR
571static void reset_iommu_command_buffer(struct amd_iommu *iommu)
572{
573 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
574
b26e81b8
JR
575 if (iommu->reset_in_progress)
576 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
577
578 iommu->reset_in_progress = true;
579
a345b23b
JR
580 amd_iommu_reset_cmd_buffer(iommu);
581 flush_all_devices_for_iommu(iommu);
582 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
583
584 iommu->reset_in_progress = false;
a345b23b
JR
585}
586
6a0dbcbe
JR
587void amd_iommu_flush_all_devices(void)
588{
589 flush_devices_by_domain(NULL);
590}
591
431b2a20
JR
592/****************************************************************************
593 *
594 * The functions below are used the create the page table mappings for
595 * unity mapped regions.
596 *
597 ****************************************************************************/
598
599/*
600 * Generic mapping functions. It maps a physical address into a DMA
601 * address space. It allocates the page table pages if necessary.
602 * In the future it can be extended to a generic mapping function
603 * supporting all features of AMD IOMMU page tables like level skipping
604 * and full 64 bit address spaces.
605 */
38e817fe
JR
606static int iommu_map_page(struct protection_domain *dom,
607 unsigned long bus_addr,
608 unsigned long phys_addr,
abdc5eb3
JR
609 int prot,
610 int map_size)
bd0e5211 611{
8bda3092 612 u64 __pte, *pte;
bd0e5211
JR
613
614 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 615 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 616
abdc5eb3
JR
617 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
618 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
619
bad1cac2 620 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
621 return -EINVAL;
622
abdc5eb3 623 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
624
625 if (IOMMU_PTE_PRESENT(*pte))
626 return -EBUSY;
627
628 __pte = phys_addr | IOMMU_PTE_P;
629 if (prot & IOMMU_PROT_IR)
630 __pte |= IOMMU_PTE_IR;
631 if (prot & IOMMU_PROT_IW)
632 __pte |= IOMMU_PTE_IW;
633
634 *pte = __pte;
635
04bfdd84
JR
636 update_domain(dom);
637
bd0e5211
JR
638 return 0;
639}
640
eb74ff6c 641static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 642 unsigned long bus_addr, int map_size)
eb74ff6c 643{
a6b256b4 644 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 645
38a76eee
JR
646 if (pte)
647 *pte = 0;
eb74ff6c 648}
eb74ff6c 649
431b2a20
JR
650/*
651 * This function checks if a specific unity mapping entry is needed for
652 * this specific IOMMU.
653 */
bd0e5211
JR
654static int iommu_for_unity_map(struct amd_iommu *iommu,
655 struct unity_map_entry *entry)
656{
657 u16 bdf, i;
658
659 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
660 bdf = amd_iommu_alias_table[i];
661 if (amd_iommu_rlookup_table[bdf] == iommu)
662 return 1;
663 }
664
665 return 0;
666}
667
431b2a20
JR
668/*
669 * Init the unity mappings for a specific IOMMU in the system
670 *
671 * Basically iterates over all unity mapping entries and applies them to
672 * the default domain DMA of that IOMMU if necessary.
673 */
bd0e5211
JR
674static int iommu_init_unity_mappings(struct amd_iommu *iommu)
675{
676 struct unity_map_entry *entry;
677 int ret;
678
679 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
680 if (!iommu_for_unity_map(iommu, entry))
681 continue;
682 ret = dma_ops_unity_map(iommu->default_dom, entry);
683 if (ret)
684 return ret;
685 }
686
687 return 0;
688}
689
431b2a20
JR
690/*
691 * This function actually applies the mapping to the page table of the
692 * dma_ops domain.
693 */
bd0e5211
JR
694static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
695 struct unity_map_entry *e)
696{
697 u64 addr;
698 int ret;
699
700 for (addr = e->address_start; addr < e->address_end;
701 addr += PAGE_SIZE) {
abdc5eb3
JR
702 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
703 PM_MAP_4k);
bd0e5211
JR
704 if (ret)
705 return ret;
706 /*
707 * if unity mapping is in aperture range mark the page
708 * as allocated in the aperture
709 */
710 if (addr < dma_dom->aperture_size)
c3239567 711 __set_bit(addr >> PAGE_SHIFT,
384de729 712 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
713 }
714
715 return 0;
716}
717
431b2a20
JR
718/*
719 * Inits the unity mappings required for a specific device
720 */
bd0e5211
JR
721static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
722 u16 devid)
723{
724 struct unity_map_entry *e;
725 int ret;
726
727 list_for_each_entry(e, &amd_iommu_unity_map, list) {
728 if (!(devid >= e->devid_start && devid <= e->devid_end))
729 continue;
730 ret = dma_ops_unity_map(dma_dom, e);
731 if (ret)
732 return ret;
733 }
734
735 return 0;
736}
737
431b2a20
JR
738/****************************************************************************
739 *
740 * The next functions belong to the address allocator for the dma_ops
741 * interface functions. They work like the allocators in the other IOMMU
742 * drivers. Its basically a bitmap which marks the allocated pages in
743 * the aperture. Maybe it could be enhanced in the future to a more
744 * efficient allocator.
745 *
746 ****************************************************************************/
d3086444 747
431b2a20 748/*
384de729 749 * The address allocator core functions.
431b2a20
JR
750 *
751 * called with domain->lock held
752 */
384de729 753
00cd122a
JR
754/*
755 * This function checks if there is a PTE for a given dma address. If
756 * there is one, it returns the pointer to it.
757 */
9355a081 758static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 759 unsigned long address, int map_size)
00cd122a 760{
9355a081 761 int level;
00cd122a
JR
762 u64 *pte;
763
9355a081
JR
764 level = domain->mode - 1;
765 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 766
a6b256b4 767 while (level > map_size) {
9355a081
JR
768 if (!IOMMU_PTE_PRESENT(*pte))
769 return NULL;
00cd122a 770
9355a081 771 level -= 1;
00cd122a 772
9355a081
JR
773 pte = IOMMU_PTE_PAGE(*pte);
774 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 775
a6b256b4
JR
776 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
777 pte = NULL;
778 break;
779 }
9355a081 780 }
00cd122a
JR
781
782 return pte;
783}
784
9cabe89b
JR
785/*
786 * This function is used to add a new aperture range to an existing
787 * aperture in case of dma_ops domain allocation or address allocation
788 * failure.
789 */
00cd122a
JR
790static int alloc_new_range(struct amd_iommu *iommu,
791 struct dma_ops_domain *dma_dom,
9cabe89b
JR
792 bool populate, gfp_t gfp)
793{
794 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 795 int i;
9cabe89b 796
f5e9705c
JR
797#ifdef CONFIG_IOMMU_STRESS
798 populate = false;
799#endif
800
9cabe89b
JR
801 if (index >= APERTURE_MAX_RANGES)
802 return -ENOMEM;
803
804 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
805 if (!dma_dom->aperture[index])
806 return -ENOMEM;
807
808 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
809 if (!dma_dom->aperture[index]->bitmap)
810 goto out_free;
811
812 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
813
814 if (populate) {
815 unsigned long address = dma_dom->aperture_size;
816 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
817 u64 *pte, *pte_page;
818
819 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 820 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
821 &pte_page, gfp);
822 if (!pte)
823 goto out_free;
824
825 dma_dom->aperture[index]->pte_pages[i] = pte_page;
826
827 address += APERTURE_RANGE_SIZE / 64;
828 }
829 }
830
831 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
832
00cd122a
JR
833 /* Intialize the exclusion range if necessary */
834 if (iommu->exclusion_start &&
835 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
836 iommu->exclusion_start < dma_dom->aperture_size) {
837 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
838 int pages = iommu_num_pages(iommu->exclusion_start,
839 iommu->exclusion_length,
840 PAGE_SIZE);
841 dma_ops_reserve_addresses(dma_dom, startpage, pages);
842 }
843
844 /*
845 * Check for areas already mapped as present in the new aperture
846 * range and mark those pages as reserved in the allocator. Such
847 * mappings may already exist as a result of requested unity
848 * mappings for devices.
