x86: replace percpu_xxx funcs with this_cpu_xxx
[linux-2.6-block.git] / arch / x86 / include / asm / fpu-internal.h
CommitLineData
1361b83a
LT
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10#ifndef _FPU_INTERNAL_H
11#define _FPU_INTERNAL_H
12
13#include <linux/kernel_stat.h>
14#include <linux/regset.h>
15#include <linux/slab.h>
16#include <asm/asm.h>
17#include <asm/cpufeature.h>
18#include <asm/processor.h>
19#include <asm/sigcontext.h>
20#include <asm/user.h>
21#include <asm/uaccess.h>
22#include <asm/xsave.h>
23
24extern unsigned int sig_xstate_size;
25extern void fpu_init(void);
26
27DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
28
29extern user_regset_active_fn fpregs_active, xfpregs_active;
30extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
31 xstateregs_get;
32extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
33 xstateregs_set;
34
35
36/*
37 * xstateregs_active == fpregs_active. Please refer to the comment
38 * at the definition of fpregs_active.
39 */
40#define xstateregs_active fpregs_active
41
42extern struct _fpx_sw_bytes fx_sw_reserved;
43#ifdef CONFIG_IA32_EMULATION
44extern unsigned int sig_xstate_ia32_size;
45extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
46struct _fpstate_ia32;
47struct _xstate_ia32;
48extern int save_i387_xstate_ia32(void __user *buf);
49extern int restore_i387_xstate_ia32(void __user *buf);
50#endif
51
52#ifdef CONFIG_MATH_EMULATION
53extern void finit_soft_fpu(struct i387_soft_struct *soft);
54#else
55static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
56#endif
57
58#define X87_FSW_ES (1 << 7) /* Exception Summary */
59
60static __always_inline __pure bool use_xsaveopt(void)
61{
62 return static_cpu_has(X86_FEATURE_XSAVEOPT);
63}
64
65static __always_inline __pure bool use_xsave(void)
66{
67 return static_cpu_has(X86_FEATURE_XSAVE);
68}
69
70static __always_inline __pure bool use_fxsr(void)
71{
72 return static_cpu_has(X86_FEATURE_FXSR);
73}
74
75extern void __sanitize_i387_state(struct task_struct *);
76
77static inline void sanitize_i387_state(struct task_struct *tsk)
78{
79 if (!use_xsaveopt())
80 return;
81 __sanitize_i387_state(tsk);
82}
83
84#ifdef CONFIG_X86_64
85static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
86{
87 int err;
88
89 /* See comment in fxsave() below. */
90#ifdef CONFIG_AS_FXSAVEQ
91 asm volatile("1: fxrstorq %[fx]\n\t"
92 "2:\n"
93 ".section .fixup,\"ax\"\n"
94 "3: movl $-1,%[err]\n"
95 " jmp 2b\n"
96 ".previous\n"
97 _ASM_EXTABLE(1b, 3b)
98 : [err] "=r" (err)
99 : [fx] "m" (*fx), "0" (0));
100#else
101 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
102 "2:\n"
103 ".section .fixup,\"ax\"\n"
104 "3: movl $-1,%[err]\n"
105 " jmp 2b\n"
106 ".previous\n"
107 _ASM_EXTABLE(1b, 3b)
108 : [err] "=r" (err)
109 : [fx] "R" (fx), "m" (*fx), "0" (0));
110#endif
111 return err;
112}
113
114static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
115{
116 int err;
117
118 /*
119 * Clear the bytes not touched by the fxsave and reserved
120 * for the SW usage.
