x86/fpu: Remove error return values from copy_kernel_to_*regs() functions
[linux-2.6-block.git] / arch / x86 / include / asm / fpu / internal.h
CommitLineData
1361b83a
LT
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
78f7f1e5
IM
10#ifndef _ASM_X86_FPU_INTERNAL_H
11#define _ASM_X86_FPU_INTERNAL_H
1361b83a 12
050902c0 13#include <linux/compat.h>
952f07ec 14#include <linux/sched.h>
1361b83a 15#include <linux/slab.h>
f89e32e0 16
1361b83a 17#include <asm/user.h>
df6b35f4 18#include <asm/fpu/api.h>
669ebabb 19#include <asm/fpu/xstate.h>
1361b83a 20
6ffc152e
IM
21/*
22 * High level FPU state handling functions:
23 */
0c306bcf 24extern void fpu__activate_curr(struct fpu *fpu);
05602812 25extern void fpu__activate_fpstate_read(struct fpu *fpu);
6a81d7eb 26extern void fpu__activate_fpstate_write(struct fpu *fpu);
6ffc152e 27extern void fpu__save(struct fpu *fpu);
e1884d69 28extern void fpu__restore(struct fpu *fpu);
82c0e45e 29extern int fpu__restore_sig(void __user *buf, int ia32_frame);
6ffc152e
IM
30extern void fpu__drop(struct fpu *fpu);
31extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
04c8e01d 32extern void fpu__clear(struct fpu *fpu);
b1b64dc3
IM
33extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
34extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
6ffc152e 35
b1b64dc3
IM
36/*
37 * Boot time FPU initialization functions:
38 */
39extern void fpu__init_cpu(void);
40extern void fpu__init_system_xstate(void);
41extern void fpu__init_cpu_xstate(void);
42extern void fpu__init_system(struct cpuinfo_x86 *c);
952f07ec
IM
43extern void fpu__init_check_bugs(void);
44extern void fpu__resume_cpu(void);
45
e97131a8
IM
46/*
47 * Debugging facility:
48 */
49#ifdef CONFIG_X86_DEBUG_FPU
50# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
51#else
52# define WARN_ON_FPU(x) ({ 0; })
53#endif
54
1c927eea 55/*
b1b64dc3 56 * FPU related CPU feature flag helper routines:
1c927eea 57 */
5d2bd700
SS
58static __always_inline __pure bool use_eager_fpu(void)
59{
c6b40691 60 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
5d2bd700
SS
61}
62
1361b83a
LT
63static __always_inline __pure bool use_xsaveopt(void)
64{
c6b40691 65 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
1361b83a
LT
66}
67
68static __always_inline __pure bool use_xsave(void)
69{
c6b40691 70 return static_cpu_has_safe(X86_FEATURE_XSAVE);
1361b83a
LT
71}
72
73static __always_inline __pure bool use_fxsr(void)
74{
c6b40691 75 return static_cpu_has_safe(X86_FEATURE_FXSR);
1361b83a
LT
76}
77
b1b64dc3
IM
78/*
79 * fpstate handling functions:
80 */
81
82extern union fpregs_state init_fpstate;
83
84extern void fpstate_init(union fpregs_state *state);
85#ifdef CONFIG_MATH_EMULATION
86extern void fpstate_init_soft(struct swregs_state *soft);
87#else
88static inline void fpstate_init_soft(struct swregs_state *soft) {}
89#endif
90static inline void fpstate_init_fxstate(struct fxregs_state *fx)
91{
92 fx->cwd = 0x37f;
93 fx->mxcsr = MXCSR_DEFAULT;
94}
36e49e7f 95extern void fpstate_sanitize_xstate(struct fpu *fpu);
1361b83a 96
49b8c695
PA
97#define user_insn(insn, output, input...) \
98({ \
99 int err; \
100 asm volatile(ASM_STAC "\n" \
101 "1:" #insn "\n\t" \
102 "2: " ASM_CLAC "\n" \
103 ".section .fixup,\"ax\"\n" \
104 "3: movl $-1,%[err]\n" \
105 " jmp 2b\n" \
106 ".previous\n" \
107 _ASM_EXTABLE(1b, 3b) \
108 : [err] "=r" (err), output \
109 : "0"(0), input); \
110 err; \
111})
112
0ca5bd0d
SS
113#define check_insn(insn, output, input...) \
114({ \
115 int err; \
