drm/vc4: mark vc4_bo_cache_purge() static
[linux-2.6-block.git] / arch / x86 / include / asm / fpu / internal.h
CommitLineData
1361b83a
LT
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
78f7f1e5
IM
10#ifndef _ASM_X86_FPU_INTERNAL_H
11#define _ASM_X86_FPU_INTERNAL_H
1361b83a 12
050902c0 13#include <linux/compat.h>
952f07ec 14#include <linux/sched.h>
1361b83a 15#include <linux/slab.h>
f89e32e0 16
1361b83a 17#include <asm/user.h>
df6b35f4 18#include <asm/fpu/api.h>
669ebabb 19#include <asm/fpu/xstate.h>
cd4d09ec 20#include <asm/cpufeature.h>
d1898b73 21#include <asm/trace/fpu.h>
1361b83a 22
6ffc152e
IM
23/*
24 * High level FPU state handling functions:
25 */
0c306bcf 26extern void fpu__activate_curr(struct fpu *fpu);
05602812 27extern void fpu__activate_fpstate_read(struct fpu *fpu);
6a81d7eb 28extern void fpu__activate_fpstate_write(struct fpu *fpu);
b8b9b6ba
DH
29extern void fpu__current_fpstate_write_begin(void);
30extern void fpu__current_fpstate_write_end(void);
6ffc152e 31extern void fpu__save(struct fpu *fpu);
e1884d69 32extern void fpu__restore(struct fpu *fpu);
82c0e45e 33extern int fpu__restore_sig(void __user *buf, int ia32_frame);
6ffc152e
IM
34extern void fpu__drop(struct fpu *fpu);
35extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
04c8e01d 36extern void fpu__clear(struct fpu *fpu);
b1b64dc3
IM
37extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
38extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
6ffc152e 39
b1b64dc3
IM
40/*
41 * Boot time FPU initialization functions:
42 */
43extern void fpu__init_cpu(void);
44extern void fpu__init_system_xstate(void);
45extern void fpu__init_cpu_xstate(void);
46extern void fpu__init_system(struct cpuinfo_x86 *c);
952f07ec
IM
47extern void fpu__init_check_bugs(void);
48extern void fpu__resume_cpu(void);
a5fe93a5 49extern u64 fpu__get_supported_xfeatures_mask(void);
952f07ec 50
e97131a8
IM
51/*
52 * Debugging facility:
53 */
54#ifdef CONFIG_X86_DEBUG_FPU
55# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
56#else
83242c51 57# define WARN_ON_FPU(x) ({ (void)(x); 0; })
e97131a8
IM
58#endif
59
1c927eea 60/*
b1b64dc3 61 * FPU related CPU feature flag helper routines:
1c927eea 62 */
5d2bd700
SS
63static __always_inline __pure bool use_eager_fpu(void)
64{
bc696ca0 65 return static_cpu_has(X86_FEATURE_EAGER_FPU);
5d2bd700
SS
66}
67
1361b83a
LT
68static __always_inline __pure bool use_xsaveopt(void)
69{
bc696ca0 70 return static_cpu_has(X86_FEATURE_XSAVEOPT);
1361b83a
LT
71}
72
73static __always_inline __pure bool use_xsave(void)
74{
bc696ca0 75 return static_cpu_has(X86_FEATURE_XSAVE);
1361b83a
LT
76}
77
78static __always_inline __pure bool use_fxsr(void)
79{
bc696ca0 80 return static_cpu_has(X86_FEATURE_FXSR);
1361b83a
LT
81}
82
b1b64dc3
IM
83/*
84 * fpstate handling functions:
85 */
86
87extern union fpregs_state init_fpstate;
88
89extern void fpstate_init(union fpregs_state *state);
90#ifdef CONFIG_MATH_EMULATION
91extern void fpstate_init_soft(struct swregs_state *soft);
92#else
93static inline void fpstate_init_soft(struct swregs_state *soft) {}
94#endif
95static inline void fpstate_init_fxstate(struct fxregs_state *fx)
96{
97 fx->cwd = 0x37f;
98 fx->mxcsr = MXCSR_DEFAULT;
99}
36e49e7f 100extern void fpstate_sanitize_xstate(struct fpu *fpu);
1361b83a 101
49b8c695
PA
102#define user_insn(insn, output, input...) \
103({ \
104 int err; \
105 asm volatile(ASM_STAC "\n" \
106 "1:" #insn "\n\t" \
107 "2: " ASM_CLAC "\n" \
108 ".section .fixup,\"ax\"\n" \
109 "3: movl $-1,%[err]\n" \
110 " jmp 2b\n" \
111 ".previous\n" \
112 _ASM_EXTABLE(1b, 3b) \
113 : [err] "=r" (err), output \
114 : "0"(0), input); \
115 err; \
116})
117
0ca5bd0d
SS
118#define check_insn(insn, output, input...) \
119({ \
120 int err; \
