x86/smpboot: Remove stale TLB flush invocations
[linux-2.6-block.git] / arch / x86 / include / asm / tlbflush.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_TLBFLUSH_H
3#define _ASM_X86_TLBFLUSH_H
d291cf83
TG
4
5#include <linux/mm.h>
6#include <linux/sched.h>
7
8#include <asm/processor.h>
cd4d09ec 9#include <asm/cpufeature.h>
f05e798a 10#include <asm/special_insns.h>
ce4a4e56 11#include <asm/smp.h>
1a3b0cae 12#include <asm/invpcid.h>
6fd166aa
PZ
13#include <asm/pti.h>
14#include <asm/processor-flags.h>
060a402a 15
0a126abd
PZ
16/*
17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
18 * to what is traditionally called ASID on the RISC processors.
19 *
20 * We don't use the traditional ASID implementation, where each process/mm gets
21 * its own ASID and flush/restart when we run out of ASID space.
22 *
23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24 * that came by on this CPU, allowing cheaper switch_mm between processes on
25 * this CPU.
26 *
27 * We end up with different spaces for different things. To avoid confusion we
28 * use different names for each of them:
29 *
30 * ASID - [0, TLB_NR_DYN_ASIDS-1]
31 * the canonical identifier for an mm
32 *
33 * kPCID - [1, TLB_NR_DYN_ASIDS]
34 * the value we write into the PCID part of CR3; corresponds to the
35 * ASID+1, because PCID 0 is special.
36 *
37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38 * for KPTI each mm has two address spaces and thus needs two
39 * PCID values, but we can still do with a single ASID denomination
40 * for each mm. Corresponds to kPCID + 2048.
41 *
42 */
f39681ed 43
cb0a9144
DH
44/* There are 12 bits of space for ASIDS in CR3 */
45#define CR3_HW_ASID_BITS 12
6fd166aa 46
cb0a9144
DH
47/*
48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49 * user/kernel switches
50 */
6fd166aa
PZ
51#ifdef CONFIG_PAGE_TABLE_ISOLATION
52# define PTI_CONSUMED_PCID_BITS 1
53#else
54# define PTI_CONSUMED_PCID_BITS 0
55#endif
56
57#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
cb0a9144 58
cb0a9144
DH
59/*
60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
0a126abd 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for
cb0a9144
DH
62 * use by non-PCID-aware users.
63 */
6fd166aa
PZ
64#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
65
66/*
67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68 * lines.
69 */
70#define TLB_NR_DYN_ASIDS 6
cb0a9144 71
0a126abd
PZ
72/*
73 * Given @asid, compute kPCID
74 */
dd95f1a4
DH
75static inline u16 kern_pcid(u16 asid)
76{
77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
6fd166aa
PZ
78
79#ifdef CONFIG_PAGE_TABLE_ISOLATION
dd95f1a4 80 /*
6fd166aa
PZ
81 * Make sure that the dynamic ASID space does not confict with the
82 * bit we are using to switch between user and kernel ASIDs.
83 */
84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_SWITCH_BIT));
85
86 /*
87 * The ASID being passed in here should have respected the
88 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 */
90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_SWITCH_BIT));
91#endif
92 /*
93 * The dynamically-assigned ASIDs that get passed in are small
94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
95 * so do not bother to clear it.
96 *
dd95f1a4
DH
97 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 * PCID bits. This serves two purposes. It prevents a nasty
99 * situation in which PCID-unaware code saves CR3, loads some other
100 * value (with PCID == 0), and then restores CR3, thus corrupting
101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
102 * that any bugs involving loading a PCID-enabled CR3 with
103 * CR4.PCIDE off will trigger deterministically.
104 */
105 return asid + 1;
106}
107
6cff64b8 108/*
0a126abd 109 * Given @asid, compute uPCID
6cff64b8
DH
110 */
111static inline u16 user_pcid(u16 asid)
112{
113 u16 ret = kern_pcid(asid);
114#ifdef CONFIG_PAGE_TABLE_ISOLATION
115 ret |= 1 << X86_CR3_PTI_SWITCH_BIT;
116#endif
117 return ret;
118}
119
50fb83a6
DH
120struct pgd_t;
121static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
122{
123 if (static_cpu_has(X86_FEATURE_PCID)) {
dd95f1a4 124 return __sme_pa(pgd) | kern_pcid(asid);
50fb83a6
DH
125 } else {
126 VM_WARN_ON_ONCE(asid != 0);
127 return __sme_pa(pgd);
128 }
129}
130
131static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
132{
cb0a9144 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
dd95f1a4
DH
134 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
135 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
50fb83a6
DH
136}
137
d291cf83
TG
138#ifdef CONFIG_PARAVIRT
139#include <asm/paravirt.h>
140#else
141#define __flush_tlb() __native_flush_tlb()
142#define __flush_tlb_global() __native_flush_tlb_global()
143#define __flush_tlb_single(addr) __native_flush_tlb_single(addr)
144#endif
145
4e57b946
AL
146static inline bool tlb_defer_switch_to_init_mm(void)
147{
7ac7f2c3
AL
148 /*
149 * If we have PCID, then switching to init_mm is reasonably
150 * fast. If we don't have PCID, then switching to init_mm is
151 * quite slow, so we try to defer it in the hopes that we can
152 * avoid it entirely. The latter approach runs the risk of
153 * receiving otherwise unnecessary IPIs.
