Merge remote-tracking branches 'asoc/topic/fsl-spdif', 'asoc/topic/hdmi', 'asoc/topic...
[linux-2.6-block.git] / arch / x86 / events / intel / core.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
aacfbe6a 15#include <linux/nmi.h>
de0428a7 16
3a632cb2 17#include <asm/cpufeature.h>
de0428a7
KW
18#include <asm/hardirq.h>
19#include <asm/apic.h>
20
27f6d22b 21#include "../perf_event.h"
a7e3ed1e 22
f22f54f4 23/*
b622d644 24 * Intel PerfMon, used on Core and later.
f22f54f4 25 */
ec75a716 26static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 27{
c3b7cdf1
PE
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
36};
37
5c543e3c 38static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
39{
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47};
48
5c543e3c 49static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 50{
b622d644
PZ
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65};
66
5c543e3c 67static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 68{
b622d644
PZ
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81};
82
5c543e3c 83static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 84{
53ad0447
YZ
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
f20093ee 87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
88 EVENT_EXTRA_END
89};
90
5c543e3c 91static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 92{
b622d644
PZ
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
100 EVENT_CONSTRAINT_END
101};
102
5c543e3c 103static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
104{
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
f8378f52
AK
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
93fcf72c 117
9010ae4a
SE
118 /*
119 * When HT is off these events can only run on the bottom 4 counters
120 * When HT is on, they are impacted by the HT bug and require EXCL access
121 */
93fcf72c
MD
122 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
123 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
126
b06b3d49
LM
127 EVENT_CONSTRAINT_END
128};
129
69943182
SE
130static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
131{
132 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
133 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
134 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
135 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
136 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
137 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
6113af14 138 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
69943182
SE
139 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
140 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
141 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
93fcf72c 145
9010ae4a
SE
146 /*
147 * When HT is off these events can only run on the bottom 4 counters
148 * When HT is on, they are impacted by the HT bug and require EXCL access
149 */
93fcf72c
MD
150 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
151 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
154
69943182
SE
155 EVENT_CONSTRAINT_END
156};
157
5c543e3c 158static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 159{
53ad0447
YZ
160 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
161 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
162 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
f20093ee 163 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
164 EVENT_EXTRA_END
165};
166
0af3ac1f
AK
167static struct event_constraint intel_v1_event_constraints[] __read_mostly =
168{
169 EVENT_CONSTRAINT_END
170};
171
5c543e3c 172static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 173{
b622d644
PZ
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
177 EVENT_CONSTRAINT_END
178};
179
1fa64180
YZ
180static struct event_constraint intel_slm_event_constraints[] __read_mostly =
181{
182 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
183 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
1fa64180
YZ
184 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
185 EVENT_CONSTRAINT_END
186};
187
9a92e16f
AK
188struct event_constraint intel_skl_event_constraints[] = {
189 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
9010ae4a
SE
193
194 /*
195 * when HT is off, these can only run on the bottom 4 counters
196 */
197 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
198 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
202
9a92e16f
AK
203 EVENT_CONSTRAINT_END
204};
205
1e7b9390
HC
206static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
207 INTEL_UEVENT_EXTRA_REG(0x01b7,
208 MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
209 INTEL_UEVENT_EXTRA_REG(0x02b7,
210 MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
211 EVENT_EXTRA_END
212};
213
ee89cbc2 214static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
53ad0447
YZ
215 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
f20093ee 218 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
f1923820
SE
219 EVENT_EXTRA_END
220};
221
222static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
53ad0447
YZ
223 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
f1a52789 226 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
ee89cbc2
SE
227 EVENT_EXTRA_END
228};
229
9a92e16f
AK
230static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
dfe1f3cb
AK
234 /*
235 * Note the low 8 bits eventsel code is not a continuous field, containing
236 * some #GPing bits. These are masked out.
237 */
238 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
9a92e16f
AK
239 EVENT_EXTRA_END
240};
241
7f2ee91f
IM
242EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
243EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
244EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
f20093ee
SE
245
246struct attribute *nhm_events_attrs[] = {
247 EVENT_PTR(mem_ld_nhm),
248 NULL,
249};
250
251struct attribute *snb_events_attrs[] = {
252 EVENT_PTR(mem_ld_snb),
9ad64c0f 253 EVENT_PTR(mem_st_snb),
f20093ee
SE
254 NULL,
255};
256
3a632cb2
AK
257static struct event_constraint intel_hsw_event_constraints[] = {
258 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
259 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
260 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
e0fbac1c 261 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
3a632cb2
AK
262 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
263 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
264 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
c420f19b 265 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
3a632cb2 266 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
c420f19b 267 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
3a632cb2 268 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
c420f19b 269 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
93fcf72c 270
9010ae4a
SE
271 /*
272 * When HT is off these events can only run on the bottom 4 counters
273 * When HT is on, they are impacted by the HT bug and require EXCL access
274 */
93fcf72c
MD
275 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
276 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
277 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
278 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
279
3a632cb2
AK
280 EVENT_CONSTRAINT_END
281};
282
91f1b705
AK
283struct event_constraint intel_bdw_event_constraints[] = {
284 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
285 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
286 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
287 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
b7883a1c 288 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
9010ae4a
SE
289 /*
290 * when HT is off, these can only run on the bottom 4 counters
291 */
292 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
293 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
294 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
295 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
91f1b705
AK
296 EVENT_CONSTRAINT_END
297};
298
f22f54f4
PZ
299static u64 intel_pmu_event_map(int hw_event)
300{
301 return intel_perfmon_event_map[hw_event];
302}
303
9a92e16f
AK
304/*
305 * Notes on the events:
306 * - data reads do not include code reads (comparable to earlier tables)
307 * - data counts include speculative execution (except L1 write, dtlb, bpu)
308 * - remote node access includes remote memory, remote cache, remote mmio.
309 * - prefetches are not included in the counts.
310 * - icache miss does not include decoded icache
311 */
312
313#define SKL_DEMAND_DATA_RD BIT_ULL(0)
314#define SKL_DEMAND_RFO BIT_ULL(1)
315#define SKL_ANY_RESPONSE BIT_ULL(16)
316#define SKL_SUPPLIER_NONE BIT_ULL(17)
317#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
318#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
319#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
320#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
321#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
322 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
323 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
324 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
325#define SKL_SPL_HIT BIT_ULL(30)
326#define SKL_SNOOP_NONE BIT_ULL(31)
327#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
328#define SKL_SNOOP_MISS BIT_ULL(33)
329#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
330#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
331#define SKL_SNOOP_HITM BIT_ULL(36)
332#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
333#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
334 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
335 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
336 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
337#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
338#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
339 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
340 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
341 SKL_SNOOP_HITM|SKL_SPL_HIT)
342#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
343#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
344#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
345 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
346 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
347
348static __initconst const u64 skl_hw_cache_event_ids
349 [PERF_COUNT_HW_CACHE_MAX]
350 [PERF_COUNT_HW_CACHE_OP_MAX]
351 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
352{
353 [ C(L1D ) ] = {
354 [ C(OP_READ) ] = {
355 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
356 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
357 },
358 [ C(OP_WRITE) ] = {
359 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
360 [ C(RESULT_MISS) ] = 0x0,
361 },
362 [ C(OP_PREFETCH) ] = {
363 [ C(RESULT_ACCESS) ] = 0x0,
364 [ C(RESULT_MISS) ] = 0x0,
365 },
366 },
367 [ C(L1I ) ] = {
368 [ C(OP_READ) ] = {
369 [ C(RESULT_ACCESS) ] = 0x0,
370 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
371 },
372 [ C(OP_WRITE) ] = {
373 [ C(RESULT_ACCESS) ] = -1,
374 [ C(RESULT_MISS) ] = -1,
375 },
376 [ C(OP_PREFETCH) ] = {
377 [ C(RESULT_ACCESS) ] = 0x0,
378 [ C(RESULT_MISS) ] = 0x0,
379 },
380 },
381 [ C(LL ) ] = {
382 [ C(OP_READ) ] = {
383 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
384 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
385 },
386 [ C(OP_WRITE) ] = {
387 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
388 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
389 },
390 [ C(OP_PREFETCH) ] = {
391 [ C(RESULT_ACCESS) ] = 0x0,
392 [ C(RESULT_MISS) ] = 0x0,
393 },
394 },
395 [ C(DTLB) ] = {
396 [ C(OP_READ) ] = {
397 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
398 [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
399 },
400 [ C(OP_WRITE) ] = {
401 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
402 [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
403 },
404 [ C(OP_PREFETCH) ] = {
405 [ C(RESULT_ACCESS) ] = 0x0,
406 [ C(RESULT_MISS) ] = 0x0,
407 },
408 },
409 [ C(ITLB) ] = {
410 [ C(OP_READ) ] = {
411 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
412 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
413 },
414 [ C(OP_WRITE) ] = {
415 [ C(RESULT_ACCESS) ] = -1,
416 [ C(RESULT_MISS) ] = -1,
417 },
418 [ C(OP_PREFETCH) ] = {
419 [ C(RESULT_ACCESS) ] = -1,
420 [ C(RESULT_MISS) ] = -1,
421 },
422 },
423 [ C(BPU ) ] = {
424 [ C(OP_READ) ] = {
425 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
426 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
427 },
428 [ C(OP_WRITE) ] = {
429 [ C(RESULT_ACCESS) ] = -1,
430 [ C(RESULT_MISS) ] = -1,
431 },
432 [ C(OP_PREFETCH) ] = {
433 [ C(RESULT_ACCESS) ] = -1,
434 [ C(RESULT_MISS) ] = -1,
435 },
436 },
437 [ C(NODE) ] = {
438 [ C(OP_READ) ] = {
439 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
440 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
441 },
442 [ C(OP_WRITE) ] = {
443 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
444 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
445 },
446 [ C(OP_PREFETCH) ] = {
447 [ C(RESULT_ACCESS) ] = 0x0,
448 [ C(RESULT_MISS) ] = 0x0,
449 },
450 },
451};
452
453static __initconst const u64 skl_hw_cache_extra_regs
454 [PERF_COUNT_HW_CACHE_MAX]
455 [PERF_COUNT_HW_CACHE_OP_MAX]
456 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
457{
458 [ C(LL ) ] = {
459 [ C(OP_READ) ] = {
460 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
461 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
462 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
463 SKL_L3_MISS|SKL_ANY_SNOOP|
464 SKL_SUPPLIER_NONE,
465 },
466 [ C(OP_WRITE) ] = {
467 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
468 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
469 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
470 SKL_L3_MISS|SKL_ANY_SNOOP|
471 SKL_SUPPLIER_NONE,
472 },
473 [ C(OP_PREFETCH) ] = {
474 [ C(RESULT_ACCESS) ] = 0x0,
475 [ C(RESULT_MISS) ] = 0x0,
476 },
477 },
478 [ C(NODE) ] = {
479 [ C(OP_READ) ] = {
480 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
481 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
482 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
483 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
484 },
485 [ C(OP_WRITE) ] = {
486 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
487 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
488 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
489 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
490 },
491 [ C(OP_PREFETCH) ] = {
492 [ C(RESULT_ACCESS) ] = 0x0,
493 [ C(RESULT_MISS) ] = 0x0,
494 },
495 },
496};
497
74e6543f
YZ
498#define SNB_DMND_DATA_RD (1ULL << 0)
499#define SNB_DMND_RFO (1ULL << 1)
500#define SNB_DMND_IFETCH (1ULL << 2)
501#define SNB_DMND_WB (1ULL << 3)
502#define SNB_PF_DATA_RD (1ULL << 4)
503#define SNB_PF_RFO (1ULL << 5)
504#define SNB_PF_IFETCH (1ULL << 6)
505#define SNB_LLC_DATA_RD (1ULL << 7)
506#define SNB_LLC_RFO (1ULL << 8)
507#define SNB_LLC_IFETCH (1ULL << 9)
508#define SNB_BUS_LOCKS (1ULL << 10)
509#define SNB_STRM_ST (1ULL << 11)
510#define SNB_OTHER (1ULL << 15)
511#define SNB_RESP_ANY (1ULL << 16)
512#define SNB_NO_SUPP (1ULL << 17)
513#define SNB_LLC_HITM (1ULL << 18)
514#define SNB_LLC_HITE (1ULL << 19)
515#define SNB_LLC_HITS (1ULL << 20)
516#define SNB_LLC_HITF (1ULL << 21)
517#define SNB_LOCAL (1ULL << 22)
518#define SNB_REMOTE (0xffULL << 23)
519#define SNB_SNP_NONE (1ULL << 31)
520#define SNB_SNP_NOT_NEEDED (1ULL << 32)
521#define SNB_SNP_MISS (1ULL << 33)
522#define SNB_NO_FWD (1ULL << 34)
523#define SNB_SNP_FWD (1ULL << 35)
524#define SNB_HITM (1ULL << 36)
525#define SNB_NON_DRAM (1ULL << 37)
526
527#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
528#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
529#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
530
531#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
532 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
533 SNB_HITM)
534
535#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
536#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
537
538#define SNB_L3_ACCESS SNB_RESP_ANY
539#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
540
541static __initconst const u64 snb_hw_cache_extra_regs
542 [PERF_COUNT_HW_CACHE_MAX]
543 [PERF_COUNT_HW_CACHE_OP_MAX]
544 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
545{
546 [ C(LL ) ] = {
547 [ C(OP_READ) ] = {
548 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
549 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
550 },
551 [ C(OP_WRITE) ] = {
552 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
553 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
554 },
555 [ C(OP_PREFETCH) ] = {
556 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
557 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
558 },
559 },
560 [ C(NODE) ] = {
561 [ C(OP_READ) ] = {
562 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
563 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
564 },
565 [ C(OP_WRITE) ] = {
566 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
567 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
568 },
569 [ C(OP_PREFETCH) ] = {
570 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
571 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
572 },
573 },
574};
575
b06b3d49
LM
576static __initconst const u64 snb_hw_cache_event_ids
577 [PERF_COUNT_HW_CACHE_MAX]
578 [PERF_COUNT_HW_CACHE_OP_MAX]
579 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
580{
581 [ C(L1D) ] = {
582 [ C(OP_READ) ] = {
583 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
584 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
585 },
586 [ C(OP_WRITE) ] = {
587 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
588 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
589 },
590 [ C(OP_PREFETCH) ] = {
591 [ C(RESULT_ACCESS) ] = 0x0,
592 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
593 },
594 },
595 [ C(L1I ) ] = {
596 [ C(OP_READ) ] = {
597 [ C(RESULT_ACCESS) ] = 0x0,
598 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
599 },
600 [ C(OP_WRITE) ] = {
601 [ C(RESULT_ACCESS) ] = -1,
602 [ C(RESULT_MISS) ] = -1,
603 },
604 [ C(OP_PREFETCH) ] = {
605 [ C(RESULT_ACCESS) ] = 0x0,
606 [ C(RESULT_MISS) ] = 0x0,
607 },
608 },
609 [ C(LL ) ] = {
b06b3d49 610 [ C(OP_READ) ] = {
63b6a675 611 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 612 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
613 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
614 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
615 },
616 [ C(OP_WRITE) ] = {
63b6a675 617 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 618 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
619 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
620 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
621 },
622 [ C(OP_PREFETCH) ] = {
63b6a675 623 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 624 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
625 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
626 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
627 },
628 },
629 [ C(DTLB) ] = {
630 [ C(OP_READ) ] = {
631 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
632 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
633 },
634 [ C(OP_WRITE) ] = {
635 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
636 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
637 },
638 [ C(OP_PREFETCH) ] = {
639 [ C(RESULT_ACCESS) ] = 0x0,
640 [ C(RESULT_MISS) ] = 0x0,
641 },
642 },
643 [ C(ITLB) ] = {
644 [ C(OP_READ) ] = {
645 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
646 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
647 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = -1,
650 [ C(RESULT_MISS) ] = -1,
651 },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = -1,
654 [ C(RESULT_MISS) ] = -1,
655 },
656 },
657 [ C(BPU ) ] = {
658 [ C(OP_READ) ] = {
659 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
660 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
661 },
662 [ C(OP_WRITE) ] = {
663 [ C(RESULT_ACCESS) ] = -1,
664 [ C(RESULT_MISS) ] = -1,
665 },
666 [ C(OP_PREFETCH) ] = {
667 [ C(RESULT_ACCESS) ] = -1,
668 [ C(RESULT_MISS) ] = -1,
669 },
670 },
89d6c0b5
PZ
671 [ C(NODE) ] = {
672 [ C(OP_READ) ] = {
74e6543f
YZ
673 [ C(RESULT_ACCESS) ] = 0x01b7,
674 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
675 },
676 [ C(OP_WRITE) ] = {
74e6543f
YZ
677 [ C(RESULT_ACCESS) ] = 0x01b7,
678 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
679 },
680 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
681 [ C(RESULT_ACCESS) ] = 0x01b7,
682 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
683 },
684 },
685
b06b3d49
LM
686};
687
0f1b5ca2
AK
688/*
689 * Notes on the events:
690 * - data reads do not include code reads (comparable to earlier tables)
691 * - data counts include speculative execution (except L1 write, dtlb, bpu)
692 * - remote node access includes remote memory, remote cache, remote mmio.