121 asm volatile("1:" #insn "\n\t" \
122 "2:\n" \
123 ".section .fixup,\"ax\"\n" \
124 "3: movl $-1,%[err]\n" \
125 " jmp 2b\n" \
126 ".previous\n" \
127 _ASM_EXTABLE(1b, 3b) \
128 : [err] "=r" (err), output \
129 : "0"(0), input); \
130 err; \
131})
132
c47ada30 133static inline int copy_fregs_to_user(struct fregs_state __user *fx)
1361b83a 134{
49b8c695 135 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
1361b83a
LT
136}
137
c47ada30 138static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
1361b83a 139{
97f2645f 140 if (IS_ENABLED(CONFIG_X86_32))
49b8c695 141 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
97f2645f 142 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
49b8c695 143 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
1361b83a 144
c6813144 145 /* See comment in copy_fxregs_to_kernel() below. */
49b8c695 146 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
1361b83a
LT
147}
148
9ccc27a5 149static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
1361b83a 150{
43b287b3
IM
151 int err;
152
97f2645f 153 if (IS_ENABLED(CONFIG_X86_32)) {
43b287b3
IM
154 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
155 } else {
97f2645f 156 if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
43b287b3
IM
157 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
158 } else {
159 /* See comment in copy_fxregs_to_kernel() below. */
160 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
161 }
162 }
163 /* Copying from a kernel buffer to FPU registers should never fail: */
164 WARN_ON_FPU(err);
1361b83a
LT
165}
166
c47ada30 167static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
e139e955 168{
97f2645f 169 if (IS_ENABLED(CONFIG_X86_32))
e139e955 170 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
97f2645f 171 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
e139e955
PA
172 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
173
c6813144 174 /* See comment in copy_fxregs_to_kernel() below. */
e139e955
PA
175 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
176 "m" (*fx));
177}
178
9ccc27a5 179static inline void copy_kernel_to_fregs(struct fregs_state *fx)
1361b83a 180{
43b287b3
IM
181 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
182
183 WARN_ON_FPU(err);
e139e955
PA
184}
185
c47ada30 186static inline int copy_user_to_fregs(struct fregs_state __user *fx)
e139e955
PA
187{
188 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
1361b83a
LT
189}
190
c6813144 191static inline void copy_fxregs_to_kernel(struct fpu *fpu)
1361b83a 192{
97f2645f 193 if (IS_ENABLED(CONFIG_X86_32))
7366ed77 194 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
97f2645f 195 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
7366ed77 196 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
0ca5bd0d
SS
197 else {
198 /* Using "rex64; fxsave %0" is broken because, if the memory
199 * operand uses any extended registers for addressing, a second
200 * REX prefix will be generated (to the assembler, rex64
201 * followed by semicolon is a separate instruction), and hence
202 * the 64-bitness is lost.
203 *
204 * Using "fxsaveq %0" would be the ideal choice, but is only
205 * supported starting with gas 2.16.
206 *
207 * Using, as a workaround, the properly prefixed form below
208 * isn't accepted by any binutils version so far released,
209 * complaining that the same type of prefix is used twice if
210 * an extended register is needed for addressing (fix submitted
211 * to mainline 2005-11-21).
212 *
7366ed77 213 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
0ca5bd0d
SS
214 *
215 * This, however, we can work around by forcing the compiler to
216 * select an addressing mode that doesn't require extended
217 * registers.
