MAINTAINERS: Add Naveen N. Rao as kprobes co-maintainer
[linux-2.6-block.git] / arch / x86 / events / intel / core.c
CommitLineData
a7e3ed1e 1/*
efc9f05d
SE
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
a7e3ed1e 6 */
de0428a7 7
c767a54b
JP
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
de0428a7
KW
10#include <linux/stddef.h>
11#include <linux/types.h>
12#include <linux/init.h>
13#include <linux/slab.h>
69c60c88 14#include <linux/export.h>
aacfbe6a 15#include <linux/nmi.h>
de0428a7 16
3a632cb2 17#include <asm/cpufeature.h>
de0428a7 18#include <asm/hardirq.h>
ef5f9f47 19#include <asm/intel-family.h>
de0428a7
KW
20#include <asm/apic.h>
21
27f6d22b 22#include "../perf_event.h"
a7e3ed1e 23
f22f54f4 24/*
b622d644 25 * Intel PerfMon, used on Core and later.
f22f54f4 26 */
ec75a716 27static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
f22f54f4 28{
c3b7cdf1
PE
29 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
30 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
31 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
32 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
34 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
35 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
36 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
f22f54f4
PZ
37};
38
5c543e3c 39static struct event_constraint intel_core_event_constraints[] __read_mostly =
f22f54f4
PZ
40{
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47 EVENT_CONSTRAINT_END
48};
49
5c543e3c 50static struct event_constraint intel_core2_event_constraints[] __read_mostly =
f22f54f4 51{
b622d644
PZ
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
b622d644 63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
f22f54f4
PZ
64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65 EVENT_CONSTRAINT_END
66};
67
5c543e3c 68static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
f22f54f4 69{
b622d644
PZ
70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81 EVENT_CONSTRAINT_END
82};
83
5c543e3c 84static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
a7e3ed1e 85{
53ad0447
YZ
86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
f20093ee 88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
89 EVENT_EXTRA_END
90};
91
5c543e3c 92static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
f22f54f4 93{
b622d644
PZ
94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
d1100770 100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
f22f54f4
PZ
101 EVENT_CONSTRAINT_END
102};
103
5c543e3c 104static struct event_constraint intel_snb_event_constraints[] __read_mostly =
b06b3d49
LM
105{
106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
fd4a5aef
SE
109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
b06b3d49 113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
b06b3d49
LM
114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
f8378f52
AK
116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
93fcf72c 118
9010ae4a
SE
119 /*
120 * When HT is off these events can only run on the bottom 4 counters
121 * When HT is on, they are impacted by the HT bug and require EXCL access
122 */
93fcf72c
MD
123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
b06b3d49
LM
128 EVENT_CONSTRAINT_END
129};
130
69943182
SE
131static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132{
133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
6113af14 139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
69943182
SE
140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
93fcf72c 146
9010ae4a
SE
147 /*
148 * When HT is off these events can only run on the bottom 4 counters
149 * When HT is on, they are impacted by the HT bug and require EXCL access
150 */
93fcf72c
MD
151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
69943182
SE
156 EVENT_CONSTRAINT_END
157};
158
5c543e3c 159static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
a7e3ed1e 160{
53ad0447
YZ
161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
f20093ee 164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
a7e3ed1e
AK
165 EVENT_EXTRA_END
166};
167
0af3ac1f
AK
168static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169{
170 EVENT_CONSTRAINT_END
171};
172
5c543e3c 173static struct event_constraint intel_gen_event_constraints[] __read_mostly =
f22f54f4 174{
b622d644
PZ
175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
cd09c0c4 177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
f22f54f4
PZ
178 EVENT_CONSTRAINT_END
179};
180
1fa64180
YZ
181static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182{
183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
1fa64180
YZ
185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186 EVENT_CONSTRAINT_END
187};
188
20f36278 189static struct event_constraint intel_skl_event_constraints[] = {
9a92e16f
AK
190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
9010ae4a
SE
194
195 /*
196 * when HT is off, these can only run on the bottom 4 counters
197 */
198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
203
9a92e16f
AK
204 EVENT_CONSTRAINT_END
205};
206
1e7b9390 207static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
9c489fce
LO
208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
1e7b9390
HC
210 EVENT_EXTRA_END
211};
212
ee89cbc2 213static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
53ad0447
YZ
214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
f20093ee 217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
f1923820
SE
218 EVENT_EXTRA_END
219};
220
221static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
53ad0447
YZ
222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
f1a52789 225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
ee89cbc2
SE
226 EVENT_EXTRA_END
227};
228
9a92e16f
AK
229static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
dfe1f3cb
AK
233 /*
234 * Note the low 8 bits eventsel code is not a continuous field, containing
235 * some #GPing bits. These are masked out.
236 */
237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
9a92e16f
AK
238 EVENT_EXTRA_END
239};
240
7f2ee91f
IM
241EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
242EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
243EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
f20093ee 244
20f36278 245static struct attribute *nhm_events_attrs[] = {
f20093ee
SE
246 EVENT_PTR(mem_ld_nhm),
247 NULL,
248};
249
a39fcae7
AK
250/*
251 * topdown events for Intel Core CPUs.
252 *
253 * The events are all in slots, which is a free slot in a 4 wide
254 * pipeline. Some events are already reported in slots, for cycle
255 * events we multiply by the pipeline width (4).
256 *
257 * With Hyper Threading on, topdown metrics are either summed or averaged
258 * between the threads of a core: (count_t0 + count_t1).
259 *
260 * For the average case the metric is always scaled to pipeline width,
261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262 */
263
264EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
267EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269 "event=0xe,umask=0x1"); /* uops_issued.any */
270EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
272EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
274EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
277EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278 "4", "2");
279
20f36278 280static struct attribute *snb_events_attrs[] = {
f20093ee 281 EVENT_PTR(mem_ld_snb),
9ad64c0f 282 EVENT_PTR(mem_st_snb),
a39fcae7
AK
283 EVENT_PTR(td_slots_issued),
284 EVENT_PTR(td_slots_retired),
285 EVENT_PTR(td_fetch_bubbles),
286 EVENT_PTR(td_total_slots),
287 EVENT_PTR(td_total_slots_scale),
288 EVENT_PTR(td_recovery_bubbles),
289 EVENT_PTR(td_recovery_bubbles_scale),
f20093ee
SE
290 NULL,
291};
292
3a632cb2
AK
293static struct event_constraint intel_hsw_event_constraints[] = {
294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
e0fbac1c 297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
3a632cb2
AK
298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
c420f19b 301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
3a632cb2 302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
c420f19b 303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
3a632cb2 304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
c420f19b 305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
93fcf72c 306
9010ae4a
SE
307 /*
308 * When HT is off these events can only run on the bottom 4 counters
309 * When HT is on, they are impacted by the HT bug and require EXCL access
310 */
93fcf72c
MD
311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
3a632cb2
AK
316 EVENT_CONSTRAINT_END
317};
318
20f36278 319static struct event_constraint intel_bdw_event_constraints[] = {
91f1b705
AK
320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
b7883a1c 324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
9010ae4a
SE
325 /*
326 * when HT is off, these can only run on the bottom 4 counters
327 */
328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
91f1b705
AK
332 EVENT_CONSTRAINT_END
333};
334
f22f54f4
PZ
335static u64 intel_pmu_event_map(int hw_event)
336{
337 return intel_perfmon_event_map[hw_event];
338}
339
9a92e16f
AK
340/*
341 * Notes on the events:
342 * - data reads do not include code reads (comparable to earlier tables)
343 * - data counts include speculative execution (except L1 write, dtlb, bpu)
344 * - remote node access includes remote memory, remote cache, remote mmio.
345 * - prefetches are not included in the counts.
346 * - icache miss does not include decoded icache
347 */
348
349#define SKL_DEMAND_DATA_RD BIT_ULL(0)
350#define SKL_DEMAND_RFO BIT_ULL(1)
351#define SKL_ANY_RESPONSE BIT_ULL(16)
352#define SKL_SUPPLIER_NONE BIT_ULL(17)
353#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
354#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
355#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
356#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
357#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361#define SKL_SPL_HIT BIT_ULL(30)
362#define SKL_SNOOP_NONE BIT_ULL(31)
363#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
364#define SKL_SNOOP_MISS BIT_ULL(33)
365#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
366#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
367#define SKL_SNOOP_HITM BIT_ULL(36)
368#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
369#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
374#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 SKL_SNOOP_HITM|SKL_SPL_HIT)
378#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
379#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
380#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384static __initconst const u64 skl_hw_cache_event_ids
385 [PERF_COUNT_HW_CACHE_MAX]
386 [PERF_COUNT_HW_CACHE_OP_MAX]
387 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388{
389 [ C(L1D ) ] = {
390 [ C(OP_READ) ] = {
391 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
392 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
393 },
394 [ C(OP_WRITE) ] = {
395 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
396 [ C(RESULT_MISS) ] = 0x0,
397 },
398 [ C(OP_PREFETCH) ] = {
399 [ C(RESULT_ACCESS) ] = 0x0,
400 [ C(RESULT_MISS) ] = 0x0,
401 },
402 },
403 [ C(L1I ) ] = {
404 [ C(OP_READ) ] = {
405 [ C(RESULT_ACCESS) ] = 0x0,
406 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
407 },
408 [ C(OP_WRITE) ] = {
409 [ C(RESULT_ACCESS) ] = -1,
410 [ C(RESULT_MISS) ] = -1,
411 },
412 [ C(OP_PREFETCH) ] = {
413 [ C(RESULT_ACCESS) ] = 0x0,
414 [ C(RESULT_MISS) ] = 0x0,
415 },
416 },
417 [ C(LL ) ] = {
418 [ C(OP_READ) ] = {
419 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
420 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
421 },
422 [ C(OP_WRITE) ] = {
423 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
424 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
425 },
426 [ C(OP_PREFETCH) ] = {
427 [ C(RESULT_ACCESS) ] = 0x0,
428 [ C(RESULT_MISS) ] = 0x0,
429 },
430 },
431 [ C(DTLB) ] = {
432 [ C(OP_READ) ] = {
433 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
fb3a5055 434 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
9a92e16f
AK
435 },
436 [ C(OP_WRITE) ] = {
437 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
fb3a5055 438 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
9a92e16f
AK
439 },
440 [ C(OP_PREFETCH) ] = {
441 [ C(RESULT_ACCESS) ] = 0x0,
442 [ C(RESULT_MISS) ] = 0x0,
443 },
444 },
445 [ C(ITLB) ] = {
446 [ C(OP_READ) ] = {
447 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
448 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
449 },
450 [ C(OP_WRITE) ] = {
451 [ C(RESULT_ACCESS) ] = -1,
452 [ C(RESULT_MISS) ] = -1,
453 },
454 [ C(OP_PREFETCH) ] = {
455 [ C(RESULT_ACCESS) ] = -1,
456 [ C(RESULT_MISS) ] = -1,
457 },
458 },
459 [ C(BPU ) ] = {
460 [ C(OP_READ) ] = {
461 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
462 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
463 },
464 [ C(OP_WRITE) ] = {
465 [ C(RESULT_ACCESS) ] = -1,
466 [ C(RESULT_MISS) ] = -1,
467 },
468 [ C(OP_PREFETCH) ] = {
469 [ C(RESULT_ACCESS) ] = -1,
470 [ C(RESULT_MISS) ] = -1,
471 },
472 },
473 [ C(NODE) ] = {
474 [ C(OP_READ) ] = {
475 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
476 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
477 },
478 [ C(OP_WRITE) ] = {
479 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
480 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
481 },
482 [ C(OP_PREFETCH) ] = {
483 [ C(RESULT_ACCESS) ] = 0x0,
484 [ C(RESULT_MISS) ] = 0x0,
485 },
486 },
487};
488
489static __initconst const u64 skl_hw_cache_extra_regs
490 [PERF_COUNT_HW_CACHE_MAX]
491 [PERF_COUNT_HW_CACHE_OP_MAX]
492 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493{
494 [ C(LL ) ] = {
495 [ C(OP_READ) ] = {
496 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
499 SKL_L3_MISS|SKL_ANY_SNOOP|
500 SKL_SUPPLIER_NONE,
501 },
502 [ C(OP_WRITE) ] = {
503 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
506 SKL_L3_MISS|SKL_ANY_SNOOP|
507 SKL_SUPPLIER_NONE,
508 },
509 [ C(OP_PREFETCH) ] = {
510 [ C(RESULT_ACCESS) ] = 0x0,
511 [ C(RESULT_MISS) ] = 0x0,
512 },
513 },
514 [ C(NODE) ] = {
515 [ C(OP_READ) ] = {
516 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
519 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520 },
521 [ C(OP_WRITE) ] = {
522 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
525 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526 },
527 [ C(OP_PREFETCH) ] = {
528 [ C(RESULT_ACCESS) ] = 0x0,
529 [ C(RESULT_MISS) ] = 0x0,
530 },
531 },
532};
533
74e6543f
YZ
534#define SNB_DMND_DATA_RD (1ULL << 0)
535#define SNB_DMND_RFO (1ULL << 1)
536#define SNB_DMND_IFETCH (1ULL << 2)
537#define SNB_DMND_WB (1ULL << 3)
538#define SNB_PF_DATA_RD (1ULL << 4)
539#define SNB_PF_RFO (1ULL << 5)
540#define SNB_PF_IFETCH (1ULL << 6)
541#define SNB_LLC_DATA_RD (1ULL << 7)
542#define SNB_LLC_RFO (1ULL << 8)
543#define SNB_LLC_IFETCH (1ULL << 9)
544#define SNB_BUS_LOCKS (1ULL << 10)
545#define SNB_STRM_ST (1ULL << 11)
546#define SNB_OTHER (1ULL << 15)
547#define SNB_RESP_ANY (1ULL << 16)
548#define SNB_NO_SUPP (1ULL << 17)
549#define SNB_LLC_HITM (1ULL << 18)
550#define SNB_LLC_HITE (1ULL << 19)
551#define SNB_LLC_HITS (1ULL << 20)
552#define SNB_LLC_HITF (1ULL << 21)
553#define SNB_LOCAL (1ULL << 22)
554#define SNB_REMOTE (0xffULL << 23)
555#define SNB_SNP_NONE (1ULL << 31)
556#define SNB_SNP_NOT_NEEDED (1ULL << 32)
557#define SNB_SNP_MISS (1ULL << 33)
558#define SNB_NO_FWD (1ULL << 34)
559#define SNB_SNP_FWD (1ULL << 35)
560#define SNB_HITM (1ULL << 36)
561#define SNB_NON_DRAM (1ULL << 37)
562
563#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
565#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569 SNB_HITM)
570
571#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
573
574#define SNB_L3_ACCESS SNB_RESP_ANY
575#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577static __initconst const u64 snb_hw_cache_extra_regs
578 [PERF_COUNT_HW_CACHE_MAX]
579 [PERF_COUNT_HW_CACHE_OP_MAX]
580 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581{
582 [ C(LL ) ] = {
583 [ C(OP_READ) ] = {
584 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
586 },
587 [ C(OP_WRITE) ] = {
588 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
590 },
591 [ C(OP_PREFETCH) ] = {
592 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594 },
595 },
596 [ C(NODE) ] = {
597 [ C(OP_READ) ] = {
598 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600 },
601 [ C(OP_WRITE) ] = {
602 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604 },
605 [ C(OP_PREFETCH) ] = {
606 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608 },
609 },
610};
611
b06b3d49
LM
612static __initconst const u64 snb_hw_cache_event_ids
613 [PERF_COUNT_HW_CACHE_MAX]
614 [PERF_COUNT_HW_CACHE_OP_MAX]
615 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616{
617 [ C(L1D) ] = {
618 [ C(OP_READ) ] = {
619 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
620 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
621 },
622 [ C(OP_WRITE) ] = {
623 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
624 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
625 },
626 [ C(OP_PREFETCH) ] = {
627 [ C(RESULT_ACCESS) ] = 0x0,
628 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
629 },
630 },
631 [ C(L1I ) ] = {
632 [ C(OP_READ) ] = {
633 [ C(RESULT_ACCESS) ] = 0x0,
634 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
635 },
636 [ C(OP_WRITE) ] = {
637 [ C(RESULT_ACCESS) ] = -1,
638 [ C(RESULT_MISS) ] = -1,
639 },
640 [ C(OP_PREFETCH) ] = {
641 [ C(RESULT_ACCESS) ] = 0x0,
642 [ C(RESULT_MISS) ] = 0x0,
643 },
644 },
645 [ C(LL ) ] = {
b06b3d49 646 [ C(OP_READ) ] = {
63b6a675 647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
b06b3d49 648 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
651 },
652 [ C(OP_WRITE) ] = {
63b6a675 653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
b06b3d49 654 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
657 },
658 [ C(OP_PREFETCH) ] = {
63b6a675 659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
b06b3d49 660 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 [ C(RESULT_MISS) ] = 0x01b7,
b06b3d49
LM
663 },
664 },
665 [ C(DTLB) ] = {
666 [ C(OP_READ) ] = {
667 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669 },
670 [ C(OP_WRITE) ] = {
671 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673 },
674 [ C(OP_PREFETCH) ] = {
675 [ C(RESULT_ACCESS) ] = 0x0,
676 [ C(RESULT_MISS) ] = 0x0,
677 },
678 },
679 [ C(ITLB) ] = {
680 [ C(OP_READ) ] = {
681 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
682 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
683 },
684 [ C(OP_WRITE) ] = {
685 [ C(RESULT_ACCESS) ] = -1,
686 [ C(RESULT_MISS) ] = -1,
687 },
688 [ C(OP_PREFETCH) ] = {
689 [ C(RESULT_ACCESS) ] = -1,
690 [ C(RESULT_MISS) ] = -1,
691 },
692 },
693 [ C(BPU ) ] = {
694 [ C(OP_READ) ] = {
695 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697 },
698 [ C(OP_WRITE) ] = {
699 [ C(RESULT_ACCESS) ] = -1,
700 [ C(RESULT_MISS) ] = -1,
701 },
702 [ C(OP_PREFETCH) ] = {
703 [ C(RESULT_ACCESS) ] = -1,
704 [ C(RESULT_MISS) ] = -1,
705 },
706 },
89d6c0b5
PZ
707 [ C(NODE) ] = {
708 [ C(OP_READ) ] = {
74e6543f
YZ
709 [ C(RESULT_ACCESS) ] = 0x01b7,
710 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
711 },
712 [ C(OP_WRITE) ] = {
74e6543f
YZ
713 [ C(RESULT_ACCESS) ] = 0x01b7,
714 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
715 },
716 [ C(OP_PREFETCH) ] = {
74e6543f
YZ
717 [ C(RESULT_ACCESS) ] = 0x01b7,
718 [ C(RESULT_MISS) ] = 0x01b7,
89d6c0b5
PZ
719 },
720 },
721
b06b3d49
LM
722};
723
0f1b5ca2
AK
724/*
725 * Notes on the events:
726 * - data reads do not include code reads (comparable to earlier tables)
727 * - data counts include speculative execution (except L1 write, dtlb, bpu)
728 * - remote node access includes remote memory, remote cache, remote mmio.
