x86: clean up the APIC_DEST_LOGICAL logic
[linux-2.6-block.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715
JR
24#include <linux/scatterlist.h>
25#include <linux/iommu-helper.h>
c156e347
JR
26#ifdef CONFIG_IOMMU_API
27#include <linux/iommu.h>
28#endif
b6c02715 29#include <asm/proto.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
26961efe
JR
45#ifdef CONFIG_IOMMU_API
46static struct iommu_ops amd_iommu_ops;
47#endif
48
431b2a20
JR
49/*
50 * general struct to manage commands send to an IOMMU
51 */
d6449536 52struct iommu_cmd {
b6c02715
JR
53 u32 data[4];
54};
55
bd0e5211
JR
56static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
57 struct unity_map_entry *e);
e275a2a0
JR
58static struct dma_ops_domain *find_protection_domain(u16 devid);
59
bd0e5211 60
7f26508b
JR
61#ifdef CONFIG_AMD_IOMMU_STATS
62
63/*
64 * Initialization code for statistics collection
65 */
66
da49f6df 67DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 68DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 69DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 70DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 71DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 72DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 73DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 74DECLARE_STATS_COUNTER(cross_page);
f57d98ae 75DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 76DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 77DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 78DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 79
7f26508b
JR
80static struct dentry *stats_dir;
81static struct dentry *de_isolate;
82static struct dentry *de_fflush;
83
84static void amd_iommu_stats_add(struct __iommu_counter *cnt)
85{
86 if (stats_dir == NULL)
87 return;
88
89 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
90 &cnt->value);
91}
92
93static void amd_iommu_stats_init(void)
94{
95 stats_dir = debugfs_create_dir("amd-iommu", NULL);
96 if (stats_dir == NULL)
97 return;
98
99 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
100 (u32 *)&amd_iommu_isolate);
101
102 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
103 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
104
105 amd_iommu_stats_add(&compl_wait);
0f2a86f2 106 amd_iommu_stats_add(&cnt_map_single);
146a6917 107 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 108 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 109 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 110 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 111 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 112 amd_iommu_stats_add(&cross_page);
f57d98ae 113 amd_iommu_stats_add(&domain_flush_single);
18811f55 114 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 115 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 116 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
117}
118
119#endif
120
431b2a20 121/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
122static int iommu_has_npcache(struct amd_iommu *iommu)
123{
ae9b9403 124 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
125}
126
a80dc3e0
JR
127/****************************************************************************
128 *
129 * Interrupt handling functions
130 *
131 ****************************************************************************/
132
90008ee4
JR
133static void iommu_print_event(void *__evt)
134{
135 u32 *event = __evt;
136 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
137 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
138 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
139 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
140 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
141
142 printk(KERN_ERR "AMD IOMMU: Event logged [");
143
144 switch (type) {
145 case EVENT_TYPE_ILL_DEV:
146 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
147 "address=0x%016llx flags=0x%04x]\n",
148 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
149 address, flags);
150 break;
151 case EVENT_TYPE_IO_FAULT:
152 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
153 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
154 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
155 domid, address, flags);
156 break;
157 case EVENT_TYPE_DEV_TAB_ERR:
158 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
159 "address=0x%016llx flags=0x%04x]\n",
160 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
161 address, flags);
162 break;
163 case EVENT_TYPE_PAGE_TAB_ERR:
164 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
165 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
166 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
167 domid, address, flags);
168 break;
169 case EVENT_TYPE_ILL_CMD:
170 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
171 break;
172 case EVENT_TYPE_CMD_HARD_ERR:
173 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
174 "flags=0x%04x]\n", address, flags);
175 break;
176 case EVENT_TYPE_IOTLB_INV_TO:
177 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
178 "address=0x%016llx]\n",
179 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
180 address);
181 break;
182 case EVENT_TYPE_INV_DEV_REQ:
183 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
184 "address=0x%016llx flags=0x%04x]\n",
185 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
186 address, flags);
187 break;
188 default:
189 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
190 }
191}
192
193static void iommu_poll_events(struct amd_iommu *iommu)
194{
195 u32 head, tail;
196 unsigned long flags;
197
198 spin_lock_irqsave(&iommu->lock, flags);
199
200 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
201 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
202
203 while (head != tail) {
204 iommu_print_event(iommu->evt_buf + head);
205 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
206 }
207
208 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
209
210 spin_unlock_irqrestore(&iommu->lock, flags);
211}
212
a80dc3e0
JR
213irqreturn_t amd_iommu_int_handler(int irq, void *data)
214{
90008ee4
JR
215 struct amd_iommu *iommu;
216
217 list_for_each_entry(iommu, &amd_iommu_list, list)
218 iommu_poll_events(iommu);
219
220 return IRQ_HANDLED;
a80dc3e0
JR
221}
222
431b2a20
JR
223/****************************************************************************
224 *
225 * IOMMU command queuing functions
226 *
227 ****************************************************************************/
228
229/*
230 * Writes the command to the IOMMUs command buffer and informs the
231 * hardware about the new command. Must be called with iommu->lock held.
232 */
d6449536 233static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
234{
235 u32 tail, head;
236 u8 *target;
237
238 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 239 target = iommu->cmd_buf + tail;
a19ae1ec
JR
240 memcpy_toio(target, cmd, sizeof(*cmd));
241 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
242 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
243 if (tail == head)
244 return -ENOMEM;
245 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
246
247 return 0;
248}
249
431b2a20
JR
250/*
251 * General queuing function for commands. Takes iommu->lock and calls
252 * __iommu_queue_command().
253 */
d6449536 254static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
255{
256 unsigned long flags;
257 int ret;
258
259 spin_lock_irqsave(&iommu->lock, flags);
260 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 261 if (!ret)
0cfd7aa9 262 iommu->need_sync = true;
a19ae1ec
JR
263 spin_unlock_irqrestore(&iommu->lock, flags);
264
265 return ret;
266}
267
8d201968
JR
268/*
269 * This function waits until an IOMMU has completed a completion
270 * wait command
271 */
272static void __iommu_wait_for_completion(struct amd_iommu *iommu)
273{
274 int ready = 0;
275 unsigned status = 0;
276 unsigned long i = 0;
277
da49f6df
JR
278 INC_STATS_COUNTER(compl_wait);
279
8d201968
JR
280 while (!ready && (i < EXIT_LOOP_COUNT)) {
281 ++i;
282 /* wait for the bit to become one */
283 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
284 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
285 }
286
287 /* set bit back to zero */
288 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
289 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
290
291 if (unlikely(i == EXIT_LOOP_COUNT))
292 panic("AMD IOMMU: Completion wait loop failed\n");
293}
294
295/*
296 * This function queues a completion wait command into the command
297 * buffer of an IOMMU
298 */
299static int __iommu_completion_wait(struct amd_iommu *iommu)
300{
301 struct iommu_cmd cmd;
302
303 memset(&cmd, 0, sizeof(cmd));
304 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
305 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
306
307 return __iommu_queue_command(iommu, &cmd);
308}
309
431b2a20
JR
310/*
311 * This function is called whenever we need to ensure that the IOMMU has
312 * completed execution of all commands we sent. It sends a
313 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
314 * us about that by writing a value to a physical address we pass with
315 * the command.