218 */
219 asm volatile( "rex64/fxsave (%[fx])"
7366ed77
IM
220 : "=m" (fpu->state.fxsave)
221 : [fx] "R" (&fpu->state.fxsave));
0ca5bd0d 222 }
1361b83a
LT
223}
224
fd169b05
IM
225/* These macros all use (%edi)/(%rdi) as the single memory argument. */
226#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
227#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
228#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
229#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
230#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
231
b74a0cf1
BP
232#define XSTATE_OP(op, st, lmask, hmask, err) \
233 asm volatile("1:" op "\n\t" \
234 "xor %[err], %[err]\n" \
235 "2:\n\t" \
236 ".pushsection .fixup,\"ax\"\n\t" \
237 "3: movl $-2,%[err]\n\t" \
238 "jmp 2b\n\t" \
239 ".popsection\n\t" \
240 _ASM_EXTABLE(1b, 3b) \
241 : [err] "=r" (err) \
242 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
243 : "memory")
244
b7106fa0
BP
245/*
246 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
247 * format and supervisor states in addition to modified optimization in
248 * XSAVEOPT.
249 *
250 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
251 * supports modified optimization which is not supported by XSAVE.
252 *
253 * We use XSAVE as a fallback.
254 *
255 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
256 * original instruction which gets replaced. We need to use it here as the
257 * address of the instruction where we might get an exception at.
258 */
259#define XSTATE_XSAVE(st, lmask, hmask, err) \
260 asm volatile(ALTERNATIVE_2(XSAVE, \
261 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
262 XSAVES, X86_FEATURE_XSAVES) \
263 "\n" \
264 "xor %[err], %[err]\n" \
265 "3:\n" \
266 ".pushsection .fixup,\"ax\"\n" \
267 "4: movl $-2, %[err]\n" \
268 "jmp 3b\n" \
269 ".popsection\n" \
270 _ASM_EXTABLE(661b, 4b) \
271 : [err] "=r" (err) \
272 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
273 : "memory")
274
275/*
276 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
277 * XSAVE area format.
278 */
279#define XSTATE_XRESTORE(st, lmask, hmask, err) \
280 asm volatile(ALTERNATIVE(XRSTOR, \
281 XRSTORS, X86_FEATURE_XSAVES) \
282 "\n" \
283 "xor %[err], %[err]\n" \
284 "3:\n" \
285 ".pushsection .fixup,\"ax\"\n" \
286 "4: movl $-2, %[err]\n" \
287 "jmp 3b\n" \
288 ".popsection\n" \
289 _ASM_EXTABLE(661b, 4b) \
290 : [err] "=r" (err) \
291 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
292 : "memory")
b74a0cf1 293
fd169b05
IM
294/*
295 * This function is called only during boot time when x86 caps are not set
296 * up and alternative can not be used yet.
297 */
8c05f05e 298static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
fd169b05
IM
299{
300 u64 mask = -1;
301 u32 lmask = mask;
302 u32 hmask = mask >> 32;
b74a0cf1 303 int err;
fd169b05
IM
304
305 WARN_ON(system_state != SYSTEM_BOOTING);
306
bc696ca0 307 if (static_cpu_has(X86_FEATURE_XSAVES))
b74a0cf1 308 XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
fd169b05 309 else
b74a0cf1 310 XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
8c05f05e
IM
311
312 /* We should never fault when copying to a kernel buffer: */
313 WARN_ON_FPU(err);
fd169b05
IM
314}
315
316/*
317 * This function is called only during boot time when x86 caps are not set
318 * up and alternative can not be used yet.
319 */
d65fcd60 320static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
fd169b05 321{
d65fcd60 322 u64 mask = -1;
fd169b05
IM
323 u32 lmask = mask;
324 u32 hmask = mask >> 32;
b74a0cf1 325 int err;
fd169b05
IM
326
327 WARN_ON(system_state != SYSTEM_BOOTING);
328
bc696ca0 329 if (static_cpu_has(X86_FEATURE_XSAVES))
b74a0cf1 330 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
fd169b05 331 else
b74a0cf1 332 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
8c05f05e
IM
333
334 /* We should never fault when copying from a kernel buffer: */
335 WARN_ON_FPU(err);
fd169b05
IM
336}
337
338/*
339 * Save processor xstate to xsave area.