729 * - prefetches are not included in the counts because they are not
730 * reliably counted.
731 */
732
733#define HSW_DEMAND_DATA_RD BIT_ULL(0)
734#define HSW_DEMAND_RFO BIT_ULL(1)
735#define HSW_ANY_RESPONSE BIT_ULL(16)
736#define HSW_SUPPLIER_NONE BIT_ULL(17)
737#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
738#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
739#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
740#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
741#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 HSW_L3_MISS_REMOTE_HOP2P)
744#define HSW_SNOOP_NONE BIT_ULL(31)
745#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
746#define HSW_SNOOP_MISS BIT_ULL(33)
747#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
748#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
749#define HSW_SNOOP_HITM BIT_ULL(36)
750#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
751#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
757#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
758#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
761
91f1b705
AK
762#define BDW_L3_MISS_LOCAL BIT(26)
763#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 HSW_L3_MISS_REMOTE_HOP2P)
766
767
0f1b5ca2
AK
768static __initconst const u64 hsw_hw_cache_event_ids
769 [PERF_COUNT_HW_CACHE_MAX]
770 [PERF_COUNT_HW_CACHE_OP_MAX]
771 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772{
773 [ C(L1D ) ] = {
774 [ C(OP_READ) ] = {
775 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
776 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
777 },
778 [ C(OP_WRITE) ] = {
779 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
780 [ C(RESULT_MISS) ] = 0x0,
781 },
782 [ C(OP_PREFETCH) ] = {
783 [ C(RESULT_ACCESS) ] = 0x0,
784 [ C(RESULT_MISS) ] = 0x0,
785 },
786 },
787 [ C(L1I ) ] = {
788 [ C(OP_READ) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0,
790 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
791 },
792 [ C(OP_WRITE) ] = {
793 [ C(RESULT_ACCESS) ] = -1,
794 [ C(RESULT_MISS) ] = -1,
795 },
796 [ C(OP_PREFETCH) ] = {
797 [ C(RESULT_ACCESS) ] = 0x0,
798 [ C(RESULT_MISS) ] = 0x0,
799 },
800 },
801 [ C(LL ) ] = {
802 [ C(OP_READ) ] = {
803 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
804 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
805 },
806 [ C(OP_WRITE) ] = {
807 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
808 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
809 },
810 [ C(OP_PREFETCH) ] = {
811 [ C(RESULT_ACCESS) ] = 0x0,
812 [ C(RESULT_MISS) ] = 0x0,
813 },
814 },
815 [ C(DTLB) ] = {
816 [ C(OP_READ) ] = {
817 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
818 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819 },
820 [ C(OP_WRITE) ] = {
821 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
822 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823 },
824 [ C(OP_PREFETCH) ] = {
825 [ C(RESULT_ACCESS) ] = 0x0,
826 [ C(RESULT_MISS) ] = 0x0,
827 },
828 },
829 [ C(ITLB) ] = {
830 [ C(OP_READ) ] = {
831 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
832 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = -1,
836 [ C(RESULT_MISS) ] = -1,
837 },
838 [ C(OP_PREFETCH) ] = {
839 [ C(RESULT_ACCESS) ] = -1,
840 [ C(RESULT_MISS) ] = -1,
841 },
842 },
843 [ C(BPU ) ] = {
844 [ C(OP_READ) ] = {
845 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
846 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
847 },
848 [ C(OP_WRITE) ] = {
849 [ C(RESULT_ACCESS) ] = -1,
850 [ C(RESULT_MISS) ] = -1,
851 },
852 [ C(OP_PREFETCH) ] = {
853 [ C(RESULT_ACCESS) ] = -1,
854 [ C(RESULT_MISS) ] = -1,
855 },
856 },
857 [ C(NODE) ] = {
858 [ C(OP_READ) ] = {
859 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
860 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
861 },
862 [ C(OP_WRITE) ] = {
863 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
864 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
865 },
866 [ C(OP_PREFETCH) ] = {
867 [ C(RESULT_ACCESS) ] = 0x0,
868 [ C(RESULT_MISS) ] = 0x0,
869 },
870 },
871};
872
873static __initconst const u64 hsw_hw_cache_extra_regs
874 [PERF_COUNT_HW_CACHE_MAX]
875 [PERF_COUNT_HW_CACHE_OP_MAX]
876 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877{
878 [ C(LL ) ] = {
879 [ C(OP_READ) ] = {
880 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881 HSW_LLC_ACCESS,
882 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
883 HSW_L3_MISS|HSW_ANY_SNOOP,
884 },
885 [ C(OP_WRITE) ] = {
886 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887 HSW_LLC_ACCESS,
888 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
889 HSW_L3_MISS|HSW_ANY_SNOOP,
890 },
891 [ C(OP_PREFETCH) ] = {
892 [ C(RESULT_ACCESS) ] = 0x0,
893 [ C(RESULT_MISS) ] = 0x0,
894 },
895 },
896 [ C(NODE) ] = {
897 [ C(OP_READ) ] = {
898 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899 HSW_L3_MISS_LOCAL_DRAM|
900 HSW_SNOOP_DRAM,
901 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
902 HSW_L3_MISS_REMOTE|
903 HSW_SNOOP_DRAM,
904 },
905 [ C(OP_WRITE) ] = {
906 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907 HSW_L3_MISS_LOCAL_DRAM|
908 HSW_SNOOP_DRAM,
909 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
910 HSW_L3_MISS_REMOTE|
911 HSW_SNOOP_DRAM,
912 },
913 [ C(OP_PREFETCH) ] = {
914 [ C(RESULT_ACCESS) ] = 0x0,
915 [ C(RESULT_MISS) ] = 0x0,
916 },
917 },
918};
919
caaa8be3 920static __initconst const u64 westmere_hw_cache_event_ids
f22f54f4
PZ
921 [PERF_COUNT_HW_CACHE_MAX]
922 [PERF_COUNT_HW_CACHE_OP_MAX]
923 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924{
925 [ C(L1D) ] = {
926 [ C(OP_READ) ] = {
927 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
928 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
929 },
930 [ C(OP_WRITE) ] = {
931 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
932 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
933 },
934 [ C(OP_PREFETCH) ] = {
935 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
936 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
937 },
938 },
939 [ C(L1I ) ] = {
940 [ C(OP_READ) ] = {
941 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
942 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
943 },
944 [ C(OP_WRITE) ] = {
945 [ C(RESULT_ACCESS) ] = -1,
946 [ C(RESULT_MISS) ] = -1,
947 },
948 [ C(OP_PREFETCH) ] = {
949 [ C(RESULT_ACCESS) ] = 0x0,
950 [ C(RESULT_MISS) ] = 0x0,
951 },
952 },
953 [ C(LL ) ] = {
954 [ C(OP_READ) ] = {
63b6a675 955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
e994d7d2 956 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 959 },
e994d7d2
AK
960 /*
961 * Use RFO, not WRITEBACK, because a write miss would typically occur
962 * on RFO.
963 */
f22f54f4 964 [ C(OP_WRITE) ] = {
63b6a675
PZ
965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 [ C(RESULT_ACCESS) ] = 0x01b7,
967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
e994d7d2 968 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
969 },
970 [ C(OP_PREFETCH) ] = {
63b6a675 971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
e994d7d2 972 [ C(RESULT_ACCESS) ] = 0x01b7,
63b6a675
PZ
973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
975 },
976 },
977 [ C(DTLB) ] = {
978 [ C(OP_READ) ] = {
979 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
980 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
981 },
982 [ C(OP_WRITE) ] = {
983 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
984 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
985 },
986 [ C(OP_PREFETCH) ] = {
987 [ C(RESULT_ACCESS) ] = 0x0,
988 [ C(RESULT_MISS) ] = 0x0,
989 },
990 },
991 [ C(ITLB) ] = {
992 [ C(OP_READ) ] = {
993 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
994 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
995 },
996 [ C(OP_WRITE) ] = {
997 [ C(RESULT_ACCESS) ] = -1,
998 [ C(RESULT_MISS) ] = -1,
999 },
1000 [ C(OP_PREFETCH) ] = {
1001 [ C(RESULT_ACCESS) ] = -1,
1002 [ C(RESULT_MISS) ] = -1,
1003 },
1004 },
1005 [ C(BPU ) ] = {
1006 [ C(OP_READ) ] = {
1007 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1009 },
1010 [ C(OP_WRITE) ] = {
1011 [ C(RESULT_ACCESS) ] = -1,
1012 [ C(RESULT_MISS) ] = -1,
1013 },
1014 [ C(OP_PREFETCH) ] = {
1015 [ C(RESULT_ACCESS) ] = -1,
1016 [ C(RESULT_MISS) ] = -1,
1017 },
1018 },
89d6c0b5
PZ
1019 [ C(NODE) ] = {
1020 [ C(OP_READ) ] = {
1021 [ C(RESULT_ACCESS) ] = 0x01b7,
1022 [ C(RESULT_MISS) ] = 0x01b7,
1023 },
1024 [ C(OP_WRITE) ] = {
1025 [ C(RESULT_ACCESS) ] = 0x01b7,
1026 [ C(RESULT_MISS) ] = 0x01b7,
1027 },
1028 [ C(OP_PREFETCH) ] = {
1029 [ C(RESULT_ACCESS) ] = 0x01b7,
1030 [ C(RESULT_MISS) ] = 0x01b7,
1031 },
1032 },
f22f54f4
PZ
1033};
1034
e994d7d2 1035/*
63b6a675
PZ
1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037 * See IA32 SDM Vol 3B 30.6.1.3
e994d7d2
AK
1038 */
1039
63b6a675
PZ
1040#define NHM_DMND_DATA_RD (1 << 0)
1041#define NHM_DMND_RFO (1 << 1)
1042#define NHM_DMND_IFETCH (1 << 2)
1043#define NHM_DMND_WB (1 << 3)
1044#define NHM_PF_DATA_RD (1 << 4)
1045#define NHM_PF_DATA_RFO (1 << 5)
1046#define NHM_PF_IFETCH (1 << 6)
1047#define NHM_OFFCORE_OTHER (1 << 7)
1048#define NHM_UNCORE_HIT (1 << 8)
1049#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1050#define NHM_OTHER_CORE_HITM (1 << 10)
1051 /* reserved */
1052#define NHM_REMOTE_CACHE_FWD (1 << 12)
1053#define NHM_REMOTE_DRAM (1 << 13)
1054#define NHM_LOCAL_DRAM (1 << 14)
1055#define NHM_NON_DRAM (1 << 15)
1056
87e24f4b
PZ
1057#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058#define NHM_REMOTE (NHM_REMOTE_DRAM)
63b6a675
PZ
1059
1060#define NHM_DMND_READ (NHM_DMND_DATA_RD)
1061#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1062#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
87e24f4b 1065#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
63b6a675 1066#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
e994d7d2
AK
1067
1068static __initconst const u64 nehalem_hw_cache_extra_regs
1069 [PERF_COUNT_HW_CACHE_MAX]
1070 [PERF_COUNT_HW_CACHE_OP_MAX]
1071 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072{
1073 [ C(LL ) ] = {
1074 [ C(OP_READ) ] = {
63b6a675
PZ
1075 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
e994d7d2
AK
1077 },
1078 [ C(OP_WRITE) ] = {
63b6a675
PZ
1079 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
e994d7d2
AK
1081 },
1082 [ C(OP_PREFETCH) ] = {
63b6a675
PZ
1083 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
e994d7d2 1085 },
89d6c0b5
PZ
1086 },
1087 [ C(NODE) ] = {
1088 [ C(OP_READ) ] = {
87e24f4b
PZ
1089 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
89d6c0b5
PZ
1091 },
1092 [ C(OP_WRITE) ] = {
87e24f4b
PZ
1093 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
89d6c0b5
PZ
1095 },
1096 [ C(OP_PREFETCH) ] = {
87e24f4b
PZ
1097 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
89d6c0b5
PZ
1099 },
1100 },
e994d7d2
AK
1101};
1102
caaa8be3 1103static __initconst const u64 nehalem_hw_cache_event_ids
f22f54f4
PZ
1104 [PERF_COUNT_HW_CACHE_MAX]
1105 [PERF_COUNT_HW_CACHE_OP_MAX]
1106 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107{
1108 [ C(L1D) ] = {
1109 [ C(OP_READ) ] = {
f4929bd3
PZ
1110 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1111 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
f22f54f4
PZ
1112 },
1113 [ C(OP_WRITE) ] = {
f4929bd3
PZ
1114 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1115 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
f22f54f4
PZ
1116 },
1117 [ C(OP_PREFETCH) ] = {
1118 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1119 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1120 },
1121 },
1122 [ C(L1I ) ] = {
1123 [ C(OP_READ) ] = {
1124 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1125 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1126 },
1127 [ C(OP_WRITE) ] = {
1128 [ C(RESULT_ACCESS) ] = -1,
1129 [ C(RESULT_MISS) ] = -1,
1130 },
1131 [ C(OP_PREFETCH) ] = {
1132 [ C(RESULT_ACCESS) ] = 0x0,
1133 [ C(RESULT_MISS) ] = 0x0,
1134 },
1135 },
1136 [ C(LL ) ] = {
1137 [ C(OP_READ) ] = {
e994d7d2
AK
1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 [ C(RESULT_ACCESS) ] = 0x01b7,
1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4 1142 },
e994d7d2
AK
1143 /*
1144 * Use RFO, not WRITEBACK, because a write miss would typically occur
1145 * on RFO.