116 asm volatile("1:" #insn "\n\t" \
117 "2:\n" \
118 ".section .fixup,\"ax\"\n" \
119 "3: movl $-1,%[err]\n" \
120 " jmp 2b\n" \
121 ".previous\n" \
122 _ASM_EXTABLE(1b, 3b) \
123 : [err] "=r" (err), output \
124 : "0"(0), input); \
125 err; \
126})
127
c47ada30 128static inline int copy_fregs_to_user(struct fregs_state __user *fx)
1361b83a 129{
49b8c695 130 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
1361b83a
LT
131}
132
c47ada30 133static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
1361b83a 134{
0ca5bd0d 135 if (config_enabled(CONFIG_X86_32))
49b8c695 136 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
0ca5bd0d 137 else if (config_enabled(CONFIG_AS_FXSAVEQ))
49b8c695 138 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
1361b83a 139
c6813144 140 /* See comment in copy_fxregs_to_kernel() below. */
49b8c695 141 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
1361b83a
LT
142}
143
9ccc27a5 144static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
1361b83a 145{
43b287b3
IM
146 int err;
147
148 if (config_enabled(CONFIG_X86_32)) {
149 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
150 } else {
151 if (config_enabled(CONFIG_AS_FXSAVEQ)) {
152 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
153 } else {
154 /* See comment in copy_fxregs_to_kernel() below. */
155 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
156 }
157 }
158 /* Copying from a kernel buffer to FPU registers should never fail: */
159 WARN_ON_FPU(err);
1361b83a
LT
160}
161
c47ada30 162static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
e139e955
PA
163{
164 if (config_enabled(CONFIG_X86_32))
165 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
168
c6813144 169 /* See comment in copy_fxregs_to_kernel() below. */
e139e955
PA
170 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
171 "m" (*fx));
172}
173
9ccc27a5 174static inline void copy_kernel_to_fregs(struct fregs_state *fx)
1361b83a 175{
43b287b3
IM
176 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177
178 WARN_ON_FPU(err);
e139e955
PA
179}
180
c47ada30 181static inline int copy_user_to_fregs(struct fregs_state __user *fx)
e139e955
PA
182{
183 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
1361b83a
LT
184}
185
c6813144 186static inline void copy_fxregs_to_kernel(struct fpu *fpu)
1361b83a 187{
0ca5bd0d 188 if (config_enabled(CONFIG_X86_32))
7366ed77 189 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
0ca5bd0d 190 else if (config_enabled(CONFIG_AS_FXSAVEQ))
7366ed77 191 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
0ca5bd0d
SS
192 else {
193 /* Using "rex64; fxsave %0" is broken because, if the memory
194 * operand uses any extended registers for addressing, a second
195 * REX prefix will be generated (to the assembler, rex64
196 * followed by semicolon is a separate instruction), and hence
197 * the 64-bitness is lost.
198 *
199 * Using "fxsaveq %0" would be the ideal choice, but is only
200 * supported starting with gas 2.16.
201 *
202 * Using, as a workaround, the properly prefixed form below
203 * isn't accepted by any binutils version so far released,
204 * complaining that the same type of prefix is used twice if
205 * an extended register is needed for addressing (fix submitted
206 * to mainline 2005-11-21).
207 *
7366ed77 208 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
0ca5bd0d
SS
209 *
210 * This, however, we can work around by forcing the compiler to
211 * select an addressing mode that doesn't require extended
212 * registers.