849 */
850 for (i = dma_dom->aperture[index]->offset;
851 i < dma_dom->aperture_size;
852 i += PAGE_SIZE) {
a6b256b4 853 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
854 if (!pte || !IOMMU_PTE_PRESENT(*pte))
855 continue;
856
857 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
858 }
859
04bfdd84
JR
860 update_domain(&dma_dom->domain);
861
9cabe89b
JR
862 return 0;
863
864out_free:
04bfdd84
JR
865 update_domain(&dma_dom->domain);
866
9cabe89b
JR
867 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
868
869 kfree(dma_dom->aperture[index]);
870 dma_dom->aperture[index] = NULL;
871
872 return -ENOMEM;
873}
874
384de729
JR
875static unsigned long dma_ops_area_alloc(struct device *dev,
876 struct dma_ops_domain *dom,
877 unsigned int pages,
878 unsigned long align_mask,
879 u64 dma_mask,
880 unsigned long start)
881{
803b8cb4 882 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
883 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
884 int i = start >> APERTURE_RANGE_SHIFT;
885 unsigned long boundary_size;
886 unsigned long address = -1;
887 unsigned long limit;
888
803b8cb4
JR
889 next_bit >>= PAGE_SHIFT;
890
384de729
JR
891 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
892 PAGE_SIZE) >> PAGE_SHIFT;
893
894 for (;i < max_index; ++i) {
895 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
896
897 if (dom->aperture[i]->offset >= dma_mask)
898 break;
899
900 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
901 dma_mask >> PAGE_SHIFT);
902
903 address = iommu_area_alloc(dom->aperture[i]->bitmap,
904 limit, next_bit, pages, 0,
905 boundary_size, align_mask);
906 if (address != -1) {
907 address = dom->aperture[i]->offset +
908 (address << PAGE_SHIFT);
803b8cb4 909 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
910 break;
911 }
912
913 next_bit = 0;
914 }
915
916 return address;
917}
918
d3086444
JR
919static unsigned long dma_ops_alloc_addresses(struct device *dev,
920 struct dma_ops_domain *dom,
6d4f343f 921 unsigned int pages,
832a90c3
JR
922 unsigned long align_mask,
923 u64 dma_mask)
d3086444 924{
d3086444 925 unsigned long address;
d3086444 926
fe16f088
JR
927#ifdef CONFIG_IOMMU_STRESS
928 dom->next_address = 0;
929 dom->need_flush = true;
930#endif
d3086444 931
384de729 932 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 933 dma_mask, dom->next_address);
d3086444 934
1c655773 935 if (address == -1) {
803b8cb4 936 dom->next_address = 0;
384de729
JR
937 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
938 dma_mask, 0);
1c655773
JR
939 dom->need_flush = true;
940 }
d3086444 941
384de729 942 if (unlikely(address == -1))
8fd524b3 943 address = DMA_ERROR_CODE;
d3086444
JR
944
945 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
946
947 return address;
948}
949
431b2a20
JR
950/*
951 * The address free function.
952 *
953 * called with domain->lock held
954 */
d3086444
JR
955static void dma_ops_free_addresses(struct dma_ops_domain *dom,
956 unsigned long address,
957 unsigned int pages)
958{
384de729
JR
959 unsigned i = address >> APERTURE_RANGE_SHIFT;
960 struct aperture_range *range = dom->aperture[i];
80be308d 961
384de729
JR
962 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
963
47bccd6b
JR
964#ifdef CONFIG_IOMMU_STRESS
965 if (i < 4)
966 return;
967#endif
80be308d 968
803b8cb4 969 if (address >= dom->next_address)
80be308d 970 dom->need_flush = true;
384de729
JR
971
972 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 973
384de729
JR
974 iommu_area_free(range->bitmap, address, pages);
975
d3086444
JR
976}
977
431b2a20
JR
978/****************************************************************************
979 *
980 * The next functions belong to the domain allocation. A domain is
981 * allocated for every IOMMU as the default domain. If device isolation
982 * is enabled, every device get its own domain. The most important thing
983 * about domains is the page table mapping the DMA address space they
984 * contain.
985 *
986 ****************************************************************************/
987
ec487d1a
JR
988static u16 domain_id_alloc(void)
989{
990 unsigned long flags;
991 int id;
992
993 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
994 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
995 BUG_ON(id == 0);
996 if (id > 0 && id < MAX_DOMAIN_ID)
997 __set_bit(id, amd_iommu_pd_alloc_bitmap);
998 else
999 id = 0;
1000 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1001
1002 return id;
1003}
1004
a2acfb75
JR
1005static void domain_id_free(int id)
1006{
1007 unsigned long flags;
1008
1009 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1010 if (id > 0 && id < MAX_DOMAIN_ID)
1011 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1012 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1013}
a2acfb75 1014
431b2a20
JR
1015/*
1016 * Used to reserve address ranges in the aperture (e.g. for exclusion
1017 * ranges.
1018 */
ec487d1a
JR
1019static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1020 unsigned long start_page,
1021 unsigned int pages)
1022{
384de729 1023 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1024
1025 if (start_page + pages > last_page)
1026 pages = last_page - start_page;
1027
384de729
JR
1028 for (i = start_page; i < start_page + pages; ++i) {
1029 int index = i / APERTURE_RANGE_PAGES;
1030 int page = i % APERTURE_RANGE_PAGES;
1031 __set_bit(page, dom->aperture[index]->bitmap);
1032 }
ec487d1a
JR
1033}
1034
86db2e5d 1035static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1036{
1037 int i, j;
1038 u64 *p1, *p2, *p3;
1039
86db2e5d 1040 p1 = domain->pt_root;
ec487d1a
JR
1041
1042 if (!p1)
1043 return;
1044
1045 for (i = 0; i < 512; ++i) {
1046 if (!IOMMU_PTE_PRESENT(p1[i]))
1047 continue;
1048
1049 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1050 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1051 if (!IOMMU_PTE_PRESENT(p2[j]))
1052 continue;
1053 p3 = IOMMU_PTE_PAGE(p2[j]);
1054 free_page((unsigned long)p3);
1055 }
1056
1057 free_page((unsigned long)p2);
1058 }
1059
1060 free_page((unsigned long)p1);
86db2e5d
JR
1061
1062 domain->pt_root = NULL;
ec487d1a
JR
1063}
1064
431b2a20
JR
1065/*
1066 * Free a domain, only used if something went wrong in the
1067 * allocation path and we need to free an already allocated page table
1068 */
ec487d1a
JR
1069static void dma_ops_domain_free(struct dma_ops_domain *dom)
1070{
384de729
JR
1071 int i;
1072
ec487d1a
JR
1073 if (!dom)
1074 return;
1075
86db2e5d 1076 free_pagetable(&dom->domain);
ec487d1a 1077
384de729
JR
1078 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1079 if (!dom->aperture[i])
1080 continue;
1081 free_page((unsigned long)dom->aperture[i]->bitmap);
1082 kfree(dom->aperture[i]);
1083 }
ec487d1a
JR
1084
1085 kfree(dom);
1086}
1087
431b2a20
JR
1088/*
1089 * Allocates a new protection domain usable for the dma_ops functions.