154 *
155 * This choice is just a heuristic. The tlb code can handle this
156 * function returning true or false regardless of whether we have
157 * PCID.
158 */
159 return !static_cpu_has(X86_FEATURE_PCID);
4e57b946 160}
b956575b 161
b0579ade
AL
162struct tlb_context {
163 u64 ctx_id;
164 u64 tlb_gen;
165};
166
1e02ce4c 167struct tlb_state {
3d28ebce
AL
168 /*
169 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
170 * are on. This means that it may not match current->active_mm,
171 * which will contain the previous user mm when we're in lazy TLB
172 * mode even if we've already switched back to swapper_pg_dir.
173 */
174 struct mm_struct *loaded_mm;
10af6235
AL
175 u16 loaded_mm_asid;
176 u16 next_asid;
1e02ce4c 177
b956575b
AL
178 /*
179 * We can be in one of several states:
180 *
181 * - Actively using an mm. Our CPU's bit will be set in
182 * mm_cpumask(loaded_mm) and is_lazy == false;
183 *
184 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
185 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
186 *
187 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
188 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
189 * We're heuristically guessing that the CR3 load we
190 * skipped more than makes up for the overhead added by
191 * lazy mode.
192 */
193 bool is_lazy;
194
2ea907c4
DH
195 /*
196 * If set we changed the page tables in such a way that we
197 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
198 * This tells us to go invalidate all the non-loaded ctxs[]
199 * on the next context switch.
200 *
201 * The current ctx was kept up-to-date as it ran and does not
202 * need to be invalidated.
203 */
204 bool invalidate_other;
205
6fd166aa
PZ
206 /*
207 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
208 * the corresponding user PCID needs a flush next time we
209 * switch to it; see SWITCH_TO_USER_CR3.
210 */
211 unsigned short user_pcid_flush_mask;
212
1e02ce4c
AL
213 /*
214 * Access to this CR4 shadow and to H/W CR4 is protected by
215 * disabling interrupts when modifying either one.
216 */
217 unsigned long cr4;
b0579ade
AL
218
219 /*
220 * This is a list of all contexts that might exist in the TLB.
10af6235
AL
221 * There is one per ASID that we use, and the ASID (what the
222 * CPU calls PCID) is the index into ctxts.
b0579ade
AL
223 *
224 * For each context, ctx_id indicates which mm the TLB's user
225 * entries came from. As an invariant, the TLB will never
226 * contain entries that are out-of-date as when that mm reached
227 * the tlb_gen in the list.
228 *
229 * To be clear, this means that it's legal for the TLB code to
230 * flush the TLB without updating tlb_gen. This can happen
231 * (for now, at least) due to paravirt remote flushes.
10af6235
AL
232 *
233 * NB: context 0 is a bit special, since it's also used by
234 * various bits of init code. This is fine -- code that
235 * isn't aware of PCID will end up harmlessly flushing
236 * context 0.