693 * - prefetches are not included in the counts because they are not
694 * reliably counted.
695 */
696
697#define HSW_DEMAND_DATA_RD BIT_ULL(0)
698#define HSW_DEMAND_RFO BIT_ULL(1)
699#define HSW_ANY_RESPONSE BIT_ULL(16)
700#define HSW_SUPPLIER_NONE BIT_ULL(17)
701#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
702#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
703#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
704#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
705#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
706 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
707 HSW_L3_MISS_REMOTE_HOP2P)
708#define HSW_SNOOP_NONE BIT_ULL(31)
709#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
710#define HSW_SNOOP_MISS BIT_ULL(33)
711#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
712#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
713#define HSW_SNOOP_HITM BIT_ULL(36)
714#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
715#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
716 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
717 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
718 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
719#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
720#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
721#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
722#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
723 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
724#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
725
91f1b705
AK
726#define BDW_L3_MISS_LOCAL BIT(26)
727#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
728 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
729 HSW_L3_MISS_REMOTE_HOP2P)
730
731
0f1b5ca2
AK
732static __initconst const u64 hsw_hw_cache_event_ids
733 [PERF_COUNT_HW_CACHE_MAX]
734 [PERF_COUNT_HW_CACHE_OP_MAX]
735 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
736{
737 [ C(L1D ) ] = {
738 [ C(OP_READ) ] = {
739 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
740 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
741 },
742 [ C(OP_WRITE) ] = {
743 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
744 [ C(RESULT_MISS) ] = 0x0,
745 },
746 [ C(OP_PREFETCH) ] = {
747 [ C(RESULT_ACCESS) ] = 0x0,
748 [ C(RESULT_MISS) ] = 0x0,
749 },
750 },
751 [ C(L1I ) ] = {
752 [ C(OP_READ) ] = {
753 [ C(RESULT_ACCESS) ] = 0x0,
754 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
755 },
756 [ C(OP_WRITE) ] = {
757 [ C(RESULT_ACCESS) ] = -1,
758 [ C(RESULT_MISS) ] = -1,
759 },
760 [ C(OP_PREFETCH) ] = {
761 [ C(RESULT_ACCESS) ] = 0x0,
762 [ C(RESULT_MISS) ] = 0x0,
763 },
764 },
765 [ C(LL ) ] = {
766 [ C(OP_READ) ] = {
767 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
768 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
769 },
770 [ C(OP_WRITE) ] = {
771 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
772 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
773 },
774 [ C(OP_PREFETCH) ] = {
775 [ C(RESULT_ACCESS) ] = 0x0,
776 [ C(RESULT_MISS) ] = 0x0,
777 },
778 },
779 [ C(DTLB) ] = {
780 [ C(OP_READ) ] = {
781 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
782 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
783 },
784 [ C(OP_WRITE) ] = {
785 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
786 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
787 },
788 [ C(OP_PREFETCH) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0,
790 [ C(RESULT_MISS) ] = 0x0,
791 },
792 },
793 [ C(ITLB) ] = {
794 [ C(OP_READ) ] = {
795 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
796 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
797 },
798 [ C(OP_WRITE) ] = {
799 [ C(RESULT_ACCESS) ] = -1,
800 [ C(RESULT_MISS) ] = -1,
801 },
802 [ C(OP_PREFETCH) ] = {
803 [ C(RESULT_ACCESS) ] = -1,
804 [ C(RESULT_MISS) ] = -1,
805 },
806 },
807 [ C(BPU ) ] = {
808 [ C(OP_READ) ] = {
809 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
810 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
811 },
812 [ C(OP_WRITE) ] = {
813 [ C(RESULT_ACCESS) ] = -1,
814 [ C(RESULT_MISS) ] = -1,
815 },
816 [ C(OP_PREFETCH) ] = {
817 [ C(RESULT_ACCESS) ] = -1,
818 [ C(RESULT_MISS) ] = -1,
819 },
820 },
821 [ C(NODE) ] = {
822 [ C(OP_READ) ] = {
823 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
824 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
825 },
826 [ C(OP_WRITE) ] = {
827 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
828 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
829 },
830 [ C(OP_PREFETCH) ] = {
831 [ C(RESULT_ACCESS) ] = 0x0,
832 [ C(RESULT_MISS) ] = 0x0,
833 },
834 },
835};
836
837static __initconst const u64 hsw_hw_cache_extra_regs
838 [PERF_COUNT_HW_CACHE_MAX]
839 [PERF_COUNT_HW_CACHE_OP_MAX]
840 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
841{
842 [ C(LL ) ] = {
843 [ C(OP_READ) ] = {
844 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
845 HSW_LLC_ACCESS,
846 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
847 HSW_L3_MISS|HSW_ANY_SNOOP,
848 },
849 [ C(OP_WRITE) ] = {
850 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
851 HSW_LLC_ACCESS,
852 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
853 HSW_L3_MISS|HSW_ANY_SNOOP,
854 },
855 [ C(OP_PREFETCH) ] = {
856 [ C(RESULT_ACCESS) ] = 0x0,
857 [ C(RESULT_MISS) ] = 0x0,
858 },
859 },
860 [ C(NODE) ] = {
861 [ C(OP_READ) ] = {
862 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
863 HSW_L3_MISS_LOCAL_DRAM|
864 HSW_SNOOP_DRAM,
865 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
866 HSW_L3_MISS_REMOTE|
867 HSW_SNOOP_DRAM,
868 },
869 [ C(OP_WRITE) ] = {
870 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
871 HSW_L3_MISS_LOCAL_DRAM|
872 HSW_SNOOP_DRAM,
873 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
874 HSW_L3_MISS_REMOTE|
875 HSW_SNOOP_DRAM,
876 },
877 [ C(OP_PREFETCH) ] = {
878 [ C(RESULT_ACCESS) ] = 0x0,
879 [ C(RESULT_MISS) ] = 0x0,
880 },
881 },
882};
883
caaa8be3 884static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
885 [PERF_COUNT_HW_CACHE_MAX]
886 [PERF_COUNT_HW_CACHE_OP_MAX]
887 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
888{
889 [ C(L1D) ] = {
890 [ C(OP_READ) ] = {
891 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
892 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
893 },
894 [ C(OP_WRITE) ] = {
895 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
896 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
897 },
898 [ C(OP_PREFETCH) ] = {
899 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
900 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
901 },
902 },
903 [ C(L1I ) ] = {
904 [ C(OP_READ) ] = {
905 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
906 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
907 },
908 [ C(OP_WRITE) ] = {
909 [ C(RESULT_ACCESS) ] = -1,
910 [ C(RESULT_MISS) ] = -1,
911 },
912 [ C(OP_PREFETCH) ] = {
913 [ C(RESULT_ACCESS) ] = 0x0,
914 [ C(RESULT_MISS) ] = 0x0,
915 },
916 },
917 [ C(LL ) ] = {
918 [ C(OP_READ) ] = {
63b6a675 919 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 920 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
921 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
922 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 923 },
e994d7d2
AK
924 /*
925 * Use RFO, not WRITEBACK, because a write miss would typically occur
926 * on RFO.
927 */
f22f54f4 928 [ C(OP_WRITE) ] = {
63b6a675
PZ
929 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
930 [ C(RESULT_ACCESS) ] = 0x01b7,
931 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 932 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
933 },
934 [ C(OP_PREFETCH) ] = {
63b6a675 935 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 936 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
937 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
938 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
939 },
940 },
941 [ C(DTLB) ] = {
942 [ C(OP_READ) ] = {
943 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
944 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
945 },
946 [ C(OP_WRITE) ] = {
947 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
948 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
949 },
950 [ C(OP_PREFETCH) ] = {
951 [ C(RESULT_ACCESS) ] = 0x0,
952 [ C(RESULT_MISS) ] = 0x0,
953 },
954 },
955 [ C(ITLB) ] = {
956 [ C(OP_READ) ] = {
957 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
958 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
959 },
960 [ C(OP_WRITE) ] = {
961 [ C(RESULT_ACCESS) ] = -1,
962 [ C(RESULT_MISS) ] = -1,
963 },
964 [ C(OP_PREFETCH) ] = {
965 [ C(RESULT_ACCESS) ] = -1,
966 [ C(RESULT_MISS) ] = -1,
967 },
968 },
969 [ C(BPU ) ] = {
970 [ C(OP_READ) ] = {
971 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
972 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
973 },
974 [ C(OP_WRITE) ] = {
975 [ C(RESULT_ACCESS) ] = -1,
976 [ C(RESULT_MISS) ] = -1,
977 },
978 [ C(OP_PREFETCH) ] = {
979 [ C(RESULT_ACCESS) ] = -1,
980 [ C(RESULT_MISS) ] = -1,
981 },
982 },
89d6c0b5
PZ
983 [ C(NODE) ] = {
984 [ C(OP_READ) ] = {
985 [ C(RESULT_ACCESS) ] = 0x01b7,
986 [ C(RESULT_MISS) ] = 0x01b7,
987 },
988 [ C(OP_WRITE) ] = {
989 [ C(RESULT_ACCESS) ] = 0x01b7,
990 [ C(RESULT_MISS) ] = 0x01b7,
991 },
992 [ C(OP_PREFETCH) ] = {
993 [ C(RESULT_ACCESS) ] = 0x01b7,
994 [ C(RESULT_MISS) ] = 0x01b7,
995 },
996 },
f22f54f4
PZ
997};
998
e994d7d2 999/*
63b6a675
PZ
1000 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1001 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
1002 */
1003
63b6a675
PZ
1004#define NHM_DMND_DATA_RD (1 << 0)
1005#define NHM_DMND_RFO (1 << 1)
1006#define NHM_DMND_IFETCH (1 << 2)
1007#define NHM_DMND_WB (1 << 3)
1008#define NHM_PF_DATA_RD (1 << 4)
1009#define NHM_PF_DATA_RFO (1 << 5)
1010#define NHM_PF_IFETCH (1 << 6)
1011#define NHM_OFFCORE_OTHER (1 << 7)
1012#define NHM_UNCORE_HIT (1 << 8)
1013#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1014#define NHM_OTHER_CORE_HITM (1 << 10)
1015 /* reserved */
1016#define NHM_REMOTE_CACHE_FWD (1 << 12)
1017#define NHM_REMOTE_DRAM (1 << 13)
1018#define NHM_LOCAL_DRAM (1 << 14)
1019#define NHM_NON_DRAM (1 << 15)
1020
87e24f4b
PZ
1021#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1022#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
1023
1024#define NHM_DMND_READ (NHM_DMND_DATA_RD)
1025#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1026#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1027
1028#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 1029#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 1030#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
1031
1032static __initconst const u64 nehalem_hw_cache_extra_regs
1033 [PERF_COUNT_HW_CACHE_MAX]
1034 [PERF_COUNT_HW_CACHE_OP_MAX]
1035 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1036{
1037 [ C(LL ) ] = {
1038 [ C(OP_READ) ] = {
63b6a675
PZ
1039 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1040 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
1041 },
1042 [ C(OP_WRITE) ] = {
63b6a675
PZ
1043 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1044 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
1045 },
1046 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
1047 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1048 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 1049 },
89d6c0b5
PZ
1050 },
1051 [ C(NODE) ] = {
1052 [ C(OP_READ) ] = {
87e24f4b
PZ
1053 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1054 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
1055 },
1056 [ C(OP_WRITE) ] = {
87e24f4b
PZ
1057 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1058 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
1059 },
1060 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
1061 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1062 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
1063 },
1064 },
e994d7d2
AK
1065};
1066
caaa8be3 1067static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
1068 [PERF_COUNT_HW_CACHE_MAX]
1069 [PERF_COUNT_HW_CACHE_OP_MAX]
1070 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1071{
1072 [ C(L1D) ] = {
1073 [ C(OP_READ) ] = {
f4929bd3
PZ
1074 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1075 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
1076 },
1077 [ C(OP_WRITE) ] = {
f4929bd3
PZ
1078 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1079 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
1080 },
1081 [ C(OP_PREFETCH) ] = {
1082 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1083 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1084 },
1085 },
1086 [ C(L1I ) ] = {
1087 [ C(OP_READ) ] = {
1088 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1089 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1090 },
1091 [ C(OP_WRITE) ] = {
1092 [ C(RESULT_ACCESS) ] = -1,
1093 [ C(RESULT_MISS) ] = -1,
1094 },
1095 [ C(OP_PREFETCH) ] = {
1096 [ C(RESULT_ACCESS) ] = 0x0,
1097 [ C(RESULT_MISS) ] = 0x0,
1098 },
1099 },
1100 [ C(LL ) ] = {
1101 [ C(OP_READ) ] = {
e994d7d2
AK
1102 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1103 [ C(RESULT_ACCESS) ] = 0x01b7,
1104 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1105 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 1106 },
e994d7d2
AK
1107 /*
1108 * Use RFO, not WRITEBACK, because a write miss would typically occur
1109 * on RFO.
