perf/core: Rework guest callbacks to prepare for static_call support
[linux-block.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
eb008eb6
PG
20#include <linux/export.h>
21#include <linux/init.h>
241771ef 22#include <linux/kdebug.h>
589ee628 23#include <linux/sched/mm.h>
e6017571 24#include <linux/sched/clock.h>
d7d59fb3 25#include <linux/uaccess.h>
5a0e3ad6 26#include <linux/slab.h>
30dd568c 27#include <linux/cpu.h>
272d30be 28#include <linux/bitops.h>
0c9d42ed 29#include <linux/device.h>
46b1b577 30#include <linux/nospec.h>
7c9903c9 31#include <linux/static_call.h>
241771ef 32
241771ef 33#include <asm/apic.h>
d7d59fb3 34#include <asm/stacktrace.h>
4e935e47 35#include <asm/nmi.h>
69092624 36#include <asm/smp.h>
c8e5910e 37#include <asm/alternative.h>
7911d3f7 38#include <asm/mmu_context.h>
375074cc 39#include <asm/tlbflush.h>
e3f3541c 40#include <asm/timer.h>
d07bdfd3
PZ
41#include <asm/desc.h>
42#include <asm/ldt.h>
35f4d9b3 43#include <asm/unwind.h>
241771ef 44
27f6d22b 45#include "perf_event.h"
de0428a7 46
de0428a7 47struct x86_pmu x86_pmu __read_mostly;
61e76d53 48static struct pmu pmu;
efc9f05d 49
de0428a7 50DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e 51 .enabled = 1,
61e76d53 52 .pmu = &pmu,
b0f3f28e 53};
241771ef 54
405b4537 55DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
631fe154 56DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
d0946a88 57DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
a6673429 58
7c9903c9
PZ
59/*
60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61 * from just a typename, as opposed to an actual function.
62 */
63DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
64DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
66DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
67DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
68
8b8ff8cc
AH
69DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
7c9903c9
PZ
71DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
72DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
73DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
76DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
77DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
78
79DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
80DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
81DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
82
83DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
84DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
85
86DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
87DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
88
c8e2fe13
SC
89/*
90 * This one is magic, it will get called even when PMU init fails (because
91 * there is no PMU), in which case it should simply return NULL.
92 */
93DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
abd562df 94
de0428a7 95u64 __read_mostly hw_cache_event_ids
8326f44d
IM
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 99u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
100 [PERF_COUNT_HW_CACHE_MAX]
101 [PERF_COUNT_HW_CACHE_OP_MAX]
102 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 103
ee06094f 104/*
cdd6c482
IM
105 * Propagate event elapsed time into the generic event.
106 * Can only be executed on the CPU where the event is active.
ee06094f
IM
107 * Returns the delta events processed.
108 */
de0428a7 109u64 x86_perf_event_update(struct perf_event *event)
ee06094f 110{
cc2ad4ba 111 struct hw_perf_event *hwc = &event->hw;
948b1bb8 112 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 113 u64 prev_raw_count, new_raw_count;
7f612a7f 114 u64 delta;
ee06094f 115
027440b5 116 if (unlikely(!hwc->event_base))
30dd568c
MM
117 return 0;
118
7b2c05a1
KL
119 if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
120 return x86_pmu.update_topdown_event(event);
121
ee06094f 122 /*
cdd6c482 123 * Careful: an NMI might modify the previous event value.
ee06094f
IM
124 *
125 * Our tactic to handle this is to first atomically read and
126 * exchange a new raw count - then add that new-prev delta
cdd6c482 127 * count to the generic event atomically:
ee06094f
IM
128 */
129again:
e7850595 130 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 131 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 132
e7850595 133 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
134 new_raw_count) != prev_raw_count)
135 goto again;
136
137 /*
138 * Now we have the new raw value and have updated the prev
139 * timestamp already. We can now calculate the elapsed delta
cdd6c482 140 * (event-)time and add that to the generic event.
ee06094f
IM
141 *
142 * Careful, not all hw sign-extends above the physical width
ec3232bd 143 * of the count.
ee06094f 144 */
ec3232bd
PZ
145 delta = (new_raw_count << shift) - (prev_raw_count << shift);
146 delta >>= shift;
ee06094f 147
e7850595
PZ
148 local64_add(delta, &event->count);
149 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
150
151 return new_raw_count;
ee06094f
IM
152}
153
a7e3ed1e
AK
154/*
155 * Find and validate any extra registers to set up.
156 */
157static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
158{
183af736 159 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
efc9f05d 160 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
161 struct extra_reg *er;
162
efc9f05d 163 reg = &event->hw.extra_reg;
a7e3ed1e 164
183af736 165 if (!extra_regs)
a7e3ed1e
AK
166 return 0;
167
183af736 168 for (er = extra_regs; er->msr; er++) {
a7e3ed1e
AK
169 if (er->event != (config & er->config_mask))
170 continue;
171 if (event->attr.config1 & ~er->valid_mask)
172 return -EINVAL;
338b522c
KL
173 /* Check if the extra msrs can be safely accessed*/
174 if (!er->extra_msr_access)
175 return -ENXIO;
efc9f05d
SE
176
177 reg->idx = er->idx;
178 reg->config = event->attr.config1;
179 reg->reg = er->msr;
a7e3ed1e
AK
180 break;
181 }
182 return 0;
183}
184
cdd6c482 185static atomic_t active_events;
1b7b938f 186static atomic_t pmc_refcount;
4e935e47
PZ
187static DEFINE_MUTEX(pmc_reserve_mutex);
188
b27ea29c
RR
189#ifdef CONFIG_X86_LOCAL_APIC
190
d4b294bf
KL
191static inline int get_possible_num_counters(void)
192{
193 int i, num_counters = x86_pmu.num_counters;
194
195 if (!is_hybrid())
196 return num_counters;
197
198 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
199 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
200
201 return num_counters;
202}
203
4e935e47
PZ
204static bool reserve_pmc_hardware(void)
205{
d4b294bf 206 int i, num_counters = get_possible_num_counters();
4e935e47 207
d4b294bf 208 for (i = 0; i < num_counters; i++) {
41bf4989 209 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
210 goto perfctr_fail;
211 }
212
d4b294bf 213 for (i = 0; i < num_counters; i++) {
41bf4989 214 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
215 goto eventsel_fail;
216 }
217
218 return true;
219
220eventsel_fail:
221 for (i--; i >= 0; i--)
41bf4989 222 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 223
d4b294bf 224 i = num_counters;
4e935e47
PZ
225
226perfctr_fail:
227 for (i--; i >= 0; i--)
41bf4989 228 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 229
4e935e47
PZ
230 return false;
231}
232
233static void release_pmc_hardware(void)
234{
d4b294bf 235 int i, num_counters = get_possible_num_counters();
4e935e47 236
d4b294bf 237 for (i = 0; i < num_counters; i++) {
41bf4989
RR
238 release_perfctr_nmi(x86_pmu_event_addr(i));
239 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 240 }
4e935e47
PZ
241}
242
b27ea29c
RR
243#else
244
245static bool reserve_pmc_hardware(void) { return true; }
246static void release_pmc_hardware(void) {}
247
248#endif
249
fc4b8fca 250bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
33c6d6a7 251{
11d8b058
AB
252 u64 val, val_fail = -1, val_new= ~0;
253 int i, reg, reg_fail = -1, ret = 0;
a5ebe0ba 254 int bios_fail = 0;
68ab7476 255 int reg_safe = -1;
33c6d6a7 256
4407204c
PZ
257 /*
258 * Check to see if the BIOS enabled any of the counters, if so
259 * complain and bail.
260 */
fc4b8fca 261 for (i = 0; i < num_counters; i++) {
41bf4989 262 reg = x86_pmu_config_addr(i);
4407204c
PZ
263 ret = rdmsrl_safe(reg, &val);
264 if (ret)
265 goto msr_fail;
a5ebe0ba
GD
266 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
267 bios_fail = 1;
268 val_fail = val;
269 reg_fail = reg;
68ab7476
DZ
270 } else {
271 reg_safe = i;
a5ebe0ba 272 }
4407204c
PZ
273 }
274
fc4b8fca 275 if (num_counters_fixed) {
4407204c
PZ
276 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
277 ret = rdmsrl_safe(reg, &val);
278 if (ret)
279 goto msr_fail;
fc4b8fca
KL
280 for (i = 0; i < num_counters_fixed; i++) {
281 if (fixed_counter_disabled(i, pmu))
32451614 282 continue;
32d35c4a 283 if (val & (0x03ULL << i*4)) {
a5ebe0ba
GD
284 bios_fail = 1;
285 val_fail = val;
286 reg_fail = reg;
287 }
4407204c
PZ
288 }
289 }
290
68ab7476
DZ
291 /*
292 * If all the counters are enabled, the below test will always
293 * fail. The tools will also become useless in this scenario.
294 * Just fail and disable the hardware counters.