213 */
214 asm volatile( "rex64/fxsave (%[fx])"
7366ed77
IM
215 : "=m" (fpu->state.fxsave)
216 : [fx] "R" (&fpu->state.fxsave));
0ca5bd0d 217 }
1361b83a
LT
218}
219
fd169b05
IM
220/* These macros all use (%edi)/(%rdi) as the single memory argument. */
221#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
222#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
223#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
224#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
225#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
226
227/* xstate instruction fault handler: */
228#define xstate_fault(__err) \
229 \
230 ".section .fixup,\"ax\"\n" \
231 \
87b6559d 232 "3: movl $-2,%[_err]\n" \
fd169b05
IM
233 " jmp 2b\n" \
234 \
235 ".previous\n" \
236 \
237 _ASM_EXTABLE(1b, 3b) \
87b6559d 238 : [_err] "=r" (__err)
fd169b05
IM
239
240/*
241 * This function is called only during boot time when x86 caps are not set
242 * up and alternative can not be used yet.
243 */
8c05f05e 244static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
fd169b05
IM
245{
246 u64 mask = -1;
247 u32 lmask = mask;
248 u32 hmask = mask >> 32;
249 int err = 0;
250
251 WARN_ON(system_state != SYSTEM_BOOTING);
252
253 if (boot_cpu_has(X86_FEATURE_XSAVES))
254 asm volatile("1:"XSAVES"\n\t"
255 "2:\n\t"
256 xstate_fault(err)
87b6559d
IM
257 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
258 : "memory");
fd169b05
IM
259 else
260 asm volatile("1:"XSAVE"\n\t"
261 "2:\n\t"
262 xstate_fault(err)
87b6559d
IM
263 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
264 : "memory");
8c05f05e
IM
265
266 /* We should never fault when copying to a kernel buffer: */
267 WARN_ON_FPU(err);
fd169b05
IM
268}
269
270/*
271 * This function is called only during boot time when x86 caps are not set
272 * up and alternative can not be used yet.
273 */
8c05f05e 274static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate, u64 mask)
fd169b05
IM
275{
276 u32 lmask = mask;
277 u32 hmask = mask >> 32;
278 int err = 0;
279
280 WARN_ON(system_state != SYSTEM_BOOTING);
281
282 if (boot_cpu_has(X86_FEATURE_XSAVES))
283 asm volatile("1:"XRSTORS"\n\t"
284 "2:\n\t"
285 xstate_fault(err)
87b6559d
IM
286 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
287 : "memory");
fd169b05
IM
288 else
289 asm volatile("1:"XRSTOR"\n\t"
290 "2:\n\t"
291 xstate_fault(err)
87b6559d
IM
292 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
293 : "memory");
8c05f05e
IM
294
295 /* We should never fault when copying from a kernel buffer: */
296 WARN_ON_FPU(err);
fd169b05
IM
297}
298
299/*
300 * Save processor xstate to xsave area.
301 */
8c05f05e 302static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
fd169b05
IM
303{
304 u64 mask = -1;
305 u32 lmask = mask;
306 u32 hmask = mask >> 32;
307 int err = 0;
308
309 WARN_ON(!alternatives_patched);
310
311 /*
312 * If xsaves is enabled, xsaves replaces xsaveopt because
313 * it supports compact format and supervisor states in addition to
314 * modified optimization in xsaveopt.
315 *
316 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
317 * because xsaveopt supports modified optimization which is not
318 * supported by xsave.
319 *
320 * If none of xsaves and xsaveopt is enabled, use xsave.
321 */
322 alternative_input_2(
323 "1:"XSAVE,
324 XSAVEOPT,
325 X86_FEATURE_XSAVEOPT,
326 XSAVES,
327 X86_FEATURE_XSAVES,
87dafd41 328 [xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
fd169b05
IM
329 "memory");
330 asm volatile("2:\n\t"
331 xstate_fault(err)
685c9616 332 : "0" (err)
fd169b05
IM
333 : "memory");
334
8c05f05e
IM
335 /* We should never fault when copying to a kernel buffer: */
336 WARN_ON_FPU(err);
fd169b05
IM
337}
338
339/*
340 * Restore processor xstate from xsave area.