1110 */
f22f54f4 1111 [ C(OP_WRITE) ] = {
e994d7d2
AK
1112 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1113 [ C(RESULT_ACCESS) ] = 0x01b7,
1114 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1115 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
1116 },
1117 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
1118 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1119 [ C(RESULT_ACCESS) ] = 0x01b7,
1120 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1121 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
1122 },
1123 },
1124 [ C(DTLB) ] = {
1125 [ C(OP_READ) ] = {
1126 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1127 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1128 },
1129 [ C(OP_WRITE) ] = {
1130 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1131 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1132 },
1133 [ C(OP_PREFETCH) ] = {
1134 [ C(RESULT_ACCESS) ] = 0x0,
1135 [ C(RESULT_MISS) ] = 0x0,
1136 },
1137 },
1138 [ C(ITLB) ] = {
1139 [ C(OP_READ) ] = {
1140 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1141 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1142 },
1143 [ C(OP_WRITE) ] = {
1144 [ C(RESULT_ACCESS) ] = -1,
1145 [ C(RESULT_MISS) ] = -1,
1146 },
1147 [ C(OP_PREFETCH) ] = {
1148 [ C(RESULT_ACCESS) ] = -1,
1149 [ C(RESULT_MISS) ] = -1,
1150 },
1151 },
1152 [ C(BPU ) ] = {
1153 [ C(OP_READ) ] = {
1154 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1155 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1156 },
1157 [ C(OP_WRITE) ] = {
1158 [ C(RESULT_ACCESS) ] = -1,
1159 [ C(RESULT_MISS) ] = -1,
1160 },
1161 [ C(OP_PREFETCH) ] = {
1162 [ C(RESULT_ACCESS) ] = -1,
1163 [ C(RESULT_MISS) ] = -1,
1164 },
1165 },
89d6c0b5
PZ
1166 [ C(NODE) ] = {
1167 [ C(OP_READ) ] = {
1168 [ C(RESULT_ACCESS) ] = 0x01b7,
1169 [ C(RESULT_MISS) ] = 0x01b7,
1170 },
1171 [ C(OP_WRITE) ] = {
1172 [ C(RESULT_ACCESS) ] = 0x01b7,
1173 [ C(RESULT_MISS) ] = 0x01b7,
1174 },
1175 [ C(OP_PREFETCH) ] = {
1176 [ C(RESULT_ACCESS) ] = 0x01b7,
1177 [ C(RESULT_MISS) ] = 0x01b7,
1178 },
1179 },
f22f54f4
PZ
1180};
1181
caaa8be3 1182static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
1183 [PERF_COUNT_HW_CACHE_MAX]
1184 [PERF_COUNT_HW_CACHE_OP_MAX]
1185 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1186{
1187 [ C(L1D) ] = {
1188 [ C(OP_READ) ] = {
1189 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1190 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1191 },
1192 [ C(OP_WRITE) ] = {
1193 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1194 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1195 },
1196 [ C(OP_PREFETCH) ] = {
1197 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1198 [ C(RESULT_MISS) ] = 0,
1199 },
1200 },
1201 [ C(L1I ) ] = {
1202 [ C(OP_READ) ] = {
1203 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1204 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1205 },
1206 [ C(OP_WRITE) ] = {
1207 [ C(RESULT_ACCESS) ] = -1,
1208 [ C(RESULT_MISS) ] = -1,
1209 },
1210 [ C(OP_PREFETCH) ] = {
1211 [ C(RESULT_ACCESS) ] = 0,
1212 [ C(RESULT_MISS) ] = 0,
1213 },
1214 },
1215 [ C(LL ) ] = {
1216 [ C(OP_READ) ] = {
1217 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1218 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1219 },
1220 [ C(OP_WRITE) ] = {
1221 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1222 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1223 },
1224 [ C(OP_PREFETCH) ] = {
1225 [ C(RESULT_ACCESS) ] = 0,
1226 [ C(RESULT_MISS) ] = 0,
1227 },
1228 },
1229 [ C(DTLB) ] = {
1230 [ C(OP_READ) ] = {
1231 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1232 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1233 },
1234 [ C(OP_WRITE) ] = {
1235 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1236 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1237 },
1238 [ C(OP_PREFETCH) ] = {
1239 [ C(RESULT_ACCESS) ] = 0,
1240 [ C(RESULT_MISS) ] = 0,
1241 },
1242 },
1243 [ C(ITLB) ] = {
1244 [ C(OP_READ) ] = {
1245 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1246 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1247 },
1248 [ C(OP_WRITE) ] = {
1249 [ C(RESULT_ACCESS) ] = -1,
1250 [ C(RESULT_MISS) ] = -1,
1251 },
1252 [ C(OP_PREFETCH) ] = {
1253 [ C(RESULT_ACCESS) ] = -1,
1254 [ C(RESULT_MISS) ] = -1,
1255 },
1256 },
1257 [ C(BPU ) ] = {
1258 [ C(OP_READ) ] = {
1259 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1260 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1261 },
1262 [ C(OP_WRITE) ] = {
1263 [ C(RESULT_ACCESS) ] = -1,
1264 [ C(RESULT_MISS) ] = -1,
1265 },
1266 [ C(OP_PREFETCH) ] = {
1267 [ C(RESULT_ACCESS) ] = -1,
1268 [ C(RESULT_MISS) ] = -1,
1269 },
1270 },
1271};
1272
caaa8be3 1273static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
1274 [PERF_COUNT_HW_CACHE_MAX]
1275 [PERF_COUNT_HW_CACHE_OP_MAX]
1276 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1277{
1278 [ C(L1D) ] = {
1279 [ C(OP_READ) ] = {
1280 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1281 [ C(RESULT_MISS) ] = 0,
1282 },
1283 [ C(OP_WRITE) ] = {
1284 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1285 [ C(RESULT_MISS) ] = 0,
1286 },
1287 [ C(OP_PREFETCH) ] = {
1288 [ C(RESULT_ACCESS) ] = 0x0,
1289 [ C(RESULT_MISS) ] = 0,
1290 },
1291 },
1292 [ C(L1I ) ] = {
1293 [ C(OP_READ) ] = {
1294 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1295 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1296 },
1297 [ C(OP_WRITE) ] = {
1298 [ C(RESULT_ACCESS) ] = -1,
1299 [ C(RESULT_MISS) ] = -1,
1300 },
1301 [ C(OP_PREFETCH) ] = {
1302 [ C(RESULT_ACCESS) ] = 0,
1303 [ C(RESULT_MISS) ] = 0,
1304 },
1305 },
1306 [ C(LL ) ] = {
1307 [ C(OP_READ) ] = {
1308 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1309 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1310 },
1311 [ C(OP_WRITE) ] = {
1312 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1313 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1314 },
1315 [ C(OP_PREFETCH) ] = {
1316 [ C(RESULT_ACCESS) ] = 0,
1317 [ C(RESULT_MISS) ] = 0,
1318 },
1319 },
1320 [ C(DTLB) ] = {
1321 [ C(OP_READ) ] = {
1322 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1323 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1324 },
1325 [ C(OP_WRITE) ] = {
1326 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1327 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1328 },
1329 [ C(OP_PREFETCH) ] = {
1330 [ C(RESULT_ACCESS) ] = 0,
1331 [ C(RESULT_MISS) ] = 0,
1332 },
1333 },
1334 [ C(ITLB) ] = {
1335 [ C(OP_READ) ] = {
1336 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1337 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1338 },
1339 [ C(OP_WRITE) ] = {
1340 [ C(RESULT_ACCESS) ] = -1,
1341 [ C(RESULT_MISS) ] = -1,
1342 },
1343 [ C(OP_PREFETCH) ] = {
1344 [ C(RESULT_ACCESS) ] = -1,
1345 [ C(RESULT_MISS) ] = -1,
1346 },
1347 },
1348 [ C(BPU ) ] = {
1349 [ C(OP_READ) ] = {
1350 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1351 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1352 },
1353 [ C(OP_WRITE) ] = {
1354 [ C(RESULT_ACCESS) ] = -1,
1355 [ C(RESULT_MISS) ] = -1,
1356 },
1357 [ C(OP_PREFETCH) ] = {
1358 [ C(RESULT_ACCESS) ] = -1,
1359 [ C(RESULT_MISS) ] = -1,
1360 },
1361 },
1362};
1363
1fa64180
YZ
1364static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1365{
1366 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
06c939c1 1367 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
ae3f011f 1368 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1fa64180
YZ
1369 EVENT_EXTRA_END
1370};
1371
1372#define SLM_DMND_READ SNB_DMND_DATA_RD
1373#define SLM_DMND_WRITE SNB_DMND_RFO
1374#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1375
1376#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1377#define SLM_LLC_ACCESS SNB_RESP_ANY
1378#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1379
1380static __initconst const u64 slm_hw_cache_extra_regs
1381 [PERF_COUNT_HW_CACHE_MAX]
1382 [PERF_COUNT_HW_CACHE_OP_MAX]
1383 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1384{
1385 [ C(LL ) ] = {
1386 [ C(OP_READ) ] = {
1387 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
6d374056 1388 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1389 },
1390 [ C(OP_WRITE) ] = {
1391 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1392 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1393 },
1394 [ C(OP_PREFETCH) ] = {
1395 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1396 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1397 },
1398 },
1399};
1400
1401static __initconst const u64 slm_hw_cache_event_ids
1402 [PERF_COUNT_HW_CACHE_MAX]
1403 [PERF_COUNT_HW_CACHE_OP_MAX]
1404 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1405{
1406 [ C(L1D) ] = {
1407 [ C(OP_READ) ] = {
1408 [ C(RESULT_ACCESS) ] = 0,
1409 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1410 },
1411 [ C(OP_WRITE) ] = {
1412 [ C(RESULT_ACCESS) ] = 0,
1413 [ C(RESULT_MISS) ] = 0,
1414 },
1415 [ C(OP_PREFETCH) ] = {
1416 [ C(RESULT_ACCESS) ] = 0,
1417 [ C(RESULT_MISS) ] = 0,
1418 },
1419 },
1420 [ C(L1I ) ] = {
1421 [ C(OP_READ) ] = {
1422 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1423 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1424 },
1425 [ C(OP_WRITE) ] = {
1426 [ C(RESULT_ACCESS) ] = -1,
1427 [ C(RESULT_MISS) ] = -1,
1428 },
1429 [ C(OP_PREFETCH) ] = {
1430 [ C(RESULT_ACCESS) ] = 0,
1431 [ C(RESULT_MISS) ] = 0,
1432 },
1433 },
1434 [ C(LL ) ] = {
1435 [ C(OP_READ) ] = {
1436 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1437 [ C(RESULT_ACCESS) ] = 0x01b7,
6d374056 1438 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1439 },
1440 [ C(OP_WRITE) ] = {
1441 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1442 [ C(RESULT_ACCESS) ] = 0x01b7,
1443 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1444 [ C(RESULT_MISS) ] = 0x01b7,
1445 },
1446 [ C(OP_PREFETCH) ] = {
1447 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1448 [ C(RESULT_ACCESS) ] = 0x01b7,
1449 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1450 [ C(RESULT_MISS) ] = 0x01b7,
1451 },
1452 },
1453 [ C(DTLB) ] = {
1454 [ C(OP_READ) ] = {
1455 [ C(RESULT_ACCESS) ] = 0,
1456 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1457 },
1458 [ C(OP_WRITE) ] = {
1459 [ C(RESULT_ACCESS) ] = 0,
1460 [ C(RESULT_MISS) ] = 0,
1461 },
1462 [ C(OP_PREFETCH) ] = {
1463 [ C(RESULT_ACCESS) ] = 0,
1464 [ C(RESULT_MISS) ] = 0,
1465 },
1466 },
1467 [ C(ITLB) ] = {
1468 [ C(OP_READ) ] = {
1469 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
6d374056 1470 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1fa64180
YZ
1471 },
1472 [ C(OP_WRITE) ] = {
1473 [ C(RESULT_ACCESS) ] = -1,
1474 [ C(RESULT_MISS) ] = -1,
1475 },
1476 [ C(OP_PREFETCH) ] = {
1477 [ C(RESULT_ACCESS) ] = -1,
1478 [ C(RESULT_MISS) ] = -1,
1479 },
1480 },
1481 [ C(BPU ) ] = {
1482 [ C(OP_READ) ] = {
1483 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1484 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1485 },
1486 [ C(OP_WRITE) ] = {
1487 [ C(RESULT_ACCESS) ] = -1,
1488 [ C(RESULT_MISS) ] = -1,
1489 },
1490 [ C(OP_PREFETCH) ] = {
1491 [ C(RESULT_ACCESS) ] = -1,
1492 [ C(RESULT_MISS) ] = -1,
1493 },
1494 },
1495};
1496
8b92c3a7
KL
1497static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1498 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1499 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1500 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1501 EVENT_EXTRA_END
1502};
1503
1504#define GLM_DEMAND_DATA_RD BIT_ULL(0)
1505#define GLM_DEMAND_RFO BIT_ULL(1)
1506#define GLM_ANY_RESPONSE BIT_ULL(16)
1507#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1508#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1509#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1510#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1511#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1512#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1513#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1514
1515static __initconst const u64 glm_hw_cache_event_ids
1516 [PERF_COUNT_HW_CACHE_MAX]
1517 [PERF_COUNT_HW_CACHE_OP_MAX]
1518 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1519 [C(L1D)] = {
1520 [C(OP_READ)] = {
1521 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1522 [C(RESULT_MISS)] = 0x0,
1523 },
1524 [C(OP_WRITE)] = {
1525 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1526 [C(RESULT_MISS)] = 0x0,
1527 },
1528 [C(OP_PREFETCH)] = {
1529 [C(RESULT_ACCESS)] = 0x0,
1530 [C(RESULT_MISS)] = 0x0,
1531 },
1532 },
1533 [C(L1I)] = {
1534 [C(OP_READ)] = {
1535 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1536 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1537 },
1538 [C(OP_WRITE)] = {
1539 [C(RESULT_ACCESS)] = -1,
1540 [C(RESULT_MISS)] = -1,
1541 },
1542 [C(OP_PREFETCH)] = {
1543 [C(RESULT_ACCESS)] = 0x0,
1544 [C(RESULT_MISS)] = 0x0,
1545 },
1546 },
1547 [C(LL)] = {
1548 [C(OP_READ)] = {
1549 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1550 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1551 },
1552 [C(OP_WRITE)] = {
1553 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1554 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1555 },
1556 [C(OP_PREFETCH)] = {
1557 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1558 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1559 },
1560 },
1561 [C(DTLB)] = {
1562 [C(OP_READ)] = {
1563 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1564 [C(RESULT_MISS)] = 0x0,
1565 },
1566 [C(OP_WRITE)] = {
1567 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1568 [C(RESULT_MISS)] = 0x0,
1569 },
1570 [C(OP_PREFETCH)] = {
1571 [C(RESULT_ACCESS)] = 0x0,
1572 [C(RESULT_MISS)] = 0x0,
1573 },
1574 },
1575 [C(ITLB)] = {
1576 [C(OP_READ)] = {
1577 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1578 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1579 },
1580 [C(OP_WRITE)] = {
1581 [C(RESULT_ACCESS)] = -1,
1582 [C(RESULT_MISS)] = -1,
1583 },
1584 [C(OP_PREFETCH)] = {
1585 [C(RESULT_ACCESS)] = -1,
1586 [C(RESULT_MISS)] = -1,
1587 },
1588 },
1589 [C(BPU)] = {
1590 [C(OP_READ)] = {
1591 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1592 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1593 },
1594 [C(OP_WRITE)] = {
1595 [C(RESULT_ACCESS)] = -1,
1596 [C(RESULT_MISS)] = -1,
1597 },
1598 [C(OP_PREFETCH)] = {
1599 [C(RESULT_ACCESS)] = -1,
1600 [C(RESULT_MISS)] = -1,
1601 },
1602 },
1603};
1604
1605static __initconst const u64 glm_hw_cache_extra_regs
1606 [PERF_COUNT_HW_CACHE_MAX]
1607 [PERF_COUNT_HW_CACHE_OP_MAX]
1608 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1609 [C(LL)] = {
1610 [C(OP_READ)] = {
1611 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1612 GLM_LLC_ACCESS,
1613 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1614 GLM_LLC_MISS,
1615 },
1616 [C(OP_WRITE)] = {
1617 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1618 GLM_LLC_ACCESS,
1619 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1620 GLM_LLC_MISS,
1621 },
1622 [C(OP_PREFETCH)] = {
1623 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1624 GLM_LLC_ACCESS,
1625 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1626 GLM_LLC_MISS,
1627 },
1628 },
1629};
1630
1e7b9390
HC
1631#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1632#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1633#define KNL_MCDRAM_LOCAL BIT_ULL(21)
1634#define KNL_MCDRAM_FAR BIT_ULL(22)
1635#define KNL_DDR_LOCAL BIT_ULL(23)
1636#define KNL_DDR_FAR BIT_ULL(24)
1637#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1638 KNL_DDR_LOCAL | KNL_DDR_FAR)
1639#define KNL_L2_READ SLM_DMND_READ
1640#define KNL_L2_WRITE SLM_DMND_WRITE
1641#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1642#define KNL_L2_ACCESS SLM_LLC_ACCESS
1643#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1644 KNL_DRAM_ANY | SNB_SNP_ANY | \
1645 SNB_NON_DRAM)
1646
1647static __initconst const u64 knl_hw_cache_extra_regs
1648 [PERF_COUNT_HW_CACHE_MAX]
1649 [PERF_COUNT_HW_CACHE_OP_MAX]
1650 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1651 [C(LL)] = {
1652 [C(OP_READ)] = {
1653 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1654 [C(RESULT_MISS)] = 0,
1655 },
1656 [C(OP_WRITE)] = {
1657 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1658 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1659 },
1660 [C(OP_PREFETCH)] = {
1661 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1662 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1663 },
1664 },
1665};
1666
1a78d937 1667/*
c3d266c8
KL
1668 * Used from PMIs where the LBRs are already disabled.
