Merge tag 'devicetree-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[linux-2.6-block.git] / arch / x86 / include / asm / mmu_context.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1965aae3
PA
2#ifndef _ASM_X86_MMU_CONTEXT_H
3#define _ASM_X86_MMU_CONTEXT_H
c3c2fee3
JF
4
5#include <asm/desc.h>
60063497 6#include <linux/atomic.h>
d17d8f9d 7#include <linux/mm_types.h>
7d06d9c9 8#include <linux/pkeys.h>
d17d8f9d
DH
9
10#include <trace/events/tlb.h>
11
c3c2fee3
JF
12#include <asm/pgalloc.h>
13#include <asm/tlbflush.h>
14#include <asm/paravirt.h>
fe3d197f 15#include <asm/mpx.h>
d97080eb 16#include <asm/debugreg.h>
f39681ed
AL
17
18extern atomic64_t last_mm_ctx_id;
19
fdc0269e 20#ifndef CONFIG_PARAVIRT_XXL
c3c2fee3
JF
21static inline void paravirt_activate_mm(struct mm_struct *prev,
22 struct mm_struct *next)
23{
24}
fdc0269e 25#endif /* !CONFIG_PARAVIRT_XXL */
c3c2fee3 26
7911d3f7 27#ifdef CONFIG_PERF_EVENTS
631fe154
DB
28
29DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
a6673429 30
7911d3f7
AL
31static inline void load_mm_cr4(struct mm_struct *mm)
32{
631fe154 33 if (static_branch_unlikely(&rdpmc_always_available_key) ||
a6673429 34 atomic_read(&mm->context.perf_rdpmc_allowed))
7911d3f7
AL
35 cr4_set_bits(X86_CR4_PCE);
36 else
37 cr4_clear_bits(X86_CR4_PCE);
38}
39#else
40static inline void load_mm_cr4(struct mm_struct *mm) {}
41#endif
42
a5b9e5a2 43#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
44/*
45 * ldt_structs can be allocated, used, and freed, but they are never
46 * modified while live.
47 */
48struct ldt_struct {
49 /*
50 * Xen requires page-aligned LDTs with special permissions. This is
51 * needed to prevent us from installing evil descriptors such as
52 * call gates. On native, we could merge the ldt_struct and LDT
53 * allocations, but it's not worth trying to optimize.
54 */
f55f0501
AL
55 struct desc_struct *entries;
56 unsigned int nr_entries;
57
58 /*
59 * If PTI is in use, then the entries array is not mapped while we're
60 * in user mode. The whole array will be aliased at the addressed
61 * given by ldt_slot_va(slot). We use two slots so that we can allocate
62 * and map, and enable a new LDT without invalidating the mapping
63 * of an older, still-in-use LDT.
64 *
65 * slot will be -1 if this LDT doesn't have an alias mapping.
66 */
67 int slot;
37868fe1
AL
68};
69
f55f0501
AL
70/* This is a multiple of PAGE_SIZE. */
71#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
72
73static inline void *ldt_slot_va(int slot)
74{
f55f0501 75 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
f55f0501
AL
76}
77
a5b9e5a2
AL
78/*
79 * Used for LDT copy/destruction.
80 */
a4828f81
TG
81static inline void init_new_context_ldt(struct mm_struct *mm)
82{
83 mm->context.ldt = NULL;
84 init_rwsem(&mm->context.ldt_usr_sem);
85}
86int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
39a0526f 87void destroy_context_ldt(struct mm_struct *mm);
f55f0501 88void ldt_arch_exit_mmap(struct mm_struct *mm);
a5b9e5a2 89#else /* CONFIG_MODIFY_LDT_SYSCALL */
a4828f81
TG
90static inline void init_new_context_ldt(struct mm_struct *mm) { }
91static inline int ldt_dup_context(struct mm_struct *oldmm,
92 struct mm_struct *mm)
a5b9e5a2
AL
93{
94 return 0;
95}
f55f0501
AL
96static inline void destroy_context_ldt(struct mm_struct *mm) { }
97static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
a5b9e5a2
AL
98#endif
99
37868fe1
AL
100static inline void load_mm_ldt(struct mm_struct *mm)
101{
a5b9e5a2 102#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
103 struct ldt_struct *ldt;
104
3382290e
WD
105 /* READ_ONCE synchronizes with smp_store_release */
106 ldt = READ_ONCE(mm->context.ldt);
37868fe1
AL
107
108 /*
109 * Any change to mm->context.ldt is followed by an IPI to all
110 * CPUs with the mm active. The LDT will not be freed until
111 * after the IPI is handled by all such CPUs. This means that,
112 * if the ldt_struct changes before we return, the values we see
113 * will be safe, and the new values will be loaded before we run
114 * any user code.
115 *
116 * NB: don't try to convert this to use RCU without extreme care.
117 * We would still need IRQs off, because we don't want to change
118 * the local LDT after an IPI loaded a newer value than the one
119 * that we can see.