340 */
8c05f05e 341static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
fd169b05
IM
342{
343 u64 mask = -1;
344 u32 lmask = mask;
345 u32 hmask = mask >> 32;
b7106fa0 346 int err;
fd169b05
IM
347
348 WARN_ON(!alternatives_patched);
349
b7106fa0 350 XSTATE_XSAVE(xstate, lmask, hmask, err);
fd169b05 351
8c05f05e
IM
352 /* We should never fault when copying to a kernel buffer: */
353 WARN_ON_FPU(err);
fd169b05
IM
354}
355
356/*
357 * Restore processor xstate from xsave area.
358 */
8c05f05e 359static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
fd169b05 360{
fd169b05
IM
361 u32 lmask = mask;
362 u32 hmask = mask >> 32;
b7106fa0 363 int err;
fd169b05 364
b7106fa0 365 XSTATE_XRESTORE(xstate, lmask, hmask, err);
fd169b05 366
8c05f05e
IM
367 /* We should never fault when copying from a kernel buffer: */
368 WARN_ON_FPU(err);
fd169b05
IM
369}
370
371/*
372 * Save xstate to user space xsave area.
373 *
374 * We don't use modified optimization because xrstor/xrstors might track
375 * a different application.
376 *
377 * We don't use compacted format xsave area for
378 * backward compatibility for old applications which don't understand
379 * compacted format of xsave area.
380 */
381static inline int copy_xregs_to_user(struct xregs_state __user *buf)
382{
383 int err;
384
385 /*
386 * Clear the xsave header first, so that reserved fields are
387 * initialized to zero.
388 */
389 err = __clear_user(&buf->header, sizeof(buf->header));
390 if (unlikely(err))
391 return -EFAULT;
392
b74a0cf1
BP
393 stac();
394 XSTATE_OP(XSAVE, buf, -1, -1, err);
395 clac();
396
fd169b05
IM
397 return err;
398}
399
400/*
401 * Restore xstate from user space xsave area.
402 */
403static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
404{
fd169b05
IM
405 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
406 u32 lmask = mask;
407 u32 hmask = mask >> 32;
b74a0cf1
BP
408 int err;
409
410 stac();
411 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
412 clac();
fd169b05 413
fd169b05
IM
414 return err;
415}
416
1361b83a
LT
417/*
418 * These must be called with preempt disabled. Returns
4f836347
IM
419 * 'true' if the FPU state is still intact and we can
420 * keep registers active.
421 *
422 * The legacy FNSAVE instruction cleared all FPU state
423 * unconditionally, so registers are essentially destroyed.
424 * Modern FPU state can be kept in registers, if there are
1bc6b056 425 * no pending FP exceptions.
1361b83a 426 */
4f836347 427static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
1361b83a 428{
1bc6b056 429 if (likely(use_xsave())) {
c6813144 430 copy_xregs_to_kernel(&fpu->state.xsave);
1bc6b056
IM
431 return 1;
432 }
1361b83a 433
1bc6b056 434 if (likely(use_fxsr())) {
c6813144 435 copy_fxregs_to_kernel(fpu);
1bc6b056 436 return 1;
1361b83a
LT
437 }
438
439 /*
1bc6b056
IM
440 * Legacy FPU register saving, FNSAVE always clears FPU registers,
441 * so we have to mark them inactive:
1361b83a 442 */
87dafd41 443 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
4f836347 444
4f836347 445 return 0;
1361b83a
LT
446}
447
003e2e8b 448static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
1361b83a 449{
8c05f05e 450 if (use_xsave()) {
003e2e8b 451 copy_kernel_to_xregs(&fpstate->xsave, -1);
8c05f05e
IM
452 } else {
453 if (use_fxsr())
003e2e8b 454 copy_kernel_to_fxregs(&fpstate->fxsave);
8c05f05e 455 else
003e2e8b 456 copy_kernel_to_fregs(&fpstate->fsave);
8c05f05e 457 }
1361b83a
LT
458}
459
003e2e8b 460static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
1361b83a 461{
6ca7a8a1
BP
462 /*
463 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
464 * pending. Clear the x87 state here by setting it to fixed values.
