x86/tlb: Move cr4_set_bits_and_update_boot() to the usage site
[linux-2.6-block.git] / arch / x86 / include / asm / tlbflush.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_TLBFLUSH_H
3#define _ASM_X86_TLBFLUSH_H
d291cf83
TG
4
5#include <linux/mm.h>
6#include <linux/sched.h>
7
8#include <asm/processor.h>
cd4d09ec 9#include <asm/cpufeature.h>
f05e798a 10#include <asm/special_insns.h>
ce4a4e56 11#include <asm/smp.h>
1a3b0cae 12#include <asm/invpcid.h>
6fd166aa
PZ
13#include <asm/pti.h>
14#include <asm/processor-flags.h>
d291cf83 15
0a126abd
PZ
16/*
17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
18 * to what is traditionally called ASID on the RISC processors.
19 *
20 * We don't use the traditional ASID implementation, where each process/mm gets
21 * its own ASID and flush/restart when we run out of ASID space.
22 *
23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24 * that came by on this CPU, allowing cheaper switch_mm between processes on
25 * this CPU.
26 *
27 * We end up with different spaces for different things. To avoid confusion we
28 * use different names for each of them:
29 *
30 * ASID - [0, TLB_NR_DYN_ASIDS-1]
31 * the canonical identifier for an mm
32 *
33 * kPCID - [1, TLB_NR_DYN_ASIDS]
34 * the value we write into the PCID part of CR3; corresponds to the
35 * ASID+1, because PCID 0 is special.
36 *
37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38 * for KPTI each mm has two address spaces and thus needs two
39 * PCID values, but we can still do with a single ASID denomination
40 * for each mm. Corresponds to kPCID + 2048.
41 *
42 */
060a402a 43
cb0a9144
DH
44/* There are 12 bits of space for ASIDS in CR3 */
45#define CR3_HW_ASID_BITS 12
6fd166aa 46
cb0a9144
DH
47/*
48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49 * user/kernel switches
50 */
6fd166aa
PZ
51#ifdef CONFIG_PAGE_TABLE_ISOLATION
52# define PTI_CONSUMED_PCID_BITS 1
53#else
54# define PTI_CONSUMED_PCID_BITS 0
55#endif
56
57#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
060a402a 58
cb0a9144
DH
59/*
60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
0a126abd 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for
cb0a9144
DH
62 * use by non-PCID-aware users.
63 */
6fd166aa 64#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
060a402a 65
6fd166aa
PZ
66/*
67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68 * lines.
69 */
70#define TLB_NR_DYN_ASIDS 6
cb0a9144 71
0a126abd
PZ
72/*
73 * Given @asid, compute kPCID
74 */
dd95f1a4 75static inline u16 kern_pcid(u16 asid)
060a402a 76{
dd95f1a4 77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
6fd166aa
PZ
78
79#ifdef CONFIG_PAGE_TABLE_ISOLATION
dd95f1a4 80 /*
6fd166aa
PZ
81 * Make sure that the dynamic ASID space does not confict with the
82 * bit we are using to switch between user and kernel ASIDs.
83 */
f10ee3dc 84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
6fd166aa
PZ
85
86 /*
87 * The ASID being passed in here should have respected the
88 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 */
f10ee3dc 90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
6fd166aa 91#endif
dd95f1a4 92 /*
6fd166aa
PZ
93 * The dynamically-assigned ASIDs that get passed in are small
94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
95 * so do not bother to clear it.
96 *
dd95f1a4
DH
97 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 * PCID bits. This serves two purposes. It prevents a nasty
99 * situation in which PCID-unaware code saves CR3, loads some other
100 * value (with PCID == 0), and then restores CR3, thus corrupting
101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
102 * that any bugs involving loading a PCID-enabled CR3 with
103 * CR4.PCIDE off will trigger deterministically.