121 */
122 err = __clear_user(&fx->sw_reserved,
123 sizeof(struct _fpx_sw_bytes));
124 if (unlikely(err))
125 return -EFAULT;
126
127 /* See comment in fxsave() below. */
128#ifdef CONFIG_AS_FXSAVEQ
129 asm volatile("1: fxsaveq %[fx]\n\t"
130 "2:\n"
131 ".section .fixup,\"ax\"\n"
132 "3: movl $-1,%[err]\n"
133 " jmp 2b\n"
134 ".previous\n"
135 _ASM_EXTABLE(1b, 3b)
136 : [err] "=r" (err), [fx] "=m" (*fx)
137 : "0" (0));
138#else
139 asm volatile("1: rex64/fxsave (%[fx])\n\t"
140 "2:\n"
141 ".section .fixup,\"ax\"\n"
142 "3: movl $-1,%[err]\n"
143 " jmp 2b\n"
144 ".previous\n"
145 _ASM_EXTABLE(1b, 3b)
146 : [err] "=r" (err), "=m" (*fx)
147 : [fx] "R" (fx), "0" (0));
148#endif
149 if (unlikely(err) &&
150 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
151 err = -EFAULT;
152 /* No need to clear here because the caller clears USED_MATH */
153 return err;
154}
155
156static inline void fpu_fxsave(struct fpu *fpu)
157{
158 /* Using "rex64; fxsave %0" is broken because, if the memory operand
159 uses any extended registers for addressing, a second REX prefix
160 will be generated (to the assembler, rex64 followed by semicolon
161 is a separate instruction), and hence the 64-bitness is lost. */
162
163#ifdef CONFIG_AS_FXSAVEQ
164 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
165 starting with gas 2.16. */
166 __asm__ __volatile__("fxsaveq %0"
167 : "=m" (fpu->state->fxsave));
168#else
169 /* Using, as a workaround, the properly prefixed form below isn't
170 accepted by any binutils version so far released, complaining that
171 the same type of prefix is used twice if an extended register is
172 needed for addressing (fix submitted to mainline 2005-11-21).
173 asm volatile("rex64/fxsave %0"
174 : "=m" (fpu->state->fxsave));
175 This, however, we can work around by forcing the compiler to select
176 an addressing mode that doesn't require extended registers. */
177 asm volatile("rex64/fxsave (%[fx])"
178 : "=m" (fpu->state->fxsave)
179 : [fx] "R" (&fpu->state->fxsave));
180#endif
181}
182
183#else /* CONFIG_X86_32 */
184
185/* perform fxrstor iff the processor has extended states, otherwise frstor */
186static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
187{
188 /*
189 * The "nop" is needed to make the instructions the same
190 * length.
191 */
192 alternative_input(
193 "nop ; frstor %1",
194 "fxrstor %1",
195 X86_FEATURE_FXSR,
196 "m" (*fx));
197
198 return 0;
199}
200
201static inline void fpu_fxsave(struct fpu *fpu)
202{
203 asm volatile("fxsave %[fx]"
204 : [fx] "=m" (fpu->state->fxsave));
205}
206
207#endif /* CONFIG_X86_64 */
208
209/*
210 * These must be called with preempt disabled. Returns
211 * 'true' if the FPU state is still intact.
212 */
213static inline int fpu_save_init(struct fpu *fpu)
214{
215 if (use_xsave()) {
216 fpu_xsave(fpu);
217
218 /*
219 * xsave header may indicate the init state of the FP.
220 */
221 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
222 return 1;
223 } else if (use_fxsr()) {
224 fpu_fxsave(fpu);
225 } else {
226 asm volatile("fnsave %[fx]; fwait"
227 : [fx] "=m" (fpu->state->fsave));
228 return 0;
229 }
230
231 /*
232 * If exceptions are pending, we need to clear them so
233 * that we don't randomly get exceptions later.
234 *
235 * FIXME! Is this perhaps only true for the old-style
236 * irq13 case? Maybe we could leave the x87 state
237 * intact otherwise?