465 * "m" is a random variable that should be in L1.
466 */
bc696ca0 467 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
26bef131
LT
468 asm volatile(
469 "fnclex\n\t"
470 "emms\n\t"
471 "fildl %P[addr]" /* set F?P to defined value */
003e2e8b 472 : : [addr] "m" (fpstate));
26bef131 473 }
1361b83a 474
003e2e8b 475 __copy_kernel_to_fpregs(fpstate);
1361b83a
LT
476}
477
87dafd41 478extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
b1b64dc3
IM
479
480/*
481 * FPU context switch related helper methods:
482 */
483
484DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
485
486/*
487 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
488 * on this CPU.
489 *
490 * This will disable any lazy FPU state restore of the current FPU state,
491 * but if the current thread owns the FPU, it will still be saved by.
492 */
493static inline void __cpu_disable_lazy_restore(unsigned int cpu)
494{
495 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
496}
497
498static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
499{
500 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
501}
502
503
32b49b3c
IM
504/*
505 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
506 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
507 */
508
509static inline void __fpregs_activate_hw(void)
510{
511 if (!use_eager_fpu())
512 clts();
513}
514
515static inline void __fpregs_deactivate_hw(void)
516{
517 if (!use_eager_fpu())
518 stts();
519}
520
521/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
723c58e4 522static inline void __fpregs_deactivate(struct fpu *fpu)
1361b83a 523{
e97131a8
IM
524 WARN_ON_FPU(!fpu->fpregs_active);
525
d5cea9b0 526 fpu->fpregs_active = 0;
36b544dc 527 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
d1898b73 528 trace_x86_fpu_regs_deactivated(fpu);
1361b83a
LT
529}
530
32b49b3c 531/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
dfaea4e6 532static inline void __fpregs_activate(struct fpu *fpu)
1361b83a 533{
e97131a8
IM
534 WARN_ON_FPU(fpu->fpregs_active);
535
d5cea9b0 536 fpu->fpregs_active = 1;
c0311f63 537 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
d1898b73 538 trace_x86_fpu_regs_activated(fpu);
1361b83a
LT
539}
540
952f07ec
IM
541/*
542 * The question "does this thread have fpu access?"
543 * is slightly racy, since preemption could come in
544 * and revoke it immediately after the test.
545 *
546 * However, even in that very unlikely scenario,
547 * we can just assume we have FPU access - typically
548 * to save the FP state - we'll just take a #NM
549 * fault and get the FPU access back.
550 */
3c6dffa9 551static inline int fpregs_active(void)
952f07ec
IM
552{
553 return current->thread.fpu.fpregs_active;
554}
555
1361b83a
LT
556/*
557 * Encapsulate the CR0.TS handling together with the
558 * software flag.
559 *
560 * These generally need preemption protection to work,
561 * do try to avoid using these on their own.
562 */
66af8e27 563static inline void fpregs_activate(struct fpu *fpu)
1361b83a 564{
32b49b3c 565 __fpregs_activate_hw();
66af8e27 566 __fpregs_activate(fpu);
1361b83a
LT
567}
568
66af8e27 569static inline void fpregs_deactivate(struct fpu *fpu)
1361b83a 570{
66af8e27 571 __fpregs_deactivate(fpu);
32b49b3c 572 __fpregs_deactivate_hw();
1361b83a
LT
573}
574
575/*
576 * FPU state switching for scheduling.
577 *
578 * This is a two-stage process:
579 *
580 * - switch_fpu_prepare() saves the old state and
581 * sets the new state of the CR0.TS bit. This is
582 * done within the context of the old process.
583 *
584 * - switch_fpu_finish() restores the new state as
585 * necessary.