1669 *
1670 * This function could be called consecutively. It is required to remain in
1671 * disabled state if called consecutively.
1672 *
1673 * During consecutive calls, the same disable value will be written to related
1674 * registers, so the PMU state remains unchanged. hw.state in
1675 * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1676 * calls.
1a78d937
AK
1677 */
1678static void __intel_pmu_disable_all(void)
f22f54f4 1679{
89cbc767 1680 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4
PZ
1681
1682 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1683
15c7ad51 1684 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 1685 intel_pmu_disable_bts();
8062382c
AS
1686 else
1687 intel_bts_disable_local();
ca037701
PZ
1688
1689 intel_pmu_pebs_disable_all();
1a78d937
AK
1690}
1691
1692static void intel_pmu_disable_all(void)
1693{
1694 __intel_pmu_disable_all();
caff2bef 1695 intel_pmu_lbr_disable_all();
f22f54f4
PZ
1696}
1697
1a78d937 1698static void __intel_pmu_enable_all(int added, bool pmi)
f22f54f4 1699{
89cbc767 1700 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1701
d329527e 1702 intel_pmu_pebs_enable_all();
1a78d937 1703 intel_pmu_lbr_enable_all(pmi);
144d31e6
GN
1704 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1705 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 1706
15c7ad51 1707 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 1708 struct perf_event *event =
15c7ad51 1709 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
1710
1711 if (WARN_ON_ONCE(!event))
1712 return;
1713
1714 intel_pmu_enable_bts(event->hw.config);
8062382c
AS
1715 } else
1716 intel_bts_enable_local();
f22f54f4
PZ
1717}
1718
1a78d937
AK
1719static void intel_pmu_enable_all(int added)
1720{
1721 __intel_pmu_enable_all(added, false);
1722}
1723
11164cd4
PZ
1724/*
1725 * Workaround for:
1726 * Intel Errata AAK100 (model 26)
1727 * Intel Errata AAP53 (model 30)
40b91cd1 1728 * Intel Errata BD53 (model 44)
11164cd4 1729 *
351af072
ZY
1730 * The official story:
1731 * These chips need to be 'reset' when adding counters by programming the
1732 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1733 * in sequence on the same PMC or on different PMCs.
1734 *
1735 * In practise it appears some of these events do in fact count, and
1736 * we need to programm all 4 events.
11164cd4 1737 */
351af072 1738static void intel_pmu_nhm_workaround(void)
11164cd4 1739{
89cbc767 1740 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
351af072
ZY
1741 static const unsigned long nhm_magic[4] = {
1742 0x4300B5,
1743 0x4300D2,
1744 0x4300B1,
1745 0x4300B1
1746 };
1747 struct perf_event *event;
1748 int i;
11164cd4 1749
351af072
ZY
1750 /*
1751 * The Errata requires below steps:
1752 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1753 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1754 * the corresponding PMCx;
1755 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1756 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1757 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1758 */
11164cd4 1759
351af072
ZY
1760 /*
1761 * The real steps we choose are a little different from above.
1762 * A) To reduce MSR operations, we don't run step 1) as they
1763 * are already cleared before this function is called;
1764 * B) Call x86_perf_event_update to save PMCx before configuring
1765 * PERFEVTSELx with magic number;
1766 * C) With step 5), we do clear only when the PERFEVTSELx is
1767 * not used currently.
1768 * D) Call x86_perf_event_set_period to restore PMCx;
1769 */
11164cd4 1770
351af072
ZY
1771 /* We always operate 4 pairs of PERF Counters */
1772 for (i = 0; i < 4; i++) {
1773 event = cpuc->events[i];
1774 if (event)
1775 x86_perf_event_update(event);
1776 }
11164cd4 1777
351af072
ZY
1778 for (i = 0; i < 4; i++) {
1779 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1780 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1781 }
1782
1783 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1784 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 1785
351af072
ZY
1786 for (i = 0; i < 4; i++) {
1787 event = cpuc->events[i];
1788
1789 if (event) {
1790 x86_perf_event_set_period(event);
31fa58af 1791 __x86_pmu_enable_event(&event->hw,
351af072
ZY
1792 ARCH_PERFMON_EVENTSEL_ENABLE);
1793 } else
1794 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 1795 }
351af072
ZY
1796}
1797
1798static void intel_pmu_nhm_enable_all(int added)
1799{
1800 if (added)
1801 intel_pmu_nhm_workaround();
11164cd4
PZ
1802 intel_pmu_enable_all(added);
1803}
1804
f22f54f4
PZ
1805static inline u64 intel_pmu_get_status(void)
1806{
1807 u64 status;
1808
1809 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1810
1811 return status;
1812}
1813
1814static inline void intel_pmu_ack_status(u64 ack)
1815{
1816 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1817}
1818
ca037701 1819static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 1820{
15c7ad51 1821 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
1822 u64 ctrl_val, mask;
1823
1824 mask = 0xfULL << (idx * 4);
1825
1826 rdmsrl(hwc->config_base, ctrl_val);
1827 ctrl_val &= ~mask;
7645a24c 1828 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1829}
1830
2b9e344d
PZ
1831static inline bool event_is_checkpointed(struct perf_event *event)
1832{
1833 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1834}
1835
ca037701 1836static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 1837{
aff3d91a 1838 struct hw_perf_event *hwc = &event->hw;
89cbc767 1839 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1840
15c7ad51 1841 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
1842 intel_pmu_disable_bts();
1843 intel_pmu_drain_bts_buffer();
1844 return;
1845 }
1846
144d31e6
GN
1847 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1848 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2b9e344d 1849 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
144d31e6 1850
60ce0fbd
SE
1851 /*
1852 * must disable before any actual event
1853 * because any event may be combined with LBR
1854 */
a46a2300 1855 if (needs_branch_stack(event))
60ce0fbd
SE
1856 intel_pmu_lbr_disable(event);
1857
f22f54f4 1858 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1859 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
1860 return;
1861 }
1862
aff3d91a 1863 x86_pmu_disable_event(event);
ca037701 1864
ab608344 1865 if (unlikely(event->attr.precise_ip))
ef21f683 1866 intel_pmu_pebs_disable(event);
f22f54f4
PZ
1867}
1868
ca037701 1869static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 1870{
15c7ad51 1871 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 1872 u64 ctrl_val, bits, mask;
f22f54f4
PZ
1873
1874 /*
1875 * Enable IRQ generation (0x8),
1876 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1877 * if requested:
1878 */
1879 bits = 0x8ULL;
1880 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1881 bits |= 0x2;
1882 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1883 bits |= 0x1;
1884
1885 /*
1886 * ANY bit is supported in v3 and up
1887 */
1888 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1889 bits |= 0x4;
1890
1891 bits <<= (idx * 4);
1892 mask = 0xfULL << (idx * 4);
1893
1894 rdmsrl(hwc->config_base, ctrl_val);
1895 ctrl_val &= ~mask;
1896 ctrl_val |= bits;
7645a24c 1897 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
1898}
1899
aff3d91a 1900static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 1901{
aff3d91a 1902 struct hw_perf_event *hwc = &event->hw;
89cbc767 1903 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 1904
15c7ad51 1905 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 1906 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
1907 return;
1908
1909 intel_pmu_enable_bts(hwc->config);
1910 return;
1911 }
60ce0fbd
SE
1912 /*
1913 * must enabled before any actual event
1914 * because any event may be combined with LBR
1915 */
a46a2300 1916 if (needs_branch_stack(event))
60ce0fbd 1917 intel_pmu_lbr_enable(event);
f22f54f4 1918
144d31e6
GN
1919 if (event->attr.exclude_host)
1920 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1921 if (event->attr.exclude_guest)
1922 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1923
2b9e344d
PZ
1924 if (unlikely(event_is_checkpointed(event)))
1925 cpuc->intel_cp_status |= (1ull << hwc->idx);
1926
f22f54f4 1927 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 1928 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
1929 return;
1930 }
1931
ab608344 1932 if (unlikely(event->attr.precise_ip))
ef21f683 1933 intel_pmu_pebs_enable(event);
ca037701 1934
31fa58af 1935 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
1936}
1937
1938/*
1939 * Save and restart an expired event. Called by NMI contexts,
1940 * so it has to be careful about preempting normal event ops:
1941 */
de0428a7 1942int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 1943{
cc2ad4ba 1944 x86_perf_event_update(event);
2dbf0116
AK
1945 /*
1946 * For a checkpointed counter always reset back to 0. This
1947 * avoids a situation where the counter overflows, aborts the
1948 * transaction and is then set back to shortly before the
1949 * overflow, and overflows and aborts again.
1950 */
1951 if (unlikely(event_is_checkpointed(event))) {
1952 /* No race with NMIs because the counter should not be armed */
1953 wrmsrl(event->hw.event_base, 0);
1954 local64_set(&event->hw.prev_count, 0);
1955 }
cc2ad4ba 1956 return x86_perf_event_set_period(event);
f22f54f4
PZ
1957}
1958
1959static void intel_pmu_reset(void)
1960{
0a3aee0d 1961 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
1962 unsigned long flags;
1963 int idx;
1964
948b1bb8 1965 if (!x86_pmu.num_counters)
f22f54f4
PZ
1966 return;
1967
1968 local_irq_save(flags);
1969
c767a54b 1970 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 1971
948b1bb8 1972 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
1973 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1974 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 1975 }
948b1bb8 1976 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 1977 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 1978
f22f54f4
PZ
1979 if (ds)
1980 ds->bts_index = ds->bts_buffer_base;
1981
8882edf7
AK
1982 /* Ack all overflows and disable fixed counters */
1983 if (x86_pmu.version >= 2) {
1984 intel_pmu_ack_status(intel_pmu_get_status());
1985 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1986 }
1987
1988 /* Reset LBRs and LBR freezing */
1989 if (x86_pmu.lbr_nr) {
1990 update_debugctlmsr(get_debugctlmsr() &
1991 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1992 }
1993
f22f54f4
PZ
1994 local_irq_restore(flags);
1995}
1996
1997/*
1998 * This handler is triggered by the local APIC, so the APIC IRQ handling
1999 * rules apply:
2000 */
2001static int intel_pmu_handle_irq(struct pt_regs *regs)
2002{
2003 struct perf_sample_data data;
2004 struct cpu_hw_events *cpuc;
2005 int bit, loops;
2e556b5b 2006 u64 status;
b0b2072d 2007 int handled;
f22f54f4 2008
89cbc767 2009 cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 2010
2bce5dac 2011 /*
72db5596
AK
2012 * No known reason to not always do late ACK,
2013 * but just in case do it opt-in.
2bce5dac 2014 */
72db5596
AK
2015 if (!x86_pmu.late_ack)
2016 apic_write(APIC_LVTPC, APIC_DM_NMI);
1a78d937 2017 __intel_pmu_disable_all();
b0b2072d 2018 handled = intel_pmu_drain_bts_buffer();
8062382c 2019 handled += intel_bts_interrupt();
f22f54f4 2020 status = intel_pmu_get_status();
a3ef2229
MM
2021 if (!status)
2022 goto done;
f22f54f4
PZ
2023
2024 loops = 0;
2025again:
0f29e573 2026 intel_pmu_lbr_read();
2e556b5b 2027 intel_pmu_ack_status(status);
f22f54f4 2028 if (++loops > 100) {
ae0def05
DH
2029 static bool warned = false;
2030 if (!warned) {
2031 WARN(1, "perfevents: irq loop stuck!\n");
2032 perf_event_print_debug();
2033 warned = true;
2034 }
f22f54f4 2035 intel_pmu_reset();
3fb2b8dd 2036 goto done;
f22f54f4
PZ
2037 }
2038
2039 inc_irq_stat(apic_perf_irqs);
ca037701 2040
caff2bef 2041
b292d7a1 2042 /*
d8020bee
AK
2043 * Ignore a range of extra bits in status that do not indicate
2044 * overflow by themselves.
b292d7a1 2045 */
d8020bee
AK
2046 status &= ~(GLOBAL_STATUS_COND_CHG |
2047 GLOBAL_STATUS_ASIF |
2048 GLOBAL_STATUS_LBRS_FROZEN);
2049 if (!status)
2050 goto done;
b292d7a1 2051
ca037701
PZ
2052 /*
2053 * PEBS overflow sets bit 62 in the global status register
2054 */
de725dec
PZ
2055 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2056 handled++;
ca037701 2057 x86_pmu.drain_pebs(regs);
8077eca0
SE
2058 /*
2059 * There are cases where, even though, the PEBS ovfl bit is set
2060 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2061 * overflow bits set for their counters. We must clear them
2062 * here because they have been processed as exact samples in
2063 * the drain_pebs() routine. They must not be processed again
2064 * in the for_each_bit_set() loop for regular samples below.
2065 */
2066 status &= ~cpuc->pebs_enabled;
2067 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
de725dec 2068 }
ca037701 2069
52ca9ced
AS
2070 /*
2071 * Intel PT
2072 */
2073 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2074 handled++;
2075 intel_pt_interrupt();
2076 }
2077
2dbf0116 2078 /*
2b9e344d
PZ
2079 * Checkpointed counters can lead to 'spurious' PMIs because the
2080 * rollback caused by the PMI will have cleared the overflow status
2081 * bit. Therefore always force probe these counters.
2dbf0116 2082 */
2b9e344d 2083 status |= cpuc->intel_cp_status;
2dbf0116 2084
984b3f57 2085 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
2086 struct perf_event *event = cpuc->events[bit];
2087
de725dec
PZ
2088 handled++;
2089
f22f54f4
PZ
2090 if (!test_bit(bit, cpuc->active_mask))
2091 continue;
2092
2093 if (!intel_pmu_save_and_restart(event))
2094 continue;
2095
fd0d000b 2096 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 2097
60ce0fbd
SE
2098 if (has_branch_stack(event))
2099 data.br_stack = &cpuc->lbr_stack;
2100
a8b0ca17 2101 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 2102 x86_pmu_stop(event, 0);
f22f54f4
PZ
2103 }
2104
f22f54f4
PZ
2105 /*
2106 * Repeat if there is more work to be done:
2107 */
2108 status = intel_pmu_get_status();
2109 if (status)
2110 goto again;
2111
3fb2b8dd 2112done:
c3d266c8
KL
2113 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2114 if (cpuc->enabled)
2115 __intel_pmu_enable_all(0, true);
2116
72db5596
AK
2117 /*
2118 * Only unmask the NMI after the overflow counters
2119 * have been reset. This avoids spurious NMIs on
2120 * Haswell CPUs.