238 */
239 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
240 asm volatile("fnclex");
241 return 0;
242 }
243 return 1;
244}
245
246static inline int __save_init_fpu(struct task_struct *tsk)
247{
248 return fpu_save_init(&tsk->thread.fpu);
249}
250
251static inline int fpu_fxrstor_checking(struct fpu *fpu)
252{
253 return fxrstor_checking(&fpu->state->fxsave);
254}
255
256static inline int fpu_restore_checking(struct fpu *fpu)
257{
258 if (use_xsave())
259 return fpu_xrstor_checking(fpu);
260 else
261 return fpu_fxrstor_checking(fpu);
262}
263
264static inline int restore_fpu_checking(struct task_struct *tsk)
265{
266 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
267 is pending. Clear the x87 state here by setting it to fixed
268 values. "m" is a random variable that should be in L1 */
269 alternative_input(
270 ASM_NOP8 ASM_NOP2,
271 "emms\n\t" /* clear stack tags */
272 "fildl %P[addr]", /* set F?P to defined value */
273 X86_FEATURE_FXSAVE_LEAK,
274 [addr] "m" (tsk->thread.fpu.has_fpu));
275
276 return fpu_restore_checking(&tsk->thread.fpu);
277}
278
279/*
280 * Software FPU state helpers. Careful: these need to
281 * be preemption protection *and* they need to be
282 * properly paired with the CR0.TS changes!
283 */
284static inline int __thread_has_fpu(struct task_struct *tsk)
285{
286 return tsk->thread.fpu.has_fpu;
287}
288
289/* Must be paired with an 'stts' after! */
290static inline void __thread_clear_has_fpu(struct task_struct *tsk)
291{
292 tsk->thread.fpu.has_fpu = 0;
c6ae41e7 293 this_cpu_write(fpu_owner_task, NULL);
1361b83a
LT
294}
295
296/* Must be paired with a 'clts' before! */
297static inline void __thread_set_has_fpu(struct task_struct *tsk)
298{
299 tsk->thread.fpu.has_fpu = 1;
c6ae41e7 300 this_cpu_write(fpu_owner_task, tsk);
1361b83a
LT
301}
302
303/*
304 * Encapsulate the CR0.TS handling together with the
305 * software flag.
306 *
307 * These generally need preemption protection to work,
308 * do try to avoid using these on their own.
309 */
310static inline void __thread_fpu_end(struct task_struct *tsk)
311{
312 __thread_clear_has_fpu(tsk);
313 stts();
314}
315
316static inline void __thread_fpu_begin(struct task_struct *tsk)
317{
318 clts();
319 __thread_set_has_fpu(tsk);
320}
321
322/*
323 * FPU state switching for scheduling.
324 *
325 * This is a two-stage process:
326 *
327 * - switch_fpu_prepare() saves the old state and
328 * sets the new state of the CR0.TS bit. This is
329 * done within the context of the old process.
330 *
331 * - switch_fpu_finish() restores the new state as
332 * necessary.
333 */
334typedef struct { int preload; } fpu_switch_t;
335
336/*
337 * FIXME! We could do a totally lazy restore, but we need to
338 * add a per-cpu "this was the task that last touched the FPU
339 * on this CPU" variable, and the task needs to have a "I last
340 * touched the FPU on this CPU" and check them.
341 *
342 * We don't do that yet, so "fpu_lazy_restore()" always returns
343 * false, but some day..
344 */
345static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
346{
c6ae41e7 347 return new == this_cpu_read_stable(fpu_owner_task) &&
1361b83a
LT
348 cpu == new->thread.fpu.last_cpu;
349}
350
351static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
352{
353 fpu_switch_t fpu;
354
355 fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
356 if (__thread_has_fpu(old)) {
357 if (!__save_init_fpu(old))
358 cpu = ~0;
359 old->thread.fpu.last_cpu = cpu;
360 old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
361
362 /* Don't change CR0.TS if we just switch! */
363 if (fpu.preload) {
364 new->fpu_counter++;
365 __thread_set_has_fpu(new);
366 prefetch(new->thread.fpu.state);
367 } else
368 stts();
369 } else {
370 old->fpu_counter = 0;
371 old->thread.fpu.last_cpu = ~0;
372 if (fpu.preload) {
373 new->fpu_counter++;
374 if (fpu_lazy_restore(new, cpu))
375 fpu.preload = 0;
376 else
377 prefetch(new->thread.fpu.state);
378 __thread_fpu_begin(new);
379 }
380 }
381 return fpu;
382}
383
384/*
385 * By the time this gets called, we've already cleared CR0.TS and
386 * given the process the FPU if we are going to preload the FPU
387 * state - all we need to do is to conditionally restore the register
388 * state itself.