341 */
8c05f05e 342static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
fd169b05 343{
fd169b05
IM
344 u32 lmask = mask;
345 u32 hmask = mask >> 32;
685c9616 346 int err = 0;
fd169b05
IM
347
348 /*
349 * Use xrstors to restore context if it is enabled. xrstors supports
350 * compacted format of xsave area which is not supported by xrstor.
351 */
352 alternative_input(
353 "1: " XRSTOR,
354 XRSTORS,
355 X86_FEATURE_XSAVES,
87dafd41 356 "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
fd169b05
IM
357 : "memory");
358
359 asm volatile("2:\n"
360 xstate_fault(err)
685c9616 361 : "0" (err)
fd169b05
IM
362 : "memory");
363
8c05f05e
IM
364 /* We should never fault when copying from a kernel buffer: */
365 WARN_ON_FPU(err);
fd169b05
IM
366}
367
368/*
369 * Save xstate to user space xsave area.
370 *
371 * We don't use modified optimization because xrstor/xrstors might track
372 * a different application.
373 *
374 * We don't use compacted format xsave area for
375 * backward compatibility for old applications which don't understand
376 * compacted format of xsave area.
377 */
378static inline int copy_xregs_to_user(struct xregs_state __user *buf)
379{
380 int err;
381
382 /*
383 * Clear the xsave header first, so that reserved fields are
384 * initialized to zero.
385 */
386 err = __clear_user(&buf->header, sizeof(buf->header));
387 if (unlikely(err))
388 return -EFAULT;
389
390 __asm__ __volatile__(ASM_STAC "\n"
391 "1:"XSAVE"\n"
392 "2: " ASM_CLAC "\n"
393 xstate_fault(err)
685c9616 394 : "D" (buf), "a" (-1), "d" (-1), "0" (err)
fd169b05
IM
395 : "memory");
396 return err;
397}
398
399/*
400 * Restore xstate from user space xsave area.
401 */
402static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
403{
fd169b05
IM
404 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
405 u32 lmask = mask;
406 u32 hmask = mask >> 32;
685c9616 407 int err = 0;
fd169b05
IM
408
409 __asm__ __volatile__(ASM_STAC "\n"
410 "1:"XRSTOR"\n"
411 "2: " ASM_CLAC "\n"
412 xstate_fault(err)
685c9616 413 : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
fd169b05
IM
414 : "memory"); /* memory required? */
415 return err;
416}
417
1361b83a
LT
418/*
419 * These must be called with preempt disabled. Returns
4f836347
IM
420 * 'true' if the FPU state is still intact and we can
421 * keep registers active.
422 *
423 * The legacy FNSAVE instruction cleared all FPU state
424 * unconditionally, so registers are essentially destroyed.
425 * Modern FPU state can be kept in registers, if there are
1bc6b056 426 * no pending FP exceptions.
1361b83a 427 */
4f836347 428static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
1361b83a 429{
1bc6b056 430 if (likely(use_xsave())) {
c6813144 431 copy_xregs_to_kernel(&fpu->state.xsave);
1bc6b056
IM
432 return 1;
433 }
1361b83a 434
1bc6b056 435 if (likely(use_fxsr())) {
c6813144 436 copy_fxregs_to_kernel(fpu);
1bc6b056 437 return 1;
1361b83a
LT
438 }
439
440 /*
1bc6b056
IM
441 * Legacy FPU register saving, FNSAVE always clears FPU registers,
442 * so we have to mark them inactive:
1361b83a 443 */
87dafd41 444 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
4f836347 445
4f836347 446 return 0;
1361b83a
LT
447}
448
9ccc27a5 449static inline void __copy_kernel_to_fpregs(struct fpu *fpu)
1361b83a 450{
8c05f05e
IM
451 if (use_xsave()) {
452 copy_kernel_to_xregs(&fpu->state.xsave, -1);
8c05f05e
IM
453 } else {
454 if (use_fxsr())
9ccc27a5 455 copy_kernel_to_fxregs(&fpu->state.fxsave);
8c05f05e 456 else
9ccc27a5 457 copy_kernel_to_fregs(&fpu->state.fsave);
8c05f05e 458 }
1361b83a
LT
459}
460
9ccc27a5 461static inline void copy_kernel_to_fpregs(struct fpu *fpu)
1361b83a 462{
6ca7a8a1
BP
463 /*
464 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
465 * pending. Clear the x87 state here by setting it to fixed values.