2121 */
2122 if (x86_pmu.late_ack)
2123 apic_write(APIC_LVTPC, APIC_DM_NMI);
de725dec 2124 return handled;
f22f54f4
PZ
2125}
2126
f22f54f4 2127static struct event_constraint *
ca037701 2128intel_bts_constraints(struct perf_event *event)
f22f54f4 2129{
ca037701
PZ
2130 struct hw_perf_event *hwc = &event->hw;
2131 unsigned int hw_event, bts_event;
f22f54f4 2132
18a073a3
PZ
2133 if (event->attr.freq)
2134 return NULL;
2135
ca037701
PZ
2136 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2137 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 2138
ca037701 2139 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 2140 return &bts_constraint;
ca037701 2141
f22f54f4
PZ
2142 return NULL;
2143}
2144
ae3f011f 2145static int intel_alt_er(int idx, u64 config)
b79e8941 2146{
e01d8718
PZ
2147 int alt_idx = idx;
2148
9a5e3fb5 2149 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
5a425294 2150 return idx;
b79e8941 2151
5a425294 2152 if (idx == EXTRA_REG_RSP_0)
ae3f011f 2153 alt_idx = EXTRA_REG_RSP_1;
5a425294
PZ
2154
2155 if (idx == EXTRA_REG_RSP_1)
ae3f011f 2156 alt_idx = EXTRA_REG_RSP_0;
5a425294 2157
ae3f011f
KL
2158 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2159 return idx;
2160
2161 return alt_idx;
5a425294
PZ
2162}
2163
2164static void intel_fixup_er(struct perf_event *event, int idx)
2165{
2166 event->hw.extra_reg.idx = idx;
2167
2168 if (idx == EXTRA_REG_RSP_0) {
b79e8941 2169 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 2170 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
b79e8941 2171 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
2172 } else if (idx == EXTRA_REG_RSP_1) {
2173 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 2174 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
5a425294 2175 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 2176 }
b79e8941
PZ
2177}
2178
efc9f05d
SE
2179/*
2180 * manage allocation of shared extra msr for certain events
2181 *
2182 * sharing can be:
2183 * per-cpu: to be shared between the various events on a single PMU
2184 * per-core: per-cpu + shared by HT threads
2185 */
a7e3ed1e 2186static struct event_constraint *
efc9f05d 2187__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
2188 struct perf_event *event,
2189 struct hw_perf_event_extra *reg)
a7e3ed1e 2190{
efc9f05d 2191 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 2192 struct er_account *era;
cd8a38d3 2193 unsigned long flags;
5a425294 2194 int idx = reg->idx;
a7e3ed1e 2195
5a425294
PZ
2196 /*
2197 * reg->alloc can be set due to existing state, so for fake cpuc we
2198 * need to ignore this, otherwise we might fail to allocate proper fake
2199 * state for this extra reg constraint. Also see the comment below.
2200 */
2201 if (reg->alloc && !cpuc->is_fake)
b36817e8 2202 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 2203
b79e8941 2204again:
5a425294 2205 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
2206 /*
2207 * we use spin_lock_irqsave() to avoid lockdep issues when
2208 * passing a fake cpuc
2209 */
2210 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
2211
2212 if (!atomic_read(&era->ref) || era->config == reg->config) {
2213
5a425294
PZ
2214 /*
2215 * If its a fake cpuc -- as per validate_{group,event}() we
2216 * shouldn't touch event state and we can avoid doing so
2217 * since both will only call get_event_constraints() once
2218 * on each event, this avoids the need for reg->alloc.
2219 *
2220 * Not doing the ER fixup will only result in era->reg being
2221 * wrong, but since we won't actually try and program hardware
2222 * this isn't a problem either.
2223 */
2224 if (!cpuc->is_fake) {
2225 if (idx != reg->idx)
2226 intel_fixup_er(event, idx);
2227
2228 /*
2229 * x86_schedule_events() can call get_event_constraints()
2230 * multiple times on events in the case of incremental
2231 * scheduling(). reg->alloc ensures we only do the ER
2232 * allocation once.
2233 */
2234 reg->alloc = 1;
2235 }
2236
efc9f05d
SE
2237 /* lock in msr value */
2238 era->config = reg->config;
2239 era->reg = reg->reg;
2240
2241 /* one more user */
2242 atomic_inc(&era->ref);
2243
a7e3ed1e 2244 /*
b36817e8
SE
2245 * need to call x86_get_event_constraint()
2246 * to check if associated event has constraints
a7e3ed1e 2247 */
b36817e8 2248 c = NULL;
5a425294 2249 } else {
ae3f011f 2250 idx = intel_alt_er(idx, reg->config);
5a425294
PZ
2251 if (idx != reg->idx) {
2252 raw_spin_unlock_irqrestore(&era->lock, flags);
2253 goto again;
2254 }
a7e3ed1e 2255 }
cd8a38d3 2256 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 2257
efc9f05d
SE
2258 return c;
2259}
2260
2261static void
2262__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2263 struct hw_perf_event_extra *reg)
2264{
2265 struct er_account *era;
2266
2267 /*
5a425294
PZ
2268 * Only put constraint if extra reg was actually allocated. Also takes
2269 * care of event which do not use an extra shared reg.
2270 *
2271 * Also, if this is a fake cpuc we shouldn't touch any event state
2272 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2273 * either since it'll be thrown out.
efc9f05d 2274 */
5a425294 2275 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
2276 return;
2277
2278 era = &cpuc->shared_regs->regs[reg->idx];
2279
2280 /* one fewer user */
2281 atomic_dec(&era->ref);
2282
2283 /* allocate again next time */
2284 reg->alloc = 0;
2285}
2286
2287static struct event_constraint *
2288intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2289 struct perf_event *event)
2290{
b36817e8
SE
2291 struct event_constraint *c = NULL, *d;
2292 struct hw_perf_event_extra *xreg, *breg;
2293
2294 xreg = &event->hw.extra_reg;
2295 if (xreg->idx != EXTRA_REG_NONE) {
2296 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2297 if (c == &emptyconstraint)
2298 return c;
2299 }
2300 breg = &event->hw.branch_reg;
2301 if (breg->idx != EXTRA_REG_NONE) {
2302 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2303 if (d == &emptyconstraint) {
2304 __intel_shared_reg_put_constraints(cpuc, xreg);
2305 c = d;
2306 }
2307 }
efc9f05d 2308 return c;
a7e3ed1e
AK
2309}
2310
de0428a7 2311struct event_constraint *
79cba822
SE
2312x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2313 struct perf_event *event)
de0428a7
KW
2314{
2315 struct event_constraint *c;
2316
2317 if (x86_pmu.event_constraints) {
2318 for_each_event_constraint(c, x86_pmu.event_constraints) {
9fac2cf3 2319 if ((event->hw.config & c->cmask) == c->code) {
9fac2cf3 2320 event->hw.flags |= c->flags;
de0428a7 2321 return c;
9fac2cf3 2322 }
de0428a7
KW
2323 }
2324 }
2325
2326 return &unconstrained;
2327}
2328
f22f54f4 2329static struct event_constraint *
e979121b 2330__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
79cba822 2331 struct perf_event *event)
f22f54f4
PZ
2332{
2333 struct event_constraint *c;
2334
ca037701
PZ
2335 c = intel_bts_constraints(event);
2336 if (c)
2337 return c;
2338
687805e4 2339 c = intel_shared_regs_constraints(cpuc, event);
f22f54f4
PZ
2340 if (c)
2341 return c;
2342
687805e4 2343 c = intel_pebs_constraints(event);
a7e3ed1e
AK
2344 if (c)
2345 return c;
2346
79cba822 2347 return x86_get_event_constraints(cpuc, idx, event);
f22f54f4
PZ
2348}
2349
e979121b
MD
2350static void
2351intel_start_scheduling(struct cpu_hw_events *cpuc)
2352{
2353 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2354 struct intel_excl_states *xl;
e979121b 2355 int tid = cpuc->excl_thread_id;
e979121b
MD
2356
2357 /*
2358 * nothing needed if in group validation mode
2359 */
b37609c3 2360 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b 2361 return;
b37609c3 2362
e979121b
MD
2363 /*
2364 * no exclusion needed
2365 */
17186ccd 2366 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2367 return;
2368
e979121b
MD
2369 xl = &excl_cntrs->states[tid];
2370
2371 xl->sched_started = true;
e979121b
MD
2372 /*
2373 * lock shared state until we are done scheduling
2374 * in stop_event_scheduling()
2375 * makes scheduling appear as a transaction
2376 */
e979121b 2377 raw_spin_lock(&excl_cntrs->lock);
e979121b
MD
2378}
2379
0c41e756
PZ
2380static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2381{
2382 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2383 struct event_constraint *c = cpuc->event_constraint[idx];
2384 struct intel_excl_states *xl;
2385 int tid = cpuc->excl_thread_id;
2386
2387 if (cpuc->is_fake || !is_ht_workaround_enabled())
2388 return;
2389
2390 if (WARN_ON_ONCE(!excl_cntrs))
2391 return;
2392
2393 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2394 return;
2395
2396 xl = &excl_cntrs->states[tid];
2397
2398 lockdep_assert_held(&excl_cntrs->lock);
2399
1fe684e3 2400 if (c->flags & PERF_X86_EVENT_EXCL)
43ef205b 2401 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
1fe684e3 2402 else
43ef205b 2403 xl->state[cntr] = INTEL_EXCL_SHARED;
0c41e756
PZ
2404}
2405
e979121b
MD
2406static void
2407intel_stop_scheduling(struct cpu_hw_events *cpuc)
2408{
2409 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2410 struct intel_excl_states *xl;
e979121b 2411 int tid = cpuc->excl_thread_id;
e979121b
MD
2412
2413 /*
2414 * nothing needed if in group validation mode
2415 */
b37609c3 2416 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b
MD
2417 return;
2418 /*
2419 * no exclusion needed
2420 */
17186ccd 2421 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2422 return;
2423
e979121b
MD
2424 xl = &excl_cntrs->states[tid];
2425
e979121b
MD
2426 xl->sched_started = false;
2427 /*
2428 * release shared state lock (acquired in intel_start_scheduling())
2429 */
2430 raw_spin_unlock(&excl_cntrs->lock);
2431}
2432
2433static struct event_constraint *
2434intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2435 int idx, struct event_constraint *c)
2436{
e979121b 2437 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2438 struct intel_excl_states *xlo;
e979121b 2439 int tid = cpuc->excl_thread_id;
1c565833 2440 int is_excl, i;
e979121b
MD
2441
2442 /*
2443 * validating a group does not require
2444 * enforcing cross-thread exclusion
2445 */
b37609c3
SE
2446 if (cpuc->is_fake || !is_ht_workaround_enabled())
2447 return c;
2448
2449 /*
2450 * no exclusion needed
2451 */
17186ccd 2452 if (WARN_ON_ONCE(!excl_cntrs))
e979121b 2453 return c;
e979121b 2454
e979121b
MD
2455 /*
2456 * because we modify the constraint, we need
2457 * to make a copy. Static constraints come
2458 * from static const tables.
2459 *
2460 * only needed when constraint has not yet
2461 * been cloned (marked dynamic)
2462 */
2463 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
aaf932e8 2464 struct event_constraint *cx;
e979121b 2465
e979121b
MD
2466 /*
2467 * grab pre-allocated constraint entry
2468 */
2469 cx = &cpuc->constraint_list[idx];
2470
2471 /*
2472 * initialize dynamic constraint
2473 * with static constraint
2474 */
aaf932e8 2475 *cx = *c;
e979121b
MD
2476
2477 /*
2478 * mark constraint as dynamic, so we
2479 * can free it later on
2480 */
2481 cx->flags |= PERF_X86_EVENT_DYNAMIC;
aaf932e8 2482 c = cx;
e979121b
MD
2483 }
2484
2485 /*
2486 * From here on, the constraint is dynamic.
2487 * Either it was just allocated above, or it
2488 * was allocated during a earlier invocation
2489 * of this function
2490 */
2491
1c565833
PZ
2492 /*
2493 * state of sibling HT
2494 */
2495 xlo = &excl_cntrs->states[tid ^ 1];
2496
2497 /*
2498 * event requires exclusive counter access
2499 * across HT threads
2500 */
2501 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2502 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2503 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2504 if (!cpuc->n_excl++)
2505 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2506 }
2507
e979121b
MD
2508 /*
2509 * Modify static constraint with current dynamic
2510 * state of thread
2511 *
2512 * EXCLUSIVE: sibling counter measuring exclusive event
2513 * SHARED : sibling counter measuring non-exclusive event
2514 * UNUSED : sibling counter unused
2515 */
aaf932e8 2516 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
e979121b
MD
2517 /*
2518 * exclusive event in sibling counter
2519 * our corresponding counter cannot be used
2520 * regardless of our event
2521 */
1c565833 2522 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
aaf932e8 2523 __clear_bit(i, c->idxmsk);
e979121b
MD
2524 /*
2525 * if measuring an exclusive event, sibling
2526 * measuring non-exclusive, then counter cannot
2527 * be used
2528 */
1c565833 2529 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
aaf932e8 2530 __clear_bit(i, c->idxmsk);
e979121b
MD
2531 }
2532
2533 /*
2534 * recompute actual bit weight for scheduling algorithm
2535 */
aaf932e8 2536 c->weight = hweight64(c->idxmsk64);
e979121b
MD
2537
2538 /*
2539 * if we return an empty mask, then switch
2540 * back to static empty constraint to avoid
2541 * the cost of freeing later on
2542 */
aaf932e8
PZ
2543 if (c->weight == 0)
2544 c = &emptyconstraint;
e979121b 2545
aaf932e8 2546 return c;
e979121b
MD
2547}
2548
2549static struct event_constraint *
2550intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2551 struct perf_event *event)
2552{
ebfb4988 2553 struct event_constraint *c1 = NULL;
a90738c2 2554 struct event_constraint *c2;
e979121b 2555
ebfb4988
PZ
2556 if (idx >= 0) /* fake does < 0 */
2557 c1 = cpuc->event_constraint[idx];
2558
e979121b
MD
2559 /*
2560 * first time only
2561 * - static constraint: no change across incremental scheduling calls
2562 * - dynamic constraint: handled by intel_get_excl_constraints()
2563 */
a90738c2
SE
2564 c2 = __intel_get_event_constraints(cpuc, idx, event);
2565 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2566 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2567 c1->weight = c2->weight;
2568 c2 = c1;
2569 }
e979121b
MD
2570
2571 if (cpuc->excl_cntrs)
a90738c2 2572 return intel_get_excl_constraints(cpuc, event, idx, c2);
e979121b 2573
a90738c2 2574 return c2;
e979121b
MD
2575}
2576
2577static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2578 struct perf_event *event)
2579{
2580 struct hw_perf_event *hwc = &event->hw;
2581 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
e979121b 2582 int tid = cpuc->excl_thread_id;
1c565833 2583 struct intel_excl_states *xl;
e979121b
MD
2584
2585 /*
2586 * nothing needed if in group validation mode
2587 */
2588 if (cpuc->is_fake)
2589 return;
2590
17186ccd 2591 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2592 return;
2593
cc1790cf
PZ
2594 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2595 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2596 if (!--cpuc->n_excl)
2597 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2598 }
e979121b
MD
2599
2600 /*
ba040653
PZ
2601 * If event was actually assigned, then mark the counter state as
2602 * unused now.
e979121b 2603 */
ba040653
PZ
2604 if (hwc->idx >= 0) {
2605 xl = &excl_cntrs->states[tid];
2606
2607 /*
2608 * put_constraint may be called from x86_schedule_events()
2609 * which already has the lock held so here make locking
2610 * conditional.
