x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]()
[linux-2.6-block.git] / arch / x86 / include / asm / tlbflush.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_TLBFLUSH_H
3#define _ASM_X86_TLBFLUSH_H
d291cf83
TG
4
5#include <linux/mm.h>
6#include <linux/sched.h>
7
8#include <asm/processor.h>
cd4d09ec 9#include <asm/cpufeature.h>
f05e798a 10#include <asm/special_insns.h>
ce4a4e56 11#include <asm/smp.h>
1a3b0cae 12#include <asm/invpcid.h>
6fd166aa
PZ
13#include <asm/pti.h>
14#include <asm/processor-flags.h>
d291cf83 15
0a126abd
PZ
16/*
17 * The x86 feature is called PCID (Process Context IDentifier). It is similar
18 * to what is traditionally called ASID on the RISC processors.
19 *
20 * We don't use the traditional ASID implementation, where each process/mm gets
21 * its own ASID and flush/restart when we run out of ASID space.
22 *
23 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24 * that came by on this CPU, allowing cheaper switch_mm between processes on
25 * this CPU.
26 *
27 * We end up with different spaces for different things. To avoid confusion we
28 * use different names for each of them:
29 *
30 * ASID - [0, TLB_NR_DYN_ASIDS-1]
31 * the canonical identifier for an mm
32 *
33 * kPCID - [1, TLB_NR_DYN_ASIDS]
34 * the value we write into the PCID part of CR3; corresponds to the
35 * ASID+1, because PCID 0 is special.
36 *
37 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38 * for KPTI each mm has two address spaces and thus needs two
39 * PCID values, but we can still do with a single ASID denomination
40 * for each mm. Corresponds to kPCID + 2048.
41 *
42 */
060a402a 43
cb0a9144
DH
44/* There are 12 bits of space for ASIDS in CR3 */
45#define CR3_HW_ASID_BITS 12
6fd166aa 46
cb0a9144
DH
47/*
48 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49 * user/kernel switches
50 */
6fd166aa
PZ
51#ifdef CONFIG_PAGE_TABLE_ISOLATION
52# define PTI_CONSUMED_PCID_BITS 1
53#else
54# define PTI_CONSUMED_PCID_BITS 0
55#endif
56
57#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
060a402a 58
cb0a9144
DH
59/*
60 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
0a126abd 61 * for them being zero-based. Another -1 is because PCID 0 is reserved for
cb0a9144
DH
62 * use by non-PCID-aware users.
63 */
6fd166aa 64#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
060a402a 65
6fd166aa
PZ
66/*
67 * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68 * lines.
69 */
70#define TLB_NR_DYN_ASIDS 6
cb0a9144 71
0a126abd
PZ
72/*
73 * Given @asid, compute kPCID
74 */
dd95f1a4 75static inline u16 kern_pcid(u16 asid)
060a402a 76{
dd95f1a4 77 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
6fd166aa
PZ
78
79#ifdef CONFIG_PAGE_TABLE_ISOLATION
dd95f1a4 80 /*
6fd166aa
PZ
81 * Make sure that the dynamic ASID space does not confict with the
82 * bit we are using to switch between user and kernel ASIDs.
83 */
f10ee3dc 84 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
6fd166aa
PZ
85
86 /*
87 * The ASID being passed in here should have respected the
88 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 */
f10ee3dc 90 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
6fd166aa 91#endif
dd95f1a4 92 /*
6fd166aa
PZ
93 * The dynamically-assigned ASIDs that get passed in are small
94 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
95 * so do not bother to clear it.
96 *
dd95f1a4
DH
97 * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 * PCID bits. This serves two purposes. It prevents a nasty
99 * situation in which PCID-unaware code saves CR3, loads some other
100 * value (with PCID == 0), and then restores CR3, thus corrupting
101 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
102 * that any bugs involving loading a PCID-enabled CR3 with
103 * CR4.PCIDE off will trigger deterministically.