120 */
121
f55f0501
AL
122 if (unlikely(ldt)) {
123 if (static_cpu_has(X86_FEATURE_PTI)) {
124 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
125 /*
126 * Whoops -- either the new LDT isn't mapped
127 * (if slot == -1) or is mapped into a bogus
128 * slot (if slot > 1).
129 */
130 clear_LDT();
131 return;
132 }
133
134 /*
135 * If page table isolation is enabled, ldt->entries
136 * will not be mapped in the userspace pagetables.
137 * Tell the CPU to access the LDT through the alias
138 * at ldt_slot_va(ldt->slot).
139 */
140 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
141 } else {
142 set_ldt(ldt->entries, ldt->nr_entries);
143 }
144 } else {
37868fe1 145 clear_LDT();
f55f0501 146 }
a5b9e5a2
AL
147#else
148 clear_LDT();
149#endif
73534258
AL
150}
151
152static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
153{
154#ifdef CONFIG_MODIFY_LDT_SYSCALL
155 /*
156 * Load the LDT if either the old or new mm had an LDT.
157 *
158 * An mm will never go from having an LDT to not having an LDT. Two
159 * mms never share an LDT, so we don't gain anything by checking to
160 * see whether the LDT changed. There's also no guarantee that
161 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
162 * then prev->context.ldt will also be non-NULL.
163 *
164 * If we really cared, we could optimize the case where prev == next
165 * and we're exiting lazy mode. Most of the time, if this happens,
166 * we don't actually need to reload LDTR, but modify_ldt() is mostly
167 * used by legacy code and emulators where we don't need this level of
168 * performance.
169 *
170 * This uses | instead of || because it generates better code.
171 */
172 if (unlikely((unsigned long)prev->context.ldt |
173 (unsigned long)next->context.ldt))
174 load_mm_ldt(next);
175#endif
37868fe1
AL
176
177 DEBUG_LOCKS_WARN_ON(preemptible());
178}
179
b956575b 180void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
6826c8ff 181
a31e184e
DH
182/*
183 * Init a new mm. Used on mm copies, like at fork()
184 * and on mm's that are brand-new, like at execve().
185 */
39a0526f
DH
186static inline int init_new_context(struct task_struct *tsk,
187 struct mm_struct *mm)
188{
c2b3496b
PZ
189 mutex_init(&mm->context.lock);
190
f39681ed
AL
191 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
192 atomic64_set(&mm->context.tlb_gen, 0);
193
a4828f81 194#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
e8c24d3a 195 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
2fa9d1cf 196 /* pkey 0 is the default and allocated implicitly */
e8c24d3a
DH
197 mm->context.pkey_allocation_map = 0x1;
198 /* -1 means unallocated or invalid */
199 mm->context.execute_only_pkey = -1;
200 }
a4828f81
TG
201#endif
202 init_new_context_ldt(mm);
203 return 0;
39a0526f
DH
204}
205static inline void destroy_context(struct mm_struct *mm)
206{
207 destroy_context_ldt(mm);
208}
209
69c0319a
AL
210extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
211 struct task_struct *tsk);
6826c8ff 212
078194f8
AL
213extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
214 struct task_struct *tsk);
215#define switch_mm_irqs_off switch_mm_irqs_off
c3c2fee3
JF
216
217#define activate_mm(prev, next) \
218do { \
219 paravirt_activate_mm((prev), (next)); \
220 switch_mm((prev), (next), NULL); \
221} while (0);
222
6826c8ff
BG
223#ifdef CONFIG_X86_32
224#define deactivate_mm(tsk, mm) \
225do { \
ccbeed3a 226 lazy_load_gs(0); \
6826c8ff
BG
227} while (0)
228#else
229#define deactivate_mm(tsk, mm) \
230do { \
231 load_gs_index(0); \
232 loadsegment(fs, 0); \
233} while (0)
234#endif
c3c2fee3 235
a31e184e
DH
236static inline void arch_dup_pkeys(struct mm_struct *oldmm,
237 struct mm_struct *mm)
238{
239#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
240 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
241 return;
242
243 /* Duplicate the oldmm pkey state in mm: */
244 mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
245 mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
246#endif
247}
248
c10e83f5 249static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
a1ea1c03 250{
a31e184e 251 arch_dup_pkeys(oldmm, mm);
a1ea1c03 252 paravirt_arch_dup_mmap(oldmm, mm);
a4828f81 253 return ldt_dup_context(oldmm, mm);
a1ea1c03
DH
254}
255
256static inline void arch_exit_mmap(struct mm_struct *mm)
257{
258 paravirt_arch_exit_mmap(mm);
f55f0501 259 ldt_arch_exit_mmap(mm);
a1ea1c03
DH
260}
261
b0e9b09b
DH
262#ifdef CONFIG_X86_64
263static inline bool is_64bit_mm(struct mm_struct *mm)
264{
97f2645f 265 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
b0e9b09b
DH
266 !(mm->context.ia32_compat == TIF_IA32);
267}
268#else
269static inline bool is_64bit_mm(struct mm_struct *mm)
270{
271 return false;
272}
273#endif
274
fe3d197f
DH
275static inline void arch_bprm_mm_init(struct mm_struct *mm,
276 struct vm_area_struct *vma)
277{
278 mpx_mm_init(mm);
279}
280
5a28fc94
DH
281static inline void arch_unmap(struct mm_struct *mm, unsigned long start,
282 unsigned long end)
1de4fa14 283{
c922228e
DH
284 /*
285 * mpx_notify_unmap() goes and reads a rarely-hot
286 * cacheline in the mm_struct. That can be expensive
287 * enough to be seen in profiles.