1090 * It also intializes the page table and the address allocator data
1091 * structures required for the dma_ops interface
1092 */
d9cfed92 1093static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1094{
1095 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1096
1097 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1098 if (!dma_dom)
1099 return NULL;
1100
1101 spin_lock_init(&dma_dom->domain.lock);
1102
1103 dma_dom->domain.id = domain_id_alloc();
1104 if (dma_dom->domain.id == 0)
1105 goto free_dma_dom;
8f7a017c 1106 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1107 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1108 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1109 dma_dom->domain.priv = dma_dom;
1110 if (!dma_dom->domain.pt_root)
1111 goto free_dma_dom;
ec487d1a 1112
1c655773 1113 dma_dom->need_flush = false;
bd60b735 1114 dma_dom->target_dev = 0xffff;
1c655773 1115
00cd122a 1116 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1117 goto free_dma_dom;
ec487d1a 1118
431b2a20 1119 /*
ec487d1a
JR
1120 * mark the first page as allocated so we never return 0 as
1121 * a valid dma-address. So we can use 0 as error value
431b2a20 1122 */
384de729 1123 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1124 dma_dom->next_address = 0;
ec487d1a 1125
ec487d1a
JR
1126
1127 return dma_dom;
1128
1129free_dma_dom:
1130 dma_ops_domain_free(dma_dom);
1131
1132 return NULL;
1133}
1134
5b28df6f
JR
1135/*
1136 * little helper function to check whether a given protection domain is a
1137 * dma_ops domain
1138 */
1139static bool dma_ops_domain(struct protection_domain *domain)
1140{
1141 return domain->flags & PD_DMA_OPS_MASK;
1142}
1143
431b2a20
JR
1144/*
1145 * Find out the protection domain structure for a given PCI device. This
1146 * will give us the pointer to the page table root for example.
1147 */
b20ac0d4
JR
1148static struct protection_domain *domain_for_device(u16 devid)
1149{
1150 struct protection_domain *dom;
1151 unsigned long flags;
1152
1153 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1154 dom = amd_iommu_pd_table[devid];
1155 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1156
1157 return dom;
1158}
1159
407d733e 1160static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1161{
b20ac0d4 1162 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1163
38ddf41b
JR
1164 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1165 << DEV_ENTRY_MODE_SHIFT;
1166 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1167
b20ac0d4 1168 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1169 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1170 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1171
1172 amd_iommu_pd_table[devid] = domain;
2b681faf
JR
1173}
1174
1175/*
1176 * If a device is not yet associated with a domain, this function does
1177 * assigns it visible for the hardware
1178 */
1179static void __attach_device(struct amd_iommu *iommu,
1180 struct protection_domain *domain,
1181 u16 devid)
1182{
1183 /* lock domain */
1184 spin_lock(&domain->lock);
1185
1186 /* update DTE entry */
1187 set_dte_entry(devid, domain);
eba6ac60 1188
c4596114
JR
1189 /* Do reference counting */
1190 domain->dev_iommu[iommu->index] += 1;
1191 domain->dev_cnt += 1;
eba6ac60
JR
1192
1193 /* ready */
1194 spin_unlock(&domain->lock);
0feae533 1195}
b20ac0d4 1196
407d733e
JR
1197/*
1198 * If a device is not yet associated with a domain, this function does
1199 * assigns it visible for the hardware
1200 */
0feae533
JR
1201static void attach_device(struct amd_iommu *iommu,
1202 struct protection_domain *domain,
1203 u16 devid)
1204{
eba6ac60
JR
1205 unsigned long flags;
1206
1207 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
0feae533 1208 __attach_device(iommu, domain, devid);
b20ac0d4
JR
1209 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1210
0feae533
JR
1211 /*
1212 * We might boot into a crash-kernel here. The crashed kernel
1213 * left the caches in the IOMMU dirty. So we have to flush
1214 * here to evict all dirty stuff.
1215 */
b20ac0d4 1216 iommu_queue_inv_dev_entry(iommu, devid);
dcd1e92e 1217 iommu_flush_tlb_pde(domain);
b20ac0d4
JR
1218}
1219
355bf553
JR
1220/*
1221 * Removes a device from a protection domain (unlocked)
1222 */
1223static void __detach_device(struct protection_domain *domain, u16 devid)
1224{
c4596114
JR
1225 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1226
1227 BUG_ON(!iommu);
355bf553
JR
1228
1229 /* lock domain */
1230 spin_lock(&domain->lock);
1231
1232 /* remove domain from the lookup table */
1233 amd_iommu_pd_table[devid] = NULL;
1234
1235 /* remove entry from the device table seen by the hardware */
1236 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1237 amd_iommu_dev_table[devid].data[1] = 0;
1238 amd_iommu_dev_table[devid].data[2] = 0;
1239
c5cca146
JR
1240 amd_iommu_apply_erratum_63(devid);
1241
c4596114
JR
1242 /* decrease reference counters */
1243 domain->dev_iommu[iommu->index] -= 1;
1244 domain->dev_cnt -= 1;
355bf553
JR
1245
1246 /* ready */
1247 spin_unlock(&domain->lock);
21129f78
JR
1248
1249 /*
1250 * If we run in passthrough mode the device must be assigned to the
1251 * passthrough domain if it is detached from any other domain
1252 */
1253 if (iommu_pass_through) {
1254 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1255 __attach_device(iommu, pt_domain, devid);
1256 }
355bf553
JR
1257}
1258
1259/*
1260 * Removes a device from a protection domain (with devtable_lock held)
1261 */
1262static void detach_device(struct protection_domain *domain, u16 devid)
1263{
1264 unsigned long flags;
1265
1266 /* lock device table */
1267 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1268 __detach_device(domain, devid);
1269 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1270}
e275a2a0
JR
1271
1272static int device_change_notifier(struct notifier_block *nb,
1273 unsigned long action, void *data)
1274{
1275 struct device *dev = data;
1276 struct pci_dev *pdev = to_pci_dev(dev);
1277 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1278 struct protection_domain *domain;
1279 struct dma_ops_domain *dma_domain;
1280 struct amd_iommu *iommu;
1ac4cbbc 1281 unsigned long flags;
e275a2a0
JR
1282
1283 if (devid > amd_iommu_last_bdf)
1284 goto out;
1285
1286 devid = amd_iommu_alias_table[devid];
1287
1288 iommu = amd_iommu_rlookup_table[devid];
1289 if (iommu == NULL)
1290 goto out;
1291
1292 domain = domain_for_device(devid);
1293
1294 if (domain && !dma_ops_domain(domain))
1295 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1296 "to a non-dma-ops domain\n", dev_name(dev));
1297
1298 switch (action) {
c1eee67b 1299 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1300 if (!domain)
1301 goto out;
a1ca331c
JR
1302 if (iommu_pass_through)
1303 break;
e275a2a0 1304 detach_device(domain, devid);
1ac4cbbc
JR
1305 break;
1306 case BUS_NOTIFY_ADD_DEVICE:
1307 /* allocate a protection domain if a device is added */
1308 dma_domain = find_protection_domain(devid);
1309 if (dma_domain)
1310 goto out;
d9cfed92 1311 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1312 if (!dma_domain)
1313 goto out;
1314 dma_domain->target_dev = devid;
1315
1316 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1317 list_add_tail(&dma_domain->list, &iommu_pd_list);
1318 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1319
e275a2a0
JR
1320 break;
1321 default:
1322 goto out;
1323 }
1324
1325 iommu_queue_inv_dev_entry(iommu, devid);
1326 iommu_completion_wait(iommu);
1327
1328out:
1329 return 0;
1330}
1331
b25ae679 1332static struct notifier_block device_nb = {
e275a2a0
JR
1333 .notifier_call = device_change_notifier,
1334};
355bf553 1335
431b2a20
JR
1336/*****************************************************************************
1337 *
1338 * The next functions belong to the dma_ops mapping/unmapping code.