b0579ade 237 */
10af6235 238 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
1e02ce4c
AL
239};
240DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
241
242/* Initialize cr4 shadow for this CPU. */
243static inline void cr4_init_shadow(void)
244{
1ef55be1 245 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
1e02ce4c
AL
246}
247
375074cc
AL
248/* Set in this cpu's CR4. */
249static inline void cr4_set_bits(unsigned long mask)
250{
251 unsigned long cr4;
252
1e02ce4c
AL
253 cr4 = this_cpu_read(cpu_tlbstate.cr4);
254 if ((cr4 | mask) != cr4) {
255 cr4 |= mask;
256 this_cpu_write(cpu_tlbstate.cr4, cr4);
257 __write_cr4(cr4);
258 }
375074cc
AL
259}
260
261/* Clear in this cpu's CR4. */
262static inline void cr4_clear_bits(unsigned long mask)
263{
264 unsigned long cr4;
265
1e02ce4c
AL
266 cr4 = this_cpu_read(cpu_tlbstate.cr4);
267 if ((cr4 & ~mask) != cr4) {
268 cr4 &= ~mask;
269 this_cpu_write(cpu_tlbstate.cr4, cr4);
270 __write_cr4(cr4);
271 }
272}
273
5a920155
TG
274static inline void cr4_toggle_bits(unsigned long mask)
275{
276 unsigned long cr4;
277
278 cr4 = this_cpu_read(cpu_tlbstate.cr4);
279 cr4 ^= mask;
280 this_cpu_write(cpu_tlbstate.cr4, cr4);
281 __write_cr4(cr4);
282}
283
1e02ce4c
AL
284/* Read the CR4 shadow. */
285static inline unsigned long cr4_read_shadow(void)
286{
287 return this_cpu_read(cpu_tlbstate.cr4);
375074cc
AL
288}
289
2ea907c4
DH
290/*
291 * Mark all other ASIDs as invalid, preserves the current.
292 */
293static inline void invalidate_other_asid(void)
294{
295 this_cpu_write(cpu_tlbstate.invalidate_other, true);
296}
297
375074cc
AL
298/*
299 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
300 * enable and PPro Global page enable), so that any CPU's that boot
301 * up after us can get the correct flags. This should only be used
302 * during boot on the boot cpu.
303 */
304extern unsigned long mmu_cr4_features;
305extern u32 *trampoline_cr4_features;
306
307static inline void cr4_set_bits_and_update_boot(unsigned long mask)
308{
309 mmu_cr4_features |= mask;
310 if (trampoline_cr4_features)
311 *trampoline_cr4_features = mmu_cr4_features;
312 cr4_set_bits(mask);
313}
314
72c0098d
AL
315extern void initialize_tlbstate_and_flush(void);
316
6fd166aa
PZ
317/*
318 * Given an ASID, flush the corresponding user ASID. We can delay this
319 * until the next time we switch to it.
320 *
321 * See SWITCH_TO_USER_CR3.
322 */
323static inline void invalidate_user_asid(u16 asid)
324{
325 /* There is no user ASID if address space separation is off */
326 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
327 return;
328
329 /*
330 * We only have a single ASID if PCID is off and the CR3
331 * write will have flushed it.
332 */
333 if (!cpu_feature_enabled(X86_FEATURE_PCID))
334 return;
335
336 if (!static_cpu_has(X86_FEATURE_PTI))
337 return;
338
339 __set_bit(kern_pcid(asid),
340 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
341}
342
3f67af51
PZ
343/*
344 * flush the entire current user mapping
345 */
d291cf83
TG
346static inline void __native_flush_tlb(void)
347{
6fd166aa 348 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
5cf0791d 349 /*
6fd166aa
PZ
350 * If current->mm == NULL then we borrow a mm which may change
351 * during a task switch and therefore we must not be preempted
352 * while we write CR3 back:
5cf0791d
SAS
353 */
354 preempt_disable();
6c690ee1 355 native_write_cr3(__native_read_cr3());
5cf0791d 356 preempt_enable();
d291cf83
TG
357}
358
3f67af51
PZ
359/*
360 * flush everything
361 */
d291cf83
TG
362static inline void __native_flush_tlb_global(void)
363{
23cb7d46 364 unsigned long cr4, flags;
d291cf83 365
d8bced79
AL
366 if (static_cpu_has(X86_FEATURE_INVPCID)) {
367 /*
368 * Using INVPCID is considerably faster than a pair of writes
369 * to CR4 sandwiched inside an IRQ flag save/restore.
6cff64b8
DH
370 *
371 * Note, this works with CR4.PCIDE=0 or 1.
d8bced79
AL
372 */
373 invpcid_flush_all();
374 return;
375 }
376
b1979a5f
IM
377 /*
378 * Read-modify-write to CR4 - protect it from preemption and
379 * from interrupts. (Use the raw variant because this code can
380 * be called from deep inside debugging code.)