295 */
296
297 if (reg_safe == -1) {
298 reg = reg_safe;
299 goto msr_fail;
300 }
301
4407204c 302 /*
bffd5fc2
AP
303 * Read the current value, change it and read it back to see if it
304 * matches, this is needed to detect certain hardware emulators
305 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 306 */
68ab7476 307 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
308 if (rdmsrl_safe(reg, &val))
309 goto msr_fail;
310 val ^= 0xffffUL;
f285f92f
RR
311 ret = wrmsrl_safe(reg, val);
312 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 313 if (ret || val != val_new)
4407204c 314 goto msr_fail;
33c6d6a7 315
45daae57
IM
316 /*
317 * We still allow the PMU driver to operate:
318 */
a5ebe0ba 319 if (bios_fail) {
1b74dde7
CY
320 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
321 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
322 reg_fail, val_fail);
a5ebe0ba 323 }
45daae57
IM
324
325 return true;
4407204c
PZ
326
327msr_fail:
005bd007
JG
328 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
329 pr_cont("PMU not available due to virtualization, using software events only.\n");
330 } else {
331 pr_cont("Broken PMU hardware detected, using software events only.\n");
332 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
333 reg, val_new);
334 }
45daae57 335
4407204c 336 return false;
33c6d6a7
DZ
337}
338
cdd6c482 339static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 340{
6b099d9b 341 x86_release_hardware();
1b7b938f 342 atomic_dec(&active_events);
4e935e47
PZ
343}
344
48070342
AS
345void hw_perf_lbr_event_destroy(struct perf_event *event)
346{
347 hw_perf_event_destroy(event);
348
349 /* undo the lbr/bts event accounting */
350 x86_del_exclusive(x86_lbr_exclusive_lbr);
351}
352
85cf9dba
RR
353static inline int x86_pmu_initialized(void)
354{
355 return x86_pmu.handle_irq != NULL;
356}
357
8326f44d 358static inline int
e994d7d2 359set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 360{
e994d7d2 361 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
362 unsigned int cache_type, cache_op, cache_result;
363 u64 config, val;
364
365 config = attr->config;
366
ef9ee4ad 367 cache_type = (config >> 0) & 0xff;
8326f44d
IM
368 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
369 return -EINVAL;
ef9ee4ad 370 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
8326f44d
IM
371
372 cache_op = (config >> 8) & 0xff;
373 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
374 return -EINVAL;
ef9ee4ad 375 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
8326f44d
IM
376
377 cache_result = (config >> 16) & 0xff;
378 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
379 return -EINVAL;
ef9ee4ad 380 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
8326f44d 381
0d18f2df 382 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
8326f44d
IM
383 if (val == 0)
384 return -ENOENT;
385
386 if (val == -1)
387 return -EINVAL;
388
389 hwc->config |= val;
0d18f2df 390 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
e994d7d2 391 return x86_pmu_extra_regs(val, event);
8326f44d
IM
392}
393
6b099d9b
AS
394int x86_reserve_hardware(void)
395{
396 int err = 0;
397
1b7b938f 398 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 399 mutex_lock(&pmc_reserve_mutex);
1b7b938f 400 if (atomic_read(&pmc_refcount) == 0) {
488e13a4 401 if (!reserve_pmc_hardware()) {
6b099d9b 402 err = -EBUSY;
488e13a4 403 } else {
6b099d9b 404 reserve_ds_buffers();
488e13a4
LX
405 reserve_lbr_buffers();
406 }
6b099d9b
AS
407 }
408 if (!err)
1b7b938f 409 atomic_inc(&pmc_refcount);
6b099d9b
AS
410 mutex_unlock(&pmc_reserve_mutex);
411 }
412
413 return err;
414}
415
416void x86_release_hardware(void)
417{
1b7b938f 418 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
419 release_pmc_hardware();
420 release_ds_buffers();
c085fb87 421 release_lbr_buffers();
6b099d9b
AS
422 mutex_unlock(&pmc_reserve_mutex);
423 }
424}
425
48070342
AS
426/*
427 * Check if we can create event of a certain type (that no conflicting events
428 * are present).
429 */
430int x86_add_exclusive(unsigned int what)
431{
93472aff 432 int i;
48070342 433
b0c1ef52
AK
434 /*
435 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
436 * LBR and BTS are still mutually exclusive.
437 */
438 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
92ca7da4 439 goto out;
ccbebba4 440
93472aff
PZ
441 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
442 mutex_lock(&pmc_reserve_mutex);
443 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
444 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
445 goto fail_unlock;
446 }
447 atomic_inc(&x86_pmu.lbr_exclusive[what]);
448 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 449 }
48070342 450
92ca7da4 451out:
93472aff
PZ
452 atomic_inc(&active_events);
453 return 0;
48070342 454
93472aff 455fail_unlock:
48070342 456 mutex_unlock(&pmc_reserve_mutex);
93472aff 457 return -EBUSY;
48070342
AS
458}
459
460void x86_del_exclusive(unsigned int what)
461{
92ca7da4
AS
462 atomic_dec(&active_events);
463
464 /*
465 * See the comment in x86_add_exclusive().
466 */
b0c1ef52 467 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
468 return;
469
48070342
AS
470 atomic_dec(&x86_pmu.lbr_exclusive[what]);
471}
472
de0428a7 473int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
474{
475 struct perf_event_attr *attr = &event->attr;
476 struct hw_perf_event *hwc = &event->hw;
477 u64 config;
478
6c7e550f 479 if (!is_sampling_event(event)) {
c1726f34
RR
480 hwc->sample_period = x86_pmu.max_period;
481 hwc->last_period = hwc->sample_period;
e7850595 482 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
483 }
484
d9977c43 485 if (attr->type == event->pmu->type)
ed13ec58 486 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
487
488 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 489 return set_ext_hw_attr(hwc, event);
c1726f34
RR
490
491 if (attr->config >= x86_pmu.max_events)
492 return -EINVAL;
493
46b1b577
PZ
494 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
495
c1726f34
RR
496 /*
497 * The generic map:
498 */
499 config = x86_pmu.event_map(attr->config);
500
501 if (config == 0)
502 return -ENOENT;
503
504 if (config == -1LL)
505 return -EINVAL;
506
c1726f34
RR
507 hwc->config |= config;
508
509 return 0;
510}
4261e0e0 511
ff3fb511
SE
512/*
513 * check that branch_sample_type is compatible with
514 * settings needed for precise_ip > 1 which implies
515 * using the LBR to capture ALL taken branches at the
516 * priv levels of the measurement
517 */
518static inline int precise_br_compat(struct perf_event *event)
519{
520 u64 m = event->attr.branch_sample_type;
521 u64 b = 0;
522
523 /* must capture all branches */
524 if (!(m & PERF_SAMPLE_BRANCH_ANY))
525 return 0;
526
527 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
528
529 if (!event->attr.exclude_user)
530 b |= PERF_SAMPLE_BRANCH_USER;
531
532 if (!event->attr.exclude_kernel)
533 b |= PERF_SAMPLE_BRANCH_KERNEL;
534
535 /*
536 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
537 */
538
539 return m == b;
540}
541
b00233b5 542int x86_pmu_max_precise(void)
a072738e 543{
b00233b5
AK
544 int precise = 0;
545
546 /* Support for constant skid */
547 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
548 precise++;
ab608344 549
b00233b5
AK
550 /* Support for IP fixup */
551 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
ab608344
PZ
552 precise++;
553
b00233b5
AK
554 if (x86_pmu.pebs_prec_dist)
555 precise++;
556 }
557 return precise;
558}
72469764 559
b00233b5
AK
560int x86_pmu_hw_config(struct perf_event *event)
561{
562 if (event->attr.precise_ip) {
563 int precise = x86_pmu_max_precise();
ab608344
PZ
564
565 if (event->attr.precise_ip > precise)
566 return -EOPNOTSUPP;
18e7a45a
JO
567
568 /* There's no sense in having PEBS for non sampling events: */
569 if (!is_sampling_event(event))
570 return -EINVAL;
4b854900
YZ
571 }
572 /*
573 * check that PEBS LBR correction does not conflict with
574 * whatever the user is asking with attr->branch_sample_type
575 */
576 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
577 u64 *br_type = &event->attr.branch_sample_type;
578
579 if (has_branch_stack(event)) {
580 if (!precise_br_compat(event))
581 return -EOPNOTSUPP;
582
583 /* branch_sample_type is compatible */
584
585 } else {
586 /*
587 * user did not specify branch_sample_type
588 *
589 * For PEBS fixups, we capture all
590 * the branches at the priv level of the
591 * event.