466 * "m" is a random variable that should be in L1.
467 */
9b13a93d 468 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
26bef131
LT
469 asm volatile(
470 "fnclex\n\t"
471 "emms\n\t"
472 "fildl %P[addr]" /* set F?P to defined value */
d5cea9b0 473 : : [addr] "m" (fpu->fpregs_active));
26bef131 474 }
1361b83a 475
9ccc27a5 476 __copy_kernel_to_fpregs(fpu);
1361b83a
LT
477}
478
87dafd41 479extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
b1b64dc3
IM
480
481/*
482 * FPU context switch related helper methods:
483 */
484
485DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
486
487/*
488 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
489 * on this CPU.
490 *
491 * This will disable any lazy FPU state restore of the current FPU state,
492 * but if the current thread owns the FPU, it will still be saved by.
493 */
494static inline void __cpu_disable_lazy_restore(unsigned int cpu)
495{
496 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
497}
498
499static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
500{
501 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
502}
503
504
32b49b3c
IM
505/*
506 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
507 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
508 */
509
510static inline void __fpregs_activate_hw(void)
511{
512 if (!use_eager_fpu())
513 clts();
514}
515
516static inline void __fpregs_deactivate_hw(void)
517{
518 if (!use_eager_fpu())
519 stts();
520}
521
522/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
723c58e4 523static inline void __fpregs_deactivate(struct fpu *fpu)
1361b83a 524{
e97131a8
IM
525 WARN_ON_FPU(!fpu->fpregs_active);
526
d5cea9b0 527 fpu->fpregs_active = 0;
36b544dc 528 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
1361b83a
LT
529}
530
32b49b3c 531/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
dfaea4e6 532static inline void __fpregs_activate(struct fpu *fpu)
1361b83a 533{
e97131a8
IM
534 WARN_ON_FPU(fpu->fpregs_active);
535
d5cea9b0 536 fpu->fpregs_active = 1;
c0311f63 537 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
1361b83a
LT
538}
539
952f07ec
IM
540/*
541 * The question "does this thread have fpu access?"
542 * is slightly racy, since preemption could come in
543 * and revoke it immediately after the test.
544 *
545 * However, even in that very unlikely scenario,
546 * we can just assume we have FPU access - typically
547 * to save the FP state - we'll just take a #NM
548 * fault and get the FPU access back.
549 */
3c6dffa9 550static inline int fpregs_active(void)
952f07ec
IM
551{
552 return current->thread.fpu.fpregs_active;
553}
554
1361b83a
LT
555/*
556 * Encapsulate the CR0.TS handling together with the
557 * software flag.
558 *
559 * These generally need preemption protection to work,
560 * do try to avoid using these on their own.
561 */
66af8e27 562static inline void fpregs_activate(struct fpu *fpu)
1361b83a 563{
32b49b3c 564 __fpregs_activate_hw();
66af8e27 565 __fpregs_activate(fpu);
1361b83a
LT
566}
567
66af8e27 568static inline void fpregs_deactivate(struct fpu *fpu)
1361b83a 569{
66af8e27 570 __fpregs_deactivate(fpu);
32b49b3c 571 __fpregs_deactivate_hw();
1361b83a
LT
572}
573
574/*
575 * FPU state switching for scheduling.
576 *
577 * This is a two-stage process:
578 *
579 * - switch_fpu_prepare() saves the old state and
580 * sets the new state of the CR0.TS bit. This is
581 * done within the context of the old process.
582 *
583 * - switch_fpu_finish() restores the new state as
584 * necessary.