2611 */
2612 if (!xl->sched_started)
2613 raw_spin_lock(&excl_cntrs->lock);
e979121b 2614
1c565833 2615 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
e979121b 2616
ba040653
PZ
2617 if (!xl->sched_started)
2618 raw_spin_unlock(&excl_cntrs->lock);
2619 }
e979121b
MD
2620}
2621
efc9f05d
SE
2622static void
2623intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
2624 struct perf_event *event)
2625{
efc9f05d 2626 struct hw_perf_event_extra *reg;
a7e3ed1e 2627
efc9f05d
SE
2628 reg = &event->hw.extra_reg;
2629 if (reg->idx != EXTRA_REG_NONE)
2630 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
2631
2632 reg = &event->hw.branch_reg;
2633 if (reg->idx != EXTRA_REG_NONE)
2634 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 2635}
a7e3ed1e 2636
efc9f05d
SE
2637static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2638 struct perf_event *event)
2639{
2640 intel_put_shared_regs_event_constraints(cpuc, event);
e979121b
MD
2641
2642 /*
2643 * is PMU has exclusive counter restrictions, then
2644 * all events are subject to and must call the
2645 * put_excl_constraints() routine
2646 */
b371b594 2647 if (cpuc->excl_cntrs)
e979121b 2648 intel_put_excl_constraints(cpuc, event);
e979121b
MD
2649}
2650
0780c927 2651static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 2652{
0780c927 2653 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
2654 /*
2655 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2656 * (0x003c) so that we can use it with PEBS.
2657 *
2658 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2659 * PEBS capable. However we can use INST_RETIRED.ANY_P
2660 * (0x00c0), which is a PEBS capable event, to get the same
2661 * count.
2662 *
2663 * INST_RETIRED.ANY_P counts the number of cycles that retires
2664 * CNTMASK instructions. By setting CNTMASK to a value (16)
2665 * larger than the maximum number of instructions that can be
2666 * retired per cycle (4) and then inverting the condition, we
2667 * count all cycles that retire 16 or less instructions, which
2668 * is every cycle.
2669 *
2670 * Thereby we gain a PEBS capable cycle counter.
2671 */
f9b4eeb8
PZ
2672 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2673
0780c927
PZ
2674 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2675 event->hw.config = alt_config;
2676 }
2677}
2678
2679static void intel_pebs_aliases_snb(struct perf_event *event)
2680{
2681 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2682 /*
2683 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2684 * (0x003c) so that we can use it with PEBS.
2685 *
2686 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2687 * PEBS capable. However we can use UOPS_RETIRED.ALL
2688 * (0x01c2), which is a PEBS capable event, to get the same
2689 * count.
2690 *
2691 * UOPS_RETIRED.ALL counts the number of cycles that retires
2692 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2693 * larger than the maximum number of micro-ops that can be
2694 * retired per cycle (4) and then inverting the condition, we
2695 * count all cycles that retire 16 or less micro-ops, which
2696 * is every cycle.
2697 *
2698 * Thereby we gain a PEBS capable cycle counter.
2699 */
2700 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
2701
2702 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2703 event->hw.config = alt_config;
2704 }
0780c927
PZ
2705}
2706
72469764
AK
2707static void intel_pebs_aliases_precdist(struct perf_event *event)
2708{
2709 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2710 /*
2711 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2712 * (0x003c) so that we can use it with PEBS.
2713 *
2714 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2715 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2716 * (0x01c0), which is a PEBS capable event, to get the same
2717 * count.
2718 *
2719 * The PREC_DIST event has special support to minimize sample
2720 * shadowing effects. One drawback is that it can be
2721 * only programmed on counter 1, but that seems like an
2722 * acceptable trade off.
2723 */
2724 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2725
2726 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2727 event->hw.config = alt_config;
2728 }
2729}
2730
2731static void intel_pebs_aliases_ivb(struct perf_event *event)
2732{
2733 if (event->attr.precise_ip < 3)
2734 return intel_pebs_aliases_snb(event);
2735 return intel_pebs_aliases_precdist(event);
2736}
2737
2738static void intel_pebs_aliases_skl(struct perf_event *event)
2739{
2740 if (event->attr.precise_ip < 3)
2741 return intel_pebs_aliases_core2(event);
2742 return intel_pebs_aliases_precdist(event);
2743}
2744
a7b58d21
AK
2745static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2746{
2747 unsigned long flags = x86_pmu.free_running_flags;
2748
2749 if (event->attr.use_clockid)
2750 flags &= ~PERF_SAMPLE_TIME;
2751 return flags;
2752}
2753
0780c927
PZ
2754static int intel_pmu_hw_config(struct perf_event *event)
2755{
2756 int ret = x86_pmu_hw_config(event);
2757
2758 if (ret)
2759 return ret;
2760
851559e3 2761 if (event->attr.precise_ip) {
3569c0d7 2762 if (!event->attr.freq) {
851559e3 2763 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
a7b58d21
AK
2764 if (!(event->attr.sample_type &
2765 ~intel_pmu_free_running_flags(event)))
3569c0d7
YZ
2766 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2767 }
851559e3
YZ
2768 if (x86_pmu.pebs_aliases)
2769 x86_pmu.pebs_aliases(event);
2770 }
7639dae0 2771
a46a2300 2772 if (needs_branch_stack(event)) {
60ce0fbd
SE
2773 ret = intel_pmu_setup_lbr_filter(event);
2774 if (ret)
2775 return ret;
48070342
AS
2776
2777 /*
2778 * BTS is set up earlier in this path, so don't account twice
2779 */
2780 if (!intel_pmu_has_bts(event)) {
2781 /* disallow lbr if conflicting events are present */
2782 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2783 return -EBUSY;
2784
2785 event->destroy = hw_perf_lbr_event_destroy;
2786 }
60ce0fbd
SE
2787 }
2788
b4cdc5c2
PZ
2789 if (event->attr.type != PERF_TYPE_RAW)
2790 return 0;
2791
2792 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2793 return 0;
2794
2795 if (x86_pmu.version < 3)
2796 return -EINVAL;
2797
2798 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2799 return -EACCES;
2800
2801 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2802
2803 return 0;
2804}
2805
144d31e6
GN
2806struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2807{
2808 if (x86_pmu.guest_get_msrs)
2809 return x86_pmu.guest_get_msrs(nr);
2810 *nr = 0;
2811 return NULL;
2812}
2813EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2814
2815static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2816{
89cbc767 2817 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2818 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2819
2820 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2821 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2822 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
2823 /*
2824 * If PMU counter has PEBS enabled it is not enough to disable counter
2825 * on a guest entry since PEBS memory write can overshoot guest entry
2826 * and corrupt guest memory. Disabling PEBS solves the problem.
2827 */
2828 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2829 arr[1].host = cpuc->pebs_enabled;
2830 arr[1].guest = 0;
144d31e6 2831
26a4f3c0 2832 *nr = 2;
144d31e6
GN
2833 return arr;
2834}
2835
2836static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2837{
89cbc767 2838 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2839 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2840 int idx;
2841
2842 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2843 struct perf_event *event = cpuc->events[idx];
2844
2845 arr[idx].msr = x86_pmu_config_addr(idx);
2846 arr[idx].host = arr[idx].guest = 0;
2847
2848 if (!test_bit(idx, cpuc->active_mask))
2849 continue;
2850
2851 arr[idx].host = arr[idx].guest =
2852 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2853
2854 if (event->attr.exclude_host)
2855 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2856 else if (event->attr.exclude_guest)
2857 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2858 }
2859
2860 *nr = x86_pmu.num_counters;
2861 return arr;
2862}
2863
2864static void core_pmu_enable_event(struct perf_event *event)
2865{
2866 if (!event->attr.exclude_host)
2867 x86_pmu_enable_event(event);
2868}
2869
2870static void core_pmu_enable_all(int added)
2871{
89cbc767 2872 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
2873 int idx;
2874
2875 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2876 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2877
2878 if (!test_bit(idx, cpuc->active_mask) ||
2879 cpuc->events[idx]->attr.exclude_host)
2880 continue;
2881
2882 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2883 }
2884}
2885
3a632cb2
AK
2886static int hsw_hw_config(struct perf_event *event)
2887{
2888 int ret = intel_pmu_hw_config(event);
2889
2890 if (ret)
2891 return ret;
2892 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2893 return 0;
2894 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2895
2896 /*
2897 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2898 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2899 * this combination.
2900 */
2901 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2902 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2903 event->attr.precise_ip > 0))
2904 return -EOPNOTSUPP;
2905
2dbf0116
AK
2906 if (event_is_checkpointed(event)) {
2907 /*
2908 * Sampling of checkpointed events can cause situations where
2909 * the CPU constantly aborts because of a overflow, which is
2910 * then checkpointed back and ignored. Forbid checkpointing
2911 * for sampling.
2912 *
2913 * But still allow a long sampling period, so that perf stat
2914 * from KVM works.
2915 */
2916 if (event->attr.sample_period > 0 &&
2917 event->attr.sample_period < 0x7fffffff)
2918 return -EOPNOTSUPP;
2919 }
3a632cb2
AK
2920 return 0;
2921}
2922
2923static struct event_constraint counter2_constraint =
2924 EVENT_CONSTRAINT(0, 0x4, 0);
2925
2926static struct event_constraint *
79cba822
SE
2927hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2928 struct perf_event *event)
3a632cb2 2929{
79cba822
SE
2930 struct event_constraint *c;
2931
2932 c = intel_get_event_constraints(cpuc, idx, event);
3a632cb2
AK
2933
2934 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2935 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2936 if (c->idxmsk64 & (1U << 2))
2937 return &counter2_constraint;
2938 return &emptyconstraint;
2939 }
2940
2941 return c;
2942}
2943
294fe0f5
AK
2944/*
2945 * Broadwell:
2946 *
2947 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2948 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2949 * the two to enforce a minimum period of 128 (the smallest value that has bits
2950 * 0-5 cleared and >= 100).
2951 *
2952 * Because of how the code in x86_perf_event_set_period() works, the truncation
2953 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2954 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2955 *
2956 * Therefore the effective (average) period matches the requested period,
2957 * despite coarser hardware granularity.
2958 */
2959static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2960{
2961 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2962 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2963 if (left < 128)
2964 left = 128;
2965 left &= ~0x3fu;
2966 }
2967 return left;
2968}
2969
641cc938
JO
2970PMU_FORMAT_ATTR(event, "config:0-7" );
2971PMU_FORMAT_ATTR(umask, "config:8-15" );
2972PMU_FORMAT_ATTR(edge, "config:18" );
2973PMU_FORMAT_ATTR(pc, "config:19" );
2974PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2975PMU_FORMAT_ATTR(inv, "config:23" );
2976PMU_FORMAT_ATTR(cmask, "config:24-31" );
3a632cb2
AK
2977PMU_FORMAT_ATTR(in_tx, "config:32");
2978PMU_FORMAT_ATTR(in_tx_cp, "config:33");
641cc938
JO
2979
2980static struct attribute *intel_arch_formats_attr[] = {
2981 &format_attr_event.attr,
2982 &format_attr_umask.attr,
2983 &format_attr_edge.attr,
2984 &format_attr_pc.attr,
2985 &format_attr_inv.attr,
2986 &format_attr_cmask.attr,
2987 NULL,
2988};
2989
0bf79d44
JO
2990ssize_t intel_event_sysfs_show(char *page, u64 config)
2991{
2992 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2993
2994 return x86_event_sysfs_show(page, config, event);
2995}
2996
de0428a7 2997struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
2998{
2999 struct intel_shared_regs *regs;
3000 int i;
3001
3002 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3003 GFP_KERNEL, cpu_to_node(cpu));
3004 if (regs) {
3005 /*
3006 * initialize the locks to keep lockdep happy
3007 */
3008 for (i = 0; i < EXTRA_REG_MAX; i++)
3009 raw_spin_lock_init(&regs->regs[i].lock);
3010
3011 regs->core_id = -1;
3012 }
3013 return regs;
3014}
3015
6f6539ca
MD
3016static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3017{
3018 struct intel_excl_cntrs *c;
6f6539ca
MD
3019
3020 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3021 GFP_KERNEL, cpu_to_node(cpu));
3022 if (c) {
3023 raw_spin_lock_init(&c->lock);
6f6539ca
MD
3024 c->core_id = -1;
3025 }
3026 return c;
3027}
3028
a7e3ed1e
AK
3029static int intel_pmu_cpu_prepare(int cpu)
3030{
3031 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3032
6f6539ca
MD
3033 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3034 cpuc->shared_regs = allocate_shared_regs(cpu);
3035 if (!cpuc->shared_regs)
dbc72b7a 3036 goto err;
6f6539ca 3037 }
69092624 3038
6f6539ca
MD
3039 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3040 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3041
3042 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3043 if (!cpuc->constraint_list)
dbc72b7a 3044 goto err_shared_regs;
6f6539ca
MD
3045
3046 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
dbc72b7a
PZ
3047 if (!cpuc->excl_cntrs)
3048 goto err_constraint_list;
3049
6f6539ca
MD
3050 cpuc->excl_thread_id = 0;
3051 }
a7e3ed1e 3052
a7e3ed1e 3053 return NOTIFY_OK;
dbc72b7a
PZ
3054
3055err_constraint_list:
3056 kfree(cpuc->constraint_list);
3057 cpuc->constraint_list = NULL;
3058
3059err_shared_regs:
3060 kfree(cpuc->shared_regs);
3061 cpuc->shared_regs = NULL;
3062
3063err:
3064 return NOTIFY_BAD;
a7e3ed1e
AK
3065}
3066
74846d35
PZ
3067static void intel_pmu_cpu_starting(int cpu)
3068{
a7e3ed1e
AK
3069 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3070 int core_id = topology_core_id(cpu);
3071 int i;
3072
69092624
LM
3073 init_debug_store_on_cpu(cpu);
3074 /*
3075 * Deal with CPUs that don't clear their LBRs on power-up.