1146 */
f22f54f4 1147 [ C(OP_WRITE) ] = {
e994d7d2
AK
1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 [ C(RESULT_ACCESS) ] = 0x01b7,
1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
1152 },
1153 [ C(OP_PREFETCH) ] = {
e994d7d2
AK
1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 [ C(RESULT_ACCESS) ] = 0x01b7,
1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 [ C(RESULT_MISS) ] = 0x01b7,
f22f54f4
PZ
1158 },
1159 },
1160 [ C(DTLB) ] = {
1161 [ C(OP_READ) ] = {
1162 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1163 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1164 },
1165 [ C(OP_WRITE) ] = {
1166 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1167 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1168 },
1169 [ C(OP_PREFETCH) ] = {
1170 [ C(RESULT_ACCESS) ] = 0x0,
1171 [ C(RESULT_MISS) ] = 0x0,
1172 },
1173 },
1174 [ C(ITLB) ] = {
1175 [ C(OP_READ) ] = {
1176 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1177 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1178 },
1179 [ C(OP_WRITE) ] = {
1180 [ C(RESULT_ACCESS) ] = -1,
1181 [ C(RESULT_MISS) ] = -1,
1182 },
1183 [ C(OP_PREFETCH) ] = {
1184 [ C(RESULT_ACCESS) ] = -1,
1185 [ C(RESULT_MISS) ] = -1,
1186 },
1187 },
1188 [ C(BPU ) ] = {
1189 [ C(OP_READ) ] = {
1190 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1192 },
1193 [ C(OP_WRITE) ] = {
1194 [ C(RESULT_ACCESS) ] = -1,
1195 [ C(RESULT_MISS) ] = -1,
1196 },
1197 [ C(OP_PREFETCH) ] = {
1198 [ C(RESULT_ACCESS) ] = -1,
1199 [ C(RESULT_MISS) ] = -1,
1200 },
1201 },
89d6c0b5
PZ
1202 [ C(NODE) ] = {
1203 [ C(OP_READ) ] = {
1204 [ C(RESULT_ACCESS) ] = 0x01b7,
1205 [ C(RESULT_MISS) ] = 0x01b7,
1206 },
1207 [ C(OP_WRITE) ] = {
1208 [ C(RESULT_ACCESS) ] = 0x01b7,
1209 [ C(RESULT_MISS) ] = 0x01b7,
1210 },
1211 [ C(OP_PREFETCH) ] = {
1212 [ C(RESULT_ACCESS) ] = 0x01b7,
1213 [ C(RESULT_MISS) ] = 0x01b7,
1214 },
1215 },
f22f54f4
PZ
1216};
1217
caaa8be3 1218static __initconst const u64 core2_hw_cache_event_ids
f22f54f4
PZ
1219 [PERF_COUNT_HW_CACHE_MAX]
1220 [PERF_COUNT_HW_CACHE_OP_MAX]
1221 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222{
1223 [ C(L1D) ] = {
1224 [ C(OP_READ) ] = {
1225 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1226 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1227 },
1228 [ C(OP_WRITE) ] = {
1229 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1230 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1231 },
1232 [ C(OP_PREFETCH) ] = {
1233 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1234 [ C(RESULT_MISS) ] = 0,
1235 },
1236 },
1237 [ C(L1I ) ] = {
1238 [ C(OP_READ) ] = {
1239 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1240 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1241 },
1242 [ C(OP_WRITE) ] = {
1243 [ C(RESULT_ACCESS) ] = -1,
1244 [ C(RESULT_MISS) ] = -1,
1245 },
1246 [ C(OP_PREFETCH) ] = {
1247 [ C(RESULT_ACCESS) ] = 0,
1248 [ C(RESULT_MISS) ] = 0,
1249 },
1250 },
1251 [ C(LL ) ] = {
1252 [ C(OP_READ) ] = {
1253 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1254 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1255 },
1256 [ C(OP_WRITE) ] = {
1257 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1258 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1259 },
1260 [ C(OP_PREFETCH) ] = {
1261 [ C(RESULT_ACCESS) ] = 0,
1262 [ C(RESULT_MISS) ] = 0,
1263 },
1264 },
1265 [ C(DTLB) ] = {
1266 [ C(OP_READ) ] = {
1267 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1268 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1269 },
1270 [ C(OP_WRITE) ] = {
1271 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1272 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1273 },
1274 [ C(OP_PREFETCH) ] = {
1275 [ C(RESULT_ACCESS) ] = 0,
1276 [ C(RESULT_MISS) ] = 0,
1277 },
1278 },
1279 [ C(ITLB) ] = {
1280 [ C(OP_READ) ] = {
1281 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1282 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1283 },
1284 [ C(OP_WRITE) ] = {
1285 [ C(RESULT_ACCESS) ] = -1,
1286 [ C(RESULT_MISS) ] = -1,
1287 },
1288 [ C(OP_PREFETCH) ] = {
1289 [ C(RESULT_ACCESS) ] = -1,
1290 [ C(RESULT_MISS) ] = -1,
1291 },
1292 },
1293 [ C(BPU ) ] = {
1294 [ C(OP_READ) ] = {
1295 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1296 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1297 },
1298 [ C(OP_WRITE) ] = {
1299 [ C(RESULT_ACCESS) ] = -1,
1300 [ C(RESULT_MISS) ] = -1,
1301 },
1302 [ C(OP_PREFETCH) ] = {
1303 [ C(RESULT_ACCESS) ] = -1,
1304 [ C(RESULT_MISS) ] = -1,
1305 },
1306 },
1307};
1308
caaa8be3 1309static __initconst const u64 atom_hw_cache_event_ids
f22f54f4
PZ
1310 [PERF_COUNT_HW_CACHE_MAX]
1311 [PERF_COUNT_HW_CACHE_OP_MAX]
1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313{
1314 [ C(L1D) ] = {
1315 [ C(OP_READ) ] = {
1316 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1317 [ C(RESULT_MISS) ] = 0,
1318 },
1319 [ C(OP_WRITE) ] = {
1320 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1321 [ C(RESULT_MISS) ] = 0,
1322 },
1323 [ C(OP_PREFETCH) ] = {
1324 [ C(RESULT_ACCESS) ] = 0x0,
1325 [ C(RESULT_MISS) ] = 0,
1326 },
1327 },
1328 [ C(L1I ) ] = {
1329 [ C(OP_READ) ] = {
1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1332 },
1333 [ C(OP_WRITE) ] = {
1334 [ C(RESULT_ACCESS) ] = -1,
1335 [ C(RESULT_MISS) ] = -1,
1336 },
1337 [ C(OP_PREFETCH) ] = {
1338 [ C(RESULT_ACCESS) ] = 0,
1339 [ C(RESULT_MISS) ] = 0,
1340 },
1341 },
1342 [ C(LL ) ] = {
1343 [ C(OP_READ) ] = {
1344 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1345 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1346 },
1347 [ C(OP_WRITE) ] = {
1348 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1349 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1350 },
1351 [ C(OP_PREFETCH) ] = {
1352 [ C(RESULT_ACCESS) ] = 0,
1353 [ C(RESULT_MISS) ] = 0,
1354 },
1355 },
1356 [ C(DTLB) ] = {
1357 [ C(OP_READ) ] = {
1358 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1359 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1360 },
1361 [ C(OP_WRITE) ] = {
1362 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1363 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1364 },
1365 [ C(OP_PREFETCH) ] = {
1366 [ C(RESULT_ACCESS) ] = 0,
1367 [ C(RESULT_MISS) ] = 0,
1368 },
1369 },
1370 [ C(ITLB) ] = {
1371 [ C(OP_READ) ] = {
1372 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1373 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1374 },
1375 [ C(OP_WRITE) ] = {
1376 [ C(RESULT_ACCESS) ] = -1,
1377 [ C(RESULT_MISS) ] = -1,
1378 },
1379 [ C(OP_PREFETCH) ] = {
1380 [ C(RESULT_ACCESS) ] = -1,
1381 [ C(RESULT_MISS) ] = -1,
1382 },
1383 },
1384 [ C(BPU ) ] = {
1385 [ C(OP_READ) ] = {
1386 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1387 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1388 },
1389 [ C(OP_WRITE) ] = {
1390 [ C(RESULT_ACCESS) ] = -1,
1391 [ C(RESULT_MISS) ] = -1,
1392 },
1393 [ C(OP_PREFETCH) ] = {
1394 [ C(RESULT_ACCESS) ] = -1,
1395 [ C(RESULT_MISS) ] = -1,
1396 },
1397 },
1398};
1399
eb12b8ec
AK
1400EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402/* no_alloc_cycles.not_delivered */
1403EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404 "event=0xca,umask=0x50");
1405EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406/* uops_retired.all */
1407EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408 "event=0xc2,umask=0x10");
1409/* uops_retired.all */
1410EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411 "event=0xc2,umask=0x10");
1412
1413static struct attribute *slm_events_attrs[] = {
1414 EVENT_PTR(td_total_slots_slm),
1415 EVENT_PTR(td_total_slots_scale_slm),
1416 EVENT_PTR(td_fetch_bubbles_slm),
1417 EVENT_PTR(td_fetch_bubbles_scale_slm),
1418 EVENT_PTR(td_slots_issued_slm),
1419 EVENT_PTR(td_slots_retired_slm),
1420 NULL
1421};
1422
1fa64180
YZ
1423static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424{
1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
06c939c1 1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
ae3f011f 1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1fa64180
YZ
1428 EVENT_EXTRA_END
1429};
1430
1431#define SLM_DMND_READ SNB_DMND_DATA_RD
1432#define SLM_DMND_WRITE SNB_DMND_RFO
1433#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436#define SLM_LLC_ACCESS SNB_RESP_ANY
1437#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439static __initconst const u64 slm_hw_cache_extra_regs
1440 [PERF_COUNT_HW_CACHE_MAX]
1441 [PERF_COUNT_HW_CACHE_OP_MAX]
1442 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443{
1444 [ C(LL ) ] = {
1445 [ C(OP_READ) ] = {
1446 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
6d374056 1447 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1448 },
1449 [ C(OP_WRITE) ] = {
1450 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452 },
1453 [ C(OP_PREFETCH) ] = {
1454 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456 },
1457 },
1458};
1459
1460static __initconst const u64 slm_hw_cache_event_ids
1461 [PERF_COUNT_HW_CACHE_MAX]
1462 [PERF_COUNT_HW_CACHE_OP_MAX]
1463 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464{
1465 [ C(L1D) ] = {
1466 [ C(OP_READ) ] = {
1467 [ C(RESULT_ACCESS) ] = 0,
1468 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1469 },
1470 [ C(OP_WRITE) ] = {
1471 [ C(RESULT_ACCESS) ] = 0,
1472 [ C(RESULT_MISS) ] = 0,
1473 },
1474 [ C(OP_PREFETCH) ] = {
1475 [ C(RESULT_ACCESS) ] = 0,
1476 [ C(RESULT_MISS) ] = 0,
1477 },
1478 },
1479 [ C(L1I ) ] = {
1480 [ C(OP_READ) ] = {
1481 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1483 },
1484 [ C(OP_WRITE) ] = {
1485 [ C(RESULT_ACCESS) ] = -1,
1486 [ C(RESULT_MISS) ] = -1,
1487 },
1488 [ C(OP_PREFETCH) ] = {
1489 [ C(RESULT_ACCESS) ] = 0,
1490 [ C(RESULT_MISS) ] = 0,
1491 },
1492 },
1493 [ C(LL ) ] = {
1494 [ C(OP_READ) ] = {
1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 [ C(RESULT_ACCESS) ] = 0x01b7,
6d374056 1497 [ C(RESULT_MISS) ] = 0,
1fa64180
YZ
1498 },
1499 [ C(OP_WRITE) ] = {
1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 [ C(RESULT_ACCESS) ] = 0x01b7,
1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 [ C(RESULT_MISS) ] = 0x01b7,
1504 },
1505 [ C(OP_PREFETCH) ] = {
1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 [ C(RESULT_ACCESS) ] = 0x01b7,
1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 [ C(RESULT_MISS) ] = 0x01b7,
1510 },
1511 },
1512 [ C(DTLB) ] = {
1513 [ C(OP_READ) ] = {
1514 [ C(RESULT_ACCESS) ] = 0,
1515 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1516 },
1517 [ C(OP_WRITE) ] = {
1518 [ C(RESULT_ACCESS) ] = 0,
1519 [ C(RESULT_MISS) ] = 0,
1520 },
1521 [ C(OP_PREFETCH) ] = {
1522 [ C(RESULT_ACCESS) ] = 0,
1523 [ C(RESULT_MISS) ] = 0,
1524 },
1525 },
1526 [ C(ITLB) ] = {
1527 [ C(OP_READ) ] = {
1528 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
6d374056 1529 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1fa64180
YZ
1530 },
1531 [ C(OP_WRITE) ] = {
1532 [ C(RESULT_ACCESS) ] = -1,
1533 [ C(RESULT_MISS) ] = -1,
1534 },
1535 [ C(OP_PREFETCH) ] = {
1536 [ C(RESULT_ACCESS) ] = -1,
1537 [ C(RESULT_MISS) ] = -1,
1538 },
1539 },
1540 [ C(BPU ) ] = {
1541 [ C(OP_READ) ] = {
1542 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544 },
1545 [ C(OP_WRITE) ] = {
1546 [ C(RESULT_ACCESS) ] = -1,
1547 [ C(RESULT_MISS) ] = -1,
1548 },
1549 [ C(OP_PREFETCH) ] = {
1550 [ C(RESULT_ACCESS) ] = -1,
1551 [ C(RESULT_MISS) ] = -1,
1552 },
1553 },
1554};
1555
ed827adb
KL
1556EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558/* UOPS_NOT_DELIVERED.ANY */
1559EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562/* UOPS_RETIRED.ANY */
1563EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564/* UOPS_ISSUED.ANY */
1565EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567static struct attribute *glm_events_attrs[] = {
1568 EVENT_PTR(td_total_slots_glm),
1569 EVENT_PTR(td_total_slots_scale_glm),
1570 EVENT_PTR(td_fetch_bubbles_glm),
1571 EVENT_PTR(td_recovery_bubbles_glm),
1572 EVENT_PTR(td_slots_issued_glm),
1573 EVENT_PTR(td_slots_retired_glm),
1574 NULL
1575};
1576
8b92c3a7
KL
1577static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581 EVENT_EXTRA_END
1582};
1583
1584#define GLM_DEMAND_DATA_RD BIT_ULL(0)
1585#define GLM_DEMAND_RFO BIT_ULL(1)
1586#define GLM_ANY_RESPONSE BIT_ULL(16)
1587#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1588#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1589#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1590#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1591#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1592#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595static __initconst const u64 glm_hw_cache_event_ids
1596 [PERF_COUNT_HW_CACHE_MAX]
1597 [PERF_COUNT_HW_CACHE_OP_MAX]
1598 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599 [C(L1D)] = {
1600 [C(OP_READ)] = {
1601 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1602 [C(RESULT_MISS)] = 0x0,
1603 },
1604 [C(OP_WRITE)] = {
1605 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1606 [C(RESULT_MISS)] = 0x0,
1607 },
1608 [C(OP_PREFETCH)] = {
1609 [C(RESULT_ACCESS)] = 0x0,
1610 [C(RESULT_MISS)] = 0x0,
1611 },
1612 },
1613 [C(L1I)] = {
1614 [C(OP_READ)] = {
1615 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1616 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1617 },
1618 [C(OP_WRITE)] = {
1619 [C(RESULT_ACCESS)] = -1,
1620 [C(RESULT_MISS)] = -1,
1621 },
1622 [C(OP_PREFETCH)] = {
1623 [C(RESULT_ACCESS)] = 0x0,
1624 [C(RESULT_MISS)] = 0x0,
1625 },
1626 },
1627 [C(LL)] = {
1628 [C(OP_READ)] = {
1629 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1630 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1631 },
1632 [C(OP_WRITE)] = {
1633 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1634 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1635 },
1636 [C(OP_PREFETCH)] = {
1637 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1639 },
1640 },
1641 [C(DTLB)] = {
1642 [C(OP_READ)] = {
1643 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1644 [C(RESULT_MISS)] = 0x0,
1645 },
1646 [C(OP_WRITE)] = {
1647 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1648 [C(RESULT_MISS)] = 0x0,
1649 },
1650 [C(OP_PREFETCH)] = {
1651 [C(RESULT_ACCESS)] = 0x0,
1652 [C(RESULT_MISS)] = 0x0,
1653 },
1654 },
1655 [C(ITLB)] = {
1656 [C(OP_READ)] = {
1657 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1658 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1659 },
1660 [C(OP_WRITE)] = {
1661 [C(RESULT_ACCESS)] = -1,
1662 [C(RESULT_MISS)] = -1,
1663 },
1664 [C(OP_PREFETCH)] = {
1665 [C(RESULT_ACCESS)] = -1,
1666 [C(RESULT_MISS)] = -1,
1667 },
1668 },
1669 [C(BPU)] = {
1670 [C(OP_READ)] = {
1671 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1672 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1673 },
1674 [C(OP_WRITE)] = {
1675 [C(RESULT_ACCESS)] = -1,
1676 [C(RESULT_MISS)] = -1,
1677 },
1678 [C(OP_PREFETCH)] = {
1679 [C(RESULT_ACCESS)] = -1,
1680 [C(RESULT_MISS)] = -1,
1681 },
1682 },
1683};
1684
1685static __initconst const u64 glm_hw_cache_extra_regs
1686 [PERF_COUNT_HW_CACHE_MAX]
1687 [PERF_COUNT_HW_CACHE_OP_MAX]
1688 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689 [C(LL)] = {
1690 [C(OP_READ)] = {
1691 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1692 GLM_LLC_ACCESS,
1693 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1694 GLM_LLC_MISS,
1695 },
1696 [C(OP_WRITE)] = {
1697 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1698 GLM_LLC_ACCESS,
1699 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1700 GLM_LLC_MISS,
1701 },
1702 [C(OP_PREFETCH)] = {
1703 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1704 GLM_LLC_ACCESS,
1705 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1706 GLM_LLC_MISS,
1707 },
1708 },
1709};
1710
dd0b06b5
KL
1711static __initconst const u64 glp_hw_cache_event_ids
1712 [PERF_COUNT_HW_CACHE_MAX]
1713 [PERF_COUNT_HW_CACHE_OP_MAX]
1714 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715 [C(L1D)] = {
1716 [C(OP_READ)] = {
1717 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1718 [C(RESULT_MISS)] = 0x0,
1719 },
1720 [C(OP_WRITE)] = {
1721 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1722 [C(RESULT_MISS)] = 0x0,
1723 },
1724 [C(OP_PREFETCH)] = {
1725 [C(RESULT_ACCESS)] = 0x0,
1726 [C(RESULT_MISS)] = 0x0,
1727 },
1728 },
1729 [C(L1I)] = {
1730 [C(OP_READ)] = {
1731 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1732 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1733 },
1734 [C(OP_WRITE)] = {
1735 [C(RESULT_ACCESS)] = -1,
1736 [C(RESULT_MISS)] = -1,
1737 },
1738 [C(OP_PREFETCH)] = {
1739 [C(RESULT_ACCESS)] = 0x0,
1740 [C(RESULT_MISS)] = 0x0,
1741 },
1742 },
1743 [C(LL)] = {
1744 [C(OP_READ)] = {
1745 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1746 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1747 },
1748 [C(OP_WRITE)] = {
1749 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1750 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1751 },
1752 [C(OP_PREFETCH)] = {
1753 [C(RESULT_ACCESS)] = 0x0,
1754 [C(RESULT_MISS)] = 0x0,
1755 },
1756 },
1757 [C(DTLB)] = {
1758 [C(OP_READ)] = {
1759 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1760 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761 },
1762 [C(OP_WRITE)] = {
1763 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1764 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1765 },
1766 [C(OP_PREFETCH)] = {
1767 [C(RESULT_ACCESS)] = 0x0,
1768 [C(RESULT_MISS)] = 0x0,
1769 },
1770 },
1771 [C(ITLB)] = {
1772 [C(OP_READ)] = {
1773 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1774 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1775 },
1776 [C(OP_WRITE)] = {
1777 [C(RESULT_ACCESS)] = -1,
1778 [C(RESULT_MISS)] = -1,
1779 },
1780 [C(OP_PREFETCH)] = {
1781 [C(RESULT_ACCESS)] = -1,
1782 [C(RESULT_MISS)] = -1,
1783 },
1784 },
1785 [C(BPU)] = {
1786 [C(OP_READ)] = {
1787 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1788 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1789 },
1790 [C(OP_WRITE)] = {
1791 [C(RESULT_ACCESS)] = -1,
1792 [C(RESULT_MISS)] = -1,
1793 },
1794 [C(OP_PREFETCH)] = {
1795 [C(RESULT_ACCESS)] = -1,
1796 [C(RESULT_MISS)] = -1,
1797 },
1798 },
1799};
1800
1801static __initconst const u64 glp_hw_cache_extra_regs
1802 [PERF_COUNT_HW_CACHE_MAX]
1803 [PERF_COUNT_HW_CACHE_OP_MAX]
1804 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805 [C(LL)] = {
1806 [C(OP_READ)] = {
1807 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1808 GLM_LLC_ACCESS,
1809 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1810 GLM_LLC_MISS,
1811 },
1812 [C(OP_WRITE)] = {
1813 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1814 GLM_LLC_ACCESS,
1815 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1816 GLM_LLC_MISS,
1817 },
1818 [C(OP_PREFETCH)] = {
1819 [C(RESULT_ACCESS)] = 0x0,
1820 [C(RESULT_MISS)] = 0x0,
1821 },
1822 },
1823};
1824
1e7b9390
HC
1825#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1826#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1827#define KNL_MCDRAM_LOCAL BIT_ULL(21)
1828#define KNL_MCDRAM_FAR BIT_ULL(22)
1829#define KNL_DDR_LOCAL BIT_ULL(23)
1830#define KNL_DDR_FAR BIT_ULL(24)
1831#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832 KNL_DDR_LOCAL | KNL_DDR_FAR)
1833#define KNL_L2_READ SLM_DMND_READ
1834#define KNL_L2_WRITE SLM_DMND_WRITE
1835#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1836#define KNL_L2_ACCESS SLM_LLC_ACCESS
1837#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838 KNL_DRAM_ANY | SNB_SNP_ANY | \
1839 SNB_NON_DRAM)
1840
1841static __initconst const u64 knl_hw_cache_extra_regs
1842 [PERF_COUNT_HW_CACHE_MAX]
1843 [PERF_COUNT_HW_CACHE_OP_MAX]
1844 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845 [C(LL)] = {
1846 [C(OP_READ)] = {
1847 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848 [C(RESULT_MISS)] = 0,
1849 },
1850 [C(OP_WRITE)] = {
1851 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1853 },
1854 [C(OP_PREFETCH)] = {
1855 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1857 },
1858 },
1859};
1860
1a78d937 1861/*
c3d266c8
KL
1862 * Used from PMIs where the LBRs are already disabled.