104 */
105 return asid + 1;
060a402a
AL
106}
107
6cff64b8 108/*
0a126abd 109 * Given @asid, compute uPCID
6cff64b8
DH
110 */
111static inline u16 user_pcid(u16 asid)
112{
113 u16 ret = kern_pcid(asid);
114#ifdef CONFIG_PAGE_TABLE_ISOLATION
f10ee3dc 115 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
6cff64b8
DH
116#endif
117 return ret;
118}
119
50fb83a6
DH
120struct pgd_t;
121static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
060a402a 122{
50fb83a6 123 if (static_cpu_has(X86_FEATURE_PCID)) {
dd95f1a4 124 return __sme_pa(pgd) | kern_pcid(asid);
50fb83a6
DH
125 } else {
126 VM_WARN_ON_ONCE(asid != 0);
127 return __sme_pa(pgd);
128 }
060a402a
AL
129}
130
50fb83a6 131static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
060a402a 132{
cb0a9144 133 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
dd95f1a4
DH
134 VM_WARN_ON_ONCE(!this_cpu_has(X86_FEATURE_PCID));
135 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
f39681ed
AL
136}
137
d291cf83
TG
138#ifdef CONFIG_PARAVIRT
139#include <asm/paravirt.h>
140#else
141#define __flush_tlb() __native_flush_tlb()
142#define __flush_tlb_global() __native_flush_tlb_global()
1299ef1d 143#define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
d291cf83
TG
144#endif
145
4e57b946
AL
146static inline bool tlb_defer_switch_to_init_mm(void)
147{
7ac7f2c3
AL
148 /*
149 * If we have PCID, then switching to init_mm is reasonably
150 * fast. If we don't have PCID, then switching to init_mm is
151 * quite slow, so we try to defer it in the hopes that we can
152 * avoid it entirely. The latter approach runs the risk of
153 * receiving otherwise unnecessary IPIs.
154 *
155 * This choice is just a heuristic. The tlb code can handle this
156 * function returning true or false regardless of whether we have
157 * PCID.
158 */
159 return !static_cpu_has(X86_FEATURE_PCID);
4e57b946 160}
b956575b 161
b0579ade
AL
162struct tlb_context {
163 u64 ctx_id;
164 u64 tlb_gen;
165};
166
1e02ce4c 167struct tlb_state {
3d28ebce
AL
168 /*
169 * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
170 * are on. This means that it may not match current->active_mm,
171 * which will contain the previous user mm when we're in lazy TLB
172 * mode even if we've already switched back to swapper_pg_dir.
173 */
174 struct mm_struct *loaded_mm;
10af6235
AL
175 u16 loaded_mm_asid;
176 u16 next_asid;
18bf3c3e
TC
177 /* last user mm's ctx id */
178 u64 last_ctx_id;
1e02ce4c 179
b956575b
AL
180 /*
181 * We can be in one of several states:
182 *
183 * - Actively using an mm. Our CPU's bit will be set in
184 * mm_cpumask(loaded_mm) and is_lazy == false;
185 *
186 * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
187 * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
188 *
189 * - Lazily using a real mm. loaded_mm != &init_mm, our bit
190 * is set in mm_cpumask(loaded_mm), but is_lazy == true.
191 * We're heuristically guessing that the CR3 load we
192 * skipped more than makes up for the overhead added by
193 * lazy mode.
194 */
195 bool is_lazy;
196
2ea907c4
DH
197 /*
198 * If set we changed the page tables in such a way that we
199 * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
200 * This tells us to go invalidate all the non-loaded ctxs[]
201 * on the next context switch.
202 *
203 * The current ctx was kept up-to-date as it ran and does not
204 * need to be invalidated.
205 */
206 bool invalidate_other;
207
6fd166aa
PZ
208 /*
209 * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
210 * the corresponding user PCID needs a flush next time we
211 * switch to it; see SWITCH_TO_USER_CR3.
212 */
213 unsigned short user_pcid_flush_mask;
214
1e02ce4c
AL
215 /*
216 * Access to this CR4 shadow and to H/W CR4 is protected by
217 * disabling interrupts when modifying either one.