1339 *
1340 *****************************************************************************/
1341
dbcc112e
JR
1342/*
1343 * This function checks if the driver got a valid device from the caller to
1344 * avoid dereferencing invalid pointers.
1345 */
1346static bool check_device(struct device *dev)
1347{
1348 if (!dev || !dev->dma_mask)
1349 return false;
1350
1351 return true;
1352}
1353
bd60b735
JR
1354/*
1355 * In this function the list of preallocated protection domains is traversed to
1356 * find the domain for a specific device
1357 */
1358static struct dma_ops_domain *find_protection_domain(u16 devid)
1359{
1360 struct dma_ops_domain *entry, *ret = NULL;
1361 unsigned long flags;
1362
1363 if (list_empty(&iommu_pd_list))
1364 return NULL;
1365
1366 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1367
1368 list_for_each_entry(entry, &iommu_pd_list, list) {
1369 if (entry->target_dev == devid) {
1370 ret = entry;
bd60b735
JR
1371 break;
1372 }
1373 }
1374
1375 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1376
1377 return ret;
1378}
1379
431b2a20
JR
1380/*
1381 * In the dma_ops path we only have the struct device. This function
1382 * finds the corresponding IOMMU, the protection domain and the
1383 * requestor id for a given device.
1384 * If the device is not yet associated with a domain this is also done
1385 * in this function.
1386 */
b20ac0d4
JR
1387static int get_device_resources(struct device *dev,
1388 struct amd_iommu **iommu,
1389 struct protection_domain **domain,
1390 u16 *bdf)
1391{
1392 struct dma_ops_domain *dma_dom;
1393 struct pci_dev *pcidev;
1394 u16 _bdf;
1395
dbcc112e
JR
1396 *iommu = NULL;
1397 *domain = NULL;
1398 *bdf = 0xffff;
1399
1400 if (dev->bus != &pci_bus_type)
1401 return 0;
b20ac0d4
JR
1402
1403 pcidev = to_pci_dev(dev);
d591b0a3 1404 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1405
431b2a20 1406 /* device not translated by any IOMMU in the system? */
dbcc112e 1407 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1408 return 0;
b20ac0d4
JR
1409
1410 *bdf = amd_iommu_alias_table[_bdf];
1411
1412 *iommu = amd_iommu_rlookup_table[*bdf];
1413 if (*iommu == NULL)
1414 return 0;
b20ac0d4
JR
1415 *domain = domain_for_device(*bdf);
1416 if (*domain == NULL) {
bd60b735
JR
1417 dma_dom = find_protection_domain(*bdf);
1418 if (!dma_dom)
1419 dma_dom = (*iommu)->default_dom;
b20ac0d4 1420 *domain = &dma_dom->domain;
f1179dc0 1421 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1422 DUMP_printk("Using protection domain %d for device %s\n",
1423 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1424 }
1425
f91ba190 1426 if (domain_for_device(_bdf) == NULL)
f1179dc0 1427 attach_device(*iommu, *domain, _bdf);
f91ba190 1428
b20ac0d4
JR
1429 return 1;
1430}
1431
04bfdd84
JR
1432static void update_device_table(struct protection_domain *domain)
1433{
2b681faf 1434 unsigned long flags;
04bfdd84
JR
1435 int i;
1436
1437 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1438 if (amd_iommu_pd_table[i] != domain)
1439 continue;
2b681faf 1440 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1441 set_dte_entry(i, domain);
2b681faf 1442 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1443 }
1444}
1445
1446static void update_domain(struct protection_domain *domain)
1447{
1448 if (!domain->updated)
1449 return;
1450
1451 update_device_table(domain);
1452 flush_devices_by_domain(domain);
601367d7 1453 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1454
1455 domain->updated = false;
1456}
1457
8bda3092 1458/*
50020fb6
JR
1459 * This function is used to add another level to an IO page table. Adding
1460 * another level increases the size of the address space by 9 bits to a size up
1461 * to 64 bits.
8bda3092 1462 */
50020fb6
JR
1463static bool increase_address_space(struct protection_domain *domain,
1464 gfp_t gfp)
1465{
1466 u64 *pte;
1467
1468 if (domain->mode == PAGE_MODE_6_LEVEL)
1469 /* address space already 64 bit large */
1470 return false;
1471
1472 pte = (void *)get_zeroed_page(gfp);
1473 if (!pte)
1474 return false;
1475
1476 *pte = PM_LEVEL_PDE(domain->mode,
1477 virt_to_phys(domain->pt_root));
1478 domain->pt_root = pte;
1479 domain->mode += 1;
1480 domain->updated = true;
1481
1482 return true;
1483}
1484
8bc3e127 1485static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1486 unsigned long address,
1487 int end_lvl,
1488 u64 **pte_page,
1489 gfp_t gfp)
8bda3092
JR
1490{
1491 u64 *pte, *page;
8bc3e127 1492 int level;
8bda3092 1493
8bc3e127
JR
1494 while (address > PM_LEVEL_SIZE(domain->mode))
1495 increase_address_space(domain, gfp);
8bda3092 1496
8bc3e127
JR
1497 level = domain->mode - 1;
1498 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1499
abdc5eb3 1500 while (level > end_lvl) {
8bc3e127
JR
1501 if (!IOMMU_PTE_PRESENT(*pte)) {
1502 page = (u64 *)get_zeroed_page(gfp);
1503 if (!page)
1504 return NULL;
1505 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1506 }
8bda3092 1507
8bc3e127 1508 level -= 1;
8bda3092 1509
8bc3e127 1510 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1511
abdc5eb3 1512 if (pte_page && level == end_lvl)
8bc3e127 1513 *pte_page = pte;
8bda3092 1514
8bc3e127
JR
1515 pte = &pte[PM_LEVEL_INDEX(level, address)];
1516 }
8bda3092
JR
1517
1518 return pte;
1519}
1520
1521/*
1522 * This function fetches the PTE for a given address in the aperture
1523 */
1524static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1525 unsigned long address)
1526{
384de729 1527 struct aperture_range *aperture;
8bda3092
JR
1528 u64 *pte, *pte_page;
1529
384de729
JR
1530 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1531 if (!aperture)
1532 return NULL;
1533
1534 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1535 if (!pte) {
abdc5eb3
JR
1536 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1537 GFP_ATOMIC);
384de729
JR
1538 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1539 } else
8c8c143c 1540 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1541
04bfdd84 1542 update_domain(&dom->domain);
8bda3092
JR
1543
1544 return pte;
1545}
1546
431b2a20
JR
1547/*
1548 * This is the generic map function. It maps one 4kb page at paddr to
1549 * the given address in the DMA address space for the domain.