316 */
a19ae1ec
JR
317static int iommu_completion_wait(struct amd_iommu *iommu)
318{
8d201968
JR
319 int ret = 0;
320 unsigned long flags;
a19ae1ec 321
7e4f88da
JR
322 spin_lock_irqsave(&iommu->lock, flags);
323
09ee17eb
JR
324 if (!iommu->need_sync)
325 goto out;
326
8d201968 327 ret = __iommu_completion_wait(iommu);
09ee17eb 328
0cfd7aa9 329 iommu->need_sync = false;
a19ae1ec
JR
330
331 if (ret)
7e4f88da 332 goto out;
a19ae1ec 333
8d201968 334 __iommu_wait_for_completion(iommu);
84df8175 335
7e4f88da
JR
336out:
337 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
338
339 return 0;
340}
341
431b2a20
JR
342/*
343 * Command send function for invalidating a device table entry
344 */
a19ae1ec
JR
345static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
346{
d6449536 347 struct iommu_cmd cmd;
ee2fa743 348 int ret;
a19ae1ec
JR
349
350 BUG_ON(iommu == NULL);
351
352 memset(&cmd, 0, sizeof(cmd));
353 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
354 cmd.data[0] = devid;
355
ee2fa743
JR
356 ret = iommu_queue_command(iommu, &cmd);
357
ee2fa743 358 return ret;
a19ae1ec
JR
359}
360
237b6f33
JR
361static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
362 u16 domid, int pde, int s)
363{
364 memset(cmd, 0, sizeof(*cmd));
365 address &= PAGE_MASK;
366 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
367 cmd->data[1] |= domid;
368 cmd->data[2] = lower_32_bits(address);
369 cmd->data[3] = upper_32_bits(address);
370 if (s) /* size bit - we flush more than one 4kb page */
371 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
372 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
373 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
374}
375
431b2a20
JR
376/*
377 * Generic command send function for invalidaing TLB entries
378 */
a19ae1ec
JR
379static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
380 u64 address, u16 domid, int pde, int s)
381{
d6449536 382 struct iommu_cmd cmd;
ee2fa743 383 int ret;
a19ae1ec 384
237b6f33 385 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 386
ee2fa743
JR
387 ret = iommu_queue_command(iommu, &cmd);
388
ee2fa743 389 return ret;
a19ae1ec
JR
390}
391
431b2a20
JR
392/*
393 * TLB invalidation function which is called from the mapping functions.
394 * It invalidates a single PTE if the range to flush is within a single
395 * page. Otherwise it flushes the whole TLB of the IOMMU.
396 */
a19ae1ec
JR
397static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
398 u64 address, size_t size)
399{
999ba417 400 int s = 0;
e3c449f5 401 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
402
403 address &= PAGE_MASK;
404
999ba417
JR
405 if (pages > 1) {
406 /*
407 * If we have to flush more than one page, flush all
408 * TLB entries for this domain
409 */
410 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
411 s = 1;
a19ae1ec
JR
412 }
413
999ba417
JR
414 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
415
a19ae1ec
JR
416 return 0;
417}
b6c02715 418
1c655773
JR
419/* Flush the whole IO/TLB for a given protection domain */
420static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
421{
422 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
423
f57d98ae
JR
424 INC_STATS_COUNTER(domain_flush_single);
425
1c655773
JR
426 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
427}
428
43f49609
JR
429/*
430 * This function is used to flush the IO/TLB for a given protection domain
431 * on every IOMMU in the system
432 */
433static void iommu_flush_domain(u16 domid)
434{
435 unsigned long flags;
436 struct amd_iommu *iommu;
437 struct iommu_cmd cmd;
438
18811f55
JR
439 INC_STATS_COUNTER(domain_flush_all);
440
43f49609
JR
441 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
442 domid, 1, 1);
443
444 list_for_each_entry(iommu, &amd_iommu_list, list) {
445 spin_lock_irqsave(&iommu->lock, flags);
446 __iommu_queue_command(iommu, &cmd);
447 __iommu_completion_wait(iommu);
448 __iommu_wait_for_completion(iommu);
449 spin_unlock_irqrestore(&iommu->lock, flags);
450 }
451}
43f49609 452
431b2a20
JR
453/****************************************************************************
454 *
455 * The functions below are used the create the page table mappings for
456 * unity mapped regions.
457 *
458 ****************************************************************************/
459
460/*
461 * Generic mapping functions. It maps a physical address into a DMA
462 * address space. It allocates the page table pages if necessary.
463 * In the future it can be extended to a generic mapping function
464 * supporting all features of AMD IOMMU page tables like level skipping
465 * and full 64 bit address spaces.
466 */
38e817fe
JR
467static int iommu_map_page(struct protection_domain *dom,
468 unsigned long bus_addr,
469 unsigned long phys_addr,
470 int prot)
bd0e5211
JR
471{
472 u64 __pte, *pte, *page;
473
474 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 475 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
476
477 /* only support 512GB address spaces for now */
478 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
479 return -EINVAL;
480
481 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
482
483 if (!IOMMU_PTE_PRESENT(*pte)) {
484 page = (u64 *)get_zeroed_page(GFP_KERNEL);
485 if (!page)
486 return -ENOMEM;
487 *pte = IOMMU_L2_PDE(virt_to_phys(page));
488 }
489
490 pte = IOMMU_PTE_PAGE(*pte);
491 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
492
493 if (!IOMMU_PTE_PRESENT(*pte)) {
494 page = (u64 *)get_zeroed_page(GFP_KERNEL);
495 if (!page)
496 return -ENOMEM;
497 *pte = IOMMU_L1_PDE(virt_to_phys(page));
498 }
499
500 pte = IOMMU_PTE_PAGE(*pte);
501 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
502
503 if (IOMMU_PTE_PRESENT(*pte))
504 return -EBUSY;
505
506 __pte = phys_addr | IOMMU_PTE_P;
507 if (prot & IOMMU_PROT_IR)
508 __pte |= IOMMU_PTE_IR;
509 if (prot & IOMMU_PROT_IW)
510 __pte |= IOMMU_PTE_IW;
511
512 *pte = __pte;
513
514 return 0;
515}
516
eb74ff6c
JR
517static void iommu_unmap_page(struct protection_domain *dom,
518 unsigned long bus_addr)
519{
520 u64 *pte;
521
522 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
523
524 if (!IOMMU_PTE_PRESENT(*pte))
525 return;
526
527 pte = IOMMU_PTE_PAGE(*pte);
528 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
529
530 if (!IOMMU_PTE_PRESENT(*pte))
531 return;
532
533 pte = IOMMU_PTE_PAGE(*pte);
534 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
535
536 *pte = 0;
537}
eb74ff6c 538
431b2a20
JR
539/*
540 * This function checks if a specific unity mapping entry is needed for
541 * this specific IOMMU.
542 */
bd0e5211
JR
543static int iommu_for_unity_map(struct amd_iommu *iommu,
544 struct unity_map_entry *entry)
545{
546 u16 bdf, i;
547
548 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
549 bdf = amd_iommu_alias_table[i];
550 if (amd_iommu_rlookup_table[bdf] == iommu)
551 return 1;
552 }
553
554 return 0;
555}
556
431b2a20
JR
557/*
558 * Init the unity mappings for a specific IOMMU in the system
559 *
560 * Basically iterates over all unity mapping entries and applies them to
561 * the default domain DMA of that IOMMU if necessary.