389 */
390static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
391{
392 if (fpu.preload) {
393 if (unlikely(restore_fpu_checking(new)))
394 __thread_fpu_end(new);
395 }
396}
397
398/*
399 * Signal frame handlers...
400 */
401extern int save_i387_xstate(void __user *buf);
402extern int restore_i387_xstate(void __user *buf);
403
404static inline void __clear_fpu(struct task_struct *tsk)
405{
406 if (__thread_has_fpu(tsk)) {
407 /* Ignore delayed exceptions from user space */
408 asm volatile("1: fwait\n"
409 "2:\n"
410 _ASM_EXTABLE(1b, 2b));
411 __thread_fpu_end(tsk);
412 }
413}
414
415/*
416 * The actual user_fpu_begin/end() functions
417 * need to be preemption-safe.
418 *
419 * NOTE! user_fpu_end() must be used only after you
420 * have saved the FP state, and user_fpu_begin() must
421 * be used only immediately before restoring it.
422 * These functions do not do any save/restore on
423 * their own.
424 */
425static inline void user_fpu_end(void)
426{
427 preempt_disable();
428 __thread_fpu_end(current);
429 preempt_enable();
430}
431
432static inline void user_fpu_begin(void)
433{
434 preempt_disable();
435 if (!user_has_fpu())
436 __thread_fpu_begin(current);
437 preempt_enable();
438}
439
440/*
441 * These disable preemption on their own and are safe
442 */
443static inline void save_init_fpu(struct task_struct *tsk)
444{
445 WARN_ON_ONCE(!__thread_has_fpu(tsk));
446 preempt_disable();
447 __save_init_fpu(tsk);
448 __thread_fpu_end(tsk);
449 preempt_enable();
450}
451
452static inline void clear_fpu(struct task_struct *tsk)
453{
454 preempt_disable();
455 __clear_fpu(tsk);
456 preempt_enable();
457}
458
459/*
460 * i387 state interaction
461 */
462static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
463{
464 if (cpu_has_fxsr) {
465 return tsk->thread.fpu.state->fxsave.cwd;
466 } else {
467 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
468 }
469}
470
471static inline unsigned short get_fpu_swd(struct task_struct *tsk)
472{
473 if (cpu_has_fxsr) {
474 return tsk->thread.fpu.state->fxsave.swd;
475 } else {
476 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
477 }
478}
479
480static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
481{
482 if (cpu_has_xmm) {
483 return tsk->thread.fpu.state->fxsave.mxcsr;
484 } else {
485 return MXCSR_DEFAULT;
486 }
487}
488
489static bool fpu_allocated(struct fpu *fpu)
490{
491 return fpu->state != NULL;
492}
493
494static inline int fpu_alloc(struct fpu *fpu)
495{
496 if (fpu_allocated(fpu))
497 return 0;
498 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
499 if (!fpu->state)
500 return -ENOMEM;
501 WARN_ON((unsigned long)fpu->state & 15);
502 return 0;
503}
504
505static inline void fpu_free(struct fpu *fpu)
506{
507 if (fpu->state) {
508 kmem_cache_free(task_xstate_cachep, fpu->state);
509 fpu->state = NULL;
510 }
511}
512
513static inline void fpu_copy(struct fpu *dst, struct fpu *src)
514{
515 memcpy(dst->state, src->state, xstate_size);
516}
517
518extern void fpu_finit(struct fpu *fpu);
519
520#endif