1550 */
cb76c322
JR
1551static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1552 struct dma_ops_domain *dom,
1553 unsigned long address,
1554 phys_addr_t paddr,
1555 int direction)
1556{
1557 u64 *pte, __pte;
1558
1559 WARN_ON(address > dom->aperture_size);
1560
1561 paddr &= PAGE_MASK;
1562
8bda3092 1563 pte = dma_ops_get_pte(dom, address);
53812c11 1564 if (!pte)
8fd524b3 1565 return DMA_ERROR_CODE;
cb76c322
JR
1566
1567 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1568
1569 if (direction == DMA_TO_DEVICE)
1570 __pte |= IOMMU_PTE_IR;
1571 else if (direction == DMA_FROM_DEVICE)
1572 __pte |= IOMMU_PTE_IW;
1573 else if (direction == DMA_BIDIRECTIONAL)
1574 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1575
1576 WARN_ON(*pte);
1577
1578 *pte = __pte;
1579
1580 return (dma_addr_t)address;
1581}
1582
431b2a20
JR
1583/*
1584 * The generic unmapping function for on page in the DMA address space.
1585 */
cb76c322
JR
1586static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1587 struct dma_ops_domain *dom,
1588 unsigned long address)
1589{
384de729 1590 struct aperture_range *aperture;
cb76c322
JR
1591 u64 *pte;
1592
1593 if (address >= dom->aperture_size)
1594 return;
1595
384de729
JR
1596 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1597 if (!aperture)
1598 return;
1599
1600 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1601 if (!pte)
1602 return;
cb76c322 1603
8c8c143c 1604 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1605
1606 WARN_ON(!*pte);
1607
1608 *pte = 0ULL;
1609}
1610
431b2a20
JR
1611/*
1612 * This function contains common code for mapping of a physically
24f81160
JR
1613 * contiguous memory region into DMA address space. It is used by all
1614 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1615 * Must be called with the domain lock held.
1616 */
cb76c322
JR
1617static dma_addr_t __map_single(struct device *dev,
1618 struct amd_iommu *iommu,
1619 struct dma_ops_domain *dma_dom,
1620 phys_addr_t paddr,
1621 size_t size,
6d4f343f 1622 int dir,
832a90c3
JR
1623 bool align,
1624 u64 dma_mask)
cb76c322
JR
1625{
1626 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1627 dma_addr_t address, start, ret;
cb76c322 1628 unsigned int pages;
6d4f343f 1629 unsigned long align_mask = 0;
cb76c322
JR
1630 int i;
1631
e3c449f5 1632 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1633 paddr &= PAGE_MASK;
1634
8ecaf8f1
JR
1635 INC_STATS_COUNTER(total_map_requests);
1636
c1858976
JR
1637 if (pages > 1)
1638 INC_STATS_COUNTER(cross_page);
1639
6d4f343f
JR
1640 if (align)
1641 align_mask = (1UL << get_order(size)) - 1;
1642
11b83888 1643retry:
832a90c3
JR
1644 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1645 dma_mask);
8fd524b3 1646 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1647 /*
1648 * setting next_address here will let the address
1649 * allocator only scan the new allocated range in the
1650 * first run. This is a small optimization.
1651 */
1652 dma_dom->next_address = dma_dom->aperture_size;
1653
1654 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1655 goto out;
1656
1657 /*
1658 * aperture was sucessfully enlarged by 128 MB, try
1659 * allocation again
1660 */
1661 goto retry;
1662 }
cb76c322
JR
1663
1664 start = address;
1665 for (i = 0; i < pages; ++i) {
53812c11 1666 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
8fd524b3 1667 if (ret == DMA_ERROR_CODE)
53812c11
JR
1668 goto out_unmap;
1669
cb76c322
JR
1670 paddr += PAGE_SIZE;
1671 start += PAGE_SIZE;
1672 }
1673 address += offset;
1674
5774f7c5
JR
1675 ADD_STATS_COUNTER(alloced_io_mem, size);
1676
afa9fdc2 1677 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1678 iommu_flush_tlb(&dma_dom->domain);
1c655773
JR
1679 dma_dom->need_flush = false;
1680 } else if (unlikely(iommu_has_npcache(iommu)))
6de8ad9b 1681 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1682
cb76c322
JR
1683out:
1684 return address;
53812c11
JR
1685
1686out_unmap:
1687
1688 for (--i; i >= 0; --i) {
1689 start -= PAGE_SIZE;
1690 dma_ops_domain_unmap(iommu, dma_dom, start);
1691 }
1692
1693 dma_ops_free_addresses(dma_dom, address, pages);
1694
8fd524b3 1695 return DMA_ERROR_CODE;
cb76c322
JR
1696}
1697
431b2a20
JR
1698/*
1699 * Does the reverse of the __map_single function. Must be called with
1700 * the domain lock held too
1701 */
cb76c322
JR
1702static void __unmap_single(struct amd_iommu *iommu,
1703 struct dma_ops_domain *dma_dom,
1704 dma_addr_t dma_addr,
1705 size_t size,
1706 int dir)
1707{
1708 dma_addr_t i, start;
1709 unsigned int pages;
1710
8fd524b3 1711 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1712 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1713 return;
1714
e3c449f5 1715 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1716 dma_addr &= PAGE_MASK;
1717 start = dma_addr;
1718
1719 for (i = 0; i < pages; ++i) {
1720 dma_ops_domain_unmap(iommu, dma_dom, start);
1721 start += PAGE_SIZE;
1722 }
1723
5774f7c5
JR
1724 SUB_STATS_COUNTER(alloced_io_mem, size);
1725
cb76c322 1726 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1727
80be308d 1728 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1729 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1730 dma_dom->need_flush = false;
1731 }
cb76c322
JR
1732}
1733
431b2a20
JR
1734/*
1735 * The exported map_single function for dma_ops.