562 */
bd0e5211
JR
563static int iommu_init_unity_mappings(struct amd_iommu *iommu)
564{
565 struct unity_map_entry *entry;
566 int ret;
567
568 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
569 if (!iommu_for_unity_map(iommu, entry))
570 continue;
571 ret = dma_ops_unity_map(iommu->default_dom, entry);
572 if (ret)
573 return ret;
574 }
575
576 return 0;
577}
578
431b2a20
JR
579/*
580 * This function actually applies the mapping to the page table of the
581 * dma_ops domain.
582 */
bd0e5211
JR
583static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
584 struct unity_map_entry *e)
585{
586 u64 addr;
587 int ret;
588
589 for (addr = e->address_start; addr < e->address_end;
590 addr += PAGE_SIZE) {
38e817fe 591 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
592 if (ret)
593 return ret;
594 /*
595 * if unity mapping is in aperture range mark the page
596 * as allocated in the aperture
597 */
598 if (addr < dma_dom->aperture_size)
599 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
600 }
601
602 return 0;
603}
604
431b2a20
JR
605/*
606 * Inits the unity mappings required for a specific device
607 */
bd0e5211
JR
608static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
609 u16 devid)
610{
611 struct unity_map_entry *e;
612 int ret;
613
614 list_for_each_entry(e, &amd_iommu_unity_map, list) {
615 if (!(devid >= e->devid_start && devid <= e->devid_end))
616 continue;
617 ret = dma_ops_unity_map(dma_dom, e);
618 if (ret)
619 return ret;
620 }
621
622 return 0;
623}
624
431b2a20
JR
625/****************************************************************************
626 *
627 * The next functions belong to the address allocator for the dma_ops
628 * interface functions. They work like the allocators in the other IOMMU
629 * drivers. Its basically a bitmap which marks the allocated pages in
630 * the aperture. Maybe it could be enhanced in the future to a more
631 * efficient allocator.
632 *
633 ****************************************************************************/
d3086444 634
431b2a20
JR
635/*
636 * The address allocator core function.
637 *
638 * called with domain->lock held
639 */
d3086444
JR
640static unsigned long dma_ops_alloc_addresses(struct device *dev,
641 struct dma_ops_domain *dom,
6d4f343f 642 unsigned int pages,
832a90c3
JR
643 unsigned long align_mask,
644 u64 dma_mask)
d3086444 645{
40becd8d 646 unsigned long limit;
d3086444 647 unsigned long address;
d3086444
JR
648 unsigned long boundary_size;
649
650 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
651 PAGE_SIZE) >> PAGE_SHIFT;
40becd8d
FT
652 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
653 dma_mask >> PAGE_SHIFT);
d3086444 654
1c655773 655 if (dom->next_bit >= limit) {
d3086444 656 dom->next_bit = 0;
1c655773
JR
657 dom->need_flush = true;
658 }
d3086444
JR
659
660 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 661 0 , boundary_size, align_mask);
1c655773 662 if (address == -1) {
d3086444 663 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 664 0, boundary_size, align_mask);
1c655773
JR
665 dom->need_flush = true;
666 }
d3086444
JR
667
668 if (likely(address != -1)) {
d3086444
JR
669 dom->next_bit = address + pages;
670 address <<= PAGE_SHIFT;
671 } else
672 address = bad_dma_address;
673
674 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
675
676 return address;
677}
678
431b2a20
JR
679/*
680 * The address free function.
681 *
682 * called with domain->lock held
683 */
d3086444
JR
684static void dma_ops_free_addresses(struct dma_ops_domain *dom,
685 unsigned long address,
686 unsigned int pages)
687{
688 address >>= PAGE_SHIFT;
689 iommu_area_free(dom->bitmap, address, pages);
80be308d 690
8501c45c 691 if (address >= dom->next_bit)
80be308d 692 dom->need_flush = true;
d3086444
JR
693}
694
431b2a20
JR
695/****************************************************************************
696 *
697 * The next functions belong to the domain allocation. A domain is
698 * allocated for every IOMMU as the default domain. If device isolation
699 * is enabled, every device get its own domain. The most important thing
700 * about domains is the page table mapping the DMA address space they
701 * contain.
702 *
703 ****************************************************************************/
704
ec487d1a
JR
705static u16 domain_id_alloc(void)
706{
707 unsigned long flags;
708 int id;
709
710 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
711 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
712 BUG_ON(id == 0);
713 if (id > 0 && id < MAX_DOMAIN_ID)
714 __set_bit(id, amd_iommu_pd_alloc_bitmap);
715 else
716 id = 0;
717 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
718
719 return id;
720}
721
a2acfb75
JR
722static void domain_id_free(int id)
723{
724 unsigned long flags;
725
726 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
727 if (id > 0 && id < MAX_DOMAIN_ID)
728 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
729 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
730}
a2acfb75 731
431b2a20
JR
732/*
733 * Used to reserve address ranges in the aperture (e.g. for exclusion
734 * ranges.
735 */
ec487d1a
JR
736static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
737 unsigned long start_page,
738 unsigned int pages)
739{
740 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
741
742 if (start_page + pages > last_page)
743 pages = last_page - start_page;
744
d26dbc5c 745 iommu_area_reserve(dom->bitmap, start_page, pages);
ec487d1a
JR
746}
747
86db2e5d 748static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
749{
750 int i, j;
751 u64 *p1, *p2, *p3;
752
86db2e5d 753 p1 = domain->pt_root;
ec487d1a
JR
754
755 if (!p1)
756 return;
757
758 for (i = 0; i < 512; ++i) {
759 if (!IOMMU_PTE_PRESENT(p1[i]))
760 continue;
761
762 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 763 for (j = 0; j < 512; ++j) {
ec487d1a
JR
764 if (!IOMMU_PTE_PRESENT(p2[j]))
765 continue;
766 p3 = IOMMU_PTE_PAGE(p2[j]);
767 free_page((unsigned long)p3);
768 }
769
770 free_page((unsigned long)p2);
771 }
772
773 free_page((unsigned long)p1);
86db2e5d
JR
774
775 domain->pt_root = NULL;
ec487d1a
JR
776}
777
431b2a20
JR
778/*
779 * Free a domain, only used if something went wrong in the
780 * allocation path and we need to free an already allocated page table
781 */
ec487d1a
JR
782static void dma_ops_domain_free(struct dma_ops_domain *dom)
783{
784 if (!dom)
785 return;
786
86db2e5d 787 free_pagetable(&dom->domain);
ec487d1a
JR
788
789 kfree(dom->pte_pages);
790
791 kfree(dom->bitmap);
792
793 kfree(dom);
794}
795
431b2a20
JR
796/*
797 * Allocates a new protection domain usable for the dma_ops functions.