1863 *
1864 * This function could be called consecutively. It is required to remain in
1865 * disabled state if called consecutively.
1866 *
1867 * During consecutive calls, the same disable value will be written to related
cecf6235
AS
1868 * registers, so the PMU state remains unchanged.
1869 *
1870 * intel_bts events don't coexist with intel PMU's BTS events because of
1871 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1a78d937
AK
1873 */
1874static void __intel_pmu_disable_all(void)
f22f54f4 1875{
89cbc767 1876 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4
PZ
1877
1878 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879
15c7ad51 1880 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
f22f54f4 1881 intel_pmu_disable_bts();
ca037701
PZ
1882
1883 intel_pmu_pebs_disable_all();
1a78d937
AK
1884}
1885
1886static void intel_pmu_disable_all(void)
1887{
1888 __intel_pmu_disable_all();
caff2bef 1889 intel_pmu_lbr_disable_all();
f22f54f4
PZ
1890}
1891
1a78d937 1892static void __intel_pmu_enable_all(int added, bool pmi)
f22f54f4 1893{
89cbc767 1894 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 1895
d329527e 1896 intel_pmu_pebs_enable_all();
1a78d937 1897 intel_pmu_lbr_enable_all(pmi);
144d31e6
GN
1898 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
f22f54f4 1900
15c7ad51 1901 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
f22f54f4 1902 struct perf_event *event =
15c7ad51 1903 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
f22f54f4
PZ
1904
1905 if (WARN_ON_ONCE(!event))
1906 return;
1907
1908 intel_pmu_enable_bts(event->hw.config);
cecf6235 1909 }
f22f54f4
PZ
1910}
1911
1a78d937
AK
1912static void intel_pmu_enable_all(int added)
1913{
1914 __intel_pmu_enable_all(added, false);
1915}
1916
11164cd4
PZ
1917/*
1918 * Workaround for:
1919 * Intel Errata AAK100 (model 26)
1920 * Intel Errata AAP53 (model 30)
40b91cd1 1921 * Intel Errata BD53 (model 44)
11164cd4 1922 *
351af072
ZY
1923 * The official story:
1924 * These chips need to be 'reset' when adding counters by programming the
1925 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926 * in sequence on the same PMC or on different PMCs.
1927 *
1928 * In practise it appears some of these events do in fact count, and
1929 * we need to programm all 4 events.
11164cd4 1930 */
351af072 1931static void intel_pmu_nhm_workaround(void)
11164cd4 1932{
89cbc767 1933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
351af072
ZY
1934 static const unsigned long nhm_magic[4] = {
1935 0x4300B5,
1936 0x4300D2,
1937 0x4300B1,
1938 0x4300B1
1939 };
1940 struct perf_event *event;
1941 int i;
11164cd4 1942
351af072
ZY
1943 /*
1944 * The Errata requires below steps:
1945 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947 * the corresponding PMCx;
1948 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951 */
11164cd4 1952
351af072
ZY
1953 /*
1954 * The real steps we choose are a little different from above.
1955 * A) To reduce MSR operations, we don't run step 1) as they
1956 * are already cleared before this function is called;
1957 * B) Call x86_perf_event_update to save PMCx before configuring
1958 * PERFEVTSELx with magic number;
1959 * C) With step 5), we do clear only when the PERFEVTSELx is
1960 * not used currently.
1961 * D) Call x86_perf_event_set_period to restore PMCx;
1962 */
11164cd4 1963
351af072
ZY
1964 /* We always operate 4 pairs of PERF Counters */
1965 for (i = 0; i < 4; i++) {
1966 event = cpuc->events[i];
1967 if (event)
1968 x86_perf_event_update(event);
1969 }
11164cd4 1970
351af072
ZY
1971 for (i = 0; i < 4; i++) {
1972 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974 }
1975
1976 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
11164cd4 1978
351af072
ZY
1979 for (i = 0; i < 4; i++) {
1980 event = cpuc->events[i];
1981
1982 if (event) {
1983 x86_perf_event_set_period(event);
31fa58af 1984 __x86_pmu_enable_event(&event->hw,
351af072
ZY
1985 ARCH_PERFMON_EVENTSEL_ENABLE);
1986 } else
1987 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
11164cd4 1988 }
351af072
ZY
1989}
1990
1991static void intel_pmu_nhm_enable_all(int added)
1992{
1993 if (added)
1994 intel_pmu_nhm_workaround();
11164cd4
PZ
1995 intel_pmu_enable_all(added);
1996}
1997
f22f54f4
PZ
1998static inline u64 intel_pmu_get_status(void)
1999{
2000 u64 status;
2001
2002 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003
2004 return status;
2005}
2006
2007static inline void intel_pmu_ack_status(u64 ack)
2008{
2009 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010}
2011
ca037701 2012static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
f22f54f4 2013{
15c7ad51 2014 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4
PZ
2015 u64 ctrl_val, mask;
2016
2017 mask = 0xfULL << (idx * 4);
2018
2019 rdmsrl(hwc->config_base, ctrl_val);
2020 ctrl_val &= ~mask;
7645a24c 2021 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
2022}
2023
2b9e344d
PZ
2024static inline bool event_is_checkpointed(struct perf_event *event)
2025{
2026 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027}
2028
ca037701 2029static void intel_pmu_disable_event(struct perf_event *event)
f22f54f4 2030{
aff3d91a 2031 struct hw_perf_event *hwc = &event->hw;
89cbc767 2032 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 2033
15c7ad51 2034 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
f22f54f4
PZ
2035 intel_pmu_disable_bts();
2036 intel_pmu_drain_bts_buffer();
2037 return;
2038 }
2039
144d31e6
GN
2040 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2b9e344d 2042 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
144d31e6 2043
f22f54f4 2044 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 2045 intel_pmu_disable_fixed(hwc);
f22f54f4
PZ
2046 return;
2047 }
2048
aff3d91a 2049 x86_pmu_disable_event(event);
ca037701 2050
ab608344 2051 if (unlikely(event->attr.precise_ip))
ef21f683 2052 intel_pmu_pebs_disable(event);
f22f54f4
PZ
2053}
2054
68f7082f
PZ
2055static void intel_pmu_del_event(struct perf_event *event)
2056{
2057 if (needs_branch_stack(event))
2058 intel_pmu_lbr_del(event);
2059 if (event->attr.precise_ip)
2060 intel_pmu_pebs_del(event);
2061}
2062
ceb90d9e
KL
2063static void intel_pmu_read_event(struct perf_event *event)
2064{
2065 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2066 intel_pmu_auto_reload_read(event);
2067 else
2068 x86_perf_event_update(event);
2069}
2070
ca037701 2071static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
f22f54f4 2072{
15c7ad51 2073 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
f22f54f4 2074 u64 ctrl_val, bits, mask;
f22f54f4
PZ
2075
2076 /*
2077 * Enable IRQ generation (0x8),
2078 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2079 * if requested:
2080 */
2081 bits = 0x8ULL;
2082 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2083 bits |= 0x2;
2084 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2085 bits |= 0x1;
2086
2087 /*
2088 * ANY bit is supported in v3 and up
2089 */
2090 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2091 bits |= 0x4;
2092
2093 bits <<= (idx * 4);
2094 mask = 0xfULL << (idx * 4);
2095
2096 rdmsrl(hwc->config_base, ctrl_val);
2097 ctrl_val &= ~mask;
2098 ctrl_val |= bits;
7645a24c 2099 wrmsrl(hwc->config_base, ctrl_val);
f22f54f4
PZ
2100}
2101
aff3d91a 2102static void intel_pmu_enable_event(struct perf_event *event)
f22f54f4 2103{
aff3d91a 2104 struct hw_perf_event *hwc = &event->hw;
89cbc767 2105 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
aff3d91a 2106
15c7ad51 2107 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
0a3aee0d 2108 if (!__this_cpu_read(cpu_hw_events.enabled))
f22f54f4
PZ
2109 return;
2110
2111 intel_pmu_enable_bts(hwc->config);
2112 return;
2113 }
2114
144d31e6
GN
2115 if (event->attr.exclude_host)
2116 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2117 if (event->attr.exclude_guest)
2118 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2119
2b9e344d
PZ
2120 if (unlikely(event_is_checkpointed(event)))
2121 cpuc->intel_cp_status |= (1ull << hwc->idx);
2122
f22f54f4 2123 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
aff3d91a 2124 intel_pmu_enable_fixed(hwc);
f22f54f4
PZ
2125 return;
2126 }
2127
ab608344 2128 if (unlikely(event->attr.precise_ip))
ef21f683 2129 intel_pmu_pebs_enable(event);
ca037701 2130
31fa58af 2131 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f22f54f4
PZ
2132}
2133
68f7082f
PZ
2134static void intel_pmu_add_event(struct perf_event *event)
2135{
2136 if (event->attr.precise_ip)
2137 intel_pmu_pebs_add(event);
2138 if (needs_branch_stack(event))
2139 intel_pmu_lbr_add(event);
2140}
2141
f22f54f4
PZ
2142/*
2143 * Save and restart an expired event. Called by NMI contexts,
2144 * so it has to be careful about preempting normal event ops:
2145 */
de0428a7 2146int intel_pmu_save_and_restart(struct perf_event *event)
f22f54f4 2147{
cc2ad4ba 2148 x86_perf_event_update(event);
2dbf0116
AK
2149 /*
2150 * For a checkpointed counter always reset back to 0. This
2151 * avoids a situation where the counter overflows, aborts the
2152 * transaction and is then set back to shortly before the
2153 * overflow, and overflows and aborts again.
2154 */
2155 if (unlikely(event_is_checkpointed(event))) {
2156 /* No race with NMIs because the counter should not be armed */
2157 wrmsrl(event->hw.event_base, 0);
2158 local64_set(&event->hw.prev_count, 0);
2159 }
cc2ad4ba 2160 return x86_perf_event_set_period(event);
f22f54f4
PZ
2161}
2162
2163static void intel_pmu_reset(void)
2164{
0a3aee0d 2165 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
f22f54f4
PZ
2166 unsigned long flags;
2167 int idx;
2168
948b1bb8 2169 if (!x86_pmu.num_counters)
f22f54f4
PZ
2170 return;
2171
2172 local_irq_save(flags);
2173
c767a54b 2174 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
f22f54f4 2175
948b1bb8 2176 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
715c85b1
PA
2177 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2178 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
f22f54f4 2179 }
948b1bb8 2180 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
715c85b1 2181 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
948b1bb8 2182
f22f54f4
PZ
2183 if (ds)
2184 ds->bts_index = ds->bts_buffer_base;
2185
8882edf7
AK
2186 /* Ack all overflows and disable fixed counters */
2187 if (x86_pmu.version >= 2) {
2188 intel_pmu_ack_status(intel_pmu_get_status());
2189 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2190 }
2191
2192 /* Reset LBRs and LBR freezing */
2193 if (x86_pmu.lbr_nr) {
2194 update_debugctlmsr(get_debugctlmsr() &
2195 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2196 }
2197
f22f54f4
PZ
2198 local_irq_restore(flags);
2199}
2200
2201/*
2202 * This handler is triggered by the local APIC, so the APIC IRQ handling
2203 * rules apply:
2204 */
2205static int intel_pmu_handle_irq(struct pt_regs *regs)
2206{
2207 struct perf_sample_data data;
2208 struct cpu_hw_events *cpuc;
2209 int bit, loops;
2e556b5b 2210 u64 status;
b0b2072d 2211 int handled;
82d71ed0 2212 int pmu_enabled;
f22f54f4 2213
89cbc767 2214 cpuc = this_cpu_ptr(&cpu_hw_events);
f22f54f4 2215
82d71ed0
KL
2216 /*
2217 * Save the PMU state.
2218 * It needs to be restored when leaving the handler.
2219 */
2220 pmu_enabled = cpuc->enabled;
2bce5dac 2221 /*
72db5596
AK
2222 * No known reason to not always do late ACK,
2223 * but just in case do it opt-in.
2bce5dac 2224 */
72db5596
AK
2225 if (!x86_pmu.late_ack)
2226 apic_write(APIC_LVTPC, APIC_DM_NMI);
cecf6235 2227 intel_bts_disable_local();
82d71ed0 2228 cpuc->enabled = 0;
1a78d937 2229 __intel_pmu_disable_all();
b0b2072d 2230 handled = intel_pmu_drain_bts_buffer();
8062382c 2231 handled += intel_bts_interrupt();
f22f54f4 2232 status = intel_pmu_get_status();
a3ef2229
MM
2233 if (!status)
2234 goto done;
f22f54f4
PZ
2235
2236 loops = 0;
2237again:
0f29e573 2238 intel_pmu_lbr_read();
2e556b5b 2239 intel_pmu_ack_status(status);
f22f54f4 2240 if (++loops > 100) {
ae0def05
DH
2241 static bool warned = false;
2242 if (!warned) {
2243 WARN(1, "perfevents: irq loop stuck!\n");
2244 perf_event_print_debug();
2245 warned = true;
2246 }
f22f54f4 2247 intel_pmu_reset();
3fb2b8dd 2248 goto done;
f22f54f4
PZ
2249 }
2250
2251 inc_irq_stat(apic_perf_irqs);
ca037701 2252
caff2bef 2253
b292d7a1 2254 /*
d8020bee
AK
2255 * Ignore a range of extra bits in status that do not indicate
2256 * overflow by themselves.
b292d7a1 2257 */
d8020bee
AK
2258 status &= ~(GLOBAL_STATUS_COND_CHG |
2259 GLOBAL_STATUS_ASIF |
2260 GLOBAL_STATUS_LBRS_FROZEN);
2261 if (!status)
2262 goto done;
daa864b8
SE
2263 /*
2264 * In case multiple PEBS events are sampled at the same time,
2265 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2266 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2267 * having their bits set in the status register. This is a sign
2268 * that there was at least one PEBS record pending at the time
2269 * of the PMU interrupt. PEBS counters must only be processed
2270 * via the drain_pebs() calls and not via the regular sample
2271 * processing loop coming after that the function, otherwise
2272 * phony regular samples may be generated in the sampling buffer
2273 * not marked with the EXACT tag. Another possibility is to have
2274 * one PEBS event and at least one non-PEBS event whic hoverflows
2275 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2276 * not be set, yet the overflow status bit for the PEBS counter will
2277 * be on Skylake.
2278 *
2279 * To avoid this problem, we systematically ignore the PEBS-enabled
2280 * counters from the GLOBAL_STATUS mask and we always process PEBS
2281 * events via drain_pebs().
2282 */
fd583ad1 2283 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
b292d7a1 2284
ca037701
PZ
2285 /*
2286 * PEBS overflow sets bit 62 in the global status register
2287 */
de725dec
PZ
2288 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2289 handled++;
ca037701 2290 x86_pmu.drain_pebs(regs);
8077eca0 2291 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
de725dec 2292 }
ca037701 2293
52ca9ced
AS
2294 /*
2295 * Intel PT
2296 */
2297 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2298 handled++;
2299 intel_pt_interrupt();
2300 }
2301
2dbf0116 2302 /*
2b9e344d
PZ
2303 * Checkpointed counters can lead to 'spurious' PMIs because the
2304 * rollback caused by the PMI will have cleared the overflow status
2305 * bit. Therefore always force probe these counters.
2dbf0116 2306 */
2b9e344d 2307 status |= cpuc->intel_cp_status;
2dbf0116 2308
984b3f57 2309 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
f22f54f4
PZ
2310 struct perf_event *event = cpuc->events[bit];
2311
de725dec
PZ
2312 handled++;
2313
f22f54f4
PZ
2314 if (!test_bit(bit, cpuc->active_mask))
2315 continue;
2316
2317 if (!intel_pmu_save_and_restart(event))
2318 continue;
2319
fd0d000b 2320 perf_sample_data_init(&data, 0, event->hw.last_period);
f22f54f4 2321
60ce0fbd
SE
2322 if (has_branch_stack(event))
2323 data.br_stack = &cpuc->lbr_stack;
2324
a8b0ca17 2325 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 2326 x86_pmu_stop(event, 0);
f22f54f4
PZ
2327 }
2328
f22f54f4
PZ
2329 /*
2330 * Repeat if there is more work to be done:
2331 */
2332 status = intel_pmu_get_status();
2333 if (status)
2334 goto again;
2335
3fb2b8dd 2336done:
c3d266c8 2337 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
82d71ed0
KL
2338 cpuc->enabled = pmu_enabled;
2339 if (pmu_enabled)
c3d266c8 2340 __intel_pmu_enable_all(0, true);
cecf6235 2341 intel_bts_enable_local();
c3d266c8 2342
72db5596
AK
2343 /*
2344 * Only unmask the NMI after the overflow counters
2345 * have been reset. This avoids spurious NMIs on
2346 * Haswell CPUs.
2347 */
2348 if (x86_pmu.late_ack)
2349 apic_write(APIC_LVTPC, APIC_DM_NMI);
de725dec 2350 return handled;
f22f54f4
PZ
2351}
2352
f22f54f4 2353static struct event_constraint *
ca037701 2354intel_bts_constraints(struct perf_event *event)
f22f54f4 2355{
ca037701
PZ
2356 struct hw_perf_event *hwc = &event->hw;
2357 unsigned int hw_event, bts_event;
f22f54f4 2358
18a073a3
PZ
2359 if (event->attr.freq)
2360 return NULL;
2361
ca037701
PZ
2362 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2363 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
f22f54f4 2364
ca037701 2365 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
f22f54f4 2366 return &bts_constraint;
ca037701 2367
f22f54f4
PZ
2368 return NULL;
2369}
2370
ae3f011f 2371static int intel_alt_er(int idx, u64 config)
b79e8941 2372{
e01d8718
PZ
2373 int alt_idx = idx;
2374
9a5e3fb5 2375 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
5a425294 2376 return idx;
b79e8941 2377
5a425294 2378 if (idx == EXTRA_REG_RSP_0)
ae3f011f 2379 alt_idx = EXTRA_REG_RSP_1;
5a425294
PZ
2380
2381 if (idx == EXTRA_REG_RSP_1)
ae3f011f 2382 alt_idx = EXTRA_REG_RSP_0;
5a425294 2383
ae3f011f
KL
2384 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2385 return idx;
2386
2387 return alt_idx;
5a425294
PZ
2388}
2389
2390static void intel_fixup_er(struct perf_event *event, int idx)
2391{
2392 event->hw.extra_reg.idx = idx;
2393
2394 if (idx == EXTRA_REG_RSP_0) {
b79e8941 2395 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 2396 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
b79e8941 2397 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
5a425294
PZ
2398 } else if (idx == EXTRA_REG_RSP_1) {
2399 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
53ad0447 2400 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
5a425294 2401 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
b79e8941 2402 }
b79e8941
PZ
2403}
2404
efc9f05d
SE
2405/*
2406 * manage allocation of shared extra msr for certain events
2407 *
2408 * sharing can be:
2409 * per-cpu: to be shared between the various events on a single PMU
2410 * per-core: per-cpu + shared by HT threads
2411 */
a7e3ed1e 2412static struct event_constraint *
efc9f05d 2413__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
b36817e8
SE
2414 struct perf_event *event,
2415 struct hw_perf_event_extra *reg)
a7e3ed1e 2416{
efc9f05d 2417 struct event_constraint *c = &emptyconstraint;
a7e3ed1e 2418 struct er_account *era;
cd8a38d3 2419 unsigned long flags;
5a425294 2420 int idx = reg->idx;
a7e3ed1e 2421
5a425294
PZ
2422 /*
2423 * reg->alloc can be set due to existing state, so for fake cpuc we
2424 * need to ignore this, otherwise we might fail to allocate proper fake
2425 * state for this extra reg constraint. Also see the comment below.