592 */
593 *br_type = PERF_SAMPLE_BRANCH_ANY;
594
595 if (!event->attr.exclude_user)
596 *br_type |= PERF_SAMPLE_BRANCH_USER;
597
598 if (!event->attr.exclude_kernel)
599 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 600 }
ab608344
PZ
601 }
602
e18bf526
YZ
603 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
604 event->attach_state |= PERF_ATTACH_TASK_DATA;
605
a072738e
CG
606 /*
607 * Generate PMC IRQs:
608 * (keep 'enabled' bit clear for now)
609 */
b4cdc5c2 610 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
611
612 /*
613 * Count user and OS events unless requested not to
614 */
b4cdc5c2
PZ
615 if (!event->attr.exclude_user)
616 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
617 if (!event->attr.exclude_kernel)
618 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 619
d9977c43 620 if (event->attr.type == event->pmu->type)
b4cdc5c2 621 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 622
294fe0f5
AK
623 if (event->attr.sample_period && x86_pmu.limit_period) {
624 if (x86_pmu.limit_period(event, event->attr.sample_period) >
625 event->attr.sample_period)
626 return -EINVAL;
627 }
628
878068ea 629 /* sample_regs_user never support XMM registers */
dce86ac7 630 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
878068ea
KL
631 return -EINVAL;
632 /*
633 * Besides the general purpose registers, XMM registers may
634 * be collected in PEBS on some platforms, e.g. Icelake
635 */
dce86ac7 636 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
cd6b984f 637 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
878068ea
KL
638 return -EINVAL;
639
640 if (!event->attr.precise_ip)
641 return -EINVAL;
642 }
643
9d0fcba6 644 return x86_setup_perfctr(event);
a098f448
RR
645}
646
241771ef 647/*
0d48696f 648 * Setup the hardware configuration for a given attr_type
241771ef 649 */
b0a873eb 650static int __x86_pmu_event_init(struct perf_event *event)
241771ef 651{
4e935e47 652 int err;
241771ef 653
85cf9dba
RR
654 if (!x86_pmu_initialized())
655 return -ENODEV;
241771ef 656
6b099d9b 657 err = x86_reserve_hardware();
4e935e47
PZ
658 if (err)
659 return err;
660
1b7b938f 661 atomic_inc(&active_events);
cdd6c482 662 event->destroy = hw_perf_event_destroy;
a1792cda 663
4261e0e0
RR
664 event->hw.idx = -1;
665 event->hw.last_cpu = -1;
666 event->hw.last_tag = ~0ULL;
b690081d 667
efc9f05d
SE
668 /* mark unused */
669 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
670 event->hw.branch_reg.idx = EXTRA_REG_NONE;
671
9d0fcba6 672 return x86_pmu.hw_config(event);
4261e0e0
RR
673}
674
de0428a7 675void x86_pmu_disable_all(void)
f87ad35d 676{
89cbc767 677 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
678 int idx;
679
948b1bb8 680 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
57388912 681 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e
PZ
682 u64 val;
683
43f6201a 684 if (!test_bit(idx, cpuc->active_mask))
4295ee62 685 continue;
41bf4989 686 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 687 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 688 continue;
bb1165d6 689 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 690 wrmsrl(x86_pmu_config_addr(idx), val);
57388912
KP
691 if (is_counter_pair(hwc))
692 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
f87ad35d 693 }
f87ad35d
JSR
694}
695
abd562df
LX
696struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
697{
698 return static_call(x86_pmu_guest_get_msrs)(nr);
699}
700EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
701
c3d266c8
KL
702/*
703 * There may be PMI landing after enabled=0. The PMI hitting could be before or
704 * after disable_all.
705 *
706 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
707 * It will not be re-enabled in the NMI handler again, because enabled=0. After
708 * handling the NMI, disable_all will be called, which will not change the
709 * state either. If PMI hits after disable_all, the PMU is already disabled
710 * before entering NMI handler. The NMI handler will not change the state
711 * either.
712 *
713 * So either situation is harmless.
714 */
a4eaf7f1 715static void x86_pmu_disable(struct pmu *pmu)
b56a3802 716{
89cbc767 717 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 718
85cf9dba 719 if (!x86_pmu_initialized())
9e35ad38 720 return;
1da53e02 721
1a6e21f7
PZ
722 if (!cpuc->enabled)
723 return;
724
725 cpuc->n_added = 0;
726 cpuc->enabled = 0;
727 barrier();
1da53e02 728
7c9903c9 729 static_call(x86_pmu_disable_all)();
b56a3802 730}
241771ef 731
de0428a7 732void x86_pmu_enable_all(int added)
f87ad35d 733{
89cbc767 734 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
735 int idx;
736
948b1bb8 737 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 738 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 739
43f6201a 740 if (!test_bit(idx, cpuc->active_mask))
4295ee62 741 continue;
984b838c 742
d45dd923 743 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
744 }
745}
746
1da53e02
SE
747static inline int is_x86_event(struct perf_event *event)
748{
d9977c43
KL
749 int i;
750
751 if (!is_hybrid())
752 return event->pmu == &pmu;
753
754 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
755 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
756 return true;
757 }
758
759 return false;
1da53e02
SE
760}
761
61e76d53 762struct pmu *x86_get_pmu(unsigned int cpu)
f447e4eb 763{
61e76d53
KL
764 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
765
766 /*
767 * All CPUs of the hybrid type have been offline.
768 * The x86_get_pmu() should not be invoked.
769 */
770 if (WARN_ON_ONCE(!cpuc->pmu))
771 return &pmu;
772
773 return cpuc->pmu;
f447e4eb 774}
1e2ad28f
RR
775/*
776 * Event scheduler state:
777 *
778 * Assign events iterating over all events and counters, beginning
779 * with events with least weights first. Keep the current iterator
780 * state in struct sched_state.
781 */
782struct sched_state {
783 int weight;
784 int event; /* event index */
785 int counter; /* counter index */
786 int unassigned; /* number of events to be assigned left */
cc1790cf 787 int nr_gp; /* number of GP counters used */
57388912 788 u64 used;
1e2ad28f
RR
789};
790
bc1738f6
RR
791/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
792#define SCHED_STATES_MAX 2
793
1e2ad28f
RR
794struct perf_sched {
795 int max_weight;
796 int max_events;
cc1790cf
PZ
797 int max_gp;
798 int saved_states;
b371b594 799 struct event_constraint **constraints;
1e2ad28f 800 struct sched_state state;
bc1738f6 801 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
802};
803
804/*
d9f6e12f 805 * Initialize iterator that runs through all events and counters.
1e2ad28f 806 */
b371b594 807static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 808 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
809{
810 int idx;
811
812 memset(sched, 0, sizeof(*sched));
813 sched->max_events = num;
814 sched->max_weight = wmax;
cc1790cf 815 sched->max_gp = gpmax;
b371b594 816 sched->constraints = constraints;
1e2ad28f
RR
817
818 for (idx = 0; idx < num; idx++) {
b371b594 819 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
820 break;
821 }
822
823 sched->state.event = idx; /* start with min weight */
824 sched->state.weight = wmin;
825 sched->state.unassigned = num;
826}
827
bc1738f6
RR
828static void perf_sched_save_state(struct perf_sched *sched)
829{
830 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
831 return;
832
833 sched->saved[sched->saved_states] = sched->state;
834 sched->saved_states++;
835}
836
837static bool perf_sched_restore_state(struct perf_sched *sched)
838{
839 if (!sched->saved_states)
840 return false;
841
842 sched->saved_states--;
843 sched->state = sched->saved[sched->saved_states];
844
57388912
KP
845 /* this assignment didn't work out */
846 /* XXX broken vs EVENT_PAIR */
847 sched->state.used &= ~BIT_ULL(sched->state.counter);
848
849 /* try the next one */
850 sched->state.counter++;
bc1738f6
RR
851
852 return true;
853}
854
1e2ad28f
RR
855/*
856 * Select a counter for the current event to schedule. Return true on
857 * success.
858 */
bc1738f6 859static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
860{
861 struct event_constraint *c;
862 int idx;
863
864 if (!sched->state.unassigned)
865 return false;
866
867 if (sched->state.event >= sched->max_events)
868 return false;
869
b371b594 870 c = sched->constraints[sched->state.event];
4defea85 871 /* Prefer fixed purpose counters */
15c7ad51
RR
872 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
873 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 874 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
57388912
KP
875 u64 mask = BIT_ULL(idx);
876
877 if (sched->state.used & mask)
878 continue;
879
880 sched->state.used |= mask;
881 goto done;
4defea85
PZ
882 }
883 }
cc1790cf 884
1e2ad28f
RR
885 /* Grab the first unused counter starting with idx */
886 idx = sched->state.counter;
15c7ad51 887 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
57388912 888 u64 mask = BIT_ULL(idx);
cc1790cf 889
57388912
KP
890 if (c->flags & PERF_X86_EVENT_PAIR)
891 mask |= mask << 1;
892
893 if (sched->state.used & mask)
894 continue;
895
896 if (sched->state.nr_gp++ >= sched->max_gp)
897 return false;
898
899 sched->state.used |= mask;
900 goto done;
1e2ad28f 901 }
1e2ad28f 902
4defea85
PZ
903 return false;
904
905done:
906 sched->state.counter = idx;
1e2ad28f 907
bc1738f6
RR
908 if (c->overlap)
909 perf_sched_save_state(sched);
910
911 return true;
912}
913
914static bool perf_sched_find_counter(struct perf_sched *sched)
915{
916 while (!__perf_sched_find_counter(sched)) {
917 if (!perf_sched_restore_state(sched))
918 return false;
919 }
920
1e2ad28f
RR
921 return true;
922}
923
924/*
925 * Go through all unassigned events and find the next one to schedule.
926 * Take events with the least weight first. Return true on success.
927 */
928static bool perf_sched_next_event(struct perf_sched *sched)
929{
930 struct event_constraint *c;
931
932 if (!sched->state.unassigned || !--sched->state.unassigned)
933 return false;
934
935 do {
936 /* next event */
937 sched->state.event++;
938 if (sched->state.event >= sched->max_events) {
939 /* next weight */
940 sched->state.event = 0;
941 sched->state.weight++;
942 if (sched->state.weight > sched->max_weight)
943 return false;
944 }
b371b594 945 c = sched->constraints[sched->state.event];
1e2ad28f
RR
946 } while (c->weight != sched->state.weight);
947
948 sched->state.counter = 0; /* start with first counter */
949
950 return true;
951}
952
953/*
954 * Assign a counter for each event.