798 * It also intializes the page table and the address allocator data
799 * structures required for the dma_ops interface
800 */
ec487d1a
JR
801static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
802 unsigned order)
803{
804 struct dma_ops_domain *dma_dom;
805 unsigned i, num_pte_pages;
806 u64 *l2_pde;
807 u64 address;
808
809 /*
810 * Currently the DMA aperture must be between 32 MB and 1GB in size
811 */
812 if ((order < 25) || (order > 30))
813 return NULL;
814
815 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
816 if (!dma_dom)
817 return NULL;
818
819 spin_lock_init(&dma_dom->domain.lock);
820
821 dma_dom->domain.id = domain_id_alloc();
822 if (dma_dom->domain.id == 0)
823 goto free_dma_dom;
824 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
825 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 826 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
827 dma_dom->domain.priv = dma_dom;
828 if (!dma_dom->domain.pt_root)
829 goto free_dma_dom;
830 dma_dom->aperture_size = (1ULL << order);
831 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
832 GFP_KERNEL);
833 if (!dma_dom->bitmap)
834 goto free_dma_dom;
835 /*
836 * mark the first page as allocated so we never return 0 as
837 * a valid dma-address. So we can use 0 as error value
838 */
839 dma_dom->bitmap[0] = 1;
840 dma_dom->next_bit = 0;
841
1c655773 842 dma_dom->need_flush = false;
bd60b735 843 dma_dom->target_dev = 0xffff;
1c655773 844
431b2a20 845 /* Intialize the exclusion range if necessary */
ec487d1a
JR
846 if (iommu->exclusion_start &&
847 iommu->exclusion_start < dma_dom->aperture_size) {
848 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
e3c449f5
JR
849 int pages = iommu_num_pages(iommu->exclusion_start,
850 iommu->exclusion_length,
851 PAGE_SIZE);
ec487d1a
JR
852 dma_ops_reserve_addresses(dma_dom, startpage, pages);
853 }
854
431b2a20
JR
855 /*
856 * At the last step, build the page tables so we don't need to
857 * allocate page table pages in the dma_ops mapping/unmapping
858 * path.
859 */
ec487d1a
JR
860 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
861 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
862 GFP_KERNEL);
863 if (!dma_dom->pte_pages)
864 goto free_dma_dom;
865
866 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
867 if (l2_pde == NULL)
868 goto free_dma_dom;
869
870 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
871
872 for (i = 0; i < num_pte_pages; ++i) {
873 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
874 if (!dma_dom->pte_pages[i])
875 goto free_dma_dom;
876 address = virt_to_phys(dma_dom->pte_pages[i]);
877 l2_pde[i] = IOMMU_L1_PDE(address);
878 }
879
880 return dma_dom;
881
882free_dma_dom:
883 dma_ops_domain_free(dma_dom);
884
885 return NULL;
886}
887
5b28df6f
JR
888/*
889 * little helper function to check whether a given protection domain is a
890 * dma_ops domain
891 */
892static bool dma_ops_domain(struct protection_domain *domain)
893{
894 return domain->flags & PD_DMA_OPS_MASK;
895}
896
431b2a20
JR
897/*
898 * Find out the protection domain structure for a given PCI device. This
899 * will give us the pointer to the page table root for example.
900 */
b20ac0d4
JR
901static struct protection_domain *domain_for_device(u16 devid)
902{
903 struct protection_domain *dom;
904 unsigned long flags;
905
906 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
907 dom = amd_iommu_pd_table[devid];
908 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
909
910 return dom;
911}
912
431b2a20
JR
913/*
914 * If a device is not yet associated with a domain, this function does
915 * assigns it visible for the hardware
916 */
f1179dc0
JR
917static void attach_device(struct amd_iommu *iommu,
918 struct protection_domain *domain,
919 u16 devid)
b20ac0d4
JR
920{
921 unsigned long flags;
b20ac0d4
JR
922 u64 pte_root = virt_to_phys(domain->pt_root);
923
863c74eb
JR
924 domain->dev_cnt += 1;
925
38ddf41b
JR
926 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
927 << DEV_ENTRY_MODE_SHIFT;
928 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
929
930 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
931 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
932 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
933 amd_iommu_dev_table[devid].data[2] = domain->id;
934
935 amd_iommu_pd_table[devid] = domain;
936 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
937
938 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
939}
940
355bf553
JR
941/*
942 * Removes a device from a protection domain (unlocked)
943 */
944static void __detach_device(struct protection_domain *domain, u16 devid)
945{
946
947 /* lock domain */
948 spin_lock(&domain->lock);
949
950 /* remove domain from the lookup table */
951 amd_iommu_pd_table[devid] = NULL;
952
953 /* remove entry from the device table seen by the hardware */
954 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
955 amd_iommu_dev_table[devid].data[1] = 0;
956 amd_iommu_dev_table[devid].data[2] = 0;
957
958 /* decrease reference counter */
959 domain->dev_cnt -= 1;
960
961 /* ready */
962 spin_unlock(&domain->lock);
963}
964
965/*
966 * Removes a device from a protection domain (with devtable_lock held)
967 */
968static void detach_device(struct protection_domain *domain, u16 devid)
969{
970 unsigned long flags;
971
972 /* lock device table */
973 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
974 __detach_device(domain, devid);
975 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
976}
e275a2a0
JR
977
978static int device_change_notifier(struct notifier_block *nb,
979 unsigned long action, void *data)
980{
981 struct device *dev = data;
982 struct pci_dev *pdev = to_pci_dev(dev);
983 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
984 struct protection_domain *domain;
985 struct dma_ops_domain *dma_domain;
986 struct amd_iommu *iommu;
1ac4cbbc
JR
987 int order = amd_iommu_aperture_order;
988 unsigned long flags;
e275a2a0
JR
989
990 if (devid > amd_iommu_last_bdf)
991 goto out;
992
993 devid = amd_iommu_alias_table[devid];
994
995 iommu = amd_iommu_rlookup_table[devid];
996 if (iommu == NULL)
997 goto out;
998
999 domain = domain_for_device(devid);
1000
1001 if (domain && !dma_ops_domain(domain))
1002 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1003 "to a non-dma-ops domain\n", dev_name(dev));
1004
1005 switch (action) {
1006 case BUS_NOTIFY_BOUND_DRIVER:
1007 if (domain)
1008 goto out;
1009 dma_domain = find_protection_domain(devid);
1010 if (!dma_domain)
1011 dma_domain = iommu->default_dom;
1012 attach_device(iommu, &dma_domain->domain, devid);
1013 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
1014 "device %s\n", dma_domain->domain.id, dev_name(dev));
1015 break;
1016 case BUS_NOTIFY_UNBIND_DRIVER:
1017 if (!domain)
1018 goto out;
1019 detach_device(domain, devid);
1ac4cbbc
JR
1020 break;
1021 case BUS_NOTIFY_ADD_DEVICE:
1022 /* allocate a protection domain if a device is added */
1023 dma_domain = find_protection_domain(devid);
1024 if (dma_domain)
1025 goto out;
1026 dma_domain = dma_ops_domain_alloc(iommu, order);
1027 if (!dma_domain)
1028 goto out;
1029 dma_domain->target_dev = devid;
1030
1031 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1032 list_add_tail(&dma_domain->list, &iommu_pd_list);
1033 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1034
e275a2a0
JR
1035 break;
1036 default:
1037 goto out;
1038 }
1039
1040 iommu_queue_inv_dev_entry(iommu, devid);
1041 iommu_completion_wait(iommu);
1042
1043out:
1044 return 0;
1045}
1046
1047struct notifier_block device_nb = {
1048 .notifier_call = device_change_notifier,
1049};
355bf553 1050
431b2a20
JR
1051/*****************************************************************************
1052 *
1053 * The next functions belong to the dma_ops mapping/unmapping code.