2426 */
2427 if (reg->alloc && !cpuc->is_fake)
b36817e8 2428 return NULL; /* call x86_get_event_constraint() */
a7e3ed1e 2429
b79e8941 2430again:
5a425294 2431 era = &cpuc->shared_regs->regs[idx];
cd8a38d3
SE
2432 /*
2433 * we use spin_lock_irqsave() to avoid lockdep issues when
2434 * passing a fake cpuc
2435 */
2436 raw_spin_lock_irqsave(&era->lock, flags);
efc9f05d
SE
2437
2438 if (!atomic_read(&era->ref) || era->config == reg->config) {
2439
5a425294
PZ
2440 /*
2441 * If its a fake cpuc -- as per validate_{group,event}() we
2442 * shouldn't touch event state and we can avoid doing so
2443 * since both will only call get_event_constraints() once
2444 * on each event, this avoids the need for reg->alloc.
2445 *
2446 * Not doing the ER fixup will only result in era->reg being
2447 * wrong, but since we won't actually try and program hardware
2448 * this isn't a problem either.
2449 */
2450 if (!cpuc->is_fake) {
2451 if (idx != reg->idx)
2452 intel_fixup_er(event, idx);
2453
2454 /*
2455 * x86_schedule_events() can call get_event_constraints()
2456 * multiple times on events in the case of incremental
2457 * scheduling(). reg->alloc ensures we only do the ER
2458 * allocation once.
2459 */
2460 reg->alloc = 1;
2461 }
2462
efc9f05d
SE
2463 /* lock in msr value */
2464 era->config = reg->config;
2465 era->reg = reg->reg;
2466
2467 /* one more user */
2468 atomic_inc(&era->ref);
2469
a7e3ed1e 2470 /*
b36817e8
SE
2471 * need to call x86_get_event_constraint()
2472 * to check if associated event has constraints
a7e3ed1e 2473 */
b36817e8 2474 c = NULL;
5a425294 2475 } else {
ae3f011f 2476 idx = intel_alt_er(idx, reg->config);
5a425294
PZ
2477 if (idx != reg->idx) {
2478 raw_spin_unlock_irqrestore(&era->lock, flags);
2479 goto again;
2480 }
a7e3ed1e 2481 }
cd8a38d3 2482 raw_spin_unlock_irqrestore(&era->lock, flags);
a7e3ed1e 2483
efc9f05d
SE
2484 return c;
2485}
2486
2487static void
2488__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2489 struct hw_perf_event_extra *reg)
2490{
2491 struct er_account *era;
2492
2493 /*
5a425294
PZ
2494 * Only put constraint if extra reg was actually allocated. Also takes
2495 * care of event which do not use an extra shared reg.
2496 *
2497 * Also, if this is a fake cpuc we shouldn't touch any event state
2498 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2499 * either since it'll be thrown out.
efc9f05d 2500 */
5a425294 2501 if (!reg->alloc || cpuc->is_fake)
efc9f05d
SE
2502 return;
2503
2504 era = &cpuc->shared_regs->regs[reg->idx];
2505
2506 /* one fewer user */
2507 atomic_dec(&era->ref);
2508
2509 /* allocate again next time */
2510 reg->alloc = 0;
2511}
2512
2513static struct event_constraint *
2514intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2515 struct perf_event *event)
2516{
b36817e8
SE
2517 struct event_constraint *c = NULL, *d;
2518 struct hw_perf_event_extra *xreg, *breg;
2519
2520 xreg = &event->hw.extra_reg;
2521 if (xreg->idx != EXTRA_REG_NONE) {
2522 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2523 if (c == &emptyconstraint)
2524 return c;
2525 }
2526 breg = &event->hw.branch_reg;
2527 if (breg->idx != EXTRA_REG_NONE) {
2528 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2529 if (d == &emptyconstraint) {
2530 __intel_shared_reg_put_constraints(cpuc, xreg);
2531 c = d;
2532 }
2533 }
efc9f05d 2534 return c;
a7e3ed1e
AK
2535}
2536
de0428a7 2537struct event_constraint *
79cba822
SE
2538x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2539 struct perf_event *event)
de0428a7
KW
2540{
2541 struct event_constraint *c;
2542
2543 if (x86_pmu.event_constraints) {
2544 for_each_event_constraint(c, x86_pmu.event_constraints) {
9fac2cf3 2545 if ((event->hw.config & c->cmask) == c->code) {
9fac2cf3 2546 event->hw.flags |= c->flags;
de0428a7 2547 return c;
9fac2cf3 2548 }
de0428a7
KW
2549 }
2550 }
2551
2552 return &unconstrained;
2553}
2554
f22f54f4 2555static struct event_constraint *
e979121b 2556__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
79cba822 2557 struct perf_event *event)
f22f54f4
PZ
2558{
2559 struct event_constraint *c;
2560
ca037701
PZ
2561 c = intel_bts_constraints(event);
2562 if (c)
2563 return c;
2564
687805e4 2565 c = intel_shared_regs_constraints(cpuc, event);
f22f54f4
PZ
2566 if (c)
2567 return c;
2568
687805e4 2569 c = intel_pebs_constraints(event);
a7e3ed1e
AK
2570 if (c)
2571 return c;
2572
79cba822 2573 return x86_get_event_constraints(cpuc, idx, event);
f22f54f4
PZ
2574}
2575
e979121b
MD
2576static void
2577intel_start_scheduling(struct cpu_hw_events *cpuc)
2578{
2579 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2580 struct intel_excl_states *xl;
e979121b 2581 int tid = cpuc->excl_thread_id;
e979121b
MD
2582
2583 /*
2584 * nothing needed if in group validation mode
2585 */
b37609c3 2586 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b 2587 return;
b37609c3 2588
e979121b
MD
2589 /*
2590 * no exclusion needed
2591 */
17186ccd 2592 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2593 return;
2594
e979121b
MD
2595 xl = &excl_cntrs->states[tid];
2596
2597 xl->sched_started = true;
e979121b
MD
2598 /*
2599 * lock shared state until we are done scheduling
2600 * in stop_event_scheduling()
2601 * makes scheduling appear as a transaction
2602 */
e979121b 2603 raw_spin_lock(&excl_cntrs->lock);
e979121b
MD
2604}
2605
0c41e756
PZ
2606static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2607{
2608 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2609 struct event_constraint *c = cpuc->event_constraint[idx];
2610 struct intel_excl_states *xl;
2611 int tid = cpuc->excl_thread_id;
2612
2613 if (cpuc->is_fake || !is_ht_workaround_enabled())
2614 return;
2615
2616 if (WARN_ON_ONCE(!excl_cntrs))
2617 return;
2618
2619 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2620 return;
2621
2622 xl = &excl_cntrs->states[tid];
2623
2624 lockdep_assert_held(&excl_cntrs->lock);
2625
1fe684e3 2626 if (c->flags & PERF_X86_EVENT_EXCL)
43ef205b 2627 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
1fe684e3 2628 else
43ef205b 2629 xl->state[cntr] = INTEL_EXCL_SHARED;
0c41e756
PZ
2630}
2631
e979121b
MD
2632static void
2633intel_stop_scheduling(struct cpu_hw_events *cpuc)
2634{
2635 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2636 struct intel_excl_states *xl;
e979121b 2637 int tid = cpuc->excl_thread_id;
e979121b
MD
2638
2639 /*
2640 * nothing needed if in group validation mode
2641 */
b37609c3 2642 if (cpuc->is_fake || !is_ht_workaround_enabled())
e979121b
MD
2643 return;
2644 /*
2645 * no exclusion needed
2646 */
17186ccd 2647 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2648 return;
2649
e979121b
MD
2650 xl = &excl_cntrs->states[tid];
2651
e979121b
MD
2652 xl->sched_started = false;
2653 /*
2654 * release shared state lock (acquired in intel_start_scheduling())
2655 */
2656 raw_spin_unlock(&excl_cntrs->lock);
2657}
2658
2659static struct event_constraint *
2660intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2661 int idx, struct event_constraint *c)
2662{
e979121b 2663 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1c565833 2664 struct intel_excl_states *xlo;
e979121b 2665 int tid = cpuc->excl_thread_id;
1c565833 2666 int is_excl, i;
e979121b
MD
2667
2668 /*
2669 * validating a group does not require
2670 * enforcing cross-thread exclusion
2671 */
b37609c3
SE
2672 if (cpuc->is_fake || !is_ht_workaround_enabled())
2673 return c;
2674
2675 /*
2676 * no exclusion needed
2677 */
17186ccd 2678 if (WARN_ON_ONCE(!excl_cntrs))
e979121b 2679 return c;
e979121b 2680
e979121b
MD
2681 /*
2682 * because we modify the constraint, we need
2683 * to make a copy. Static constraints come
2684 * from static const tables.
2685 *
2686 * only needed when constraint has not yet
2687 * been cloned (marked dynamic)
2688 */
2689 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
aaf932e8 2690 struct event_constraint *cx;
e979121b 2691
e979121b
MD
2692 /*
2693 * grab pre-allocated constraint entry
2694 */
2695 cx = &cpuc->constraint_list[idx];
2696
2697 /*
2698 * initialize dynamic constraint
2699 * with static constraint
2700 */
aaf932e8 2701 *cx = *c;
e979121b
MD
2702
2703 /*
2704 * mark constraint as dynamic, so we
2705 * can free it later on
2706 */
2707 cx->flags |= PERF_X86_EVENT_DYNAMIC;
aaf932e8 2708 c = cx;
e979121b
MD
2709 }
2710
2711 /*
2712 * From here on, the constraint is dynamic.
2713 * Either it was just allocated above, or it
2714 * was allocated during a earlier invocation
2715 * of this function
2716 */
2717
1c565833
PZ
2718 /*
2719 * state of sibling HT
2720 */
2721 xlo = &excl_cntrs->states[tid ^ 1];
2722
2723 /*
2724 * event requires exclusive counter access
2725 * across HT threads
2726 */
2727 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2728 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2729 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2730 if (!cpuc->n_excl++)
2731 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2732 }
2733
e979121b
MD
2734 /*
2735 * Modify static constraint with current dynamic
2736 * state of thread
2737 *
2738 * EXCLUSIVE: sibling counter measuring exclusive event
2739 * SHARED : sibling counter measuring non-exclusive event
2740 * UNUSED : sibling counter unused
2741 */
aaf932e8 2742 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
e979121b
MD
2743 /*
2744 * exclusive event in sibling counter
2745 * our corresponding counter cannot be used
2746 * regardless of our event
2747 */
1c565833 2748 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
aaf932e8 2749 __clear_bit(i, c->idxmsk);
e979121b
MD
2750 /*
2751 * if measuring an exclusive event, sibling
2752 * measuring non-exclusive, then counter cannot
2753 * be used
2754 */
1c565833 2755 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
aaf932e8 2756 __clear_bit(i, c->idxmsk);
e979121b
MD
2757 }
2758
2759 /*
2760 * recompute actual bit weight for scheduling algorithm
2761 */
aaf932e8 2762 c->weight = hweight64(c->idxmsk64);
e979121b
MD
2763
2764 /*
2765 * if we return an empty mask, then switch
2766 * back to static empty constraint to avoid
2767 * the cost of freeing later on
2768 */
aaf932e8
PZ
2769 if (c->weight == 0)
2770 c = &emptyconstraint;
e979121b 2771
aaf932e8 2772 return c;
e979121b
MD
2773}
2774
2775static struct event_constraint *
2776intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2777 struct perf_event *event)
2778{
ebfb4988 2779 struct event_constraint *c1 = NULL;
a90738c2 2780 struct event_constraint *c2;
e979121b 2781
ebfb4988
PZ
2782 if (idx >= 0) /* fake does < 0 */
2783 c1 = cpuc->event_constraint[idx];
2784
e979121b
MD
2785 /*
2786 * first time only
2787 * - static constraint: no change across incremental scheduling calls
2788 * - dynamic constraint: handled by intel_get_excl_constraints()
2789 */
a90738c2
SE
2790 c2 = __intel_get_event_constraints(cpuc, idx, event);
2791 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2792 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2793 c1->weight = c2->weight;
2794 c2 = c1;
2795 }
e979121b
MD
2796
2797 if (cpuc->excl_cntrs)
a90738c2 2798 return intel_get_excl_constraints(cpuc, event, idx, c2);
e979121b 2799
a90738c2 2800 return c2;
e979121b
MD
2801}
2802
2803static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2804 struct perf_event *event)
2805{
2806 struct hw_perf_event *hwc = &event->hw;
2807 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
e979121b 2808 int tid = cpuc->excl_thread_id;
1c565833 2809 struct intel_excl_states *xl;
e979121b
MD
2810
2811 /*
2812 * nothing needed if in group validation mode
2813 */
2814 if (cpuc->is_fake)
2815 return;
2816
17186ccd 2817 if (WARN_ON_ONCE(!excl_cntrs))
e979121b
MD
2818 return;
2819
cc1790cf
PZ
2820 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2821 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2822 if (!--cpuc->n_excl)
2823 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2824 }
e979121b
MD
2825
2826 /*
ba040653
PZ
2827 * If event was actually assigned, then mark the counter state as
2828 * unused now.
e979121b 2829 */
ba040653
PZ
2830 if (hwc->idx >= 0) {
2831 xl = &excl_cntrs->states[tid];
2832
2833 /*
2834 * put_constraint may be called from x86_schedule_events()
2835 * which already has the lock held so here make locking
2836 * conditional.
2837 */
2838 if (!xl->sched_started)
2839 raw_spin_lock(&excl_cntrs->lock);
e979121b 2840
1c565833 2841 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
e979121b 2842
ba040653
PZ
2843 if (!xl->sched_started)
2844 raw_spin_unlock(&excl_cntrs->lock);
2845 }
e979121b
MD
2846}
2847
efc9f05d
SE
2848static void
2849intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
a7e3ed1e
AK
2850 struct perf_event *event)
2851{
efc9f05d 2852 struct hw_perf_event_extra *reg;
a7e3ed1e 2853
efc9f05d
SE
2854 reg = &event->hw.extra_reg;
2855 if (reg->idx != EXTRA_REG_NONE)
2856 __intel_shared_reg_put_constraints(cpuc, reg);
b36817e8
SE
2857
2858 reg = &event->hw.branch_reg;
2859 if (reg->idx != EXTRA_REG_NONE)
2860 __intel_shared_reg_put_constraints(cpuc, reg);
efc9f05d 2861}
a7e3ed1e 2862
efc9f05d
SE
2863static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2864 struct perf_event *event)
2865{
2866 intel_put_shared_regs_event_constraints(cpuc, event);
e979121b
MD
2867
2868 /*
2869 * is PMU has exclusive counter restrictions, then
2870 * all events are subject to and must call the
2871 * put_excl_constraints() routine
2872 */
b371b594 2873 if (cpuc->excl_cntrs)
e979121b 2874 intel_put_excl_constraints(cpuc, event);
e979121b
MD
2875}
2876
0780c927 2877static void intel_pebs_aliases_core2(struct perf_event *event)
b4cdc5c2 2878{
0780c927 2879 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
7639dae0
PZ
2880 /*
2881 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2882 * (0x003c) so that we can use it with PEBS.
2883 *
2884 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2885 * PEBS capable. However we can use INST_RETIRED.ANY_P
2886 * (0x00c0), which is a PEBS capable event, to get the same
2887 * count.
2888 *
2889 * INST_RETIRED.ANY_P counts the number of cycles that retires
2890 * CNTMASK instructions. By setting CNTMASK to a value (16)
2891 * larger than the maximum number of instructions that can be
2892 * retired per cycle (4) and then inverting the condition, we
2893 * count all cycles that retire 16 or less instructions, which
2894 * is every cycle.
2895 *
2896 * Thereby we gain a PEBS capable cycle counter.
2897 */
f9b4eeb8
PZ
2898 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2899
0780c927
PZ
2900 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2901 event->hw.config = alt_config;
2902 }
2903}
2904
2905static void intel_pebs_aliases_snb(struct perf_event *event)
2906{
2907 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2908 /*
2909 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2910 * (0x003c) so that we can use it with PEBS.
2911 *
2912 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2913 * PEBS capable. However we can use UOPS_RETIRED.ALL
2914 * (0x01c2), which is a PEBS capable event, to get the same
2915 * count.
2916 *
2917 * UOPS_RETIRED.ALL counts the number of cycles that retires
2918 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2919 * larger than the maximum number of micro-ops that can be
2920 * retired per cycle (4) and then inverting the condition, we
2921 * count all cycles that retire 16 or less micro-ops, which
2922 * is every cycle.
2923 *
2924 * Thereby we gain a PEBS capable cycle counter.
2925 */
2926 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
7639dae0
PZ
2927
2928 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2929 event->hw.config = alt_config;
2930 }
0780c927
PZ
2931}
2932
72469764
AK
2933static void intel_pebs_aliases_precdist(struct perf_event *event)
2934{
2935 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2936 /*
2937 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2938 * (0x003c) so that we can use it with PEBS.
2939 *
2940 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2941 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2942 * (0x01c0), which is a PEBS capable event, to get the same
2943 * count.
2944 *
2945 * The PREC_DIST event has special support to minimize sample
2946 * shadowing effects. One drawback is that it can be
2947 * only programmed on counter 1, but that seems like an
2948 * acceptable trade off.