104 */
105 return asid + 1;
060a402a
AL
106}
107
6cff64b8 108/*
0a126abd 109 * Given @asid, compute uPCID
6cff64b8
DH
110 */
111static inline u16 user_pcid(u16 asid)
112{
113 u16 ret = kern_pcid(asid);
114#ifdef CONFIG_PAGE_TABLE_ISOLATION
f10ee3dc 115 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
6cff64b8
DH
116#endif
117 return ret;
118}
119
50fb83a6
DH
120struct pgd_t;
121static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
060a402a 122{
50fb83a6 123 if (static_cpu_has(X86_FEATURE_PCID)) {
dd95f1a4 124 return __sme_pa(pgd) | kern_pcid(asid);
50fb83a6
DH
125 } else {
126 VM_WARN_ON_ONCE(asid != 0);
127 return __sme_pa(pgd);
128 }
060a402a
AL
129}
130
50fb83a6 131static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
060a402a 132{
cb0a9144 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
162ee5a8
SP
134 /*
135 * Use boot_cpu_has() instead of this_cpu_has() as this function
136 * might be called during early boot. This should work even after
137 * boot because all CPU's the have same capabilities:
138 */
139 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
dd95f1a4 140 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
f39681ed
AL
141}
142
29def599
TG
143struct flush_tlb_info;
144
4b04e6c2 145void __flush_tlb_all(void);
2faf153b 146void flush_tlb_local(void);
127ac915 147void flush_tlb_one_user(unsigned long addr);
58430c5d 148void flush_tlb_one_kernel(unsigned long addr);
29def599
TG
149void flush_tlb_others(const struct cpumask *cpumask,
150 const struct flush_tlb_info *info);
2faf153b 151
d291cf83
TG
152#ifdef CONFIG_PARAVIRT
153#include <asm/paravirt.h>
d291cf83
TG
154#endif
155
b0579ade
AL
156struct tlb_context {
157 u64 ctx_id;
158 u64 tlb_gen;
159};
160
1e02ce4c 161struct tlb_state {
3d28ebce
AL
162 /*
163 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
164 * are on. This means that it may not match current->active_mm,
165 * which will contain the previous user mm when we're in lazy TLB
166 * mode even if we've already switched back to swapper_pg_dir.
4012e77a
AL
167 *
168 * During switch_mm_irqs_off(), loaded_mm will be set to
169 * LOADED_MM_SWITCHING during the brief interrupts-off window
170 * when CR3 and loaded_mm would otherwise be inconsistent. This
171 * is for nmi_uaccess_okay()'s benefit.
3d28ebce
AL
172 */
173 struct mm_struct *loaded_mm;
4012e77a 174
a72a1932 175#define LOADED_MM_SWITCHING ((struct mm_struct *)1UL)
4012e77a 176
4c71a2b6
TG
177 /* Last user mm for optimizing IBPB */
178 union {
179 struct mm_struct *last_user_mm;
180 unsigned long last_user_mm_ibpb;
181 };
182
10af6235
AL
183 u16 loaded_mm_asid;
184 u16 next_asid;
1e02ce4c 185
b956575b
AL
186 /*
187 * We can be in one of several states:
188 *
189 * - Actively using an mm. Our CPU's bit will be set in
190 * mm_cpumask(loaded_mm) and is_lazy == false;
191 *
192 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
193 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
194 *
195 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
196 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
197 * We're heuristically guessing that the CR3 load we
198 * skipped more than makes up for the overhead added by
199 * lazy mode.
200 */
201 bool is_lazy;
202
2ea907c4
DH
203 /*
204 * If set we changed the page tables in such a way that we
205 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
206 * This tells us to go invalidate all the non-loaded ctxs[]
207 * on the next context switch.
208 *
209 * The current ctx was kept up-to-date as it ran and does not
210 * need to be invalidated.
211 */
212 bool invalidate_other;
213
6fd166aa
PZ
214 /*
215 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
216 * the corresponding user PCID needs a flush next time we
217 * switch to it; see SWITCH_TO_USER_CR3.
218 */
219 unsigned short user_pcid_flush_mask;
220
1e02ce4c
AL
221 /*
222 * Access to this CR4 shadow and to H/W CR4 is protected by
223 * disabling interrupts when modifying either one.
224 */
225 unsigned long cr4;
b0579ade
AL
226
227 /*
228 * This is a list of all contexts that might exist in the TLB.
10af6235
AL
229 * There is one per ASID that we use, and the ASID (what the
230 * CPU calls PCID) is the index into ctxts.
b0579ade
AL
231 *
232 * For each context, ctx_id indicates which mm the TLB's user
233 * entries came from. As an invariant, the TLB will never
234 * contain entries that are out-of-date as when that mm reached
235 * the tlb_gen in the list.
236 *
237 * To be clear, this means that it's legal for the TLB code to
238 * flush the TLB without updating tlb_gen. This can happen
239 * (for now, at least) due to paravirt remote flushes.
10af6235
AL
240 *
241 * NB: context 0 is a bit special, since it's also used by
242 * various bits of init code. This is fine -- code that
243 * isn't aware of PCID will end up harmlessly flushing
244 * context 0.
b0579ade 245 */
10af6235 246 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
1e02ce4c
AL
247};
248DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
249
4012e77a
AL
250/*
251 * Blindly accessing user memory from NMI context can be dangerous
252 * if we're in the middle of switching the current user task or
253 * switching the loaded mm. It can also be dangerous if we
254 * interrupted some kernel code that was temporarily using a
255 * different mm.
256 */
257static inline bool nmi_uaccess_okay(void)
258{
259 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
260 struct mm_struct *current_mm = current->mm;
261
262 VM_WARN_ON_ONCE(!loaded_mm);
263
264 /*
265 * The condition we want to check is
266 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
267 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
268 * is supposed to be reasonably fast.