218 */
219 unsigned long cr4;
b0579ade
AL
220
221 /*
222 * This is a list of all contexts that might exist in the TLB.
10af6235
AL
223 * There is one per ASID that we use, and the ASID (what the
224 * CPU calls PCID) is the index into ctxts.
b0579ade
AL
225 *
226 * For each context, ctx_id indicates which mm the TLB's user
227 * entries came from. As an invariant, the TLB will never
228 * contain entries that are out-of-date as when that mm reached
229 * the tlb_gen in the list.
230 *
231 * To be clear, this means that it's legal for the TLB code to
232 * flush the TLB without updating tlb_gen. This can happen
233 * (for now, at least) due to paravirt remote flushes.
10af6235
AL
234 *
235 * NB: context 0 is a bit special, since it's also used by
236 * various bits of init code. This is fine -- code that
237 * isn't aware of PCID will end up harmlessly flushing
238 * context 0.
b0579ade 239 */
10af6235 240 struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
1e02ce4c
AL
241};
242DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
243
244/* Initialize cr4 shadow for this CPU. */
245static inline void cr4_init_shadow(void)
246{
1ef55be1 247 this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
1e02ce4c
AL
248}
249
0c3292ca
NA
250static inline void __cr4_set(unsigned long cr4)
251{
9d0b6232 252 lockdep_assert_irqs_disabled();
0c3292ca
NA
253 this_cpu_write(cpu_tlbstate.cr4, cr4);
254 __write_cr4(cr4);
255}
256
375074cc
AL
257/* Set in this cpu's CR4. */
258static inline void cr4_set_bits(unsigned long mask)
259{
9d0b6232 260 unsigned long cr4, flags;
375074cc 261
9d0b6232 262 local_irq_save(flags);
1e02ce4c 263 cr4 = this_cpu_read(cpu_tlbstate.cr4);
0c3292ca
NA
264 if ((cr4 | mask) != cr4)
265 __cr4_set(cr4 | mask);
9d0b6232 266 local_irq_restore(flags);
375074cc
AL
267}
268
269/* Clear in this cpu's CR4. */
270static inline void cr4_clear_bits(unsigned long mask)
271{
9d0b6232 272 unsigned long cr4, flags;
375074cc 273
9d0b6232 274 local_irq_save(flags);
1e02ce4c 275 cr4 = this_cpu_read(cpu_tlbstate.cr4);
0c3292ca
NA
276 if ((cr4 & ~mask) != cr4)
277 __cr4_set(cr4 & ~mask);
9d0b6232 278 local_irq_restore(flags);
1e02ce4c
AL
279}
280
9d0b6232 281static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
5a920155
TG
282{
283 unsigned long cr4;
284
285 cr4 = this_cpu_read(cpu_tlbstate.cr4);
0c3292ca 286 __cr4_set(cr4 ^ mask);
5a920155
TG
287}
288
1e02ce4c
AL
289/* Read the CR4 shadow. */
290static inline unsigned long cr4_read_shadow(void)
291{
292 return this_cpu_read(cpu_tlbstate.cr4);
375074cc
AL
293}
294
2ea907c4
DH
295/*
296 * Mark all other ASIDs as invalid, preserves the current.
297 */
298static inline void invalidate_other_asid(void)
299{
300 this_cpu_write(cpu_tlbstate.invalidate_other, true);
301}
302
375074cc
AL
303/*
304 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
305 * enable and PPro Global page enable), so that any CPU's that boot
306 * up after us can get the correct flags. This should only be used
307 * during boot on the boot cpu.
308 */
309extern unsigned long mmu_cr4_features;
310extern u32 *trampoline_cr4_features;
311
312static inline void cr4_set_bits_and_update_boot(unsigned long mask)
313{
314 mmu_cr4_features |= mask;
315 if (trampoline_cr4_features)
316 *trampoline_cr4_features = mmu_cr4_features;
317 cr4_set_bits(mask);
318}
319
72c0098d
AL
320extern void initialize_tlbstate_and_flush(void);
321
6fd166aa
PZ
322/*
323 * Given an ASID, flush the corresponding user ASID. We can delay this
324 * until the next time we switch to it.