1054 *
1055 *****************************************************************************/
1056
dbcc112e
JR
1057/*
1058 * This function checks if the driver got a valid device from the caller to
1059 * avoid dereferencing invalid pointers.
1060 */
1061static bool check_device(struct device *dev)
1062{
1063 if (!dev || !dev->dma_mask)
1064 return false;
1065
1066 return true;
1067}
1068
bd60b735
JR
1069/*
1070 * In this function the list of preallocated protection domains is traversed to
1071 * find the domain for a specific device
1072 */
1073static struct dma_ops_domain *find_protection_domain(u16 devid)
1074{
1075 struct dma_ops_domain *entry, *ret = NULL;
1076 unsigned long flags;
1077
1078 if (list_empty(&iommu_pd_list))
1079 return NULL;
1080
1081 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1082
1083 list_for_each_entry(entry, &iommu_pd_list, list) {
1084 if (entry->target_dev == devid) {
1085 ret = entry;
bd60b735
JR
1086 break;
1087 }
1088 }
1089
1090 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1091
1092 return ret;
1093}
1094
431b2a20
JR
1095/*
1096 * In the dma_ops path we only have the struct device. This function
1097 * finds the corresponding IOMMU, the protection domain and the
1098 * requestor id for a given device.
1099 * If the device is not yet associated with a domain this is also done
1100 * in this function.
1101 */
b20ac0d4
JR
1102static int get_device_resources(struct device *dev,
1103 struct amd_iommu **iommu,
1104 struct protection_domain **domain,
1105 u16 *bdf)
1106{
1107 struct dma_ops_domain *dma_dom;
1108 struct pci_dev *pcidev;
1109 u16 _bdf;
1110
dbcc112e
JR
1111 *iommu = NULL;
1112 *domain = NULL;
1113 *bdf = 0xffff;
1114
1115 if (dev->bus != &pci_bus_type)
1116 return 0;
b20ac0d4
JR
1117
1118 pcidev = to_pci_dev(dev);
d591b0a3 1119 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1120
431b2a20 1121 /* device not translated by any IOMMU in the system? */
dbcc112e 1122 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1123 return 0;
b20ac0d4
JR
1124
1125 *bdf = amd_iommu_alias_table[_bdf];
1126
1127 *iommu = amd_iommu_rlookup_table[*bdf];
1128 if (*iommu == NULL)
1129 return 0;
b20ac0d4
JR
1130 *domain = domain_for_device(*bdf);
1131 if (*domain == NULL) {
bd60b735
JR
1132 dma_dom = find_protection_domain(*bdf);
1133 if (!dma_dom)
1134 dma_dom = (*iommu)->default_dom;
b20ac0d4 1135 *domain = &dma_dom->domain;
f1179dc0 1136 attach_device(*iommu, *domain, *bdf);
b20ac0d4 1137 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
ab896722 1138 "device %s\n", (*domain)->id, dev_name(dev));
b20ac0d4
JR
1139 }
1140
f91ba190 1141 if (domain_for_device(_bdf) == NULL)
f1179dc0 1142 attach_device(*iommu, *domain, _bdf);
f91ba190 1143
b20ac0d4
JR
1144 return 1;
1145}
1146
431b2a20
JR
1147/*
1148 * This is the generic map function. It maps one 4kb page at paddr to
1149 * the given address in the DMA address space for the domain.
1150 */
cb76c322
JR
1151static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1152 struct dma_ops_domain *dom,
1153 unsigned long address,
1154 phys_addr_t paddr,
1155 int direction)
1156{
1157 u64 *pte, __pte;
1158
1159 WARN_ON(address > dom->aperture_size);
1160
1161 paddr &= PAGE_MASK;
1162
1163 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
1164 pte += IOMMU_PTE_L0_INDEX(address);
1165
1166 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1167
1168 if (direction == DMA_TO_DEVICE)
1169 __pte |= IOMMU_PTE_IR;
1170 else if (direction == DMA_FROM_DEVICE)
1171 __pte |= IOMMU_PTE_IW;
1172 else if (direction == DMA_BIDIRECTIONAL)
1173 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1174
1175 WARN_ON(*pte);
1176
1177 *pte = __pte;
1178
1179 return (dma_addr_t)address;
1180}
1181
431b2a20
JR
1182/*
1183 * The generic unmapping function for on page in the DMA address space.
1184 */
cb76c322
JR
1185static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1186 struct dma_ops_domain *dom,
1187 unsigned long address)
1188{
1189 u64 *pte;
1190
1191 if (address >= dom->aperture_size)
1192 return;
1193
8ad909c4 1194 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
cb76c322
JR
1195
1196 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
1197 pte += IOMMU_PTE_L0_INDEX(address);
1198
1199 WARN_ON(!*pte);
1200
1201 *pte = 0ULL;
1202}
1203
431b2a20
JR
1204/*
1205 * This function contains common code for mapping of a physically
24f81160
JR
1206 * contiguous memory region into DMA address space. It is used by all
1207 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1208 * Must be called with the domain lock held.
1209 */
cb76c322
JR
1210static dma_addr_t __map_single(struct device *dev,
1211 struct amd_iommu *iommu,
1212 struct dma_ops_domain *dma_dom,
1213 phys_addr_t paddr,
1214 size_t size,
6d4f343f 1215 int dir,
832a90c3
JR
1216 bool align,
1217 u64 dma_mask)
cb76c322
JR
1218{
1219 dma_addr_t offset = paddr & ~PAGE_MASK;
1220 dma_addr_t address, start;
1221 unsigned int pages;
6d4f343f 1222 unsigned long align_mask = 0;
cb76c322
JR
1223 int i;
1224
e3c449f5 1225 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1226 paddr &= PAGE_MASK;
1227
8ecaf8f1
JR
1228 INC_STATS_COUNTER(total_map_requests);
1229
c1858976
JR
1230 if (pages > 1)
1231 INC_STATS_COUNTER(cross_page);
1232
6d4f343f
JR
1233 if (align)
1234 align_mask = (1UL << get_order(size)) - 1;
1235
832a90c3
JR
1236 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1237 dma_mask);
cb76c322
JR
1238 if (unlikely(address == bad_dma_address))
1239 goto out;
1240
1241 start = address;
1242 for (i = 0; i < pages; ++i) {
1243 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1244 paddr += PAGE_SIZE;
1245 start += PAGE_SIZE;
1246 }
1247 address += offset;
1248
5774f7c5
JR
1249 ADD_STATS_COUNTER(alloced_io_mem, size);
1250
afa9fdc2 1251 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1252 iommu_flush_tlb(iommu, dma_dom->domain.id);
1253 dma_dom->need_flush = false;
1254 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1255 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1256
cb76c322
JR
1257out:
1258 return address;
1259}
1260
431b2a20
JR
1261/*
1262 * Does the reverse of the __map_single function. Must be called with
1263 * the domain lock held too
1264 */
cb76c322
JR
1265static void __unmap_single(struct amd_iommu *iommu,
1266 struct dma_ops_domain *dma_dom,
1267 dma_addr_t dma_addr,
1268 size_t size,
1269 int dir)
1270{
1271 dma_addr_t i, start;
1272 unsigned int pages;
1273
b8d9905d
JR
1274 if ((dma_addr == bad_dma_address) ||
1275 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1276 return;
1277
e3c449f5 1278 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1279 dma_addr &= PAGE_MASK;
1280 start = dma_addr;
1281
1282 for (i = 0; i < pages; ++i) {
1283 dma_ops_domain_unmap(iommu, dma_dom, start);
1284 start += PAGE_SIZE;
1285 }
1286
5774f7c5
JR
1287 SUB_STATS_COUNTER(alloced_io_mem, size);
1288
cb76c322 1289 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1290
80be308d 1291 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1292 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1293 dma_dom->need_flush = false;
1294 }
cb76c322
JR
1295}
1296
431b2a20
JR
1297/*
1298 * The exported map_single function for dma_ops.