586 */
587typedef struct { int preload; } fpu_switch_t;
588
cb8818b6
IM
589static inline fpu_switch_t
590switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
1361b83a
LT
591{
592 fpu_switch_t fpu;
593
304bceda
SS
594 /*
595 * If the task has used the math, pre-load the FPU on xsave processors
596 * or if the past 5 consecutive context-switches used math.
597 */
4ecd16ec
AL
598 fpu.preload = static_cpu_has(X86_FEATURE_FPU) &&
599 new_fpu->fpstate_active &&
cb8818b6 600 (use_eager_fpu() || new_fpu->counter > 5);
1361ef29 601
d5cea9b0 602 if (old_fpu->fpregs_active) {
4f836347 603 if (!copy_fpregs_to_fpstate(old_fpu))
cb8818b6 604 old_fpu->last_cpu = -1;
1361ef29 605 else
cb8818b6 606 old_fpu->last_cpu = cpu;
1361ef29 607
36b544dc 608 /* But leave fpu_fpregs_owner_ctx! */
d5cea9b0 609 old_fpu->fpregs_active = 0;
d1898b73 610 trace_x86_fpu_regs_deactivated(old_fpu);
1361b83a
LT
611
612 /* Don't change CR0.TS if we just switch! */
613 if (fpu.preload) {
cb8818b6 614 new_fpu->counter++;
dfaea4e6 615 __fpregs_activate(new_fpu);
d1898b73 616 trace_x86_fpu_regs_activated(new_fpu);
7366ed77 617 prefetch(&new_fpu->state);
32b49b3c
IM
618 } else {
619 __fpregs_deactivate_hw();
620 }
1361b83a 621 } else {
cb8818b6
IM
622 old_fpu->counter = 0;
623 old_fpu->last_cpu = -1;
1361b83a 624 if (fpu.preload) {
cb8818b6 625 new_fpu->counter++;
66ddc2cb 626 if (fpu_want_lazy_restore(new_fpu, cpu))
1361b83a
LT
627 fpu.preload = 0;
628 else
7366ed77 629 prefetch(&new_fpu->state);
232f62cd 630 fpregs_activate(new_fpu);
1361b83a
LT
631 }
632 }
633 return fpu;
634}
635
b1b64dc3
IM
636/*
637 * Misc helper functions:
638 */
639
1361b83a
LT
640/*
641 * By the time this gets called, we've already cleared CR0.TS and
642 * given the process the FPU if we are going to preload the FPU
643 * state - all we need to do is to conditionally restore the register
644 * state itself.
645 */
384a23f9 646static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
1361b83a 647{
9ccc27a5 648 if (fpu_switch.preload)
003e2e8b 649 copy_kernel_to_fpregs(&new_fpu->state);
1361b83a
LT
650}
651
1361b83a 652/*
fb14b4ea 653 * Needs to be preemption-safe.
1361b83a 654 *
377ffbcc 655 * NOTE! user_fpu_begin() must be used only immediately before restoring
fb14b4ea
ON
656 * the save state. It does not do any saving/restoring on its own. In
657 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
658 * the task can lose the FPU right after preempt_enable().
1361b83a 659 */
1361b83a
LT
660static inline void user_fpu_begin(void)
661{
4540d3fa
IM
662 struct fpu *fpu = &current->thread.fpu;
663
1361b83a 664 preempt_disable();
3c6dffa9 665 if (!fpregs_active())
232f62cd 666 fpregs_activate(fpu);
1361b83a
LT
667 preempt_enable();
668}
669
b1b64dc3
IM
670/*
671 * MXCSR and XCR definitions:
672 */
673
674extern unsigned int mxcsr_feature_mask;
675
676#define XCR_XFEATURE_ENABLED_MASK 0x00000000
677
678static inline u64 xgetbv(u32 index)
679{
680 u32 eax, edx;
681
682 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
683 : "=a" (eax), "=d" (edx)
684 : "c" (index));
685 return eax + ((u64)edx << 32);
686}
687
688static inline void xsetbv(u32 index, u64 value)
689{
690 u32 eax = value;
691 u32 edx = value >> 32;
692
693 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
694 : : "a" (eax), "d" (edx), "c" (index));
695}
696
78f7f1e5 697#endif /* _ASM_X86_FPU_INTERNAL_H */