955 */
b371b594 956int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 957 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
958{
959 struct perf_sched sched;
960
cc1790cf 961 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
962
963 do {
964 if (!perf_sched_find_counter(&sched))
965 break; /* failed */
966 if (assign)
967 assign[sched.state.event] = sched.state.counter;
968 } while (perf_sched_next_event(&sched));
969
970 return sched.state.unassigned;
971}
4a3dc121 972EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 973
de0428a7 974int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 975{
d4b294bf 976 int num_counters = hybrid(cpuc->pmu, num_counters);
43b45780 977 struct event_constraint *c;
2f7f73a5 978 struct perf_event *e;
f80deefa 979 int n0, i, wmin, wmax, unsched = 0;
1da53e02 980 struct hw_perf_event *hwc;
57388912 981 u64 used_mask = 0;
1da53e02 982
f80deefa
PZ
983 /*
984 * Compute the number of events already present; see x86_pmu_add(),
985 * validate_group() and x86_pmu_commit_txn(). For the former two
986 * cpuc->n_events hasn't been updated yet, while for the latter
987 * cpuc->n_txn contains the number of events added in the current
988 * transaction.
989 */
990 n0 = cpuc->n_events;
991 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
992 n0 -= cpuc->n_txn;
993
7c9903c9 994 static_call_cond(x86_pmu_start_scheduling)(cpuc);
c5362c0c 995
1e2ad28f 996 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
109717de
PZ
997 c = cpuc->event_constraint[i];
998
f80deefa
PZ
999 /*
1000 * Previously scheduled events should have a cached constraint,
1001 * while new events should not have one.
1002 */
1003 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004
109717de
PZ
1005 /*
1006 * Request constraints for new events; or for those events that
1007 * have a dynamic constraint -- for those the constraint can
1008 * change due to external factors (sibling state, allow_tfa).
1009 */
1010 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
7c9903c9 1011 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
109717de
PZ
1012 cpuc->event_constraint[i] = c;
1013 }
43b45780 1014
1e2ad28f
RR
1015 wmin = min(wmin, c->weight);
1016 wmax = max(wmax, c->weight);
1da53e02
SE
1017 }
1018
8113070d
SE
1019 /*
1020 * fastpath, try to reuse previous register
1021 */
c933c1a6 1022 for (i = 0; i < n; i++) {
57388912
KP
1023 u64 mask;
1024
8113070d 1025 hwc = &cpuc->event_list[i]->hw;
b371b594 1026 c = cpuc->event_constraint[i];
8113070d
SE
1027
1028 /* never assigned */
1029 if (hwc->idx == -1)
1030 break;
1031
1032 /* constraint still honored */
63b14649 1033 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
1034 break;
1035
57388912
KP
1036 mask = BIT_ULL(hwc->idx);
1037 if (is_counter_pair(hwc))
1038 mask |= mask << 1;
1039
8113070d 1040 /* not already used */
57388912 1041 if (used_mask & mask)
8113070d
SE
1042 break;
1043
57388912
KP
1044 used_mask |= mask;
1045
8113070d
SE
1046 if (assign)
1047 assign[i] = hwc->idx;
1048 }
8113070d 1049
1e2ad28f 1050 /* slow path */
b371b594 1051 if (i != n) {
d4b294bf 1052 int gpmax = num_counters;
cc1790cf
PZ
1053
1054 /*
1055 * Do not allow scheduling of more than half the available
1056 * generic counters.
1057 *
1058 * This helps avoid counter starvation of sibling thread by
1059 * ensuring at most half the counters cannot be in exclusive
1060 * mode. There is no designated counters for the limits. Any
1061 * N/2 counters can be used. This helps with events with
1062 * specific counter constraints.
1063 */
1064 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066 gpmax /= 2;
1067
57388912
KP
1068 /*
1069 * Reduce the amount of available counters to allow fitting
1070 * the extra Merge events needed by large increment events.
1071 */
1072 if (x86_pmu.flags & PMU_FL_PAIR) {
d4b294bf 1073 gpmax = num_counters - cpuc->n_pair;
57388912
KP
1074 WARN_ON(gpmax <= 0);
1075 }
1076
b371b594 1077 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 1078 wmax, gpmax, assign);
b371b594 1079 }
8113070d 1080
2f7f73a5 1081 /*
e979121b
MD
1082 * In case of success (unsched = 0), mark events as committed,
1083 * so we do not put_constraint() in case new events are added
1084 * and fail to be scheduled
1085 *
1086 * We invoke the lower level commit callback to lock the resource
1087 *
1088 * We do not need to do all of this in case we are called to
1089 * validate an event group (assign == NULL)
2f7f73a5 1090 */
e979121b 1091 if (!unsched && assign) {
4f32da76 1092 for (i = 0; i < n; i++)
7c9903c9 1093 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
8736e548 1094 } else {
f80deefa 1095 for (i = n0; i < n; i++) {
2f7f73a5 1096 e = cpuc->event_list[i];
2f7f73a5 1097
e979121b
MD
1098 /*
1099 * release events that failed scheduling
1100 */
7c9903c9 1101 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
2c9651c3
PZ
1102
1103 cpuc->event_constraint[i] = NULL;
1da53e02
SE
1104 }
1105 }
c5362c0c 1106
7c9903c9 1107 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
c5362c0c 1108
e979121b 1109 return unsched ? -EINVAL : 0;
1da53e02
SE
1110}
1111
7b2c05a1
KL
1112static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113 struct perf_event *event)
1114{
1115 if (is_metric_event(event)) {
1116 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117 return -EINVAL;
1118 cpuc->n_metric++;
3dbde695 1119 cpuc->n_txn_metric++;
7b2c05a1
KL
1120 }
1121
1122 return 0;
1123}
1124
1125static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126 struct perf_event *event)
1127{
1128 if (is_metric_event(event))
1129 cpuc->n_metric--;
1130}
1131
1132static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133 int max_count, int n)
1134{
d0946a88 1135 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
7b2c05a1 1136
d0946a88 1137 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
7b2c05a1
KL
1138 return -EINVAL;
1139
1140 if (n >= max_count + cpuc->n_metric)
1141 return -EINVAL;
1142
1143 cpuc->event_list[n] = event;
871a93b0 1144 if (is_counter_pair(&event->hw)) {
7b2c05a1 1145 cpuc->n_pair++;
871a93b0
PZ
1146 cpuc->n_txn_pair++;
1147 }
7b2c05a1
KL
1148
1149 return 0;
1150}
1151
1da53e02
SE
1152/*
1153 * dogrp: true if must collect siblings events (group)
1154 * returns total number of events and error code
1155 */
1156static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157{
d4b294bf
KL
1158 int num_counters = hybrid(cpuc->pmu, num_counters);
1159 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1da53e02
SE
1160 struct perf_event *event;
1161 int n, max_count;
1162
d4b294bf 1163 max_count = num_counters + num_counters_fixed;
1da53e02
SE
1164
1165 /* current number of events already accepted */
1166 n = cpuc->n_events;
42880f72
AS
1167 if (!cpuc->n_events)
1168 cpuc->pebs_output = 0;
1169
1170 if (!cpuc->is_fake && leader->attr.precise_ip) {
1171 /*
1172 * For PEBS->PT, if !aux_event, the group leader (PT) went
1173 * away, the group was broken down and this singleton event
1174 * can't schedule any more.
1175 */
1176 if (is_pebs_pt(leader) && !leader->aux_event)
1177 return -EINVAL;
1178
1179 /*
1180 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181 */
1182 if (cpuc->pebs_output &&
1183 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184 return -EINVAL;
1185
1186 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187 }
1da53e02
SE
1188
1189 if (is_x86_event(leader)) {
7b2c05a1 1190 if (collect_event(cpuc, leader, max_count, n))
aa2bc1ad 1191 return -EINVAL;
1da53e02
SE
1192 n++;
1193 }
7b2c05a1 1194
1da53e02
SE
1195 if (!dogrp)
1196 return n;
1197
edb39592 1198 for_each_sibling_event(event, leader) {
7b2c05a1 1199 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
1200 continue;
1201
7b2c05a1 1202 if (collect_event(cpuc, event, max_count, n))
aa2bc1ad 1203 return -EINVAL;
1da53e02 1204
1da53e02
SE
1205 n++;
1206 }
1207 return n;
1208}
1209
1da53e02 1210static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 1211 struct cpu_hw_events *cpuc, int i)
1da53e02 1212{
447a194b 1213 struct hw_perf_event *hwc = &event->hw;
027440b5 1214 int idx;
447a194b 1215
027440b5 1216 idx = hwc->idx = cpuc->assign[i];
447a194b
SE
1217 hwc->last_cpu = smp_processor_id();
1218 hwc->last_tag = ++cpuc->tags[i];
1da53e02 1219
8b8ff8cc
AH
1220 static_call_cond(x86_pmu_assign)(event, idx);
1221
027440b5
LX
1222 switch (hwc->idx) {
1223 case INTEL_PMC_IDX_FIXED_BTS:
097e4311 1224 case INTEL_PMC_IDX_FIXED_VLBR:
1da53e02
SE
1225 hwc->config_base = 0;
1226 hwc->event_base = 0;
027440b5
LX
1227 break;
1228
7b2c05a1
KL
1229 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230 /* All the metric events are mapped onto the fixed counter 3. */
1231 idx = INTEL_PMC_IDX_FIXED_SLOTS;
b6459575 1232 fallthrough;
027440b5 1233 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1da53e02 1234 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
027440b5
LX
1235 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236 (idx - INTEL_PMC_IDX_FIXED);
0e2e45e2
KL
1237 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238 INTEL_PMC_FIXED_RDPMC_BASE;
027440b5
LX
1239 break;
1240
1241 default:
73d6e522
RR
1242 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 1244 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
027440b5 1245 break;
1da53e02
SE
1246 }
1247}
1248
1182a495
RC
1249/**
1250 * x86_perf_rdpmc_index - Return PMC counter used for event
1251 * @event: the perf_event to which the PMC counter was assigned
1252 *
1253 * The counter assigned to this performance event may change if interrupts
1254 * are enabled. This counter should thus never be used while interrupts are
1255 * enabled. Before this function is used to obtain the assigned counter the
1256 * event should be checked for validity using, for example,
1257 * perf_event_read_local(), within the same interrupt disabled section in
1258 * which this counter is planned to be used.