2949 */
2950 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2951
2952 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2953 event->hw.config = alt_config;
2954 }
2955}
2956
2957static void intel_pebs_aliases_ivb(struct perf_event *event)
2958{
2959 if (event->attr.precise_ip < 3)
2960 return intel_pebs_aliases_snb(event);
2961 return intel_pebs_aliases_precdist(event);
2962}
2963
2964static void intel_pebs_aliases_skl(struct perf_event *event)
2965{
2966 if (event->attr.precise_ip < 3)
2967 return intel_pebs_aliases_core2(event);
2968 return intel_pebs_aliases_precdist(event);
2969}
2970
174afc3e 2971static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
a7b58d21 2972{
174afc3e 2973 unsigned long flags = x86_pmu.large_pebs_flags;
a7b58d21
AK
2974
2975 if (event->attr.use_clockid)
2976 flags &= ~PERF_SAMPLE_TIME;
a47ba4d7
AK
2977 if (!event->attr.exclude_kernel)
2978 flags &= ~PERF_SAMPLE_REGS_USER;
2979 if (event->attr.sample_regs_user & ~PEBS_REGS)
2980 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
a7b58d21
AK
2981 return flags;
2982}
2983
0780c927
PZ
2984static int intel_pmu_hw_config(struct perf_event *event)
2985{
2986 int ret = x86_pmu_hw_config(event);
2987
2988 if (ret)
2989 return ret;
2990
851559e3 2991 if (event->attr.precise_ip) {
3569c0d7 2992 if (!event->attr.freq) {
851559e3 2993 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
a7b58d21 2994 if (!(event->attr.sample_type &
174afc3e
KL
2995 ~intel_pmu_large_pebs_flags(event)))
2996 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3569c0d7 2997 }
851559e3
YZ
2998 if (x86_pmu.pebs_aliases)
2999 x86_pmu.pebs_aliases(event);
3000 }
7639dae0 3001
a46a2300 3002 if (needs_branch_stack(event)) {
60ce0fbd
SE
3003 ret = intel_pmu_setup_lbr_filter(event);
3004 if (ret)
3005 return ret;
48070342
AS
3006
3007 /*
3008 * BTS is set up earlier in this path, so don't account twice
3009 */
3010 if (!intel_pmu_has_bts(event)) {
3011 /* disallow lbr if conflicting events are present */
3012 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3013 return -EBUSY;
3014
3015 event->destroy = hw_perf_lbr_event_destroy;
3016 }
60ce0fbd
SE
3017 }
3018
b4cdc5c2
PZ
3019 if (event->attr.type != PERF_TYPE_RAW)
3020 return 0;
3021
3022 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3023 return 0;
3024
3025 if (x86_pmu.version < 3)
3026 return -EINVAL;
3027
3028 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3029 return -EACCES;
3030
3031 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3032
3033 return 0;
3034}
3035
144d31e6
GN
3036struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3037{
3038 if (x86_pmu.guest_get_msrs)
3039 return x86_pmu.guest_get_msrs(nr);
3040 *nr = 0;
3041 return NULL;
3042}
3043EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3044
3045static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3046{
89cbc767 3047 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
3048 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3049
3050 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3051 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3052 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
26a4f3c0
GN
3053 /*
3054 * If PMU counter has PEBS enabled it is not enough to disable counter
3055 * on a guest entry since PEBS memory write can overshoot guest entry
3056 * and corrupt guest memory. Disabling PEBS solves the problem.
3057 */
3058 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3059 arr[1].host = cpuc->pebs_enabled;
3060 arr[1].guest = 0;
144d31e6 3061
26a4f3c0 3062 *nr = 2;
144d31e6
GN
3063 return arr;
3064}
3065
3066static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3067{
89cbc767 3068 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
3069 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3070 int idx;
3071
3072 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3073 struct perf_event *event = cpuc->events[idx];
3074
3075 arr[idx].msr = x86_pmu_config_addr(idx);
3076 arr[idx].host = arr[idx].guest = 0;
3077
3078 if (!test_bit(idx, cpuc->active_mask))
3079 continue;
3080
3081 arr[idx].host = arr[idx].guest =
3082 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3083
3084 if (event->attr.exclude_host)
3085 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3086 else if (event->attr.exclude_guest)
3087 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3088 }
3089
3090 *nr = x86_pmu.num_counters;
3091 return arr;
3092}
3093
3094static void core_pmu_enable_event(struct perf_event *event)
3095{
3096 if (!event->attr.exclude_host)
3097 x86_pmu_enable_event(event);
3098}
3099
3100static void core_pmu_enable_all(int added)
3101{
89cbc767 3102 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
144d31e6
GN
3103 int idx;
3104
3105 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3106 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3107
3108 if (!test_bit(idx, cpuc->active_mask) ||
3109 cpuc->events[idx]->attr.exclude_host)
3110 continue;
3111
3112 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3113 }
3114}
3115
3a632cb2
AK
3116static int hsw_hw_config(struct perf_event *event)
3117{
3118 int ret = intel_pmu_hw_config(event);
3119
3120 if (ret)
3121 return ret;
3122 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3123 return 0;
3124 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3125
3126 /*
3127 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3128 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3129 * this combination.
3130 */
3131 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3132 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3133 event->attr.precise_ip > 0))
3134 return -EOPNOTSUPP;
3135
2dbf0116
AK
3136 if (event_is_checkpointed(event)) {
3137 /*
3138 * Sampling of checkpointed events can cause situations where
3139 * the CPU constantly aborts because of a overflow, which is
3140 * then checkpointed back and ignored. Forbid checkpointing
3141 * for sampling.
3142 *
3143 * But still allow a long sampling period, so that perf stat
3144 * from KVM works.
3145 */
3146 if (event->attr.sample_period > 0 &&
3147 event->attr.sample_period < 0x7fffffff)
3148 return -EOPNOTSUPP;
3149 }
3a632cb2
AK
3150 return 0;
3151}
3152
dd0b06b5
KL
3153static struct event_constraint counter0_constraint =
3154 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3155
3a632cb2
AK
3156static struct event_constraint counter2_constraint =
3157 EVENT_CONSTRAINT(0, 0x4, 0);
3158
3159static struct event_constraint *
79cba822
SE
3160hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3161 struct perf_event *event)
3a632cb2 3162{
79cba822
SE
3163 struct event_constraint *c;
3164
3165 c = intel_get_event_constraints(cpuc, idx, event);
3a632cb2
AK
3166
3167 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3168 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3169 if (c->idxmsk64 & (1U << 2))
3170 return &counter2_constraint;
3171 return &emptyconstraint;
3172 }
3173
3174 return c;
3175}
3176
dd0b06b5
KL
3177static struct event_constraint *
3178glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3179 struct perf_event *event)
3180{
3181 struct event_constraint *c;
3182
3183 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3184 if (event->attr.precise_ip == 3)
3185 return &counter0_constraint;
3186
3187 c = intel_get_event_constraints(cpuc, idx, event);
3188
3189 return c;
3190}
3191
294fe0f5
AK
3192/*
3193 * Broadwell:
3194 *
3195 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3196 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3197 * the two to enforce a minimum period of 128 (the smallest value that has bits
3198 * 0-5 cleared and >= 100).
3199 *
3200 * Because of how the code in x86_perf_event_set_period() works, the truncation
3201 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3202 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3203 *
3204 * Therefore the effective (average) period matches the requested period,
3205 * despite coarser hardware granularity.
3206 */
f605cfca 3207static u64 bdw_limit_period(struct perf_event *event, u64 left)
294fe0f5
AK
3208{
3209 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3210 X86_CONFIG(.event=0xc0, .umask=0x01)) {
3211 if (left < 128)
3212 left = 128;
e5ea9b54 3213 left &= ~0x3fULL;
294fe0f5
AK
3214 }
3215 return left;
3216}
3217
641cc938
JO
3218PMU_FORMAT_ATTR(event, "config:0-7" );
3219PMU_FORMAT_ATTR(umask, "config:8-15" );
3220PMU_FORMAT_ATTR(edge, "config:18" );
3221PMU_FORMAT_ATTR(pc, "config:19" );
3222PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
3223PMU_FORMAT_ATTR(inv, "config:23" );
3224PMU_FORMAT_ATTR(cmask, "config:24-31" );
3a632cb2
AK
3225PMU_FORMAT_ATTR(in_tx, "config:32");
3226PMU_FORMAT_ATTR(in_tx_cp, "config:33");
641cc938
JO
3227
3228static struct attribute *intel_arch_formats_attr[] = {
3229 &format_attr_event.attr,
3230 &format_attr_umask.attr,
3231 &format_attr_edge.attr,
3232 &format_attr_pc.attr,
3233 &format_attr_inv.attr,
3234 &format_attr_cmask.attr,
3235 NULL,
3236};
3237
0bf79d44
JO
3238ssize_t intel_event_sysfs_show(char *page, u64 config)
3239{
3240 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3241
3242 return x86_event_sysfs_show(page, config, event);
3243}
3244
de0428a7 3245struct intel_shared_regs *allocate_shared_regs(int cpu)
efc9f05d
SE
3246{
3247 struct intel_shared_regs *regs;
3248 int i;
3249
3250 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3251 GFP_KERNEL, cpu_to_node(cpu));
3252 if (regs) {
3253 /*
3254 * initialize the locks to keep lockdep happy
3255 */
3256 for (i = 0; i < EXTRA_REG_MAX; i++)
3257 raw_spin_lock_init(&regs->regs[i].lock);
3258
3259 regs->core_id = -1;
3260 }
3261 return regs;
3262}
3263
6f6539ca
MD
3264static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3265{
3266 struct intel_excl_cntrs *c;
6f6539ca
MD
3267
3268 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3269 GFP_KERNEL, cpu_to_node(cpu));
3270 if (c) {
3271 raw_spin_lock_init(&c->lock);
6f6539ca
MD
3272 c->core_id = -1;
3273 }
3274 return c;
3275}
3276
a7e3ed1e
AK
3277static int intel_pmu_cpu_prepare(int cpu)
3278{
3279 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3280
6f6539ca
MD
3281 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3282 cpuc->shared_regs = allocate_shared_regs(cpu);
3283 if (!cpuc->shared_regs)
dbc72b7a 3284 goto err;
6f6539ca 3285 }
69092624 3286
6f6539ca
MD
3287 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3288 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3289
3290 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3291 if (!cpuc->constraint_list)
dbc72b7a 3292 goto err_shared_regs;
6f6539ca
MD
3293
3294 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
dbc72b7a
PZ
3295 if (!cpuc->excl_cntrs)
3296 goto err_constraint_list;
3297
6f6539ca
MD
3298 cpuc->excl_thread_id = 0;
3299 }
a7e3ed1e 3300
95ca792c 3301 return 0;
dbc72b7a
PZ
3302
3303err_constraint_list:
3304 kfree(cpuc->constraint_list);
3305 cpuc->constraint_list = NULL;
3306
3307err_shared_regs:
3308 kfree(cpuc->shared_regs);
3309 cpuc->shared_regs = NULL;
3310
3311err:
95ca792c 3312 return -ENOMEM;
a7e3ed1e
AK
3313}
3314
6089327f
KL
3315static void flip_smm_bit(void *data)
3316{
3317 unsigned long set = *(unsigned long *)data;
3318
3319 if (set > 0) {
3320 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3321 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3322 } else {
3323 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3324 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3325 }
3326}
3327
74846d35
PZ
3328static void intel_pmu_cpu_starting(int cpu)
3329{
a7e3ed1e
AK
3330 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3331 int core_id = topology_core_id(cpu);
3332 int i;
3333
69092624
LM
3334 init_debug_store_on_cpu(cpu);
3335 /*
3336 * Deal with CPUs that don't clear their LBRs on power-up.
3337 */
3338 intel_pmu_lbr_reset();
3339
b36817e8
SE
3340 cpuc->lbr_sel = NULL;
3341
4e949e9b
KL
3342 if (x86_pmu.version > 1)
3343 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
6089327f 3344
b36817e8 3345 if (!cpuc->shared_regs)
69092624
LM
3346 return;
3347
9a5e3fb5 3348 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
06931e62 3349 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
b36817e8 3350 struct intel_shared_regs *pc;
a7e3ed1e 3351
b36817e8
SE
3352 pc = per_cpu(cpu_hw_events, i).shared_regs;
3353 if (pc && pc->core_id == core_id) {
8f04b853 3354 cpuc->kfree_on_online[0] = cpuc->shared_regs;
b36817e8
SE
3355 cpuc->shared_regs = pc;
3356 break;
3357 }
a7e3ed1e 3358 }
b36817e8
SE
3359 cpuc->shared_regs->core_id = core_id;
3360 cpuc->shared_regs->refcnt++;
a7e3ed1e
AK
3361 }
3362
b36817e8
SE
3363 if (x86_pmu.lbr_sel_map)
3364 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
6f6539ca
MD
3365
3366 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
06931e62 3367 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4e71de79 3368 struct cpu_hw_events *sibling;
6f6539ca
MD
3369 struct intel_excl_cntrs *c;
3370
4e71de79
ZC
3371 sibling = &per_cpu(cpu_hw_events, i);
3372 c = sibling->excl_cntrs;
6f6539ca
MD
3373 if (c && c->core_id == core_id) {
3374 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3375 cpuc->excl_cntrs = c;
4e71de79
ZC
3376 if (!sibling->excl_thread_id)
3377 cpuc->excl_thread_id = 1;
6f6539ca
MD
3378 break;
3379 }
3380 }
3381 cpuc->excl_cntrs->core_id = core_id;
3382 cpuc->excl_cntrs->refcnt++;
3383 }
74846d35
PZ
3384}
3385
b37609c3 3386static void free_excl_cntrs(int cpu)
74846d35 3387{
a7e3ed1e 3388 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
6f6539ca 3389 struct intel_excl_cntrs *c;
a7e3ed1e 3390
6f6539ca
MD
3391 c = cpuc->excl_cntrs;
3392 if (c) {
3393 if (c->core_id == -1 || --c->refcnt == 0)
3394 kfree(c);
3395 cpuc->excl_cntrs = NULL;
3396 kfree(cpuc->constraint_list);
3397 cpuc->constraint_list = NULL;
3398 }
b37609c3 3399}
a7e3ed1e 3400
b37609c3
SE
3401static void intel_pmu_cpu_dying(int cpu)
3402{
3403 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3404 struct intel_shared_regs *pc;
3405
3406 pc = cpuc->shared_regs;
3407 if (pc) {
3408 if (pc->core_id == -1 || --pc->refcnt == 0)
3409 kfree(pc);
3410 cpuc->shared_regs = NULL;
e979121b
MD
3411 }
3412
b37609c3
SE
3413 free_excl_cntrs(cpu);
3414
74846d35
PZ
3415 fini_debug_store_on_cpu(cpu);
3416}
3417
9c964efa
YZ
3418static void intel_pmu_sched_task(struct perf_event_context *ctx,
3419 bool sched_in)
3420{
df6c3db8
JO
3421 intel_pmu_pebs_sched_task(ctx, sched_in);
3422 intel_pmu_lbr_sched_task(ctx, sched_in);
9c964efa
YZ
3423}
3424
641cc938
JO
3425PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3426
a63fcab4
SE
3427PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3428
d0dc8494
AK
3429PMU_FORMAT_ATTR(frontend, "config1:0-23");
3430
641cc938
JO
3431static struct attribute *intel_arch3_formats_attr[] = {
3432 &format_attr_event.attr,
3433 &format_attr_umask.attr,
3434 &format_attr_edge.attr,
3435 &format_attr_pc.attr,
3436 &format_attr_any.attr,
3437 &format_attr_inv.attr,
3438 &format_attr_cmask.attr,
a5df70c3
AK
3439 NULL,
3440};
3441
3442static struct attribute *hsw_format_attr[] = {
3a632cb2
AK
3443 &format_attr_in_tx.attr,
3444 &format_attr_in_tx_cp.attr,
a5df70c3
AK
3445 &format_attr_offcore_rsp.attr,
3446 &format_attr_ldlat.attr,
3447 NULL
3448};
641cc938 3449
a5df70c3
AK
3450static struct attribute *nhm_format_attr[] = {
3451 &format_attr_offcore_rsp.attr,
3452 &format_attr_ldlat.attr,
3453 NULL
3454};
3455
3456static struct attribute *slm_format_attr[] = {
3457 &format_attr_offcore_rsp.attr,
3458 NULL
641cc938
JO
3459};
3460
d0dc8494
AK
3461static struct attribute *skl_format_attr[] = {
3462 &format_attr_frontend.attr,
3463 NULL,
3464};
3465
3b6e0421
JO
3466static __initconst const struct x86_pmu core_pmu = {
3467 .name = "core",
3468 .handle_irq = x86_pmu_handle_irq,
3469 .disable_all = x86_pmu_disable_all,
3470 .enable_all = core_pmu_enable_all,
3471 .enable = core_pmu_enable_event,
3472 .disable = x86_pmu_disable_event,
3473 .hw_config = x86_pmu_hw_config,
3474 .schedule_events = x86_schedule_events,
3475 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3476 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3477 .event_map = intel_pmu_event_map,
3478 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3479 .apic = 1,
174afc3e 3480 .large_pebs_flags = LARGE_PEBS_FLAGS,
a7b58d21 3481
3b6e0421
JO
3482 /*
3483 * Intel PMCs cannot be accessed sanely above 32-bit width,
3484 * so we install an artificial 1<<31 period regardless of
3485 * the generic event period:
3486 */
3487 .max_period = (1ULL<<31) - 1,
3488 .get_event_constraints = intel_get_event_constraints,
3489 .put_event_constraints = intel_put_event_constraints,
3490 .event_constraints = intel_core_event_constraints,
3491 .guest_get_msrs = core_guest_get_msrs,
3492 .format_attrs = intel_arch_formats_attr,
3493 .events_sysfs_show = intel_event_sysfs_show,
3494
3495 /*
3496 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3497 * together with PMU version 1 and thus be using core_pmu with
3498 * shared_regs. We need following callbacks here to allocate
3499 * it properly.