1736 */
51491367
FT
1737static dma_addr_t map_page(struct device *dev, struct page *page,
1738 unsigned long offset, size_t size,
1739 enum dma_data_direction dir,
1740 struct dma_attrs *attrs)
4da70b9e
JR
1741{
1742 unsigned long flags;
1743 struct amd_iommu *iommu;
1744 struct protection_domain *domain;
1745 u16 devid;
1746 dma_addr_t addr;
832a90c3 1747 u64 dma_mask;
51491367 1748 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1749
0f2a86f2
JR
1750 INC_STATS_COUNTER(cnt_map_single);
1751
dbcc112e 1752 if (!check_device(dev))
8fd524b3 1753 return DMA_ERROR_CODE;
dbcc112e 1754
832a90c3 1755 dma_mask = *dev->dma_mask;
4da70b9e
JR
1756
1757 get_device_resources(dev, &iommu, &domain, &devid);
1758
1759 if (iommu == NULL || domain == NULL)
431b2a20 1760 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1761 return (dma_addr_t)paddr;
1762
5b28df6f 1763 if (!dma_ops_domain(domain))
8fd524b3 1764 return DMA_ERROR_CODE;
5b28df6f 1765
4da70b9e 1766 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1767 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1768 dma_mask);
8fd524b3 1769 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1770 goto out;
1771
0518a3a4 1772 iommu_flush_complete(domain);
4da70b9e
JR
1773
1774out:
1775 spin_unlock_irqrestore(&domain->lock, flags);
1776
1777 return addr;
1778}
1779
431b2a20
JR
1780/*
1781 * The exported unmap_single function for dma_ops.
1782 */
51491367
FT
1783static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1784 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1785{
1786 unsigned long flags;
1787 struct amd_iommu *iommu;
1788 struct protection_domain *domain;
1789 u16 devid;
1790
146a6917
JR
1791 INC_STATS_COUNTER(cnt_unmap_single);
1792
dbcc112e
JR
1793 if (!check_device(dev) ||
1794 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1795 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1796 return;
1797
5b28df6f
JR
1798 if (!dma_ops_domain(domain))
1799 return;
1800
4da70b9e
JR
1801 spin_lock_irqsave(&domain->lock, flags);
1802
1803 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1804
0518a3a4 1805 iommu_flush_complete(domain);
4da70b9e
JR
1806
1807 spin_unlock_irqrestore(&domain->lock, flags);
1808}
1809
431b2a20
JR
1810/*
1811 * This is a special map_sg function which is used if we should map a
1812 * device which is not handled by an AMD IOMMU in the system.
1813 */
65b050ad
JR
1814static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1815 int nelems, int dir)
1816{
1817 struct scatterlist *s;
1818 int i;
1819
1820 for_each_sg(sglist, s, nelems, i) {
1821 s->dma_address = (dma_addr_t)sg_phys(s);
1822 s->dma_length = s->length;
1823 }
1824
1825 return nelems;
1826}
1827
431b2a20
JR
1828/*
1829 * The exported map_sg function for dma_ops (handles scatter-gather
1830 * lists).
1831 */
65b050ad 1832static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1833 int nelems, enum dma_data_direction dir,
1834 struct dma_attrs *attrs)
65b050ad
JR
1835{
1836 unsigned long flags;
1837 struct amd_iommu *iommu;
1838 struct protection_domain *domain;
1839 u16 devid;
1840 int i;
1841 struct scatterlist *s;
1842 phys_addr_t paddr;
1843 int mapped_elems = 0;
832a90c3 1844 u64 dma_mask;
65b050ad 1845
d03f067a
JR
1846 INC_STATS_COUNTER(cnt_map_sg);
1847
dbcc112e
JR
1848 if (!check_device(dev))
1849 return 0;
1850
832a90c3 1851 dma_mask = *dev->dma_mask;
65b050ad
JR
1852
1853 get_device_resources(dev, &iommu, &domain, &devid);
1854
1855 if (!iommu || !domain)
1856 return map_sg_no_iommu(dev, sglist, nelems, dir);
1857
5b28df6f
JR
1858 if (!dma_ops_domain(domain))
1859 return 0;
1860
65b050ad
JR
1861 spin_lock_irqsave(&domain->lock, flags);
1862
1863 for_each_sg(sglist, s, nelems, i) {
1864 paddr = sg_phys(s);
1865
1866 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1867 paddr, s->length, dir, false,
1868 dma_mask);
65b050ad
JR
1869
1870 if (s->dma_address) {
1871 s->dma_length = s->length;
1872 mapped_elems++;
1873 } else
1874 goto unmap;
65b050ad
JR
1875 }
1876
0518a3a4 1877 iommu_flush_complete(domain);
65b050ad
JR
1878
1879out:
1880 spin_unlock_irqrestore(&domain->lock, flags);
1881
1882 return mapped_elems;
1883unmap:
1884 for_each_sg(sglist, s, mapped_elems, i) {
1885 if (s->dma_address)
1886 __unmap_single(iommu, domain->priv, s->dma_address,
1887 s->dma_length, dir);
1888 s->dma_address = s->dma_length = 0;
1889 }
1890
1891 mapped_elems = 0;
1892
1893 goto out;
1894}
1895
431b2a20
JR
1896/*
1897 * The exported map_sg function for dma_ops (handles scatter-gather
1898 * lists).
1899 */
65b050ad 1900static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1901 int nelems, enum dma_data_direction dir,
1902 struct dma_attrs *attrs)
65b050ad
JR
1903{
1904 unsigned long flags;
1905 struct amd_iommu *iommu;
1906 struct protection_domain *domain;
1907 struct scatterlist *s;
1908 u16 devid;
1909 int i;
1910
55877a6b
JR
1911 INC_STATS_COUNTER(cnt_unmap_sg);
1912
dbcc112e
JR
1913 if (!check_device(dev) ||
1914 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1915 return;
1916
5b28df6f
JR
1917 if (!dma_ops_domain(domain))
1918 return;
1919
65b050ad
JR
1920 spin_lock_irqsave(&domain->lock, flags);
1921
1922 for_each_sg(sglist, s, nelems, i) {
1923 __unmap_single(iommu, domain->priv, s->dma_address,
1924 s->dma_length, dir);
65b050ad
JR
1925 s->dma_address = s->dma_length = 0;
1926 }
1927
0518a3a4 1928 iommu_flush_complete(domain);
65b050ad
JR
1929
1930 spin_unlock_irqrestore(&domain->lock, flags);
1931}
1932
431b2a20
JR
1933/*
1934 * The exported alloc_coherent function for dma_ops.
1935 */
5d8b53cf
JR
1936static void *alloc_coherent(struct device *dev, size_t size,
1937 dma_addr_t *dma_addr, gfp_t flag)
1938{
1939 unsigned long flags;
1940 void *virt_addr;
1941 struct amd_iommu *iommu;
1942 struct protection_domain *domain;
1943 u16 devid;
1944 phys_addr_t paddr;
832a90c3 1945 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1946
c8f0fb36
JR
1947 INC_STATS_COUNTER(cnt_alloc_coherent);
1948
dbcc112e
JR
1949 if (!check_device(dev))
1950 return NULL;
5d8b53cf 1951
13d9fead
FT
1952 if (!get_device_resources(dev, &iommu, &domain, &devid))
1953 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1954
c97ac535 1955 flag |= __GFP_ZERO;
5d8b53cf
JR
1956 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1957 if (!virt_addr)
b25ae679 1958 return NULL;
5d8b53cf 1959
5d8b53cf
JR
1960 paddr = virt_to_phys(virt_addr);
1961
5d8b53cf
JR
1962 if (!iommu || !domain) {
1963 *dma_addr = (dma_addr_t)paddr;
1964 return virt_addr;
1965 }
1966
5b28df6f
JR
1967 if (!dma_ops_domain(domain))
1968 goto out_free;
1969
832a90c3
JR
1970 if (!dma_mask)
1971 dma_mask = *dev->dma_mask;
1972
5d8b53cf
JR
1973 spin_lock_irqsave(&domain->lock, flags);
1974
1975 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1976 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1977
8fd524b3 1978 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 1979 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1980 goto out_free;
367d04c4 1981 }
5d8b53cf 1982
0518a3a4 1983 iommu_flush_complete(domain);
5d8b53cf 1984
5d8b53cf
JR
1985 spin_unlock_irqrestore(&domain->lock, flags);
1986
1987 return virt_addr;
5b28df6f
JR
1988
1989out_free:
1990
1991 free_pages((unsigned long)virt_addr, get_order(size));
1992
1993 return NULL;
5d8b53cf
JR
1994}
1995
431b2a20
JR
1996/*
1997 * The exported free_coherent function for dma_ops.