1259 *
1260 * Return: The index of the performance monitoring counter assigned to
1261 * @perf_event.
1262 */
1263int x86_perf_rdpmc_index(struct perf_event *event)
1264{
1265 lockdep_assert_irqs_disabled();
1266
1267 return event->hw.event_base_rdpmc;
1268}
1269
447a194b
SE
1270static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271 struct cpu_hw_events *cpuc,
1272 int i)
1273{
1274 return hwc->idx == cpuc->assign[i] &&
1275 hwc->last_cpu == smp_processor_id() &&
1276 hwc->last_tag == cpuc->tags[i];
1277}
1278
a4eaf7f1 1279static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1280
a4eaf7f1 1281static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1282{
89cbc767 1283 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1284 struct perf_event *event;
1285 struct hw_perf_event *hwc;
11164cd4 1286 int i, added = cpuc->n_added;
1da53e02 1287
85cf9dba 1288 if (!x86_pmu_initialized())
2b9ff0db 1289 return;
1a6e21f7
PZ
1290
1291 if (cpuc->enabled)
1292 return;
1293
1da53e02 1294 if (cpuc->n_added) {
19925ce7 1295 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1296 /*
1297 * apply assignment obtained either from
1298 * hw_perf_group_sched_in() or x86_pmu_enable()
1299 *
1300 * step1: save events moving to new counters
1da53e02 1301 */
19925ce7 1302 for (i = 0; i < n_running; i++) {
1da53e02
SE
1303 event = cpuc->event_list[i];
1304 hwc = &event->hw;
1305
447a194b
SE
1306 /*
1307 * we can avoid reprogramming counter if:
1308 * - assigned same counter as last time
1309 * - running on same CPU as last time
1310 * - no other event has used the counter since
1311 */
1312 if (hwc->idx == -1 ||
1313 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1314 continue;
1315
a4eaf7f1
PZ
1316 /*
1317 * Ensure we don't accidentally enable a stopped
1318 * counter simply because we rescheduled.
1319 */
1320 if (hwc->state & PERF_HES_STOPPED)
1321 hwc->state |= PERF_HES_ARCH;
1322
1323 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1324 }
1325
c347a2f1
PZ
1326 /*
1327 * step2: reprogram moved events into new counters
1328 */
1da53e02 1329 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1330 event = cpuc->event_list[i];
1331 hwc = &event->hw;
1332
45e16a68 1333 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1334 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1335 else if (i < n_running)
1336 continue;
1da53e02 1337
a4eaf7f1
PZ
1338 if (hwc->state & PERF_HES_ARCH)
1339 continue;
1340
1341 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1342 }
1343 cpuc->n_added = 0;
1344 perf_events_lapic_init();
1345 }
1a6e21f7
PZ
1346
1347 cpuc->enabled = 1;
1348 barrier();
1349
7c9903c9 1350 static_call(x86_pmu_enable_all)(added);
ee06094f 1351}
ee06094f 1352
245b2e70 1353static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1354
ee06094f
IM
1355/*
1356 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1357 * To be called with the event disabled in hw:
ee06094f 1358 */
de0428a7 1359int x86_perf_event_set_period(struct perf_event *event)
241771ef 1360{
07088edb 1361 struct hw_perf_event *hwc = &event->hw;
e7850595 1362 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1363 s64 period = hwc->sample_period;
7645a24c 1364 int ret = 0, idx = hwc->idx;
ee06094f 1365
027440b5 1366 if (unlikely(!hwc->event_base))
30dd568c
MM
1367 return 0;
1368
7b2c05a1
KL
1369 if (unlikely(is_topdown_count(event)) &&
1370 x86_pmu.set_topdown_event_period)
1371 return x86_pmu.set_topdown_event_period(event);
1372
ee06094f 1373 /*
af901ca1 1374 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1375 */
1376 if (unlikely(left <= -period)) {
1377 left = period;
e7850595 1378 local64_set(&hwc->period_left, left);
9e350de3 1379 hwc->last_period = period;
e4abb5d4 1380 ret = 1;
ee06094f
IM
1381 }
1382
1383 if (unlikely(left <= 0)) {
1384 left += period;
e7850595 1385 local64_set(&hwc->period_left, left);
9e350de3 1386 hwc->last_period = period;
e4abb5d4 1387 ret = 1;
ee06094f 1388 }
1c80f4b5 1389 /*
dfc65094 1390 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1391 */
1392 if (unlikely(left < 2))
1393 left = 2;
241771ef 1394
e4abb5d4
PZ
1395 if (left > x86_pmu.max_period)
1396 left = x86_pmu.max_period;
1397
294fe0f5
AK
1398 if (x86_pmu.limit_period)
1399 left = x86_pmu.limit_period(event, left);
1400
245b2e70 1401 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1402
d31fc13f
KL
1403 /*
1404 * The hw event starts counting from this event offset,
1405 * mark it to be able to extra future deltas:
1406 */
1407 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1408
d31fc13f 1409 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1410
57388912 1411 /*
26e52558 1412 * Sign extend the Merge event counter's upper 16 bits since
57388912
KP
1413 * we currently declare a 48-bit counter width
1414 */
1415 if (is_counter_pair(hwc))
26e52558 1416 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
57388912 1417
68aa00ac
CG
1418 /*
1419 * Due to erratum on certan cpu we need
1420 * a second write to be sure the register
1421 * is updated properly
1422 */
1423 if (x86_pmu.perfctr_second_write) {
73d6e522 1424 wrmsrl(hwc->event_base,
948b1bb8 1425 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1426 }
e4abb5d4 1427
cdd6c482 1428 perf_event_update_userpage(event);
194002b2 1429
e4abb5d4 1430 return ret;
2f18d1e8
IM
1431}
1432
de0428a7 1433void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1434{
0a3aee0d 1435 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1436 __x86_pmu_enable_event(&event->hw,
1437 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1438}
1439
b690081d 1440/*
a4eaf7f1 1441 * Add a single event to the PMU.
1da53e02
SE
1442 *
1443 * The event is added to the group of enabled events
77d76032 1444 * but only if it can be scheduled with existing events.
fe9081cc 1445 */
a4eaf7f1 1446static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1447{
89cbc767 1448 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1449 struct hw_perf_event *hwc;
1450 int assign[X86_PMC_IDX_MAX];
1451 int n, n0, ret;
fe9081cc 1452
1da53e02 1453 hwc = &event->hw;
fe9081cc 1454
1da53e02 1455 n0 = cpuc->n_events;
24cd7f54
PZ
1456 ret = n = collect_events(cpuc, event, false);
1457 if (ret < 0)
1458 goto out;
53b441a5 1459
a4eaf7f1
PZ
1460 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1461 if (!(flags & PERF_EF_START))
1462 hwc->state |= PERF_HES_ARCH;
1463
4d1c52b0
LM
1464 /*
1465 * If group events scheduling transaction was started,
0d2eb44f 1466 * skip the schedulability test here, it will be performed
c347a2f1 1467 * at commit time (->commit_txn) as a whole.
68f7082f
PZ
1468 *
1469 * If commit fails, we'll call ->del() on all events
1470 * for which ->add() was called.
4d1c52b0 1471 */
8f3e5684 1472 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1473 goto done_collect;
4d1c52b0 1474
7c9903c9 1475 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1da53e02 1476 if (ret)
24cd7f54 1477 goto out;
1da53e02
SE
1478 /*
1479 * copy new assignment, now we know it is possible
1480 * will be used by hw_perf_enable()
1481 */
1482 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1483
24cd7f54 1484done_collect:
c347a2f1
PZ
1485 /*
1486 * Commit the collect_events() state. See x86_pmu_del() and
1487 * x86_pmu_*_txn().