1299 */
4da70b9e
JR
1300static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1301 size_t size, int dir)
1302{
1303 unsigned long flags;
1304 struct amd_iommu *iommu;
1305 struct protection_domain *domain;
1306 u16 devid;
1307 dma_addr_t addr;
832a90c3 1308 u64 dma_mask;
4da70b9e 1309
0f2a86f2
JR
1310 INC_STATS_COUNTER(cnt_map_single);
1311
dbcc112e
JR
1312 if (!check_device(dev))
1313 return bad_dma_address;
1314
832a90c3 1315 dma_mask = *dev->dma_mask;
4da70b9e
JR
1316
1317 get_device_resources(dev, &iommu, &domain, &devid);
1318
1319 if (iommu == NULL || domain == NULL)
431b2a20 1320 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1321 return (dma_addr_t)paddr;
1322
5b28df6f
JR
1323 if (!dma_ops_domain(domain))
1324 return bad_dma_address;
1325
4da70b9e 1326 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1327 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1328 dma_mask);
4da70b9e
JR
1329 if (addr == bad_dma_address)
1330 goto out;
1331
09ee17eb 1332 iommu_completion_wait(iommu);
4da70b9e
JR
1333
1334out:
1335 spin_unlock_irqrestore(&domain->lock, flags);
1336
1337 return addr;
1338}
1339
431b2a20
JR
1340/*
1341 * The exported unmap_single function for dma_ops.
1342 */
4da70b9e
JR
1343static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1344 size_t size, int dir)
1345{
1346 unsigned long flags;
1347 struct amd_iommu *iommu;
1348 struct protection_domain *domain;
1349 u16 devid;
1350
146a6917
JR
1351 INC_STATS_COUNTER(cnt_unmap_single);
1352
dbcc112e
JR
1353 if (!check_device(dev) ||
1354 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1355 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1356 return;
1357
5b28df6f
JR
1358 if (!dma_ops_domain(domain))
1359 return;
1360
4da70b9e
JR
1361 spin_lock_irqsave(&domain->lock, flags);
1362
1363 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1364
09ee17eb 1365 iommu_completion_wait(iommu);
4da70b9e
JR
1366
1367 spin_unlock_irqrestore(&domain->lock, flags);
1368}
1369
431b2a20
JR
1370/*
1371 * This is a special map_sg function which is used if we should map a
1372 * device which is not handled by an AMD IOMMU in the system.
1373 */
65b050ad
JR
1374static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1375 int nelems, int dir)
1376{
1377 struct scatterlist *s;
1378 int i;
1379
1380 for_each_sg(sglist, s, nelems, i) {
1381 s->dma_address = (dma_addr_t)sg_phys(s);
1382 s->dma_length = s->length;
1383 }
1384
1385 return nelems;
1386}
1387
431b2a20
JR
1388/*
1389 * The exported map_sg function for dma_ops (handles scatter-gather
1390 * lists).
1391 */
65b050ad
JR
1392static int map_sg(struct device *dev, struct scatterlist *sglist,
1393 int nelems, int dir)
1394{
1395 unsigned long flags;
1396 struct amd_iommu *iommu;
1397 struct protection_domain *domain;
1398 u16 devid;
1399 int i;
1400 struct scatterlist *s;
1401 phys_addr_t paddr;
1402 int mapped_elems = 0;
832a90c3 1403 u64 dma_mask;
65b050ad 1404
d03f067a
JR
1405 INC_STATS_COUNTER(cnt_map_sg);
1406
dbcc112e
JR
1407 if (!check_device(dev))
1408 return 0;
1409
832a90c3 1410 dma_mask = *dev->dma_mask;
65b050ad
JR
1411
1412 get_device_resources(dev, &iommu, &domain, &devid);
1413
1414 if (!iommu || !domain)
1415 return map_sg_no_iommu(dev, sglist, nelems, dir);
1416
5b28df6f
JR
1417 if (!dma_ops_domain(domain))
1418 return 0;
1419
65b050ad
JR
1420 spin_lock_irqsave(&domain->lock, flags);
1421
1422 for_each_sg(sglist, s, nelems, i) {
1423 paddr = sg_phys(s);
1424
1425 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1426 paddr, s->length, dir, false,
1427 dma_mask);
65b050ad
JR
1428
1429 if (s->dma_address) {
1430 s->dma_length = s->length;
1431 mapped_elems++;
1432 } else
1433 goto unmap;
65b050ad
JR
1434 }
1435
09ee17eb 1436 iommu_completion_wait(iommu);
65b050ad
JR
1437
1438out:
1439 spin_unlock_irqrestore(&domain->lock, flags);
1440
1441 return mapped_elems;
1442unmap:
1443 for_each_sg(sglist, s, mapped_elems, i) {
1444 if (s->dma_address)
1445 __unmap_single(iommu, domain->priv, s->dma_address,
1446 s->dma_length, dir);
1447 s->dma_address = s->dma_length = 0;
1448 }
1449
1450 mapped_elems = 0;
1451
1452 goto out;
1453}
1454
431b2a20
JR
1455/*
1456 * The exported map_sg function for dma_ops (handles scatter-gather
1457 * lists).
1458 */
65b050ad
JR
1459static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1460 int nelems, int dir)
1461{
1462 unsigned long flags;
1463 struct amd_iommu *iommu;
1464 struct protection_domain *domain;
1465 struct scatterlist *s;
1466 u16 devid;
1467 int i;
1468
55877a6b
JR
1469 INC_STATS_COUNTER(cnt_unmap_sg);
1470
dbcc112e
JR
1471 if (!check_device(dev) ||
1472 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1473 return;
1474
5b28df6f
JR
1475 if (!dma_ops_domain(domain))
1476 return;
1477
65b050ad
JR
1478 spin_lock_irqsave(&domain->lock, flags);
1479
1480 for_each_sg(sglist, s, nelems, i) {
1481 __unmap_single(iommu, domain->priv, s->dma_address,
1482 s->dma_length, dir);
65b050ad
JR
1483 s->dma_address = s->dma_length = 0;
1484 }
1485
09ee17eb 1486 iommu_completion_wait(iommu);
65b050ad
JR
1487
1488 spin_unlock_irqrestore(&domain->lock, flags);
1489}
1490
431b2a20
JR
1491/*
1492 * The exported alloc_coherent function for dma_ops.