3500 */
3501 .cpu_prepare = intel_pmu_cpu_prepare,
3502 .cpu_starting = intel_pmu_cpu_starting,
3503 .cpu_dying = intel_pmu_cpu_dying,
3504};
3505
4e949e9b
KL
3506static struct attribute *intel_pmu_attrs[];
3507
caaa8be3 3508static __initconst const struct x86_pmu intel_pmu = {
f22f54f4
PZ
3509 .name = "Intel",
3510 .handle_irq = intel_pmu_handle_irq,
3511 .disable_all = intel_pmu_disable_all,
3512 .enable_all = intel_pmu_enable_all,
3513 .enable = intel_pmu_enable_event,
3514 .disable = intel_pmu_disable_event,
68f7082f
PZ
3515 .add = intel_pmu_add_event,
3516 .del = intel_pmu_del_event,
ceb90d9e 3517 .read = intel_pmu_read_event,
b4cdc5c2 3518 .hw_config = intel_pmu_hw_config,
a072738e 3519 .schedule_events = x86_schedule_events,
f22f54f4
PZ
3520 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3521 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3522 .event_map = intel_pmu_event_map,
f22f54f4
PZ
3523 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3524 .apic = 1,
174afc3e 3525 .large_pebs_flags = LARGE_PEBS_FLAGS,
f22f54f4
PZ
3526 /*
3527 * Intel PMCs cannot be accessed sanely above 32 bit width,
3528 * so we install an artificial 1<<31 period regardless of
3529 * the generic event period:
3530 */
3531 .max_period = (1ULL << 31) - 1,
3f6da390 3532 .get_event_constraints = intel_get_event_constraints,
a7e3ed1e 3533 .put_event_constraints = intel_put_event_constraints,
0780c927 3534 .pebs_aliases = intel_pebs_aliases_core2,
3f6da390 3535
641cc938 3536 .format_attrs = intel_arch3_formats_attr,
0bf79d44 3537 .events_sysfs_show = intel_event_sysfs_show,
641cc938 3538
4e949e9b
KL
3539 .attrs = intel_pmu_attrs,
3540
a7e3ed1e 3541 .cpu_prepare = intel_pmu_cpu_prepare,
74846d35
PZ
3542 .cpu_starting = intel_pmu_cpu_starting,
3543 .cpu_dying = intel_pmu_cpu_dying,
144d31e6 3544 .guest_get_msrs = intel_guest_get_msrs,
9c964efa 3545 .sched_task = intel_pmu_sched_task,
f22f54f4
PZ
3546};
3547
c1d6f42f 3548static __init void intel_clovertown_quirk(void)
3c44780b
PZ
3549{
3550 /*
3551 * PEBS is unreliable due to:
3552 *
3553 * AJ67 - PEBS may experience CPL leaks
3554 * AJ68 - PEBS PMI may be delayed by one event
3555 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3556 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3557 *
3558 * AJ67 could be worked around by restricting the OS/USR flags.
3559 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3560 *
3561 * AJ106 could possibly be worked around by not allowing LBR
3562 * usage from PEBS, including the fixup.
3563 * AJ68 could possibly be worked around by always programming
ec75a716 3564 * a pebs_event_reset[0] value and coping with the lost events.
3c44780b
PZ
3565 *
3566 * But taken together it might just make sense to not enable PEBS on
3567 * these chips.
3568 */
c767a54b 3569 pr_warn("PEBS disabled due to CPU errata\n");
3c44780b
PZ
3570 x86_pmu.pebs = 0;
3571 x86_pmu.pebs_constraints = NULL;
3572}
3573
c93dc84c
PZ
3574static int intel_snb_pebs_broken(int cpu)
3575{
3576 u32 rev = UINT_MAX; /* default to broken for unknown models */
3577
3578 switch (cpu_data(cpu).x86_model) {
ef5f9f47 3579 case INTEL_FAM6_SANDYBRIDGE:
c93dc84c
PZ
3580 rev = 0x28;
3581 break;
3582
ef5f9f47 3583 case INTEL_FAM6_SANDYBRIDGE_X:
b399151c 3584 switch (cpu_data(cpu).x86_stepping) {
c93dc84c
PZ
3585 case 6: rev = 0x618; break;
3586 case 7: rev = 0x70c; break;
3587 }
3588 }
3589
3590 return (cpu_data(cpu).microcode < rev);
3591}
3592
3593static void intel_snb_check_microcode(void)
3594{
3595 int pebs_broken = 0;
3596 int cpu;
3597
c93dc84c
PZ
3598 for_each_online_cpu(cpu) {
3599 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3600 break;
3601 }
c93dc84c
PZ
3602
3603 if (pebs_broken == x86_pmu.pebs_broken)
3604 return;
3605
3606 /*
3607 * Serialized by the microcode lock..
3608 */
3609 if (x86_pmu.pebs_broken) {
3610 pr_info("PEBS enabled due to microcode update\n");
3611 x86_pmu.pebs_broken = 0;
3612 } else {
3613 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3614 x86_pmu.pebs_broken = 1;
3615 }
3616}
3617
19fc9ddd
DCC
3618static bool is_lbr_from(unsigned long msr)
3619{
3620 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3621
3622 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3623}
3624
338b522c
KL
3625/*
3626 * Under certain circumstances, access certain MSR may cause #GP.
3627 * The function tests if the input MSR can be safely accessed.
3628 */
3629static bool check_msr(unsigned long msr, u64 mask)
3630{
3631 u64 val_old, val_new, val_tmp;
3632
3633 /*
3634 * Read the current value, change it and read it back to see if it
3635 * matches, this is needed to detect certain hardware emulators
3636 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3637 */
3638 if (rdmsrl_safe(msr, &val_old))
3639 return false;
3640
3641 /*
3642 * Only change the bits which can be updated by wrmsrl.
3643 */
3644 val_tmp = val_old ^ mask;
19fc9ddd
DCC
3645
3646 if (is_lbr_from(msr))
3647 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3648
338b522c
KL
3649 if (wrmsrl_safe(msr, val_tmp) ||
3650 rdmsrl_safe(msr, &val_new))
3651 return false;
3652
19fc9ddd
DCC
3653 /*
3654 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3655 * should equal rdmsrl()'s even with the quirk.
3656 */
338b522c
KL
3657 if (val_new != val_tmp)
3658 return false;
3659
19fc9ddd
DCC
3660 if (is_lbr_from(msr))
3661 val_old = lbr_from_signext_quirk_wr(val_old);
3662
338b522c
KL
3663 /* Here it's sure that the MSR can be safely accessed.
3664 * Restore the old value and return.
3665 */
3666 wrmsrl(msr, val_old);
3667
3668 return true;
3669}
3670
c1d6f42f 3671static __init void intel_sandybridge_quirk(void)
6a600a8b 3672{
c93dc84c 3673 x86_pmu.check_microcode = intel_snb_check_microcode;
1ba143a5 3674 cpus_read_lock();
c93dc84c 3675 intel_snb_check_microcode();
1ba143a5 3676 cpus_read_unlock();
6a600a8b
PZ
3677}
3678
c1d6f42f
PZ
3679static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3680 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3681 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3682 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3683 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3684 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3685 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3686 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
ffb871bc
GN
3687};
3688
c1d6f42f
PZ
3689static __init void intel_arch_events_quirk(void)
3690{
3691 int bit;
3692
3693 /* disable event that reported as not presend by cpuid */
3694 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3695 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
c767a54b
JP
3696 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3697 intel_arch_events_map[bit].name);
c1d6f42f
PZ
3698 }
3699}
3700
3701static __init void intel_nehalem_quirk(void)
3702{
3703 union cpuid10_ebx ebx;
3704
3705 ebx.full = x86_pmu.events_maskl;
3706 if (ebx.split.no_branch_misses_retired) {
3707 /*
3708 * Erratum AAJ80 detected, we work it around by using
3709 * the BR_MISP_EXEC.ANY event. This will over-count
3710 * branch-misses, but it's still much better than the
3711 * architectural event which is often completely bogus:
3712 */
3713 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3714 ebx.split.no_branch_misses_retired = 0;
3715 x86_pmu.events_maskl = ebx.full;
c767a54b 3716 pr_info("CPU erratum AAJ80 worked around\n");
c1d6f42f
PZ
3717 }
3718}
3719
93fcf72c
MD
3720/*
3721 * enable software workaround for errata:
3722 * SNB: BJ122
3723 * IVB: BV98
3724 * HSW: HSD29
3725 *
3726 * Only needed when HT is enabled. However detecting
b37609c3
SE
3727 * if HT is enabled is difficult (model specific). So instead,
3728 * we enable the workaround in the early boot, and verify if
3729 * it is needed in a later initcall phase once we have valid
3730 * topology information to check if HT is actually enabled
93fcf72c
MD
3731 */
3732static __init void intel_ht_bug(void)
3733{
b37609c3 3734 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
93fcf72c 3735
93fcf72c 3736 x86_pmu.start_scheduling = intel_start_scheduling;
0c41e756 3737 x86_pmu.commit_scheduling = intel_commit_scheduling;
93fcf72c 3738 x86_pmu.stop_scheduling = intel_stop_scheduling;
93fcf72c
MD
3739}
3740
7f2ee91f
IM
3741EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3742EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
f9134f36 3743
4b2c4f1f 3744/* Haswell special events */
7f2ee91f
IM
3745EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3746EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3747EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3748EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3749EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3750EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3751EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3752EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3753EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3754EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3755EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3756EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4b2c4f1f 3757
f9134f36 3758static struct attribute *hsw_events_attrs[] = {
58ba4d5a
AK
3759 EVENT_PTR(mem_ld_hsw),
3760 EVENT_PTR(mem_st_hsw),
3761 EVENT_PTR(td_slots_issued),
3762 EVENT_PTR(td_slots_retired),
3763 EVENT_PTR(td_fetch_bubbles),
3764 EVENT_PTR(td_total_slots),
3765 EVENT_PTR(td_total_slots_scale),
3766 EVENT_PTR(td_recovery_bubbles),
3767 EVENT_PTR(td_recovery_bubbles_scale),
3768 NULL
3769};
3770
3771static struct attribute *hsw_tsx_events_attrs[] = {
4b2c4f1f
AK
3772 EVENT_PTR(tx_start),
3773 EVENT_PTR(tx_commit),
3774 EVENT_PTR(tx_abort),
3775 EVENT_PTR(tx_capacity),
3776 EVENT_PTR(tx_conflict),
3777 EVENT_PTR(el_start),
3778 EVENT_PTR(el_commit),
3779 EVENT_PTR(el_abort),
3780 EVENT_PTR(el_capacity),
3781 EVENT_PTR(el_conflict),
3782 EVENT_PTR(cycles_t),
3783 EVENT_PTR(cycles_ct),
f9134f36
AK
3784 NULL
3785};
3786
58ba4d5a
AK
3787static __init struct attribute **get_hsw_events_attrs(void)
3788{
3789 return boot_cpu_has(X86_FEATURE_RTM) ?
3790 merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) :
3791 hsw_events_attrs;
3792}
3793
6089327f
KL
3794static ssize_t freeze_on_smi_show(struct device *cdev,
3795 struct device_attribute *attr,
3796 char *buf)
3797{
3798 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3799}
3800
3801static DEFINE_MUTEX(freeze_on_smi_mutex);
3802
3803static ssize_t freeze_on_smi_store(struct device *cdev,
3804 struct device_attribute *attr,
3805 const char *buf, size_t count)
3806{
3807 unsigned long val;
3808 ssize_t ret;
3809
3810 ret = kstrtoul(buf, 0, &val);
3811 if (ret)
3812 return ret;
3813
3814 if (val > 1)
3815 return -EINVAL;
3816
3817 mutex_lock(&freeze_on_smi_mutex);
3818
3819 if (x86_pmu.attr_freeze_on_smi == val)
3820 goto done;
3821
3822 x86_pmu.attr_freeze_on_smi = val;
3823
3824 get_online_cpus();
3825 on_each_cpu(flip_smm_bit, &val, 1);
3826 put_online_cpus();
3827done:
3828 mutex_unlock(&freeze_on_smi_mutex);
3829
3830 return count;
3831}
3832
3833static DEVICE_ATTR_RW(freeze_on_smi);
3834
b00233b5
AK
3835static ssize_t branches_show(struct device *cdev,
3836 struct device_attribute *attr,
3837 char *buf)
3838{
3839 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3840}
3841
3842static DEVICE_ATTR_RO(branches);
3843
3844static struct attribute *lbr_attrs[] = {
3845 &dev_attr_branches.attr,
3846 NULL
3847};
3848
3849static char pmu_name_str[30];
3850
3851static ssize_t pmu_name_show(struct device *cdev,
3852 struct device_attribute *attr,
3853 char *buf)
3854{
3855 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
3856}
3857
3858static DEVICE_ATTR_RO(pmu_name);
3859
b00233b5 3860static struct attribute *intel_pmu_caps_attrs[] = {
5da382eb
PZ
3861 &dev_attr_pmu_name.attr,
3862 NULL
b00233b5
AK
3863};
3864
6089327f
KL
3865static struct attribute *intel_pmu_attrs[] = {
3866 &dev_attr_freeze_on_smi.attr,
3867 NULL,
3868};
3869
de0428a7 3870__init int intel_pmu_init(void)
f22f54f4 3871{
7ad1437d
TG
3872 struct attribute **extra_attr = NULL;
3873 struct attribute **to_free = NULL;
f22f54f4
PZ
3874 union cpuid10_edx edx;
3875 union cpuid10_eax eax;
ffb871bc 3876 union cpuid10_ebx ebx;
a1eac7ac 3877 struct event_constraint *c;
f22f54f4 3878 unsigned int unused;
338b522c
KL
3879 struct extra_reg *er;
3880 int version, i;
b00233b5 3881 char *name;
f22f54f4
PZ
3882
3883 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
a072738e
CG
3884 switch (boot_cpu_data.x86) {
3885 case 0x6:
3886 return p6_pmu_init();
e717bf4e
VW
3887 case 0xb:
3888 return knc_pmu_init();
a072738e
CG
3889 case 0xf:
3890 return p4_pmu_init();
3891 }
f22f54f4 3892 return -ENODEV;
f22f54f4
PZ
3893 }
3894
3895 /*
3896 * Check whether the Architectural PerfMon supports
3897 * Branch Misses Retired hw_event or not.
3898 */
ffb871bc
GN
3899 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3900 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
f22f54f4
PZ
3901 return -ENODEV;
3902
3903 version = eax.split.version_id;
3904 if (version < 2)
3905 x86_pmu = core_pmu;
3906 else
3907 x86_pmu = intel_pmu;
3908
3909 x86_pmu.version = version;
948b1bb8
RR
3910 x86_pmu.num_counters = eax.split.num_counters;
3911 x86_pmu.cntval_bits = eax.split.bit_width;
3912 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
f22f54f4 3913
c1d6f42f
PZ
3914 x86_pmu.events_maskl = ebx.full;
3915 x86_pmu.events_mask_len = eax.split.mask_length;
3916
70ab7003
AK
3917 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3918
f22f54f4
PZ
3919 /*
3920 * Quirk: v2 perfmon does not report fixed-purpose events, so
f92b7604 3921 * assume at least 3 events, when not running in a hypervisor:
f22f54f4 3922 */
f92b7604
IP
3923 if (version > 1) {
3924 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3925
3926 x86_pmu.num_counters_fixed =
3927 max((int)edx.split.num_counters_fixed, assume);
3928 }
f22f54f4 3929
c9b08884 3930 if (boot_cpu_has(X86_FEATURE_PDCM)) {
8db909a7
PZ
3931 u64 capabilities;
3932
3933 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3934 x86_pmu.intel_cap.capabilities = capabilities;
3935 }
3936
ca037701
PZ
3937 intel_ds_init();
3938
c1d6f42f
PZ
3939 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3940
f22f54f4
PZ
3941 /*
3942 * Install the hw-cache-events table:
3943 */
3944 switch (boot_cpu_data.x86_model) {
ef5f9f47 3945 case INTEL_FAM6_CORE_YONAH:
f22f54f4 3946 pr_cont("Core events, ");
b00233b5 3947 name = "core";
f22f54f4
PZ
3948 break;
3949
ef5f9f47 3950 case INTEL_FAM6_CORE2_MEROM:
c1d6f42f 3951 x86_add_quirk(intel_clovertown_quirk);
ef5f9f47
DH
3952 case INTEL_FAM6_CORE2_MEROM_L:
3953 case INTEL_FAM6_CORE2_PENRYN:
3954 case INTEL_FAM6_CORE2_DUNNINGTON:
f22f54f4
PZ
3955 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3956 sizeof(hw_cache_event_ids));
3957
caff2bef
PZ
3958 intel_pmu_lbr_init_core();
3959
f22f54f4 3960 x86_pmu.event_constraints = intel_core2_event_constraints;
17e31629 3961 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
f22f54f4 3962 pr_cont("Core2 events, ");
b00233b5 3963 name = "core2";
f22f54f4
PZ
3964 break;
3965
ef5f9f47
DH
3966 case INTEL_FAM6_NEHALEM:
3967 case INTEL_FAM6_NEHALEM_EP:
3968 case INTEL_FAM6_NEHALEM_EX:
f22f54f4
PZ
3969 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3970 sizeof(hw_cache_event_ids));
e994d7d2
AK
3971 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3972 sizeof(hw_cache_extra_regs));
f22f54f4 3973
caff2bef
PZ
3974 intel_pmu_lbr_init_nhm();
3975
f22f54f4 3976 x86_pmu.event_constraints = intel_nehalem_event_constraints;
17e31629 3977 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
11164cd4 3978 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
a7e3ed1e 3979 x86_pmu.extra_regs = intel_nehalem_extra_regs;
ec75a716 3980
f20093ee
SE
3981 x86_pmu.cpu_events = nhm_events_attrs;
3982
91fc4cc0 3983 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
3984 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3985 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
91fc4cc0 3986 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
3987 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3988 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
94403f88 3989
e17dc653 3990 intel_pmu_pebs_data_source_nhm();
c1d6f42f 3991 x86_add_quirk(intel_nehalem_quirk);
95298355 3992 x86_pmu.pebs_no_tlb = 1;
a5df70c3 3993 extra_attr = nhm_format_attr;
ec75a716 3994
11164cd4 3995 pr_cont("Nehalem events, ");
b00233b5 3996 name = "nehalem";
f22f54f4 3997 break;
caff2bef 3998
ef5f9f47
DH
3999 case INTEL_FAM6_ATOM_PINEVIEW:
4000 case INTEL_FAM6_ATOM_LINCROFT:
4001 case INTEL_FAM6_ATOM_PENWELL:
4002 case INTEL_FAM6_ATOM_CLOVERVIEW:
4003 case INTEL_FAM6_ATOM_CEDARVIEW:
f22f54f4
PZ
4004 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4005 sizeof(hw_cache_event_ids));
4006
caff2bef
PZ
4007 intel_pmu_lbr_init_atom();
4008
f22f54f4 4009 x86_pmu.event_constraints = intel_gen_event_constraints;
17e31629 4010 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
673d188b 4011 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
f22f54f4 4012 pr_cont("Atom events, ");
b00233b5 4013 name = "bonnell";
f22f54f4
PZ
4014 break;
4015
ef5f9f47
DH
4016 case INTEL_FAM6_ATOM_SILVERMONT1:
4017 case INTEL_FAM6_ATOM_SILVERMONT2:
4018 case INTEL_FAM6_ATOM_AIRMONT:
1fa64180
YZ
4019 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4020 sizeof(hw_cache_event_ids));
4021 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4022 sizeof(hw_cache_extra_regs));
4023
f21d5adc 4024 intel_pmu_lbr_init_slm();
1fa64180
YZ
4025
4026 x86_pmu.event_constraints = intel_slm_event_constraints;
4027 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4028 x86_pmu.extra_regs = intel_slm_extra_regs;
9a5e3fb5 4029 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
eb12b8ec 4030 x86_pmu.cpu_events = slm_events_attrs;
a5df70c3 4031 extra_attr = slm_format_attr;
1fa64180 4032 pr_cont("Silvermont events, ");
b00233b5 4033 name = "silvermont";
1fa64180
YZ
4034 break;
4035
ef5f9f47
DH
4036 case INTEL_FAM6_ATOM_GOLDMONT:
4037 case INTEL_FAM6_ATOM_DENVERTON:
8b92c3a7
KL
4038 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4039 sizeof(hw_cache_event_ids));
4040 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4041 sizeof(hw_cache_extra_regs));
4042
4043 intel_pmu_lbr_init_skl();
4044
4045 x86_pmu.event_constraints = intel_slm_event_constraints;
4046 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4047 x86_pmu.extra_regs = intel_glm_extra_regs;
4048 /*
4049 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4050 * for precise cycles.