1488 */
1da53e02 1489 cpuc->n_events = n;
356e1f2e 1490 cpuc->n_added += n - n0;
90151c35 1491 cpuc->n_txn += n - n0;
95cdd2e7 1492
7c9903c9
PZ
1493 /*
1494 * This is before x86_pmu_enable() will call x86_pmu_start(),
1495 * so we enable LBRs before an event needs them etc..
1496 */
1497 static_call_cond(x86_pmu_add)(event);
68f7082f 1498
24cd7f54
PZ
1499 ret = 0;
1500out:
24cd7f54 1501 return ret;
241771ef
IM
1502}
1503
a4eaf7f1 1504static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1505{
89cbc767 1506 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1507 int idx = event->hw.idx;
1508
a4eaf7f1
PZ
1509 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1510 return;
1511
1512 if (WARN_ON_ONCE(idx == -1))
1513 return;
1514
1515 if (flags & PERF_EF_RELOAD) {
1516 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1517 x86_perf_event_set_period(event);
1518 }
1519
1520 event->hw.state = 0;
d76a0812 1521
c08053e6
PZ
1522 cpuc->events[idx] = event;
1523 __set_bit(idx, cpuc->active_mask);
7c9903c9 1524 static_call(x86_pmu_enable)(event);
c08053e6 1525 perf_event_update_userpage(event);
a78ac325
PZ
1526}
1527
cdd6c482 1528void perf_event_print_debug(void)
241771ef 1529{
2f18d1e8 1530 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1531 u64 pebs, debugctl;
d4b294bf
KL
1532 int cpu = smp_processor_id();
1533 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1534 int num_counters = hybrid(cpuc->pmu, num_counters);
1535 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
24ee38ff 1536 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
5bb9efe3 1537 unsigned long flags;
d4b294bf 1538 int idx;
1e125676 1539
d4b294bf 1540 if (!num_counters)
1e125676 1541 return;
241771ef 1542
5bb9efe3 1543 local_irq_save(flags);
241771ef 1544
faa28ae0 1545 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1546 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1547 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1548 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1549 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1550
1551 pr_info("\n");
1552 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1553 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1554 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1555 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
24ee38ff 1556 if (pebs_constraints) {
15fde110
AK
1557 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1558 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1559 }
da3e606d
AK
1560 if (x86_pmu.lbr_nr) {
1561 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1562 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1563 }
f87ad35d 1564 }
7645a24c 1565 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1566
d4b294bf 1567 for (idx = 0; idx < num_counters; idx++) {
41bf4989
RR
1568 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1569 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1570
245b2e70 1571 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1572
a1ef58f4 1573 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1574 cpu, idx, pmc_ctrl);
a1ef58f4 1575 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1576 cpu, idx, pmc_count);
a1ef58f4 1577 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1578 cpu, idx, prev_left);
241771ef 1579 }
d4b294bf 1580 for (idx = 0; idx < num_counters_fixed; idx++) {
fc4b8fca 1581 if (fixed_counter_disabled(idx, cpuc->pmu))
32451614 1582 continue;
2f18d1e8
IM
1583 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1584
a1ef58f4 1585 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1586 cpu, idx, pmc_count);
1587 }
5bb9efe3 1588 local_irq_restore(flags);
241771ef
IM
1589}
1590
de0428a7 1591void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1592{
89cbc767 1593 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1594 struct hw_perf_event *hwc = &event->hw;
241771ef 1595
3966c3fe 1596 if (test_bit(hwc->idx, cpuc->active_mask)) {
7c9903c9 1597 static_call(x86_pmu_disable)(event);
3966c3fe 1598 __clear_bit(hwc->idx, cpuc->active_mask);
a4eaf7f1
PZ
1599 cpuc->events[hwc->idx] = NULL;
1600 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1601 hwc->state |= PERF_HES_STOPPED;
1602 }
30dd568c 1603
a4eaf7f1
PZ
1604 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1605 /*
1606 * Drain the remaining delta count out of a event
1607 * that we are disabling:
1608 */
1609 x86_perf_event_update(event);
1610 hwc->state |= PERF_HES_UPTODATE;
1611 }
2e841873
PZ
1612}
1613
a4eaf7f1 1614static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1615{
89cbc767 1616 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
d0946a88 1617 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
2e841873
PZ
1618 int i;
1619
90151c35 1620 /*
68f7082f 1621 * If we're called during a txn, we only need to undo x86_pmu.add.
90151c35
SE
1622 * The events never got scheduled and ->cancel_txn will truncate
1623 * the event_list.
c347a2f1
PZ
1624 *
1625 * XXX assumes any ->del() called during a TXN will only be on
1626 * an event added during that same TXN.
90151c35 1627 */
8f3e5684 1628 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
68f7082f 1629 goto do_del;
90151c35 1630
5471eea5
KL
1631 __set_bit(event->hw.idx, cpuc->dirty);
1632
c347a2f1
PZ
1633 /*
1634 * Not a TXN, therefore cleanup properly.
1635 */
a4eaf7f1 1636 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1637
1da53e02 1638 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1639 if (event == cpuc->event_list[i])
1640 break;
1641 }
1da53e02 1642
c347a2f1
PZ
1643 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1644 return;
26e61e89 1645
c347a2f1
PZ
1646 /* If we have a newly added event; make sure to decrease n_added. */
1647 if (i >= cpuc->n_events - cpuc->n_added)
1648 --cpuc->n_added;
1da53e02 1649
7c9903c9 1650 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
c347a2f1
PZ
1651
1652 /* Delete the array entry. */
b371b594 1653 while (++i < cpuc->n_events) {
c347a2f1 1654 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1655 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1656 }
2c9651c3 1657 cpuc->event_constraint[i-1] = NULL;
c347a2f1 1658 --cpuc->n_events;
d0946a88 1659 if (intel_cap.perf_metrics)
7b2c05a1 1660 del_nr_metric_event(cpuc, event);
1da53e02 1661
cdd6c482 1662 perf_event_update_userpage(event);
68f7082f
PZ
1663
1664do_del:
7c9903c9
PZ
1665
1666 /*
1667 * This is after x86_pmu_stop(); so we disable LBRs after any
1668 * event can need them etc..
1669 */
1670 static_call_cond(x86_pmu_del)(event);
241771ef
IM
1671}
1672
de0428a7 1673int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1674{
df1a132b 1675 struct perf_sample_data data;
cdd6c482
IM
1676 struct cpu_hw_events *cpuc;
1677 struct perf_event *event;
11d1578f 1678 int idx, handled = 0;
9029a5e3
IM
1679 u64 val;
1680
89cbc767 1681 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1682
2bce5dac
DZ
1683 /*
1684 * Some chipsets need to unmask the LVTPC in a particular spot
1685 * inside the nmi handler. As a result, the unmasking was pushed
1686 * into all the nmi handlers.
1687 *
1688 * This generic handler doesn't seem to have any issues where the
1689 * unmasking occurs so it was left at the top.
1690 */
1691 apic_write(APIC_LVTPC, APIC_DM_NMI);
1692
948b1bb8 1693 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3966c3fe 1694 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1695 continue;
962bf7a6 1696
cdd6c482 1697 event = cpuc->events[idx];
a4016a79 1698
cc2ad4ba 1699 val = x86_perf_event_update(event);
948b1bb8 1700 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1701 continue;
962bf7a6 1702
9e350de3 1703 /*
cdd6c482 1704 * event overflow
9e350de3 1705 */
4177c42a 1706 handled++;
fd0d000b 1707 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1708
07088edb 1709 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1710 continue;
1711
a8b0ca17 1712 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1713 x86_pmu_stop(event, 0);
a29aa8a7 1714 }
962bf7a6 1715
9e350de3
PZ
1716 if (handled)
1717 inc_irq_stat(apic_perf_irqs);
1718
a29aa8a7
RR
1719 return handled;
1720}
39d81eab 1721
cdd6c482 1722void perf_events_lapic_init(void)
241771ef 1723{
04da8a43 1724 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1725 return;
85cf9dba 1726
241771ef 1727 /*
c323d95f 1728 * Always use NMI for PMU
241771ef 1729 */
c323d95f 1730 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1731}
1732
9326638c 1733static int
9c48f1c6 1734perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1735{
14c63f17
DH
1736 u64 start_clock;
1737 u64 finish_clock;
e8a923cc 1738 int ret;
14c63f17 1739
1b7b938f
AS
1740 /*
1741 * All PMUs/events that share this PMI handler should make sure to
1742 * increment active_events for their events.