325 *
326 * See SWITCH_TO_USER_CR3.
327 */
328static inline void invalidate_user_asid(u16 asid)
329{
330 /* There is no user ASID if address space separation is off */
331 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
332 return;
333
334 /*
335 * We only have a single ASID if PCID is off and the CR3
336 * write will have flushed it.
337 */
338 if (!cpu_feature_enabled(X86_FEATURE_PCID))
339 return;
340
341 if (!static_cpu_has(X86_FEATURE_PTI))
342 return;
343
344 __set_bit(kern_pcid(asid),
345 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
346}
347
3f67af51
PZ
348/*
349 * flush the entire current user mapping
350 */
d291cf83
TG
351static inline void __native_flush_tlb(void)
352{
5cf0791d 353 /*
decab088
TG
354 * Preemption or interrupts must be disabled to protect the access
355 * to the per CPU variable and to prevent being preempted between
356 * read_cr3() and write_cr3().
5cf0791d 357 */
decab088
TG
358 WARN_ON_ONCE(preemptible());
359
360 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
361
362 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
6c690ee1 363 native_write_cr3(__native_read_cr3());
d291cf83
TG
364}
365
3f67af51
PZ
366/*
367 * flush everything
368 */
d291cf83
TG
369static inline void __native_flush_tlb_global(void)
370{
23cb7d46 371 unsigned long cr4, flags;
d291cf83 372
d8bced79
AL
373 if (static_cpu_has(X86_FEATURE_INVPCID)) {
374 /*
375 * Using INVPCID is considerably faster than a pair of writes
376 * to CR4 sandwiched inside an IRQ flag save/restore.
6cff64b8
DH
377 *
378 * Note, this works with CR4.PCIDE=0 or 1.
d8bced79
AL
379 */
380 invpcid_flush_all();
381 return;
382 }
383
b1979a5f
IM
384 /*
385 * Read-modify-write to CR4 - protect it from preemption and
386 * from interrupts. (Use the raw variant because this code can
387 * be called from deep inside debugging code.)
388 */
389 raw_local_irq_save(flags);
390
23cb7d46
PZ
391 cr4 = this_cpu_read(cpu_tlbstate.cr4);
392 /* toggle PGE */
393 native_write_cr4(cr4 ^ X86_CR4_PGE);
394 /* write old PGE again and flush TLBs */
395 native_write_cr4(cr4);
b1979a5f
IM
396
397 raw_local_irq_restore(flags);
d291cf83
TG
398}
399
3f67af51
PZ
400/*
401 * flush one page in the user mapping
402 */
1299ef1d 403static inline void __native_flush_tlb_one_user(unsigned long addr)
d291cf83 404{
6fd166aa
PZ
405 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
406
94cf8de0 407 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
6fd166aa
PZ
408
409 if (!static_cpu_has(X86_FEATURE_PTI))
410 return;
411
6cff64b8
DH
412 /*
413 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
414 * Just use invalidate_user_asid() in case we are called early.
415 */
416 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
417 invalidate_user_asid(loaded_mm_asid);
418 else
419 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
d291cf83
TG
420}
421
3f67af51
PZ
422/*
423 * flush everything
424 */
d291cf83
TG
425static inline void __flush_tlb_all(void)
426{
3f67af51 427 if (boot_cpu_has(X86_FEATURE_PGE)) {
d291cf83 428 __flush_tlb_global();
3f67af51
PZ
429 } else {
430 /*
431 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
432 */
d291cf83 433 __flush_tlb();
3f67af51 434 }
d291cf83
TG
435}
436
3f67af51
PZ
437/*
438 * flush one page in the kernel mapping
439 */
1299ef1d 440static inline void __flush_tlb_one_kernel(unsigned long addr)
d291cf83 441{
ec659934 442 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1299ef1d
AL
443
444 /*
445 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
446 * paravirt equivalent. Even with PCID, this is sufficient: we only
447 * use PCID if we also use global PTEs for the kernel mapping, and
448 * INVLPG flushes global translations across all address spaces.