3076 */
3077 intel_pmu_lbr_reset();
3078
b36817e8
SE
3079 cpuc->lbr_sel = NULL;
3080
3081 if (!cpuc->shared_regs)
69092624
LM
3082 return;
3083
9a5e3fb5 3084 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
06931e62 3085 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
b36817e8 3086 struct intel_shared_regs *pc;
a7e3ed1e 3087
b36817e8
SE
3088 pc = per_cpu(cpu_hw_events, i).shared_regs;
3089 if (pc && pc->core_id == core_id) {
8f04b853 3090 cpuc->kfree_on_online[0] = cpuc->shared_regs;
b36817e8
SE
3091 cpuc->shared_regs = pc;
3092 break;
3093 }
a7e3ed1e 3094 }
b36817e8
SE
3095 cpuc->shared_regs->core_id = core_id;
3096 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
3097 }
3098
b36817e8
SE
3099 if (x86_pmu.lbr_sel_map)
3100 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6f6539ca
MD
3101
3102 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
06931e62 3103 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
6f6539ca
MD
3104 struct intel_excl_cntrs *c;
3105
3106 c = per_cpu(cpu_hw_events, i).excl_cntrs;
3107 if (c && c->core_id == core_id) {
3108 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3109 cpuc->excl_cntrs = c;
3110 cpuc->excl_thread_id = 1;
3111 break;
3112 }
3113 }
3114 cpuc->excl_cntrs->core_id = core_id;
3115 cpuc->excl_cntrs->refcnt++;
3116 }
74846d35
PZ
3117}
3118
b37609c3 3119static void free_excl_cntrs(int cpu)
74846d35 3120{
a7e3ed1e 3121 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6f6539ca 3122 struct intel_excl_cntrs *c;
a7e3ed1e 3123
6f6539ca
MD
3124 c = cpuc->excl_cntrs;
3125 if (c) {
3126 if (c->core_id == -1 || --c->refcnt == 0)
3127 kfree(c);
3128 cpuc->excl_cntrs = NULL;
3129 kfree(cpuc->constraint_list);
3130 cpuc->constraint_list = NULL;
3131 }
b37609c3 3132}
a7e3ed1e 3133
b37609c3
SE
3134static void intel_pmu_cpu_dying(int cpu)
3135{
3136 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3137 struct intel_shared_regs *pc;
3138
3139 pc = cpuc->shared_regs;
3140 if (pc) {
3141 if (pc->core_id == -1 || --pc->refcnt == 0)
3142 kfree(pc);
3143 cpuc->shared_regs = NULL;
e979121b
MD
3144 }
3145
b37609c3
SE
3146 free_excl_cntrs(cpu);
3147
74846d35
PZ
3148 fini_debug_store_on_cpu(cpu);
3149}
3150
9c964efa
YZ
3151static void intel_pmu_sched_task(struct perf_event_context *ctx,
3152 bool sched_in)
3153{
3154 if (x86_pmu.pebs_active)
3155 intel_pmu_pebs_sched_task(ctx, sched_in);
3156 if (x86_pmu.lbr_nr)
3157 intel_pmu_lbr_sched_task(ctx, sched_in);
3158}
3159
641cc938
JO
3160PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3161
a63fcab4
SE
3162PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3163
d0dc8494
AK
3164PMU_FORMAT_ATTR(frontend, "config1:0-23");
3165
641cc938
JO
3166static struct attribute *intel_arch3_formats_attr[] = {
3167 &format_attr_event.attr,
3168 &format_attr_umask.attr,
3169 &format_attr_edge.attr,
3170 &format_attr_pc.attr,
3171 &format_attr_any.attr,
3172 &format_attr_inv.attr,
3173 &format_attr_cmask.attr,
3a632cb2
AK
3174 &format_attr_in_tx.attr,
3175 &format_attr_in_tx_cp.attr,
641cc938
JO
3176
3177 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
a63fcab4 3178 &format_attr_ldlat.attr, /* PEBS load latency */
641cc938
JO
3179 NULL,
3180};
3181
d0dc8494
AK
3182static struct attribute *skl_format_attr[] = {
3183 &format_attr_frontend.attr,
3184 NULL,
3185};
3186
3b6e0421
JO
3187static __initconst const struct x86_pmu core_pmu = {
3188 .name = "core",
3189 .handle_irq = x86_pmu_handle_irq,
3190 .disable_all = x86_pmu_disable_all,
3191 .enable_all = core_pmu_enable_all,
3192 .enable = core_pmu_enable_event,
3193 .disable = x86_pmu_disable_event,
3194 .hw_config = x86_pmu_hw_config,
3195 .schedule_events = x86_schedule_events,
3196 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3197 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3198 .event_map = intel_pmu_event_map,
3199 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3200 .apic = 1,
a7b58d21
AK
3201 .free_running_flags = PEBS_FREERUNNING_FLAGS,
3202
3b6e0421
JO
3203 /*
3204 * Intel PMCs cannot be accessed sanely above 32-bit width,
3205 * so we install an artificial 1<<31 period regardless of
3206 * the generic event period:
3207 */
3208 .max_period = (1ULL<<31) - 1,
3209 .get_event_constraints = intel_get_event_constraints,
3210 .put_event_constraints = intel_put_event_constraints,
3211 .event_constraints = intel_core_event_constraints,
3212 .guest_get_msrs = core_guest_get_msrs,
3213 .format_attrs = intel_arch_formats_attr,
3214 .events_sysfs_show = intel_event_sysfs_show,
3215
3216 /*
3217 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3218 * together with PMU version 1 and thus be using core_pmu with
3219 * shared_regs. We need following callbacks here to allocate
3220 * it properly.
3221 */
3222 .cpu_prepare = intel_pmu_cpu_prepare,
3223 .cpu_starting = intel_pmu_cpu_starting,
3224 .cpu_dying = intel_pmu_cpu_dying,
3225};
3226
caaa8be3 3227static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
3228 .name = "Intel",
3229 .handle_irq = intel_pmu_handle_irq,
3230 .disable_all = intel_pmu_disable_all,
3231 .enable_all = intel_pmu_enable_all,
3232 .enable = intel_pmu_enable_event,
3233 .disable = intel_pmu_disable_event,
b4cdc5c2 3234 .hw_config = intel_pmu_hw_config,
a072738e 3235 .schedule_events = x86_schedule_events,
f22f54f4
PZ
3236 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3237 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3238 .event_map = intel_pmu_event_map,
f22f54f4
PZ
3239 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3240 .apic = 1,
a7b58d21 3241 .free_running_flags = PEBS_FREERUNNING_FLAGS,
f22f54f4
PZ
3242 /*
3243 * Intel PMCs cannot be accessed sanely above 32 bit width,
3244 * so we install an artificial 1<<31 period regardless of
3245 * the generic event period:
3246 */
3247 .max_period = (1ULL << 31) - 1,
3f6da390 3248 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 3249 .put_event_constraints = intel_put_event_constraints,
0780c927 3250 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 3251
641cc938 3252 .format_attrs = intel_arch3_formats_attr,
0bf79d44 3253 .events_sysfs_show = intel_event_sysfs_show,
641cc938 3254
a7e3ed1e 3255 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
3256 .cpu_starting = intel_pmu_cpu_starting,
3257 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 3258 .guest_get_msrs = intel_guest_get_msrs,
9c964efa 3259 .sched_task = intel_pmu_sched_task,
f22f54f4
PZ
3260};
3261
c1d6f42f 3262static __init void intel_clovertown_quirk(void)
3c44780b
PZ
3263{
3264 /*
3265 * PEBS is unreliable due to:
3266 *
3267 * AJ67 - PEBS may experience CPL leaks
3268 * AJ68 - PEBS PMI may be delayed by one event
3269 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3270 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3271 *
3272 * AJ67 could be worked around by restricting the OS/USR flags.
3273 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3274 *
3275 * AJ106 could possibly be worked around by not allowing LBR
3276 * usage from PEBS, including the fixup.
3277 * AJ68 could possibly be worked around by always programming
ec75a716 3278 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
3279 *
3280 * But taken together it might just make sense to not enable PEBS on
3281 * these chips.
3282 */
c767a54b 3283 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
3284 x86_pmu.pebs = 0;
3285 x86_pmu.pebs_constraints = NULL;
3286}
3287
c93dc84c
PZ
3288static int intel_snb_pebs_broken(int cpu)
3289{
3290 u32 rev = UINT_MAX; /* default to broken for unknown models */
3291
3292 switch (cpu_data(cpu).x86_model) {
3293 case 42: /* SNB */
3294 rev = 0x28;
3295 break;
3296
3297 case 45: /* SNB-EP */
3298 switch (cpu_data(cpu).x86_mask) {
3299 case 6: rev = 0x618; break;
3300 case 7: rev = 0x70c; break;
3301 }
3302 }
3303
3304 return (cpu_data(cpu).microcode < rev);
3305}
3306
3307static void intel_snb_check_microcode(void)
3308{
3309 int pebs_broken = 0;
3310 int cpu;
3311
3312 get_online_cpus();
3313 for_each_online_cpu(cpu) {
3314 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3315 break;
3316 }
3317 put_online_cpus();
3318
3319 if (pebs_broken == x86_pmu.pebs_broken)
3320 return;
3321
3322 /*
3323 * Serialized by the microcode lock..
3324 */
3325 if (x86_pmu.pebs_broken) {
3326 pr_info("PEBS enabled due to microcode update\n");
3327 x86_pmu.pebs_broken = 0;
3328 } else {
3329 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3330 x86_pmu.pebs_broken = 1;
3331 }
3332}
3333
338b522c
KL
3334/*
3335 * Under certain circumstances, access certain MSR may cause #GP.
3336 * The function tests if the input MSR can be safely accessed.
3337 */
3338static bool check_msr(unsigned long msr, u64 mask)
3339{
3340 u64 val_old, val_new, val_tmp;
3341
3342 /*
3343 * Read the current value, change it and read it back to see if it
3344 * matches, this is needed to detect certain hardware emulators
3345 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3346 */
3347 if (rdmsrl_safe(msr, &val_old))
3348 return false;
3349
3350 /*
3351 * Only change the bits which can be updated by wrmsrl.
3352 */
3353 val_tmp = val_old ^ mask;
3354 if (wrmsrl_safe(msr, val_tmp) ||
3355 rdmsrl_safe(msr, &val_new))
3356 return false;
3357
3358 if (val_new != val_tmp)
3359 return false;
3360
3361 /* Here it's sure that the MSR can be safely accessed.
3362 * Restore the old value and return.
3363 */
3364 wrmsrl(msr, val_old);
3365
3366 return true;
3367}
3368
c1d6f42f 3369static __init void intel_sandybridge_quirk(void)
6a600a8b 3370{
c93dc84c
PZ
3371 x86_pmu.check_microcode = intel_snb_check_microcode;
3372 intel_snb_check_microcode();
6a600a8b
PZ
3373}
3374
c1d6f42f
PZ
3375static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3376 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3377 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3378 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3379 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3380 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3381 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3382 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
3383};
3384
c1d6f42f
PZ
3385static __init void intel_arch_events_quirk(void)
3386{
3387 int bit;
3388
3389 /* disable event that reported as not presend by cpuid */
3390 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3391 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
3392 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3393 intel_arch_events_map[bit].name);
c1d6f42f
PZ
3394 }
3395}
3396
3397static __init void intel_nehalem_quirk(void)
3398{
3399 union cpuid10_ebx ebx;
3400
3401 ebx.full = x86_pmu.events_maskl;
3402 if (ebx.split.no_branch_misses_retired) {
3403 /*
3404 * Erratum AAJ80 detected, we work it around by using
3405 * the BR_MISP_EXEC.ANY event. This will over-count
3406 * branch-misses, but it's still much better than the
3407 * architectural event which is often completely bogus:
3408 */
3409 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3410 ebx.split.no_branch_misses_retired = 0;
3411 x86_pmu.events_maskl = ebx.full;
c767a54b 3412 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
3413 }
3414}
3415
93fcf72c
MD
3416/*
3417 * enable software workaround for errata:
3418 * SNB: BJ122
3419 * IVB: BV98
3420 * HSW: HSD29
3421 *
3422 * Only needed when HT is enabled. However detecting
b37609c3
SE
3423 * if HT is enabled is difficult (model specific). So instead,
3424 * we enable the workaround in the early boot, and verify if
3425 * it is needed in a later initcall phase once we have valid
3426 * topology information to check if HT is actually enabled
93fcf72c
MD
3427 */
3428static __init void intel_ht_bug(void)
3429{
b37609c3 3430 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
93fcf72c 3431
93fcf72c 3432 x86_pmu.start_scheduling = intel_start_scheduling;
0c41e756 3433 x86_pmu.commit_scheduling = intel_commit_scheduling;
93fcf72c 3434 x86_pmu.stop_scheduling = intel_stop_scheduling;
93fcf72c
MD
3435}
3436
7f2ee91f
IM
3437EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3438EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
f9134f36 3439
4b2c4f1f 3440/* Haswell special events */
7f2ee91f
IM
3441EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3442EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3443EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3444EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3445EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3446EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3447EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3448EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3449EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3450EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3451EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3452EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4b2c4f1f 3453
f9134f36 3454static struct attribute *hsw_events_attrs[] = {
4b2c4f1f
AK
3455 EVENT_PTR(tx_start),
3456 EVENT_PTR(tx_commit),
3457 EVENT_PTR(tx_abort),
3458 EVENT_PTR(tx_capacity),
3459 EVENT_PTR(tx_conflict),
3460 EVENT_PTR(el_start),
3461 EVENT_PTR(el_commit),
3462 EVENT_PTR(el_abort),
3463 EVENT_PTR(el_capacity),
3464 EVENT_PTR(el_conflict),
3465 EVENT_PTR(cycles_t),
3466 EVENT_PTR(cycles_ct),
f9134f36
AK
3467 EVENT_PTR(mem_ld_hsw),
3468 EVENT_PTR(mem_st_hsw),
3469 NULL
3470};
3471
de0428a7 3472__init int intel_pmu_init(void)
f22f54f4
PZ
3473{
3474 union cpuid10_edx edx;
3475 union cpuid10_eax eax;
ffb871bc 3476 union cpuid10_ebx ebx;
a1eac7ac 3477 struct event_constraint *c;
f22f54f4 3478 unsigned int unused;
338b522c
KL
3479 struct extra_reg *er;
3480 int version, i;
f22f54f4
PZ
3481
3482 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
3483 switch (boot_cpu_data.x86) {
3484 case 0x6:
3485 return p6_pmu_init();
e717bf4e
VW
3486 case 0xb:
3487 return knc_pmu_init();
a072738e
CG
3488 case 0xf:
3489 return p4_pmu_init();
3490 }
f22f54f4 3491 return -ENODEV;
f22f54f4
PZ
3492 }
3493
3494 /*
3495 * Check whether the Architectural PerfMon supports
3496 * Branch Misses Retired hw_event or not.