269 *
270 * Instead, we check the almost equivalent but somewhat conservative
271 * condition below, and we rely on the fact that switch_mm_irqs_off()
272 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
273 */
274 if (loaded_mm != current_mm)
275 return false;
276
277 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
278
279 return true;
280}
281
5932c9fd
NA
282#define nmi_uaccess_okay nmi_uaccess_okay
283
d8f0b353
TG
284void cr4_update_irqsoff(unsigned long set, unsigned long clear);
285unsigned long cr4_read_shadow(void);
286
1e02ce4c
AL
287/* Initialize cr4 shadow for this CPU. */
288static inline void cr4_init_shadow(void)
289{
1ef55be1 290 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
1e02ce4c
AL
291}
292
375074cc 293/* Set in this cpu's CR4. */
21e450d2 294static inline void cr4_set_bits_irqsoff(unsigned long mask)
375074cc 295{
d8f0b353 296 cr4_update_irqsoff(mask, 0);
375074cc
AL
297}
298
299/* Clear in this cpu's CR4. */
21e450d2 300static inline void cr4_clear_bits_irqsoff(unsigned long mask)
375074cc 301{
d8f0b353 302 cr4_update_irqsoff(0, mask);
21e450d2
JK
303}
304
305/* Set in this cpu's CR4. */
306static inline void cr4_set_bits(unsigned long mask)
307{
308 unsigned long flags;
309
310 local_irq_save(flags);
311 cr4_set_bits_irqsoff(mask);
312 local_irq_restore(flags);
313}
314
315/* Clear in this cpu's CR4. */
316static inline void cr4_clear_bits(unsigned long mask)
317{
318 unsigned long flags;
319
320 local_irq_save(flags);
321 cr4_clear_bits_irqsoff(mask);
9d0b6232 322 local_irq_restore(flags);
1e02ce4c
AL
323}
324
375074cc
AL
325extern unsigned long mmu_cr4_features;
326extern u32 *trampoline_cr4_features;
327
72c0098d
AL
328extern void initialize_tlbstate_and_flush(void);
329
3e7f3db0 330#define TLB_FLUSH_ALL -1UL
d291cf83
TG
331
332/*
333 * TLB flushing:
334 *
d291cf83
TG
335 * - flush_tlb_all() flushes all processes TLBs
336 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
337 * - flush_tlb_page(vma, vmaddr) flushes one page
338 * - flush_tlb_range(vma, start, end) flushes a range of pages
339 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
a2055abe 340 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
d291cf83
TG
341 *
342 * ..but the i386 has somewhat limited tlb flushing capabilities,
343 * and page-granular flushes are available only on i486 and up.
d291cf83 344 */
a2055abe 345struct flush_tlb_info {
b0579ade
AL
346 /*
347 * We support several kinds of flushes.
348 *
349 * - Fully flush a single mm. .mm will be set, .end will be
350 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
351 * which the IPI sender is trying to catch us up.
352 *
353 * - Partially flush a single mm. .mm will be set, .start and
354 * .end will indicate the range, and .new_tlb_gen will be set
355 * such that the changes between generation .new_tlb_gen-1 and
356 * .new_tlb_gen are entirely contained in the indicated range.
357 *
358 * - Fully flush all mms whose tlb_gens have been updated. .mm
359 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
360 * will be zero.
361 */
362 struct mm_struct *mm;
363 unsigned long start;
364 unsigned long end;
365 u64 new_tlb_gen;
a31acd3e 366 unsigned int stride_shift;
97807813 367 bool freed_tables;
a2055abe
AL
368};
369
016c4d92
RR
370#define flush_tlb_mm(mm) \
371 flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true)
611ae8e3 372
a31acd3e
PZ
373#define flush_tlb_range(vma, start, end) \
374 flush_tlb_mm_range((vma)->vm_mm, start, end, \
375 ((vma)->vm_flags & VM_HUGETLB) \
376 ? huge_page_shift(hstate_vma(vma)) \
016c4d92 377 : PAGE_SHIFT, false)
611ae8e3 378
d291cf83 379extern void flush_tlb_all(void);
611ae8e3 380extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
016c4d92
RR
381 unsigned long end, unsigned int stride_shift,
382 bool freed_tables);
effee4b9 383extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
d291cf83 384
ca6c99c0
AL
385static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
386{
016c4d92 387 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false);
ca6c99c0
AL
388}
389
0a126abd
PZ
390static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
391{
392 /*
393 * Bump the generation count. This also serves as a full barrier
394 * that synchronizes with switch_mm(): callers are required to order
395 * their read of mm_cpumask after their writes to the paging
396 * structures.
397 */
398 return atomic64_inc_return(&mm->context.tlb_gen);
399}
400
e73ad5ff
AL
401static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
402 struct mm_struct *mm)
403{
f39681ed 404 inc_mm_tlb_gen(mm);
e73ad5ff
AL
405 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
406}
407
408extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
409
1965aae3 410#endif /* _ASM_X86_TLBFLUSH_H */