4051 * :pp is identical to :ppp
4052 */
4053 x86_pmu.pebs_aliases = NULL;
4054 x86_pmu.pebs_prec_dist = true;
ccbebba4 4055 x86_pmu.lbr_pt_coexist = true;
8b92c3a7 4056 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
ed827adb 4057 x86_pmu.cpu_events = glm_events_attrs;
a5df70c3 4058 extra_attr = slm_format_attr;
8b92c3a7 4059 pr_cont("Goldmont events, ");
b00233b5 4060 name = "goldmont";
8b92c3a7
KL
4061 break;
4062
dd0b06b5
KL
4063 case INTEL_FAM6_ATOM_GEMINI_LAKE:
4064 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4065 sizeof(hw_cache_event_ids));
4066 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4067 sizeof(hw_cache_extra_regs));
4068
4069 intel_pmu_lbr_init_skl();
4070
4071 x86_pmu.event_constraints = intel_slm_event_constraints;
4072 x86_pmu.pebs_constraints = intel_glp_pebs_event_constraints;
4073 x86_pmu.extra_regs = intel_glm_extra_regs;
4074 /*
4075 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4076 * for precise cycles.
4077 */
4078 x86_pmu.pebs_aliases = NULL;
4079 x86_pmu.pebs_prec_dist = true;
4080 x86_pmu.lbr_pt_coexist = true;
4081 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4082 x86_pmu.get_event_constraints = glp_get_event_constraints;
4083 x86_pmu.cpu_events = glm_events_attrs;
4084 /* Goldmont Plus has 4-wide pipeline */
4085 event_attr_td_total_slots_scale_glm.event_str = "4";
a5df70c3 4086 extra_attr = slm_format_attr;
dd0b06b5 4087 pr_cont("Goldmont plus events, ");
b00233b5 4088 name = "goldmont_plus";
dd0b06b5
KL
4089 break;
4090
ef5f9f47
DH
4091 case INTEL_FAM6_WESTMERE:
4092 case INTEL_FAM6_WESTMERE_EP:
4093 case INTEL_FAM6_WESTMERE_EX:
f22f54f4
PZ
4094 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4095 sizeof(hw_cache_event_ids));
e994d7d2
AK
4096 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4097 sizeof(hw_cache_extra_regs));
f22f54f4 4098
caff2bef
PZ
4099 intel_pmu_lbr_init_nhm();
4100
f22f54f4 4101 x86_pmu.event_constraints = intel_westmere_event_constraints;
40b91cd1 4102 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
17e31629 4103 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
a7e3ed1e 4104 x86_pmu.extra_regs = intel_westmere_extra_regs;
9a5e3fb5 4105 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
30112039 4106
f20093ee
SE
4107 x86_pmu.cpu_events = nhm_events_attrs;
4108
30112039 4109 /* UOPS_ISSUED.STALLED_CYCLES */
f9b4eeb8
PZ
4110 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4111 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
30112039 4112 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
f9b4eeb8
PZ
4113 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4114 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
30112039 4115
e17dc653 4116 intel_pmu_pebs_data_source_nhm();
a5df70c3 4117 extra_attr = nhm_format_attr;
f22f54f4 4118 pr_cont("Westmere events, ");
b00233b5 4119 name = "westmere";
f22f54f4 4120 break;
b622d644 4121
ef5f9f47
DH
4122 case INTEL_FAM6_SANDYBRIDGE:
4123 case INTEL_FAM6_SANDYBRIDGE_X:
47a8863d 4124 x86_add_quirk(intel_sandybridge_quirk);
93fcf72c 4125 x86_add_quirk(intel_ht_bug);
b06b3d49
LM
4126 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4127 sizeof(hw_cache_event_ids));
74e6543f
YZ
4128 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4129 sizeof(hw_cache_extra_regs));
b06b3d49 4130
c5cc2cd9 4131 intel_pmu_lbr_init_snb();
b06b3d49
LM
4132
4133 x86_pmu.event_constraints = intel_snb_event_constraints;
de0428a7 4134 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
0780c927 4135 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
ef5f9f47 4136 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
f1923820
SE
4137 x86_pmu.extra_regs = intel_snbep_extra_regs;
4138 else
4139 x86_pmu.extra_regs = intel_snb_extra_regs;
93fcf72c
MD
4140
4141
ee89cbc2 4142 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
4143 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4144 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
e04d1b23 4145
f20093ee
SE
4146 x86_pmu.cpu_events = snb_events_attrs;
4147
e04d1b23 4148 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
f9b4eeb8
PZ
4149 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4150 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 4151 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
f9b4eeb8
PZ
4152 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4153 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
e04d1b23 4154
a5df70c3
AK
4155 extra_attr = nhm_format_attr;
4156
b06b3d49 4157 pr_cont("SandyBridge events, ");
b00233b5 4158 name = "sandybridge";
b06b3d49 4159 break;
0f7c29ce 4160
ef5f9f47
DH
4161 case INTEL_FAM6_IVYBRIDGE:
4162 case INTEL_FAM6_IVYBRIDGE_X:
93fcf72c 4163 x86_add_quirk(intel_ht_bug);
20a36e39
SE
4164 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4165 sizeof(hw_cache_event_ids));
1996388e
VW
4166 /* dTLB-load-misses on IVB is different than SNB */
4167 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4168
20a36e39
SE
4169 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4170 sizeof(hw_cache_extra_regs));
4171
4172 intel_pmu_lbr_init_snb();
4173
69943182 4174 x86_pmu.event_constraints = intel_ivb_event_constraints;
20a36e39 4175 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
72469764
AK
4176 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4177 x86_pmu.pebs_prec_dist = true;
ef5f9f47 4178 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
f1923820
SE
4179 x86_pmu.extra_regs = intel_snbep_extra_regs;
4180 else
4181 x86_pmu.extra_regs = intel_snb_extra_regs;
20a36e39 4182 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
4183 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4184 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
20a36e39 4185
f20093ee
SE
4186 x86_pmu.cpu_events = snb_events_attrs;
4187
20a36e39
SE
4188 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4189 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4190 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4191
a5df70c3
AK
4192 extra_attr = nhm_format_attr;
4193
20a36e39 4194 pr_cont("IvyBridge events, ");
b00233b5 4195 name = "ivybridge";
20a36e39
SE
4196 break;
4197
b06b3d49 4198
ef5f9f47
DH
4199 case INTEL_FAM6_HASWELL_CORE:
4200 case INTEL_FAM6_HASWELL_X:
4201 case INTEL_FAM6_HASWELL_ULT:
4202 case INTEL_FAM6_HASWELL_GT3E:
93fcf72c 4203 x86_add_quirk(intel_ht_bug);
72db5596 4204 x86_pmu.late_ack = true;
0f1b5ca2
AK
4205 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4206 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3a632cb2 4207
e9d7f7cd 4208 intel_pmu_lbr_init_hsw();
3a632cb2
AK
4209
4210 x86_pmu.event_constraints = intel_hsw_event_constraints;
3044318f 4211 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
36bbb2f2 4212 x86_pmu.extra_regs = intel_snbep_extra_regs;
72469764
AK
4213 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4214 x86_pmu.pebs_prec_dist = true;
3a632cb2 4215 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
4216 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4217 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3a632cb2
AK
4218
4219 x86_pmu.hw_config = hsw_hw_config;
4220 x86_pmu.get_event_constraints = hsw_get_event_constraints;
58ba4d5a 4221 x86_pmu.cpu_events = get_hsw_events_attrs();
b7af41a1 4222 x86_pmu.lbr_double_abort = true;
a5df70c3
AK
4223 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4224 hsw_format_attr : nhm_format_attr;
3a632cb2 4225 pr_cont("Haswell events, ");
b00233b5 4226 name = "haswell";
3a632cb2
AK
4227 break;
4228
ef5f9f47
DH
4229 case INTEL_FAM6_BROADWELL_CORE:
4230 case INTEL_FAM6_BROADWELL_XEON_D:
4231 case INTEL_FAM6_BROADWELL_GT3E:
4232 case INTEL_FAM6_BROADWELL_X:
91f1b705
AK
4233 x86_pmu.late_ack = true;
4234 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4235 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4236
4237 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4238 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4239 BDW_L3_MISS|HSW_SNOOP_DRAM;
4240 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4241 HSW_SNOOP_DRAM;
4242 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4243 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4244 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4245 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4246
78d504bc 4247 intel_pmu_lbr_init_hsw();
91f1b705
AK
4248
4249 x86_pmu.event_constraints = intel_bdw_event_constraints;
b3e62463 4250 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
91f1b705 4251 x86_pmu.extra_regs = intel_snbep_extra_regs;
72469764
AK
4252 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4253 x86_pmu.pebs_prec_dist = true;
91f1b705 4254 /* all extra regs are per-cpu when HT is on */
9a5e3fb5
SE
4255 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4256 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
91f1b705
AK
4257
4258 x86_pmu.hw_config = hsw_hw_config;
4259 x86_pmu.get_event_constraints = hsw_get_event_constraints;
58ba4d5a 4260 x86_pmu.cpu_events = get_hsw_events_attrs();
294fe0f5 4261 x86_pmu.limit_period = bdw_limit_period;
a5df70c3
AK
4262 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4263 hsw_format_attr : nhm_format_attr;
91f1b705 4264 pr_cont("Broadwell events, ");
b00233b5 4265 name = "broadwell";
91f1b705
AK
4266 break;
4267
ef5f9f47 4268 case INTEL_FAM6_XEON_PHI_KNL:
608284bf 4269 case INTEL_FAM6_XEON_PHI_KNM:
1e7b9390
HC
4270 memcpy(hw_cache_event_ids,
4271 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4272 memcpy(hw_cache_extra_regs,
4273 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4274 intel_pmu_lbr_init_knl();
4275
4276 x86_pmu.event_constraints = intel_slm_event_constraints;
4277 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4278 x86_pmu.extra_regs = intel_knl_extra_regs;
4279
4280 /* all extra regs are per-cpu when HT is on */
4281 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4282 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
a5df70c3 4283 extra_attr = slm_format_attr;
608284bf 4284 pr_cont("Knights Landing/Mill events, ");
b00233b5 4285 name = "knights-landing";
1e7b9390
HC
4286 break;
4287
ef5f9f47
DH
4288 case INTEL_FAM6_SKYLAKE_MOBILE:
4289 case INTEL_FAM6_SKYLAKE_DESKTOP:
4290 case INTEL_FAM6_SKYLAKE_X:
4291 case INTEL_FAM6_KABYLAKE_MOBILE:
4292 case INTEL_FAM6_KABYLAKE_DESKTOP:
9a92e16f
AK
4293 x86_pmu.late_ack = true;
4294 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4295 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4296 intel_pmu_lbr_init_skl();
4297
a39fcae7
AK
4298 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4299 event_attr_td_recovery_bubbles.event_str_noht =
4300 "event=0xd,umask=0x1,cmask=1";
4301 event_attr_td_recovery_bubbles.event_str_ht =
4302 "event=0xd,umask=0x1,cmask=1,any=1";
4303
9a92e16f
AK
4304 x86_pmu.event_constraints = intel_skl_event_constraints;
4305 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4306 x86_pmu.extra_regs = intel_skl_extra_regs;
72469764
AK
4307 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4308 x86_pmu.pebs_prec_dist = true;
9a92e16f
AK
4309 /* all extra regs are per-cpu when HT is on */
4310 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4311 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4312
4313 x86_pmu.hw_config = hsw_hw_config;
4314 x86_pmu.get_event_constraints = hsw_get_event_constraints;
a5df70c3
AK
4315 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4316 hsw_format_attr : nhm_format_attr;
4317 extra_attr = merge_attr(extra_attr, skl_format_attr);
7ad1437d 4318 to_free = extra_attr;
58ba4d5a 4319 x86_pmu.cpu_events = get_hsw_events_attrs();
6ae5fa61
AK
4320 intel_pmu_pebs_data_source_skl(
4321 boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
9a92e16f 4322 pr_cont("Skylake events, ");
b00233b5 4323 name = "skylake";
9a92e16f
AK
4324 break;
4325
f22f54f4 4326 default:
0af3ac1f
AK
4327 switch (x86_pmu.version) {
4328 case 1:
4329 x86_pmu.event_constraints = intel_v1_event_constraints;
4330 pr_cont("generic architected perfmon v1, ");
b00233b5 4331 name = "generic_arch_v1";
0af3ac1f
AK
4332 break;
4333 default:
4334 /*
4335 * default constraints for v2 and up
4336 */
4337 x86_pmu.event_constraints = intel_gen_event_constraints;
4338 pr_cont("generic architected perfmon, ");
b00233b5 4339 name = "generic_arch_v2+";
0af3ac1f
AK
4340 break;
4341 }
f22f54f4 4342 }
ffb871bc 4343
b00233b5
AK
4344 snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name);
4345
a5df70c3
AK
4346 if (version >= 2 && extra_attr) {
4347 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4348 extra_attr);
4349 WARN_ON(!x86_pmu.format_attrs);
4350 }
4351
a1eac7ac
RR
4352 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4353 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4354 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4355 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4356 }
ad5013d5 4357 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
a1eac7ac
RR
4358
4359 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4360 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4361 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4362 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4363 }
4364
4365 x86_pmu.intel_ctrl |=
4366 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4367
4368 if (x86_pmu.event_constraints) {
4369 /*
4370 * event on fixed counter2 (REF_CYCLES) only works on this
4371 * counter, so do not extend mask to generic counters
4372 */
4373 for_each_event_constraint(c, x86_pmu.event_constraints) {
2c33645d
PI
4374 if (c->cmask == FIXED_EVENT_FLAGS
4375 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4376 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
a1eac7ac 4377 }
2c33645d 4378 c->idxmsk64 &=
6d6f2833 4379 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
2c33645d 4380 c->weight = hweight64(c->idxmsk64);
a1eac7ac
RR
4381 }
4382 }
4383
338b522c
KL
4384 /*
4385 * Access LBR MSR may cause #GP under certain circumstances.
4386 * E.g. KVM doesn't support LBR MSR
4387 * Check all LBT MSR here.
4388 * Disable LBR access if any LBR MSRs can not be accessed.
4389 */
4390 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4391 x86_pmu.lbr_nr = 0;
4392 for (i = 0; i < x86_pmu.lbr_nr; i++) {
4393 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4394 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4395 x86_pmu.lbr_nr = 0;
4396 }
4397
b00233b5
AK
4398 x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4399
4400 if (x86_pmu.lbr_nr) {
4401 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
f09509b9 4402 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
b00233b5
AK
4403 }
4404
338b522c
KL
4405 /*
4406 * Access extra MSR may cause #GP under certain circumstances.
4407 * E.g. KVM doesn't support offcore event
4408 * Check all extra_regs here.
4409 */
4410 if (x86_pmu.extra_regs) {
4411 for (er = x86_pmu.extra_regs; er->msr; er++) {
8c4fe709 4412 er->extra_msr_access = check_msr(er->msr, 0x11UL);
338b522c
KL
4413 /* Disable LBR select mapping */
4414 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4415 x86_pmu.lbr_sel_map = NULL;
4416 }
4417 }
4418
069e0c3c
AK
4419 /* Support full width counters using alternative MSR range */
4420 if (x86_pmu.intel_cap.full_width_write) {
7f612a7f 4421 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
069e0c3c
AK
4422 x86_pmu.perfctr = MSR_IA32_PMC0;
4423 pr_cont("full-width counters, ");
4424 }
4425
7ad1437d 4426 kfree(to_free);
f22f54f4
PZ
4427 return 0;
4428}
b37609c3
SE
4429
4430/*
4431 * HT bug: phase 2 init
4432 * Called once we have valid topology information to check
4433 * whether or not HT is enabled
4434 * If HT is off, then we disable the workaround
4435 */
4436static __init int fixup_ht_bug(void)
4437{
030ba6cd 4438 int c;
b37609c3
SE
4439 /*
4440 * problem not present on this CPU model, nothing to do
4441 */
4442 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4443 return 0;
4444
030ba6cd 4445 if (topology_max_smt_threads() > 1) {
b37609c3
SE
4446 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4447 return 0;
4448 }
4449
2406e3b1
PZ
4450 cpus_read_lock();
4451
4452 hardlockup_detector_perf_stop();
b37609c3
SE
4453
4454 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4455
b37609c3 4456 x86_pmu.start_scheduling = NULL;
0c41e756 4457 x86_pmu.commit_scheduling = NULL;
b37609c3
SE
4458 x86_pmu.stop_scheduling = NULL;
4459
2406e3b1 4460 hardlockup_detector_perf_restart();
b37609c3 4461
1ba143a5 4462 for_each_online_cpu(c)
b37609c3 4463 free_excl_cntrs(c);
b37609c3 4464
1ba143a5 4465 cpus_read_unlock();
b37609c3
SE
4466 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4467 return 0;
4468}
4469subsys_initcall(fixup_ht_bug)