431b2a20 1998 */
5d8b53cf
JR
1999static void free_coherent(struct device *dev, size_t size,
2000 void *virt_addr, dma_addr_t dma_addr)
2001{
2002 unsigned long flags;
2003 struct amd_iommu *iommu;
2004 struct protection_domain *domain;
2005 u16 devid;
2006
5d31ee7e
JR
2007 INC_STATS_COUNTER(cnt_free_coherent);
2008
dbcc112e
JR
2009 if (!check_device(dev))
2010 return;
2011
5d8b53cf
JR
2012 get_device_resources(dev, &iommu, &domain, &devid);
2013
2014 if (!iommu || !domain)
2015 goto free_mem;
2016
5b28df6f
JR
2017 if (!dma_ops_domain(domain))
2018 goto free_mem;
2019
5d8b53cf
JR
2020 spin_lock_irqsave(&domain->lock, flags);
2021
2022 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2023
0518a3a4 2024 iommu_flush_complete(domain);
5d8b53cf
JR
2025
2026 spin_unlock_irqrestore(&domain->lock, flags);
2027
2028free_mem:
2029 free_pages((unsigned long)virt_addr, get_order(size));
2030}
2031
b39ba6ad
JR
2032/*
2033 * This function is called by the DMA layer to find out if we can handle a
2034 * particular device. It is part of the dma_ops.
2035 */
2036static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2037{
2038 u16 bdf;
2039 struct pci_dev *pcidev;
2040
2041 /* No device or no PCI device */
2042 if (!dev || dev->bus != &pci_bus_type)
2043 return 0;
2044
2045 pcidev = to_pci_dev(dev);
2046
2047 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2048
2049 /* Out of our scope? */
2050 if (bdf > amd_iommu_last_bdf)
2051 return 0;
2052
2053 return 1;
2054}
2055
c432f3df 2056/*
431b2a20
JR
2057 * The function for pre-allocating protection domains.
2058 *
c432f3df
JR
2059 * If the driver core informs the DMA layer if a driver grabs a device
2060 * we don't need to preallocate the protection domains anymore.
2061 * For now we have to.
2062 */
0e93dd88 2063static void prealloc_protection_domains(void)
c432f3df
JR
2064{
2065 struct pci_dev *dev = NULL;
2066 struct dma_ops_domain *dma_dom;
2067 struct amd_iommu *iommu;
be831297 2068 u16 devid, __devid;
c432f3df
JR
2069
2070 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2071 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2072 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2073 continue;
2074 devid = amd_iommu_alias_table[devid];
2075 if (domain_for_device(devid))
2076 continue;
2077 iommu = amd_iommu_rlookup_table[devid];
2078 if (!iommu)
2079 continue;
d9cfed92 2080 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2081 if (!dma_dom)
2082 continue;
2083 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2084 dma_dom->target_dev = devid;
2085
be831297
JR
2086 attach_device(iommu, &dma_dom->domain, devid);
2087 if (__devid != devid)
2088 attach_device(iommu, &dma_dom->domain, __devid);
2089
bd60b735 2090 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2091 }
2092}
2093
160c1d8e 2094static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2095 .alloc_coherent = alloc_coherent,
2096 .free_coherent = free_coherent,
51491367
FT
2097 .map_page = map_page,
2098 .unmap_page = unmap_page,
6631ee9d
JR
2099 .map_sg = map_sg,
2100 .unmap_sg = unmap_sg,
b39ba6ad 2101 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2102};
2103
431b2a20
JR
2104/*
2105 * The function which clues the AMD IOMMU driver into dma_ops.
2106 */
6631ee9d
JR
2107int __init amd_iommu_init_dma_ops(void)
2108{
2109 struct amd_iommu *iommu;
6631ee9d
JR
2110 int ret;
2111
431b2a20
JR
2112 /*
2113 * first allocate a default protection domain for every IOMMU we
2114 * found in the system. Devices not assigned to any other
2115 * protection domain will be assigned to the default one.
2116 */
3bd22172 2117 for_each_iommu(iommu) {
d9cfed92 2118 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2119 if (iommu->default_dom == NULL)
2120 return -ENOMEM;
e2dc14a2 2121 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2122 ret = iommu_init_unity_mappings(iommu);
2123 if (ret)
2124 goto free_domains;
2125 }
2126
431b2a20
JR
2127 /*
2128 * If device isolation is enabled, pre-allocate the protection
2129 * domains for each device.
2130 */
6631ee9d
JR
2131 if (amd_iommu_isolate)
2132 prealloc_protection_domains();
2133
2134 iommu_detected = 1;
75f1cdf1 2135 swiotlb = 0;
92af4e29 2136#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2137 gart_iommu_aperture_disabled = 1;
2138 gart_iommu_aperture = 0;
92af4e29 2139#endif
6631ee9d 2140
431b2a20 2141 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2142 dma_ops = &amd_iommu_dma_ops;
2143
26961efe 2144 register_iommu(&amd_iommu_ops);
26961efe 2145
e275a2a0
JR
2146 bus_register_notifier(&pci_bus_type, &device_nb);
2147
7f26508b
JR
2148 amd_iommu_stats_init();
2149
6631ee9d
JR
2150 return 0;
2151
2152free_domains:
2153
3bd22172 2154 for_each_iommu(iommu) {
6631ee9d
JR
2155 if (iommu->default_dom)
2156 dma_ops_domain_free(iommu->default_dom);
2157 }
2158
2159 return ret;
2160}
6d98cd80
JR
2161
2162/*****************************************************************************
2163 *
2164 * The following functions belong to the exported interface of AMD IOMMU
2165 *
2166 * This interface allows access to lower level functions of the IOMMU
2167 * like protection domain handling and assignement of devices to domains
2168 * which is not possible with the dma_ops interface.