3497 */
ffb871bc
GN
3498 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3499 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
3500 return -ENODEV;
3501
3502 version = eax.split.version_id;
3503 if (version < 2)
3504 x86_pmu = core_pmu;
3505 else
3506 x86_pmu = intel_pmu;
3507
3508 x86_pmu.version = version;
948b1bb8
RR
3509 x86_pmu.num_counters = eax.split.num_counters;
3510 x86_pmu.cntval_bits = eax.split.bit_width;
3511 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 3512
c1d6f42f
PZ
3513 x86_pmu.events_maskl = ebx.full;
3514 x86_pmu.events_mask_len = eax.split.mask_length;
3515
70ab7003
AK
3516 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3517
f22f54f4
PZ
3518 /*
3519 * Quirk: v2 perfmon does not report fixed-purpose events, so
3520 * assume at least 3 events:
3521 */
3522 if (version > 1)
948b1bb8 3523 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
f22f54f4 3524
c9b08884 3525 if (boot_cpu_has(X86_FEATURE_PDCM)) {
8db909a7
PZ
3526 u64 capabilities;
3527
3528 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3529 x86_pmu.intel_cap.capabilities = capabilities;
3530 }
3531
ca037701
PZ
3532 intel_ds_init();
3533
c1d6f42f
PZ
3534 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3535
f22f54f4
PZ
3536 /*
3537 * Install the hw-cache-events table:
3538 */
3539 switch (boot_cpu_data.x86_model) {
0f7c29ce 3540 case 14: /* 65nm Core "Yonah" */
f22f54f4
PZ
3541 pr_cont("Core events, ");
3542 break;
3543
0f7c29ce 3544 case 15: /* 65nm Core2 "Merom" */
c1d6f42f 3545 x86_add_quirk(intel_clovertown_quirk);
0f7c29ce
PZ
3546 case 22: /* 65nm Core2 "Merom-L" */
3547 case 23: /* 45nm Core2 "Penryn" */
3548 case 29: /* 45nm Core2 "Dunnington (MP) */
f22f54f4
PZ
3549 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3550 sizeof(hw_cache_event_ids));
3551
caff2bef
PZ
3552 intel_pmu_lbr_init_core();
3553
f22f54f4 3554 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 3555 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4
PZ
3556 pr_cont("Core2 events, ");
3557 break;
3558
0f7c29ce
PZ
3559 case 30: /* 45nm Nehalem */
3560 case 26: /* 45nm Nehalem-EP */
3561 case 46: /* 45nm Nehalem-EX */
f22f54f4
PZ
3562 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3563 sizeof(hw_cache_event_ids));
e994d7d2
AK
3564 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3565 sizeof(hw_cache_extra_regs));
f22f54f4 3566
caff2bef
PZ
3567 intel_pmu_lbr_init_nhm();
3568
f22f54f4 3569 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 3570 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 3571 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 3572 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 3573
f20093ee
SE
3574 x86_pmu.cpu_events = nhm_events_attrs;
3575
91fc4cc0 3576 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3577 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3578 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 3579 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3580 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3581 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 3582
e17dc653 3583 intel_pmu_pebs_data_source_nhm();
c1d6f42f 3584 x86_add_quirk(intel_nehalem_quirk);
ec75a716 3585
11164cd4 3586 pr_cont("Nehalem events, ");
f22f54f4 3587 break;
caff2bef 3588
0f7c29ce
PZ
3589 case 28: /* 45nm Atom "Pineview" */
3590 case 38: /* 45nm Atom "Lincroft" */
3591 case 39: /* 32nm Atom "Penwell" */
3592 case 53: /* 32nm Atom "Cloverview" */
3593 case 54: /* 32nm Atom "Cedarview" */
f22f54f4
PZ
3594 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3595 sizeof(hw_cache_event_ids));
3596
caff2bef
PZ
3597 intel_pmu_lbr_init_atom();
3598
f22f54f4 3599 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 3600 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
673d188b 3601 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
f22f54f4
PZ
3602 pr_cont("Atom events, ");
3603 break;
3604
0f7c29ce 3605 case 55: /* 22nm Atom "Silvermont" */
ef454cae 3606 case 76: /* 14nm Atom "Airmont" */
0f7c29ce 3607 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
1fa64180
YZ
3608 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3609 sizeof(hw_cache_event_ids));
3610 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3611 sizeof(hw_cache_extra_regs));
3612
f21d5adc 3613 intel_pmu_lbr_init_slm();
1fa64180
YZ
3614
3615 x86_pmu.event_constraints = intel_slm_event_constraints;
3616 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3617 x86_pmu.extra_regs = intel_slm_extra_regs;
9a5e3fb5 3618 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
1fa64180
YZ
3619 pr_cont("Silvermont events, ");
3620 break;
3621
8b92c3a7
KL
3622 case 92: /* 14nm Atom "Goldmont" */
3623 case 95: /* 14nm Atom "Goldmont Denverton" */
3624 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3625 sizeof(hw_cache_event_ids));
3626 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3627 sizeof(hw_cache_extra_regs));
3628
3629 intel_pmu_lbr_init_skl();
3630
3631 x86_pmu.event_constraints = intel_slm_event_constraints;
3632 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3633 x86_pmu.extra_regs = intel_glm_extra_regs;
3634 /*
3635 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3636 * for precise cycles.
3637 * :pp is identical to :ppp
3638 */
3639 x86_pmu.pebs_aliases = NULL;
3640 x86_pmu.pebs_prec_dist = true;
ccbebba4 3641 x86_pmu.lbr_pt_coexist = true;
8b92c3a7
KL
3642 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3643 pr_cont("Goldmont events, ");
3644 break;
3645
0f7c29ce
PZ
3646 case 37: /* 32nm Westmere */
3647 case 44: /* 32nm Westmere-EP */
3648 case 47: /* 32nm Westmere-EX */
f22f54f4
PZ
3649 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3650 sizeof(hw_cache_event_ids));
e994d7d2
AK
3651 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3652 sizeof(hw_cache_extra_regs));
f22f54f4 3653
caff2bef
PZ
3654 intel_pmu_lbr_init_nhm();
3655
f22f54f4 3656 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 3657 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 3658 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 3659 x86_pmu.extra_regs = intel_westmere_extra_regs;
9a5e3fb5 3660 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
30112039 3661
f20093ee
SE
3662 x86_pmu.cpu_events = nhm_events_attrs;
3663
30112039 3664 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3665 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3666 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 3667 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3668 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3669 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 3670
e17dc653 3671 intel_pmu_pebs_data_source_nhm();
f22f54f4
PZ
3672 pr_cont("Westmere events, ");
3673 break;
b622d644 3674
0f7c29ce
PZ
3675 case 42: /* 32nm SandyBridge */
3676 case 45: /* 32nm SandyBridge-E/EN/EP */
47a8863d 3677 x86_add_quirk(intel_sandybridge_quirk);
93fcf72c 3678 x86_add_quirk(intel_ht_bug);
b06b3d49
LM
3679 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3680 sizeof(hw_cache_event_ids));
74e6543f
YZ
3681 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3682 sizeof(hw_cache_extra_regs));
b06b3d49 3683
c5cc2cd9 3684 intel_pmu_lbr_init_snb();
b06b3d49
LM
3685
3686 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 3687 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 3688 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
f1923820
SE
3689 if (boot_cpu_data.x86_model == 45)
3690 x86_pmu.extra_regs = intel_snbep_extra_regs;
3691 else
3692 x86_pmu.extra_regs = intel_snb_extra_regs;
93fcf72c
MD
3693
3694
ee89cbc2 3695 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3696 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3697 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
e04d1b23 3698
f20093ee
SE
3699 x86_pmu.cpu_events = snb_events_attrs;
3700
e04d1b23 3701 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
3702 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3703 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3704 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
3705 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3706 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 3707
b06b3d49
LM
3708 pr_cont("SandyBridge events, ");
3709 break;
0f7c29ce
PZ
3710
3711 case 58: /* 22nm IvyBridge */
3712 case 62: /* 22nm IvyBridge-EP/EX */
93fcf72c 3713 x86_add_quirk(intel_ht_bug);
20a36e39
SE
3714 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3715 sizeof(hw_cache_event_ids));
1996388e
VW
3716 /* dTLB-load-misses on IVB is different than SNB */
3717 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3718
20a36e39
SE
3719 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3720 sizeof(hw_cache_extra_regs));
3721
3722 intel_pmu_lbr_init_snb();
3723
69943182 3724 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39 3725 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
72469764
AK
3726 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3727 x86_pmu.pebs_prec_dist = true;
f1923820
SE
3728 if (boot_cpu_data.x86_model == 62)
3729 x86_pmu.extra_regs = intel_snbep_extra_regs;
3730 else
3731 x86_pmu.extra_regs = intel_snb_extra_regs;
20a36e39 3732 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3733 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3734 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
20a36e39 3735
f20093ee
SE
3736 x86_pmu.cpu_events = snb_events_attrs;
3737
20a36e39
SE
3738 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3739 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3740 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3741
3742 pr_cont("IvyBridge events, ");
3743 break;
3744
b06b3d49 3745
d86c8eaf
AK
3746 case 60: /* 22nm Haswell Core */
3747 case 63: /* 22nm Haswell Server */
3748 case 69: /* 22nm Haswell ULT */
3749 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
93fcf72c 3750 x86_add_quirk(intel_ht_bug);
72db5596 3751 x86_pmu.late_ack = true;
0f1b5ca2
AK
3752 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3753 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3a632cb2 3754
e9d7f7cd 3755 intel_pmu_lbr_init_hsw();
3a632cb2
AK
3756
3757 x86_pmu.event_constraints = intel_hsw_event_constraints;
3044318f 3758 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
36bbb2f2 3759 x86_pmu.extra_regs = intel_snbep_extra_regs;
72469764
AK
3760 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3761 x86_pmu.pebs_prec_dist = true;
3a632cb2 3762 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3763 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3764 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3a632cb2
AK
3765
3766 x86_pmu.hw_config = hsw_hw_config;
3767 x86_pmu.get_event_constraints = hsw_get_event_constraints;
f9134f36 3768 x86_pmu.cpu_events = hsw_events_attrs;
b7af41a1 3769 x86_pmu.lbr_double_abort = true;
3a632cb2
AK
3770 pr_cont("Haswell events, ");
3771 break;
3772
91f1b705
AK
3773 case 61: /* 14nm Broadwell Core-M */
3774 case 86: /* 14nm Broadwell Xeon D */
4b36f1a4
AK
3775 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3776 case 79: /* 14nm Broadwell Server */
91f1b705
AK
3777 x86_pmu.late_ack = true;
3778 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3779 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3780
3781 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3782 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3783 BDW_L3_MISS|HSW_SNOOP_DRAM;
3784 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3785 HSW_SNOOP_DRAM;
3786 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3787 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3788 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3789 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3790
78d504bc 3791 intel_pmu_lbr_init_hsw();
91f1b705
AK
3792
3793 x86_pmu.event_constraints = intel_bdw_event_constraints;
b3e62463 3794 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
91f1b705 3795 x86_pmu.extra_regs = intel_snbep_extra_regs;
72469764
AK
3796 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3797 x86_pmu.pebs_prec_dist = true;
91f1b705 3798 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
3799 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3800 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
91f1b705
AK
3801
3802 x86_pmu.hw_config = hsw_hw_config;
3803 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3804 x86_pmu.cpu_events = hsw_events_attrs;
294fe0f5 3805 x86_pmu.limit_period = bdw_limit_period;
91f1b705
AK
3806 pr_cont("Broadwell events, ");
3807 break;
3808
1e7b9390
HC
3809 case 87: /* Knights Landing Xeon Phi */
3810 memcpy(hw_cache_event_ids,
3811 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3812 memcpy(hw_cache_extra_regs,
3813 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3814 intel_pmu_lbr_init_knl();
3815
3816 x86_pmu.event_constraints = intel_slm_event_constraints;
3817 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3818 x86_pmu.extra_regs = intel_knl_extra_regs;
3819
3820 /* all extra regs are per-cpu when HT is on */
3821 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3822 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3823
3824 pr_cont("Knights Landing events, ");
3825 break;
3826
cba1b379
AK
3827 case 142: /* 14nm Kabylake Mobile */
3828 case 158: /* 14nm Kabylake Desktop */
9a92e16f
AK
3829 case 78: /* 14nm Skylake Mobile */
3830 case 94: /* 14nm Skylake Desktop */
b89c1737 3831 case 85: /* 14nm Skylake Server */
9a92e16f
AK
3832 x86_pmu.late_ack = true;
3833 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3834 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3835 intel_pmu_lbr_init_skl();
3836
3837 x86_pmu.event_constraints = intel_skl_event_constraints;
3838 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3839 x86_pmu.extra_regs = intel_skl_extra_regs;
72469764
AK
3840 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3841 x86_pmu.pebs_prec_dist = true;
9a92e16f
AK
3842 /* all extra regs are per-cpu when HT is on */
3843 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3844 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3845
3846 x86_pmu.hw_config = hsw_hw_config;
3847 x86_pmu.get_event_constraints = hsw_get_event_constraints;
d0dc8494
AK
3848 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3849 skl_format_attr);
9a92e16f
AK
3850 WARN_ON(!x86_pmu.format_attrs);
3851 x86_pmu.cpu_events = hsw_events_attrs;
3852 pr_cont("Skylake events, ");
3853 break;
3854
f22f54f4 3855 default:
0af3ac1f
AK
3856 switch (x86_pmu.version) {
3857 case 1:
3858 x86_pmu.event_constraints = intel_v1_event_constraints;
3859 pr_cont("generic architected perfmon v1, ");
3860 break;
3861 default:
3862 /*
3863 * default constraints for v2 and up
3864 */
3865 x86_pmu.event_constraints = intel_gen_event_constraints;
3866 pr_cont("generic architected perfmon, ");
3867 break;
3868 }
f22f54f4 3869 }
ffb871bc 3870
a1eac7ac
RR
3871 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3872 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3873 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3874 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3875 }
3876 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3877
3878 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3879 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3880 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3881 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3882 }
3883
3884 x86_pmu.intel_ctrl |=
3885 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3886
3887 if (x86_pmu.event_constraints) {
3888 /*
3889 * event on fixed counter2 (REF_CYCLES) only works on this
3890 * counter, so do not extend mask to generic counters
3891 */
3892 for_each_event_constraint(c, x86_pmu.event_constraints) {
2c33645d
PI
3893 if (c->cmask == FIXED_EVENT_FLAGS
3894 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3895 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
a1eac7ac 3896 }
2c33645d 3897 c->idxmsk64 &=
6d6f2833 3898 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
2c33645d 3899 c->weight = hweight64(c->idxmsk64);
a1eac7ac
RR
3900 }
3901 }
3902
338b522c
KL
3903 /*
3904 * Access LBR MSR may cause #GP under certain circumstances.
3905 * E.g. KVM doesn't support LBR MSR
3906 * Check all LBT MSR here.
3907 * Disable LBR access if any LBR MSRs can not be accessed.
3908 */
3909 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3910 x86_pmu.lbr_nr = 0;
3911 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3912 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3913 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3914 x86_pmu.lbr_nr = 0;
3915 }
3916
3917 /*
3918 * Access extra MSR may cause #GP under certain circumstances.
3919 * E.g. KVM doesn't support offcore event
3920 * Check all extra_regs here.
3921 */
3922 if (x86_pmu.extra_regs) {
3923 for (er = x86_pmu.extra_regs; er->msr; er++) {
8c4fe709 3924 er->extra_msr_access = check_msr(er->msr, 0x11UL);
338b522c
KL
3925 /* Disable LBR select mapping */
3926 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3927 x86_pmu.lbr_sel_map = NULL;
3928 }
3929 }
3930
069e0c3c
AK
3931 /* Support full width counters using alternative MSR range */
3932 if (x86_pmu.intel_cap.full_width_write) {
3933 x86_pmu.max_period = x86_pmu.cntval_mask;
3934 x86_pmu.perfctr = MSR_IA32_PMC0;
3935 pr_cont("full-width counters, ");
3936 }
3937
f22f54f4
PZ
3938 return 0;
3939}
b37609c3
SE
3940
3941/*
3942 * HT bug: phase 2 init
3943 * Called once we have valid topology information to check
3944 * whether or not HT is enabled
3945 * If HT is off, then we disable the workaround
3946 */
3947static __init int fixup_ht_bug(void)
3948{
3949 int cpu = smp_processor_id();
3950 int w, c;
3951 /*
3952 * problem not present on this CPU model, nothing to do
3953 */
3954 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3955 return 0;
3956
06931e62 3957 w = cpumask_weight(topology_sibling_cpumask(cpu));
b37609c3
SE
3958 if (w > 1) {
3959 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3960 return 0;
3961 }
3962
ec6a9066 3963 if (lockup_detector_suspend() != 0) {
999bbe49
UO
3964 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3965 return 0;
3966 }
b37609c3
SE
3967
3968 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3969
b37609c3 3970 x86_pmu.start_scheduling = NULL;
0c41e756 3971 x86_pmu.commit_scheduling = NULL;
b37609c3
SE
3972 x86_pmu.stop_scheduling = NULL;
3973
ec6a9066 3974 lockup_detector_resume();
b37609c3
SE
3975
3976 get_online_cpus();
3977
3978 for_each_online_cpu(c) {
3979 free_excl_cntrs(c);
3980 }
3981
3982 put_online_cpus();
3983 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3984 return 0;
3985}
3986subsys_initcall(fixup_ht_bug)