585 */
586typedef struct { int preload; } fpu_switch_t;
587
cb8818b6
IM
588static inline fpu_switch_t
589switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
1361b83a
LT
590{
591 fpu_switch_t fpu;
592
304bceda
SS
593 /*
594 * If the task has used the math, pre-load the FPU on xsave processors
595 * or if the past 5 consecutive context-switches used math.
596 */
c5bedc68 597 fpu.preload = new_fpu->fpstate_active &&
cb8818b6 598 (use_eager_fpu() || new_fpu->counter > 5);
1361ef29 599
d5cea9b0 600 if (old_fpu->fpregs_active) {
4f836347 601 if (!copy_fpregs_to_fpstate(old_fpu))
cb8818b6 602 old_fpu->last_cpu = -1;
1361ef29 603 else
cb8818b6 604 old_fpu->last_cpu = cpu;
1361ef29 605
36b544dc 606 /* But leave fpu_fpregs_owner_ctx! */
d5cea9b0 607 old_fpu->fpregs_active = 0;
1361b83a
LT
608
609 /* Don't change CR0.TS if we just switch! */
610 if (fpu.preload) {
cb8818b6 611 new_fpu->counter++;
dfaea4e6 612 __fpregs_activate(new_fpu);
7366ed77 613 prefetch(&new_fpu->state);
32b49b3c
IM
614 } else {
615 __fpregs_deactivate_hw();
616 }
1361b83a 617 } else {
cb8818b6
IM
618 old_fpu->counter = 0;
619 old_fpu->last_cpu = -1;
1361b83a 620 if (fpu.preload) {
cb8818b6 621 new_fpu->counter++;
66ddc2cb 622 if (fpu_want_lazy_restore(new_fpu, cpu))
1361b83a
LT
623 fpu.preload = 0;
624 else
7366ed77 625 prefetch(&new_fpu->state);
232f62cd 626 fpregs_activate(new_fpu);
1361b83a
LT
627 }
628 }
629 return fpu;
630}
631
b1b64dc3
IM
632/*
633 * Misc helper functions:
634 */
635
1361b83a
LT
636/*
637 * By the time this gets called, we've already cleared CR0.TS and
638 * given the process the FPU if we are going to preload the FPU
639 * state - all we need to do is to conditionally restore the register
640 * state itself.
641 */
384a23f9 642static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
1361b83a 643{
9ccc27a5
IM
644 if (fpu_switch.preload)
645 copy_kernel_to_fpregs(new_fpu);
1361b83a
LT
646}
647
1361b83a 648/*
fb14b4ea 649 * Needs to be preemption-safe.
1361b83a 650 *
377ffbcc 651 * NOTE! user_fpu_begin() must be used only immediately before restoring
fb14b4ea
ON
652 * the save state. It does not do any saving/restoring on its own. In
653 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
654 * the task can lose the FPU right after preempt_enable().
1361b83a 655 */
1361b83a
LT
656static inline void user_fpu_begin(void)
657{
4540d3fa
IM
658 struct fpu *fpu = &current->thread.fpu;
659
1361b83a 660 preempt_disable();
3c6dffa9 661 if (!fpregs_active())
232f62cd 662 fpregs_activate(fpu);
1361b83a
LT
663 preempt_enable();
664}
665
b1b64dc3
IM
666/*
667 * MXCSR and XCR definitions:
668 */
669
670extern unsigned int mxcsr_feature_mask;
671
672#define XCR_XFEATURE_ENABLED_MASK 0x00000000
673
674static inline u64 xgetbv(u32 index)
675{
676 u32 eax, edx;
677
678 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
679 : "=a" (eax), "=d" (edx)
680 : "c" (index));
681 return eax + ((u64)edx << 32);
682}
683
684static inline void xsetbv(u32 index, u64 value)
685{
686 u32 eax = value;
687 u32 edx = value >> 32;
688
689 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
690 : : "a" (eax), "d" (edx), "c" (index));
691}
692
78f7f1e5 693#endif /* _ASM_X86_FPU_INTERNAL_H */