1493 */
5d8b53cf
JR
1494static void *alloc_coherent(struct device *dev, size_t size,
1495 dma_addr_t *dma_addr, gfp_t flag)
1496{
1497 unsigned long flags;
1498 void *virt_addr;
1499 struct amd_iommu *iommu;
1500 struct protection_domain *domain;
1501 u16 devid;
1502 phys_addr_t paddr;
832a90c3 1503 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1504
c8f0fb36
JR
1505 INC_STATS_COUNTER(cnt_alloc_coherent);
1506
dbcc112e
JR
1507 if (!check_device(dev))
1508 return NULL;
5d8b53cf 1509
13d9fead
FT
1510 if (!get_device_resources(dev, &iommu, &domain, &devid))
1511 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1512
c97ac535 1513 flag |= __GFP_ZERO;
5d8b53cf
JR
1514 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1515 if (!virt_addr)
1516 return 0;
1517
5d8b53cf
JR
1518 paddr = virt_to_phys(virt_addr);
1519
5d8b53cf
JR
1520 if (!iommu || !domain) {
1521 *dma_addr = (dma_addr_t)paddr;
1522 return virt_addr;
1523 }
1524
5b28df6f
JR
1525 if (!dma_ops_domain(domain))
1526 goto out_free;
1527
832a90c3
JR
1528 if (!dma_mask)
1529 dma_mask = *dev->dma_mask;
1530
5d8b53cf
JR
1531 spin_lock_irqsave(&domain->lock, flags);
1532
1533 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1534 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1535
5b28df6f
JR
1536 if (*dma_addr == bad_dma_address)
1537 goto out_free;
5d8b53cf 1538
09ee17eb 1539 iommu_completion_wait(iommu);
5d8b53cf 1540
5d8b53cf
JR
1541 spin_unlock_irqrestore(&domain->lock, flags);
1542
1543 return virt_addr;
5b28df6f
JR
1544
1545out_free:
1546
1547 free_pages((unsigned long)virt_addr, get_order(size));
1548
1549 return NULL;
5d8b53cf
JR
1550}
1551
431b2a20
JR
1552/*
1553 * The exported free_coherent function for dma_ops.
431b2a20 1554 */
5d8b53cf
JR
1555static void free_coherent(struct device *dev, size_t size,
1556 void *virt_addr, dma_addr_t dma_addr)
1557{
1558 unsigned long flags;
1559 struct amd_iommu *iommu;
1560 struct protection_domain *domain;
1561 u16 devid;
1562
5d31ee7e
JR
1563 INC_STATS_COUNTER(cnt_free_coherent);
1564
dbcc112e
JR
1565 if (!check_device(dev))
1566 return;
1567
5d8b53cf
JR
1568 get_device_resources(dev, &iommu, &domain, &devid);
1569
1570 if (!iommu || !domain)
1571 goto free_mem;
1572
5b28df6f
JR
1573 if (!dma_ops_domain(domain))
1574 goto free_mem;
1575
5d8b53cf
JR
1576 spin_lock_irqsave(&domain->lock, flags);
1577
1578 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1579
09ee17eb 1580 iommu_completion_wait(iommu);
5d8b53cf
JR
1581
1582 spin_unlock_irqrestore(&domain->lock, flags);
1583
1584free_mem:
1585 free_pages((unsigned long)virt_addr, get_order(size));
1586}
1587
b39ba6ad
JR
1588/*
1589 * This function is called by the DMA layer to find out if we can handle a
1590 * particular device. It is part of the dma_ops.
1591 */
1592static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1593{
1594 u16 bdf;
1595 struct pci_dev *pcidev;
1596
1597 /* No device or no PCI device */
1598 if (!dev || dev->bus != &pci_bus_type)
1599 return 0;
1600
1601 pcidev = to_pci_dev(dev);
1602
1603 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1604
1605 /* Out of our scope? */
1606 if (bdf > amd_iommu_last_bdf)
1607 return 0;
1608
1609 return 1;
1610}
1611
c432f3df 1612/*
431b2a20
JR
1613 * The function for pre-allocating protection domains.
1614 *
c432f3df
JR
1615 * If the driver core informs the DMA layer if a driver grabs a device
1616 * we don't need to preallocate the protection domains anymore.
1617 * For now we have to.
1618 */
0e93dd88 1619static void prealloc_protection_domains(void)
c432f3df
JR
1620{
1621 struct pci_dev *dev = NULL;
1622 struct dma_ops_domain *dma_dom;
1623 struct amd_iommu *iommu;
1624 int order = amd_iommu_aperture_order;
1625 u16 devid;
1626
1627 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1628 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1629 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1630 continue;
1631 devid = amd_iommu_alias_table[devid];
1632 if (domain_for_device(devid))
1633 continue;
1634 iommu = amd_iommu_rlookup_table[devid];
1635 if (!iommu)
1636 continue;
1637 dma_dom = dma_ops_domain_alloc(iommu, order);
1638 if (!dma_dom)
1639 continue;
1640 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1641 dma_dom->target_dev = devid;
1642
1643 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1644 }
1645}
1646
6631ee9d
JR
1647static struct dma_mapping_ops amd_iommu_dma_ops = {
1648 .alloc_coherent = alloc_coherent,
1649 .free_coherent = free_coherent,
1650 .map_single = map_single,
1651 .unmap_single = unmap_single,
1652 .map_sg = map_sg,
1653 .unmap_sg = unmap_sg,
b39ba6ad 1654 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1655};
1656
431b2a20
JR
1657/*
1658 * The function which clues the AMD IOMMU driver into dma_ops.
1659 */
6631ee9d
JR
1660int __init amd_iommu_init_dma_ops(void)
1661{
1662 struct amd_iommu *iommu;
1663 int order = amd_iommu_aperture_order;
1664 int ret;
1665
431b2a20
JR
1666 /*
1667 * first allocate a default protection domain for every IOMMU we
1668 * found in the system. Devices not assigned to any other
1669 * protection domain will be assigned to the default one.
1670 */
6631ee9d
JR
1671 list_for_each_entry(iommu, &amd_iommu_list, list) {
1672 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1673 if (iommu->default_dom == NULL)
1674 return -ENOMEM;
e2dc14a2 1675 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1676 ret = iommu_init_unity_mappings(iommu);
1677 if (ret)
1678 goto free_domains;
1679 }
1680
431b2a20
JR
1681 /*
1682 * If device isolation is enabled, pre-allocate the protection
1683 * domains for each device.