2169 *
2170 *****************************************************************************/
2171
6d98cd80
JR
2172static void cleanup_domain(struct protection_domain *domain)
2173{
2174 unsigned long flags;
2175 u16 devid;
2176
2177 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2178
2179 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2180 if (amd_iommu_pd_table[devid] == domain)
2181 __detach_device(domain, devid);
2182
2183 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2184}
2185
2650815f
JR
2186static void protection_domain_free(struct protection_domain *domain)
2187{
2188 if (!domain)
2189 return;
2190
2191 if (domain->id)
2192 domain_id_free(domain->id);
2193
2194 kfree(domain);
2195}
2196
2197static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2198{
2199 struct protection_domain *domain;
2200
2201 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2202 if (!domain)
2650815f 2203 return NULL;
c156e347
JR
2204
2205 spin_lock_init(&domain->lock);
c156e347
JR
2206 domain->id = domain_id_alloc();
2207 if (!domain->id)
2650815f
JR
2208 goto out_err;
2209
2210 return domain;
2211
2212out_err:
2213 kfree(domain);
2214
2215 return NULL;
2216}
2217
2218static int amd_iommu_domain_init(struct iommu_domain *dom)
2219{
2220 struct protection_domain *domain;
2221
2222 domain = protection_domain_alloc();
2223 if (!domain)
c156e347 2224 goto out_free;
2650815f
JR
2225
2226 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2227 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2228 if (!domain->pt_root)
2229 goto out_free;
2230
2231 dom->priv = domain;
2232
2233 return 0;
2234
2235out_free:
2650815f 2236 protection_domain_free(domain);
c156e347
JR
2237
2238 return -ENOMEM;
2239}
2240
98383fc3
JR
2241static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2242{
2243 struct protection_domain *domain = dom->priv;
2244
2245 if (!domain)
2246 return;
2247
2248 if (domain->dev_cnt > 0)
2249 cleanup_domain(domain);
2250
2251 BUG_ON(domain->dev_cnt != 0);
2252
2253 free_pagetable(domain);
2254
2255 domain_id_free(domain->id);
2256
2257 kfree(domain);
2258
2259 dom->priv = NULL;
2260}
2261
684f2888
JR
2262static void amd_iommu_detach_device(struct iommu_domain *dom,
2263 struct device *dev)
2264{
2265 struct protection_domain *domain = dom->priv;
2266 struct amd_iommu *iommu;
2267 struct pci_dev *pdev;
2268 u16 devid;
2269
2270 if (dev->bus != &pci_bus_type)
2271 return;
2272
2273 pdev = to_pci_dev(dev);
2274
2275 devid = calc_devid(pdev->bus->number, pdev->devfn);
2276
2277 if (devid > 0)
2278 detach_device(domain, devid);
2279
2280 iommu = amd_iommu_rlookup_table[devid];
2281 if (!iommu)
2282 return;
2283
2284 iommu_queue_inv_dev_entry(iommu, devid);
2285 iommu_completion_wait(iommu);
2286}
2287
01106066
JR
2288static int amd_iommu_attach_device(struct iommu_domain *dom,
2289 struct device *dev)
2290{
2291 struct protection_domain *domain = dom->priv;
2292 struct protection_domain *old_domain;
2293 struct amd_iommu *iommu;
2294 struct pci_dev *pdev;
2295 u16 devid;
2296
2297 if (dev->bus != &pci_bus_type)
2298 return -EINVAL;
2299
2300 pdev = to_pci_dev(dev);
2301
2302 devid = calc_devid(pdev->bus->number, pdev->devfn);
2303
2304 if (devid >= amd_iommu_last_bdf ||
2305 devid != amd_iommu_alias_table[devid])
2306 return -EINVAL;
2307
2308 iommu = amd_iommu_rlookup_table[devid];
2309 if (!iommu)
2310 return -EINVAL;
2311
2312 old_domain = domain_for_device(devid);
2313 if (old_domain)
71ff3bca 2314 detach_device(old_domain, devid);
01106066
JR
2315
2316 attach_device(iommu, domain, devid);
2317
2318 iommu_completion_wait(iommu);
2319
2320 return 0;
2321}
2322
c6229ca6
JR
2323static int amd_iommu_map_range(struct iommu_domain *dom,
2324 unsigned long iova, phys_addr_t paddr,
2325 size_t size, int iommu_prot)
2326{
2327 struct protection_domain *domain = dom->priv;
2328 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2329 int prot = 0;
2330 int ret;
2331
2332 if (iommu_prot & IOMMU_READ)
2333 prot |= IOMMU_PROT_IR;
2334 if (iommu_prot & IOMMU_WRITE)
2335 prot |= IOMMU_PROT_IW;
2336
2337 iova &= PAGE_MASK;
2338 paddr &= PAGE_MASK;
2339
2340 for (i = 0; i < npages; ++i) {
abdc5eb3 2341 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2342 if (ret)
2343 return ret;
2344
2345 iova += PAGE_SIZE;
2346 paddr += PAGE_SIZE;
2347 }
2348
2349 return 0;
2350}
2351
eb74ff6c
JR
2352static void amd_iommu_unmap_range(struct iommu_domain *dom,
2353 unsigned long iova, size_t size)
2354{
2355
2356 struct protection_domain *domain = dom->priv;
2357 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2358
2359 iova &= PAGE_MASK;
2360
2361 for (i = 0; i < npages; ++i) {
a6b256b4 2362 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2363 iova += PAGE_SIZE;
2364 }
2365
601367d7 2366 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2367}
2368
645c4c8d
JR
2369static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2370 unsigned long iova)
2371{
2372 struct protection_domain *domain = dom->priv;
2373 unsigned long offset = iova & ~PAGE_MASK;
2374 phys_addr_t paddr;
2375 u64 *pte;
2376
a6b256b4 2377 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2378
a6d41a40 2379 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2380 return 0;
2381
2382 paddr = *pte & IOMMU_PAGE_MASK;
2383 paddr |= offset;
2384
2385 return paddr;
2386}
2387
dbb9fd86
SY
2388static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2389 unsigned long cap)
2390{
2391 return 0;
2392}
2393
26961efe
JR
2394static struct iommu_ops amd_iommu_ops = {
2395 .domain_init = amd_iommu_domain_init,
2396 .domain_destroy = amd_iommu_domain_destroy,
2397 .attach_dev = amd_iommu_attach_device,
2398 .detach_dev = amd_iommu_detach_device,
2399 .map = amd_iommu_map_range,
2400 .unmap = amd_iommu_unmap_range,
2401 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2402 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2403};
2404
0feae533
JR
2405/*****************************************************************************
2406 *
2407 * The next functions do a basic initialization of IOMMU for pass through
2408 * mode
2409 *
2410 * In passthrough mode the IOMMU is initialized and enabled but not used for
2411 * DMA-API translation.
2412 *
2413 *****************************************************************************/
2414
2415int __init amd_iommu_init_passthrough(void)
2416{
2417 struct pci_dev *dev = NULL;
2418 u16 devid, devid2;
2419
2420 /* allocate passthroug domain */
2421 pt_domain = protection_domain_alloc();
2422 if (!pt_domain)
2423 return -ENOMEM;
2424
2425 pt_domain->mode |= PAGE_MODE_NONE;
2426
2427 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2428 struct amd_iommu *iommu;
2429
2430 devid = calc_devid(dev->bus->number, dev->devfn);
2431 if (devid > amd_iommu_last_bdf)
2432 continue;
2433
2434 devid2 = amd_iommu_alias_table[devid];
2435
2436 iommu = amd_iommu_rlookup_table[devid2];
2437 if (!iommu)
2438 continue;
2439
2440 __attach_device(iommu, pt_domain, devid);
2441 __attach_device(iommu, pt_domain, devid2);
2442 }
2443
2444 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2445
2446 return 0;
2447}