1743 */
cdd6c482 1744 if (!atomic_read(&active_events))
9c48f1c6 1745 return NMI_DONE;
4177c42a 1746
e8a923cc 1747 start_clock = sched_clock();
7c9903c9 1748 ret = static_call(x86_pmu_handle_irq)(regs);
e8a923cc 1749 finish_clock = sched_clock();
14c63f17
DH
1750
1751 perf_sample_event_took(finish_clock - start_clock);
1752
1753 return ret;
241771ef 1754}
9326638c 1755NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1756
de0428a7
KW
1757struct event_constraint emptyconstraint;
1758struct event_constraint unconstrained;
f87ad35d 1759
95ca792c 1760static int x86_pmu_prepare_cpu(unsigned int cpu)
3f6da390 1761{
7fdba1ca 1762 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
95ca792c 1763 int i;
3f6da390 1764
95ca792c
TG
1765 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1766 cpuc->kfree_on_online[i] = NULL;
1767 if (x86_pmu.cpu_prepare)
1768 return x86_pmu.cpu_prepare(cpu);
1769 return 0;
1770}
7fdba1ca 1771
95ca792c
TG
1772static int x86_pmu_dead_cpu(unsigned int cpu)
1773{
1774 if (x86_pmu.cpu_dead)
1775 x86_pmu.cpu_dead(cpu);
1776 return 0;
1777}
3f6da390 1778
95ca792c
TG
1779static int x86_pmu_online_cpu(unsigned int cpu)
1780{
1781 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1782 int i;
3f6da390 1783
95ca792c
TG
1784 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1785 kfree(cpuc->kfree_on_online[i]);
1786 cpuc->kfree_on_online[i] = NULL;
3f6da390 1787 }
95ca792c
TG
1788 return 0;
1789}
3f6da390 1790
95ca792c
TG
1791static int x86_pmu_starting_cpu(unsigned int cpu)
1792{
1793 if (x86_pmu.cpu_starting)
1794 x86_pmu.cpu_starting(cpu);
1795 return 0;
1796}
1797
1798static int x86_pmu_dying_cpu(unsigned int cpu)
1799{
1800 if (x86_pmu.cpu_dying)
1801 x86_pmu.cpu_dying(cpu);
1802 return 0;
3f6da390
PZ
1803}
1804
12558038
CG
1805static void __init pmu_check_apic(void)
1806{
93984fbd 1807 if (boot_cpu_has(X86_FEATURE_APIC))
12558038
CG
1808 return;
1809
1810 x86_pmu.apic = 0;
1811 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1812 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1813
1814 /*
1815 * If we have a PMU initialized but no APIC
1816 * interrupts, we cannot sample hardware
1817 * events (user-space has to fall back and
1818 * sample via a hrtimer based software event):
1819 */
1820 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1821
12558038
CG
1822}
1823
2766d2ee 1824static struct attribute_group x86_pmu_format_group __ro_after_init = {
641cc938
JO
1825 .name = "format",
1826 .attrs = NULL,
1827};
1828
c7ab62bf 1829ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
a4747393 1830{
1e69a0ef 1831 struct perf_pmu_events_attr *pmu_attr =
a4747393 1832 container_of(attr, struct perf_pmu_events_attr, attr);
1e69a0ef
PZ
1833 u64 config = 0;
1834
1835 if (pmu_attr->id < x86_pmu.max_events)
1836 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1837
3a54aaa0
SE
1838 /* string trumps id */
1839 if (pmu_attr->event_str)
1840 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1841
3a54aaa0
SE
1842 return x86_pmu.events_sysfs_show(page, config);
1843}
c7ab62bf 1844EXPORT_SYMBOL_GPL(events_sysfs_show);
a4747393 1845
fc07e9f9
AK
1846ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1847 char *page)
1848{
1849 struct perf_pmu_events_ht_attr *pmu_attr =
1850 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1851
1852 /*
1853 * Report conditional events depending on Hyper-Threading.
1854 *
1855 * This is overly conservative as usually the HT special
1856 * handling is not needed if the other CPU thread is idle.
1857 *
1858 * Note this does not (and cannot) handle the case when thread
1859 * siblings are invisible, for example with virtualization
1860 * if they are owned by some other guest. The user tool
1861 * has to re-read when a thread sibling gets onlined later.
1862 */
1863 return sprintf(page, "%s",
1864 topology_max_smt_threads() > 1 ?
1865 pmu_attr->event_str_ht :
1866 pmu_attr->event_str_noht);
1867}
1868
a9c81ccd
KL
1869ssize_t events_hybrid_sysfs_show(struct device *dev,
1870 struct device_attribute *attr,
1871 char *page)
1872{
1873 struct perf_pmu_events_hybrid_attr *pmu_attr =
1874 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1875 struct x86_hybrid_pmu *pmu;
1876 const char *str, *next_str;
1877 int i;
1878
1879 if (hweight64(pmu_attr->pmu_type) == 1)
1880 return sprintf(page, "%s", pmu_attr->event_str);
1881
1882 /*
1883 * Hybrid PMUs may support the same event name, but with different
1884 * event encoding, e.g., the mem-loads event on an Atom PMU has
1885 * different event encoding from a Core PMU.
1886 *
1887 * The event_str includes all event encodings. Each event encoding
1888 * is divided by ";". The order of the event encodings must follow
1889 * the order of the hybrid PMU index.
1890 */
1891 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1892
1893 str = pmu_attr->event_str;
1894 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1895 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1896 continue;
1897 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1898 next_str = strchr(str, ';');
1899 if (next_str)
1900 return snprintf(page, next_str - str + 1, "%s", str);
1901 else
1902 return sprintf(page, "%s", str);
1903 }
1904 str = strchr(str, ';');
1905 str++;
1906 }
1907
1908 return 0;
1909}
1910EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1911
a4747393
JO
1912EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1913EVENT_ATTR(instructions, INSTRUCTIONS );
1914EVENT_ATTR(cache-references, CACHE_REFERENCES );
1915EVENT_ATTR(cache-misses, CACHE_MISSES );
1916EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1917EVENT_ATTR(branch-misses, BRANCH_MISSES );
1918EVENT_ATTR(bus-cycles, BUS_CYCLES );
1919EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1920EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1921EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1922
1923static struct attribute *empty_attrs;
1924
95d18aa2 1925static struct attribute *events_attr[] = {
a4747393
JO
1926 EVENT_PTR(CPU_CYCLES),
1927 EVENT_PTR(INSTRUCTIONS),
1928 EVENT_PTR(CACHE_REFERENCES),
1929 EVENT_PTR(CACHE_MISSES),
1930 EVENT_PTR(BRANCH_INSTRUCTIONS),
1931 EVENT_PTR(BRANCH_MISSES),
1932 EVENT_PTR(BUS_CYCLES),
1933 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1934 EVENT_PTR(STALLED_CYCLES_BACKEND),
1935 EVENT_PTR(REF_CPU_CYCLES),
1936 NULL,
1937};
1938
3d567273
JO
1939/*
1940 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1941 * out of events_attr attributes.
1942 */
1943static umode_t
1944is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1945{
1946 struct perf_pmu_events_attr *pmu_attr;
1947
1e69a0ef
PZ
1948 if (idx >= x86_pmu.max_events)
1949 return 0;
1950
3d567273
JO
1951 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1952 /* str trumps id */
1953 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1954}
1955
2766d2ee 1956static struct attribute_group x86_pmu_events_group __ro_after_init = {
a4747393
JO
1957 .name = "events",
1958 .attrs = events_attr,
3d567273 1959 .is_visible = is_visible,
a4747393
JO
1960};
1961
0bf79d44 1962ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1963{
43c032fe
JO
1964 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1965 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1966 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1967 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1968 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1969 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1970 ssize_t ret;
1971
1972 /*
1973 * We have whole page size to spend and just little data
1974 * to write, so we can safely use sprintf.
1975 */
1976 ret = sprintf(page, "event=0x%02llx", event);
1977
1978 if (umask)
1979 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1980
1981 if (edge)
1982 ret += sprintf(page + ret, ",edge");
1983
1984 if (pc)
1985 ret += sprintf(page + ret, ",pc");
1986
1987 if (any)
1988 ret += sprintf(page + ret, ",any");
1989
1990 if (inv)
1991 ret += sprintf(page + ret, ",inv");
1992
1993 if (cmask)
1994 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1995
1996 ret += sprintf(page + ret, "\n");
1997
1998 return ret;
1999}
2000
6089327f 2001static struct attribute_group x86_pmu_attr_group;
5da382eb 2002static struct attribute_group x86_pmu_caps_group;
6089327f 2003
7c9903c9
PZ
2004static void x86_pmu_static_call_update(void)
2005{
2006 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2007 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2008 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2009 static_call_update(x86_pmu_enable, x86_pmu.enable);
2010 static_call_update(x86_pmu_disable, x86_pmu.disable);
2011
8b8ff8cc
AH
2012 static_call_update(x86_pmu_assign, x86_pmu.assign);
2013
7c9903c9
PZ
2014 static_call_update(x86_pmu_add, x86_pmu.add);
2015 static_call_update(x86_pmu_del, x86_pmu.del);
2016 static_call_update(x86_pmu_read, x86_pmu.read);
2017
2018 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2019 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2020 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2021
2022 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2023 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2024 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2025
2026 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2027 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2028
2029 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2030 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
abd562df
LX
2031
2032 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
7c9903c9
PZ
2033}
2034
2035static void _x86_pmu_read(struct perf_event *event)
2036{
2037 x86_perf_event_update(event);
2038}
2039
e11c1a7e
KL
2040void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2041 u64 intel_ctrl)
2042{
2043 pr_info("... version: %d\n", x86_pmu.version);
2044 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2045 pr_info("... generic registers: %d\n", num_counters);
2046 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2047 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2048 pr_info("... fixed-purpose events: %lu\n",
2049 hweight64((((1ULL << num_counters_fixed) - 1)
2050 << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2051 pr_info("... event mask: %016Lx\n", intel_ctrl);
2052}
2053
d9977c43
KL
2054/*
2055 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2056 * of the first registered PMU is unconditionally assigned to
2057 * each possible cpuctx->ctx.pmu.