288 *
289 * The mpx_notify_unmap() call and its contents have been
290 * observed to affect munmap() performance on hardware
291 * where MPX is not present.
292 *
293 * The unlikely() optimizes for the fast case: no MPX
294 * in the CPU, or no MPX use in the process. Even if
295 * we get this wrong (in the unlikely event that MPX
296 * is widely enabled on some system) the overhead of
297 * MPX itself (reading bounds tables) is expected to
298 * overwhelm the overhead of getting this unlikely()
299 * consistently wrong.
300 */
301 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
5a28fc94 302 mpx_notify_unmap(mm, start, end);
1de4fa14
DH
303}
304
33a709b2
DH
305/*
306 * We only want to enforce protection keys on the current process
307 * because we effectively have no access to PKRU for other
308 * processes or any way to tell *which * PKRU in a threaded
309 * process we could use.
310 *
311 * So do not enforce things if the VMA is not from the current
312 * mm, or if we are in a kernel thread.
313 */
314static inline bool vma_is_foreign(struct vm_area_struct *vma)
315{
316 if (!current->mm)
317 return true;
318 /*
319 * Should PKRU be enforced on the access to this VMA? If
320 * the VMA is from another process, then PKRU has no
321 * relevance and should not be enforced.
322 */
323 if (current->mm != vma->vm_mm)
324 return true;
325
326 return false;
327}
328
1b2ee126 329static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
d61172b4 330 bool write, bool execute, bool foreign)
33a709b2 331{
d61172b4
DH
332 /* pkeys never affect instruction fetches */
333 if (execute)
334 return true;
33a709b2 335 /* allow access if the VMA is not one from this process */
1b2ee126 336 if (foreign || vma_is_foreign(vma))
33a709b2
DH
337 return true;
338 return __pkru_allows_pkey(vma_pkey(vma), write);
339}
340
d6e41f11
AL
341/*
342 * This can be used from process context to figure out what the value of
6c690ee1 343 * CR3 is without needing to do a (slow) __read_cr3().
d6e41f11
AL
344 *
345 * It's intended to be used for code like KVM that sneakily changes CR3
346 * and needs to restore it. It needs to be used very carefully.
347 */
348static inline unsigned long __get_current_cr3_fast(void)
349{
50fb83a6 350 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
47061a24 351 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
10af6235 352
d6e41f11 353 /* For now, be very restrictive about when this can be called. */
4c07f904 354 VM_WARN_ON(in_nmi() || preemptible());
d6e41f11 355
6c690ee1 356 VM_BUG_ON(cr3 != __read_cr3());
d6e41f11
AL
357 return cr3;
358}
359
cefa929c
AL
360typedef struct {
361 struct mm_struct *mm;
362} temp_mm_state_t;
363
364/*
365 * Using a temporary mm allows to set temporary mappings that are not accessible
366 * by other CPUs. Such mappings are needed to perform sensitive memory writes
367 * that override the kernel memory protections (e.g., W^X), without exposing the
368 * temporary page-table mappings that are required for these write operations to
369 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
370 * mapping is torn down.
371 *
372 * Context: The temporary mm needs to be used exclusively by a single core. To
373 * harden security IRQs must be disabled while the temporary mm is
374 * loaded, thereby preventing interrupt handler bugs from overriding
375 * the kernel memory protection.
376 */
377static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
378{
379 temp_mm_state_t temp_state;
380
381 lockdep_assert_irqs_disabled();
382 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
383 switch_mm_irqs_off(NULL, mm, current);
d97080eb
NA
384
385 /*
386 * If breakpoints are enabled, disable them while the temporary mm is
387 * used. Userspace might set up watchpoints on addresses that are used
388 * in the temporary mm, which would lead to wrong signals being sent or
389 * crashes.
390 *
391 * Note that breakpoints are not disabled selectively, which also causes
392 * kernel breakpoints (e.g., perf's) to be disabled. This might be
393 * undesirable, but still seems reasonable as the code that runs in the
394 * temporary mm should be short.
395 */
396 if (hw_breakpoint_active())
397 hw_breakpoint_disable();
398
cefa929c
AL
399 return temp_state;
400}
401
402static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
403{
404 lockdep_assert_irqs_disabled();
405 switch_mm_irqs_off(NULL, prev_state.mm, current);
d97080eb
NA
406
407 /*
408 * Restore the breakpoints if they were disabled before the temporary mm
409 * was loaded.
410 */
411 if (hw_breakpoint_active())
412 hw_breakpoint_restore();
cefa929c
AL
413}
414
1965aae3 415#endif /* _ASM_X86_MMU_CONTEXT_H */