1684 */
6631ee9d
JR
1685 if (amd_iommu_isolate)
1686 prealloc_protection_domains();
1687
1688 iommu_detected = 1;
1689 force_iommu = 1;
1690 bad_dma_address = 0;
92af4e29 1691#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1692 gart_iommu_aperture_disabled = 1;
1693 gart_iommu_aperture = 0;
92af4e29 1694#endif
6631ee9d 1695
431b2a20 1696 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1697 dma_ops = &amd_iommu_dma_ops;
1698
26961efe 1699 register_iommu(&amd_iommu_ops);
26961efe 1700
e275a2a0
JR
1701 bus_register_notifier(&pci_bus_type, &device_nb);
1702
7f26508b
JR
1703 amd_iommu_stats_init();
1704
6631ee9d
JR
1705 return 0;
1706
1707free_domains:
1708
1709 list_for_each_entry(iommu, &amd_iommu_list, list) {
1710 if (iommu->default_dom)
1711 dma_ops_domain_free(iommu->default_dom);
1712 }
1713
1714 return ret;
1715}
6d98cd80
JR
1716
1717/*****************************************************************************
1718 *
1719 * The following functions belong to the exported interface of AMD IOMMU
1720 *
1721 * This interface allows access to lower level functions of the IOMMU
1722 * like protection domain handling and assignement of devices to domains
1723 * which is not possible with the dma_ops interface.
1724 *
1725 *****************************************************************************/
1726
6d98cd80
JR
1727static void cleanup_domain(struct protection_domain *domain)
1728{
1729 unsigned long flags;
1730 u16 devid;
1731
1732 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1733
1734 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1735 if (amd_iommu_pd_table[devid] == domain)
1736 __detach_device(domain, devid);
1737
1738 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1739}
1740
c156e347
JR
1741static int amd_iommu_domain_init(struct iommu_domain *dom)
1742{
1743 struct protection_domain *domain;
1744
1745 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1746 if (!domain)
1747 return -ENOMEM;
1748
1749 spin_lock_init(&domain->lock);
1750 domain->mode = PAGE_MODE_3_LEVEL;
1751 domain->id = domain_id_alloc();
1752 if (!domain->id)
1753 goto out_free;
1754 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1755 if (!domain->pt_root)
1756 goto out_free;
1757
1758 dom->priv = domain;
1759
1760 return 0;
1761
1762out_free:
1763 kfree(domain);
1764
1765 return -ENOMEM;
1766}
1767
98383fc3
JR
1768static void amd_iommu_domain_destroy(struct iommu_domain *dom)
1769{
1770 struct protection_domain *domain = dom->priv;
1771
1772 if (!domain)
1773 return;
1774
1775 if (domain->dev_cnt > 0)
1776 cleanup_domain(domain);
1777
1778 BUG_ON(domain->dev_cnt != 0);
1779
1780 free_pagetable(domain);
1781
1782 domain_id_free(domain->id);
1783
1784 kfree(domain);
1785
1786 dom->priv = NULL;
1787}
1788
684f2888
JR
1789static void amd_iommu_detach_device(struct iommu_domain *dom,
1790 struct device *dev)
1791{
1792 struct protection_domain *domain = dom->priv;
1793 struct amd_iommu *iommu;
1794 struct pci_dev *pdev;
1795 u16 devid;
1796
1797 if (dev->bus != &pci_bus_type)
1798 return;
1799
1800 pdev = to_pci_dev(dev);
1801
1802 devid = calc_devid(pdev->bus->number, pdev->devfn);
1803
1804 if (devid > 0)
1805 detach_device(domain, devid);
1806
1807 iommu = amd_iommu_rlookup_table[devid];
1808 if (!iommu)
1809 return;
1810
1811 iommu_queue_inv_dev_entry(iommu, devid);
1812 iommu_completion_wait(iommu);
1813}
1814
01106066
JR
1815static int amd_iommu_attach_device(struct iommu_domain *dom,
1816 struct device *dev)
1817{
1818 struct protection_domain *domain = dom->priv;
1819 struct protection_domain *old_domain;
1820 struct amd_iommu *iommu;
1821 struct pci_dev *pdev;
1822 u16 devid;
1823
1824 if (dev->bus != &pci_bus_type)
1825 return -EINVAL;
1826
1827 pdev = to_pci_dev(dev);
1828
1829 devid = calc_devid(pdev->bus->number, pdev->devfn);
1830
1831 if (devid >= amd_iommu_last_bdf ||
1832 devid != amd_iommu_alias_table[devid])
1833 return -EINVAL;
1834
1835 iommu = amd_iommu_rlookup_table[devid];
1836 if (!iommu)
1837 return -EINVAL;
1838
1839 old_domain = domain_for_device(devid);
1840 if (old_domain)
1841 return -EBUSY;
1842
1843 attach_device(iommu, domain, devid);
1844
1845 iommu_completion_wait(iommu);
1846
1847 return 0;
1848}
1849
c6229ca6
JR
1850static int amd_iommu_map_range(struct iommu_domain *dom,
1851 unsigned long iova, phys_addr_t paddr,
1852 size_t size, int iommu_prot)
1853{
1854 struct protection_domain *domain = dom->priv;
1855 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
1856 int prot = 0;
1857 int ret;
1858
1859 if (iommu_prot & IOMMU_READ)
1860 prot |= IOMMU_PROT_IR;
1861 if (iommu_prot & IOMMU_WRITE)
1862 prot |= IOMMU_PROT_IW;
1863
1864 iova &= PAGE_MASK;
1865 paddr &= PAGE_MASK;
1866
1867 for (i = 0; i < npages; ++i) {
1868 ret = iommu_map_page(domain, iova, paddr, prot);
1869 if (ret)
1870 return ret;
1871
1872 iova += PAGE_SIZE;
1873 paddr += PAGE_SIZE;
1874 }
1875
1876 return 0;
1877}
1878
eb74ff6c
JR
1879static void amd_iommu_unmap_range(struct iommu_domain *dom,
1880 unsigned long iova, size_t size)
1881{
1882
1883 struct protection_domain *domain = dom->priv;
1884 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
1885
1886 iova &= PAGE_MASK;
1887
1888 for (i = 0; i < npages; ++i) {
1889 iommu_unmap_page(domain, iova);
1890 iova += PAGE_SIZE;
1891 }
1892
1893 iommu_flush_domain(domain->id);
1894}
1895
645c4c8d
JR
1896static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
1897 unsigned long iova)
1898{
1899 struct protection_domain *domain = dom->priv;
1900 unsigned long offset = iova & ~PAGE_MASK;
1901 phys_addr_t paddr;
1902 u64 *pte;
1903
1904 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
1905
1906 if (!IOMMU_PTE_PRESENT(*pte))
1907 return 0;
1908
1909 pte = IOMMU_PTE_PAGE(*pte);
1910 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
1911
1912 if (!IOMMU_PTE_PRESENT(*pte))
1913 return 0;
1914
1915 pte = IOMMU_PTE_PAGE(*pte);
1916 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
1917
1918 if (!IOMMU_PTE_PRESENT(*pte))
1919 return 0;
1920
1921 paddr = *pte & IOMMU_PAGE_MASK;
1922 paddr |= offset;
1923
1924 return paddr;
1925}
1926
26961efe
JR
1927static struct iommu_ops amd_iommu_ops = {
1928 .domain_init = amd_iommu_domain_init,
1929 .domain_destroy = amd_iommu_domain_destroy,
1930 .attach_dev = amd_iommu_attach_device,
1931 .detach_dev = amd_iommu_detach_device,
1932 .map = amd_iommu_map_range,
1933 .unmap = amd_iommu_unmap_range,
1934 .iova_to_phys = amd_iommu_iova_to_phys,
1935};
1936