449 *
450 * If PTI is on, then the kernel is mapped with non-global PTEs, and
451 * __flush_tlb_one_user() will flush the given address for the current
452 * kernel address space and for its usermode counterpart, but it does
453 * not flush it for other address spaces.
454 */
455 __flush_tlb_one_user(addr);
2ea907c4
DH
456
457 if (!static_cpu_has(X86_FEATURE_PTI))
458 return;
459
460 /*
1299ef1d
AL
461 * See above. We need to propagate the flush to all other address
462 * spaces. In principle, we only need to propagate it to kernelmode
463 * address spaces, but the extra bookkeeping we would need is not
464 * worth it.
2ea907c4
DH
465 */
466 invalidate_other_asid();
d291cf83
TG
467}
468
3e7f3db0 469#define TLB_FLUSH_ALL -1UL
d291cf83
TG
470
471/*
472 * TLB flushing:
473 *
d291cf83
TG
474 * - flush_tlb_all() flushes all processes TLBs
475 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
476 * - flush_tlb_page(vma, vmaddr) flushes one page
477 * - flush_tlb_range(vma, start, end) flushes a range of pages
478 * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
a2055abe 479 * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
d291cf83
TG
480 *
481 * ..but the i386 has somewhat limited tlb flushing capabilities,
482 * and page-granular flushes are available only on i486 and up.
d291cf83 483 */
a2055abe 484struct flush_tlb_info {
b0579ade
AL
485 /*
486 * We support several kinds of flushes.
487 *
488 * - Fully flush a single mm. .mm will be set, .end will be
489 * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
490 * which the IPI sender is trying to catch us up.
491 *
492 * - Partially flush a single mm. .mm will be set, .start and
493 * .end will indicate the range, and .new_tlb_gen will be set
494 * such that the changes between generation .new_tlb_gen-1 and
495 * .new_tlb_gen are entirely contained in the indicated range.
496 *
497 * - Fully flush all mms whose tlb_gens have been updated. .mm
498 * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
499 * will be zero.
500 */
501 struct mm_struct *mm;
502 unsigned long start;
503 unsigned long end;
504 u64 new_tlb_gen;
a2055abe
AL
505};
506
d291cf83
TG
507#define local_flush_tlb() __flush_tlb()
508
611ae8e3
AS
509#define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL)
510
511#define flush_tlb_range(vma, start, end) \
512 flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags)
513
d291cf83 514extern void flush_tlb_all(void);
611ae8e3
AS
515extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
516 unsigned long end, unsigned long vmflag);
effee4b9 517extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
d291cf83 518
ca6c99c0
AL
519static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
520{
521 flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, VM_NONE);
522}
523
4595f962 524void native_flush_tlb_others(const struct cpumask *cpumask,
a2055abe 525 const struct flush_tlb_info *info);
d291cf83 526
0a126abd
PZ
527static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
528{
529 /*
530 * Bump the generation count. This also serves as a full barrier
531 * that synchronizes with switch_mm(): callers are required to order
532 * their read of mm_cpumask after their writes to the paging
533 * structures.
534 */
535 return atomic64_inc_return(&mm->context.tlb_gen);
536}
537
e73ad5ff
AL
538static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
539 struct mm_struct *mm)
540{
f39681ed 541 inc_mm_tlb_gen(mm);
e73ad5ff
AL
542 cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
543}
544
545extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
546
d291cf83 547#ifndef CONFIG_PARAVIRT
a2055abe
AL
548#define flush_tlb_others(mask, info) \
549 native_flush_tlb_others(mask, info)
96a388de 550#endif
d291cf83 551
1965aae3 552#endif /* _ASM_X86_TLBFLUSH_H */