381 */
382 raw_local_irq_save(flags);
383
23cb7d46
PZ
384 cr4 = this_cpu_read(cpu_tlbstate.cr4);
385 /* toggle PGE */
386 native_write_cr4(cr4 ^ X86_CR4_PGE);
387 /* write old PGE again and flush TLBs */
388 native_write_cr4(cr4);
b1979a5f
IM
389
390 raw_local_irq_restore(flags);
d291cf83
TG
391}
392
3f67af51
PZ
393/*
394 * flush one page in the user mapping
395 */
d291cf83
TG
396static inline void __native_flush_tlb_single(unsigned long addr)
397{
6fd166aa
PZ
398 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
399
94cf8de0 400 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
6fd166aa
PZ
401
402 if (!static_cpu_has(X86_FEATURE_PTI))
403 return;
404
6cff64b8
DH
405 /*
406 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
407 * Just use invalidate_user_asid() in case we are called early.
408 */
409 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
410 invalidate_user_asid(loaded_mm_asid);
411 else
412 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
d291cf83
TG
413}
414
3f67af51
PZ
415/*
416 * flush everything
417 */
d291cf83
TG
418static inline void __flush_tlb_all(void)
419{
3f67af51 420 if (boot_cpu_has(X86_FEATURE_PGE)) {
d291cf83 421 __flush_tlb_global();
3f67af51
PZ
422 } else {
423 /*
424 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
425 */
d291cf83 426 __flush_tlb();
3f67af51 427 }
d291cf83
TG
428}
429
3f67af51
PZ
430/*
431 * flush one page in the kernel mapping
432 */
d291cf83
TG
433static inline void __flush_tlb_one(unsigned long addr)
434{
ec659934 435 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
e8747f10 436 __flush_tlb_single(addr);
2ea907c4
DH
437
438 if (!static_cpu_has(X86_FEATURE_PTI))
439 return;
440
441 /*
442 * __flush_tlb_single() will have cleared the TLB entry for this ASID,
443 * but since kernel space is replicated across all, we must also
444 * invalidate all others.
445 */
446 invalidate_other_asid();
d291cf83
TG
447}
448
3e7f3db0 449#define TLB_FLUSH_ALL -1UL
d291cf83
TG
450
451/*
452 * TLB flushing:
453 *
d291cf83
TG
454 * - flush_tlb_all() flushes all processes TLBs
455 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
456 * - flush_tlb_page(vma, vmaddr) flushes one page
457 * - flush_tlb_range(vma, start, end) flushes a range of pages
458 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
a2055abe 459 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
d291cf83
TG
460 *
461 * ..but the i386 has somewhat limited tlb flushing capabilities,
462 * and page-granular flushes are available only on i486 and up.
d291cf83 463 */
a2055abe 464struct flush_tlb_info {
b0579ade
AL
465 /*
466 * We support several kinds of flushes.
467 *
468 * - Fully flush a single mm. .mm will be set, .end will be
469 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
470 * which the IPI sender is trying to catch us up.
471 *
472 * - Partially flush a single mm. .mm will be set, .start and
473 * .end will indicate the range, and .new_tlb_gen will be set
474 * such that the changes between generation .new_tlb_gen-1 and
475 * .new_tlb_gen are entirely contained in the indicated range.
476 *
477 * - Fully flush all mms whose tlb_gens have been updated. .mm
478 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
479 * will be zero.
480 */
481 struct mm_struct *mm;
482 unsigned long start;
483 unsigned long end;
484 u64 new_tlb_gen;
a2055abe
AL
485};
486
d291cf83
TG
487#define local_flush_tlb() __flush_tlb()
488
611ae8e3
AS
489#define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
490
491#define flush_tlb_range(vma, start, end) \
492 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
493
d291cf83 494extern void flush_tlb_all(void);
611ae8e3
AS
495extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
496 unsigned long end, unsigned long vmflag);
effee4b9 497extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
d291cf83 498
ca6c99c0
AL
499static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
500{
501 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
502}
503
4595f962 504void native_flush_tlb_others(const struct cpumask *cpumask,
a2055abe 505 const struct flush_tlb_info *info);
d291cf83 506
0a126abd
PZ
507static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
508{
509 /*
510 * Bump the generation count. This also serves as a full barrier
511 * that synchronizes with switch_mm(): callers are required to order
512 * their read of mm_cpumask after their writes to the paging
513 * structures.
514 */
515 return atomic64_inc_return(&mm->context.tlb_gen);
516}
517
e73ad5ff
AL
518static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
519 struct mm_struct *mm)
520{
f39681ed 521 inc_mm_tlb_gen(mm);
e73ad5ff
AL
522 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
523}
524
525extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
526
d291cf83 527#ifndef CONFIG_PARAVIRT
a2055abe
AL
528#define flush_tlb_others(mask, info) \
529 native_flush_tlb_others(mask, info)
96a388de 530#endif
d291cf83 531
1965aae3 532#endif /* _ASM_X86_TLBFLUSH_H */