2058 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2059 */
2060void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2061{
2062 struct perf_cpu_context *cpuctx;
2063
2064 if (!pmu->pmu_cpu_context)
2065 return;
2066
2067 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2068 cpuctx->ctx.pmu = pmu;
2069}
2070
dda99116 2071static int __init init_hw_perf_events(void)
b56a3802 2072{
c1d6f42f 2073 struct x86_pmu_quirk *quirk;
72eae04d
RR
2074 int err;
2075
cdd6c482 2076 pr_info("Performance Events: ");
1123e3ad 2077
b56a3802
JSR
2078 switch (boot_cpu_data.x86_vendor) {
2079 case X86_VENDOR_INTEL:
72eae04d 2080 err = intel_pmu_init();
b56a3802 2081 break;
f87ad35d 2082 case X86_VENDOR_AMD:
72eae04d 2083 err = amd_pmu_init();
f87ad35d 2084 break;
6d0ef316
PW
2085 case X86_VENDOR_HYGON:
2086 err = amd_pmu_init();
2087 x86_pmu.name = "HYGON";
2088 break;
3a4ac121
C
2089 case X86_VENDOR_ZHAOXIN:
2090 case X86_VENDOR_CENTAUR:
2091 err = zhaoxin_pmu_init();
2092 break;
4138960a 2093 default:
8a3da6c7 2094 err = -ENOTSUPP;
b56a3802 2095 }
1123e3ad 2096 if (err != 0) {
cdd6c482 2097 pr_cont("no PMU driver, software events only.\n");
004417a6 2098 return 0;
1123e3ad 2099 }
b56a3802 2100
12558038
CG
2101 pmu_check_apic();
2102
33c6d6a7 2103 /* sanity check that the hardware exists or is emulated */
fc4b8fca 2104 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
004417a6 2105 return 0;
33c6d6a7 2106
1123e3ad 2107 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 2108
e97df763
PZ
2109 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2110
c1d6f42f
PZ
2111 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2112 quirk->func();
3c44780b 2113
a1eac7ac
RR
2114 if (!x86_pmu.intel_ctrl)
2115 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 2116
cdd6c482 2117 perf_events_lapic_init();
9c48f1c6 2118 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 2119
63b14649 2120 unconstrained = (struct event_constraint)
948b1bb8 2121 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 2122 0, x86_pmu.num_counters, 0, 0);
63b14649 2123
641cc938 2124 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 2125
a4747393
JO
2126 if (!x86_pmu.events_sysfs_show)
2127 x86_pmu_events_group.attrs = &empty_attrs;
1a6461b1 2128
baa0c833 2129 pmu.attr_update = x86_pmu.attr_update;
6089327f 2130
d9977c43
KL
2131 if (!is_hybrid()) {
2132 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2133 x86_pmu.num_counters_fixed,
2134 x86_pmu.intel_ctrl);
2135 }
3f6da390 2136
7c9903c9
PZ
2137 if (!x86_pmu.read)
2138 x86_pmu.read = _x86_pmu_read;
2139
abd562df 2140 if (!x86_pmu.guest_get_msrs)
c8e2fe13 2141 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
abd562df 2142
7c9903c9
PZ
2143 x86_pmu_static_call_update();
2144
95ca792c
TG
2145 /*
2146 * Install callbacks. Core will call them for each online
2147 * cpu.
2148 */
73c1b41e 2149 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
95ca792c
TG
2150 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2151 if (err)
2152 return err;
2153
2154 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
73c1b41e 2155 "perf/x86:starting", x86_pmu_starting_cpu,
95ca792c
TG
2156 x86_pmu_dying_cpu);
2157 if (err)
2158 goto out;
2159
73c1b41e 2160 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
95ca792c
TG
2161 x86_pmu_online_cpu, NULL);
2162 if (err)
2163 goto out1;
2164
d9977c43
KL
2165 if (!is_hybrid()) {
2166 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2167 if (err)
2168 goto out2;
2169 } else {
2170 u8 cpu_type = get_this_hybrid_cpu_type();
2171 struct x86_hybrid_pmu *hybrid_pmu;
2172 int i, j;
2173
2174 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2175 cpu_type = x86_pmu.get_hybrid_cpu_type();
2176
2177 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2178 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2179
2180 hybrid_pmu->pmu = pmu;
2181 hybrid_pmu->pmu.type = -1;
2182 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2183 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
55bcf6ef 2184 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
d9977c43
KL
2185
2186 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2187 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2188 if (err)
2189 break;
2190
2191 if (cpu_type == hybrid_pmu->cpu_type)
2192 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2193 }
2194
2195 if (i < x86_pmu.num_hybrid_pmus) {
2196 for (j = 0; j < i; j++)
2197 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2198 pr_warn("Failed to register hybrid PMUs\n");
2199 kfree(x86_pmu.hybrid_pmu);
2200 x86_pmu.hybrid_pmu = NULL;
2201 x86_pmu.num_hybrid_pmus = 0;
2202 goto out2;
2203 }
2204 }
004417a6
PZ
2205
2206 return 0;
95ca792c
TG
2207
2208out2:
2209 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2210out1:
2211 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2212out:
2213 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2214 return err;
241771ef 2215}
004417a6 2216early_initcall(init_hw_perf_events);
621a01ea 2217
7c9903c9 2218static void x86_pmu_read(struct perf_event *event)
ee06094f 2219{
7c9903c9 2220 static_call(x86_pmu_read)(event);
ee06094f
IM
2221}
2222
4d1c52b0
LM
2223/*
2224 * Start group events scheduling transaction
2225 * Set the flag to make pmu::enable() not perform the
2226 * schedulability test, it will be performed at commit time
fbbe0701
SB
2227 *
2228 * We only support PERF_PMU_TXN_ADD transactions. Save the
2229 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2230 * transactions.
4d1c52b0 2231 */
fbbe0701 2232static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 2233{
fbbe0701
SB
2234 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235
2236 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2237
2238 cpuc->txn_flags = txn_flags;
2239 if (txn_flags & ~PERF_PMU_TXN_ADD)
2240 return;
2241
33696fc0 2242 perf_pmu_disable(pmu);
0a3aee0d 2243 __this_cpu_write(cpu_hw_events.n_txn, 0);
871a93b0 2244 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
3dbde695 2245 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
4d1c52b0
LM
2246}
2247
2248/*
2249 * Stop group events scheduling transaction
2250 * Clear the flag and pmu::enable() will perform the
2251 * schedulability test.
2252 */
51b0fe39 2253static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 2254{
fbbe0701
SB
2255 unsigned int txn_flags;
2256 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2257
2258 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2259
2260 txn_flags = cpuc->txn_flags;
2261 cpuc->txn_flags = 0;
2262 if (txn_flags & ~PERF_PMU_TXN_ADD)
2263 return;
2264
90151c35 2265 /*
c347a2f1
PZ
2266 * Truncate collected array by the number of events added in this
2267 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 2268 */
0a3aee0d
TH
2269 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2270 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
871a93b0 2271 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
3dbde695 2272 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
33696fc0 2273 perf_pmu_enable(pmu);
4d1c52b0
LM
2274}
2275
2276/*
2277 * Commit group events scheduling transaction
2278 * Perform the group schedulability test as a whole
2279 * Return 0 if success
c347a2f1
PZ
2280 *
2281 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 2282 */
51b0fe39 2283static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 2284{
89cbc767 2285 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
2286 int assign[X86_PMC_IDX_MAX];
2287 int n, ret;
2288
fbbe0701
SB
2289 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2290
2291 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2292 cpuc->txn_flags = 0;
2293 return 0;
2294 }
2295
4d1c52b0
LM
2296 n = cpuc->n_events;
2297
2298 if (!x86_pmu_initialized())
2299 return -EAGAIN;
2300
7c9903c9 2301 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
4d1c52b0
LM
2302 if (ret)
2303 return ret;
2304
2305 /*
2306 * copy new assignment, now we know it is possible
2307 * will be used by hw_perf_enable()
2308 */
2309 memcpy(cpuc->assign, assign, n*sizeof(int));
2310
fbbe0701 2311 cpuc->txn_flags = 0;
33696fc0 2312 perf_pmu_enable(pmu);
4d1c52b0
LM
2313 return 0;
2314}
cd8a38d3
SE
2315/*
2316 * a fake_cpuc is used to validate event groups. Due to
2317 * the extra reg logic, we need to also allocate a fake
2318 * per_core and per_cpu structure. Otherwise, group events
2319 * using extra reg may conflict without the kernel being
2320 * able to catch this when the last event gets added to
2321 * the group.
2322 */
2323static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2324{
d01b1f96 2325 intel_cpuc_finish(cpuc);
cd8a38d3
SE
2326 kfree(cpuc);
2327}
2328
d9977c43 2329static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
cd8a38d3
SE
2330{
2331 struct cpu_hw_events *cpuc;
d9977c43 2332 int cpu;
cd8a38d3
SE
2333
2334 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2335 if (!cpuc)
2336 return ERR_PTR(-ENOMEM);
b430f7c4 2337 cpuc->is_fake = 1;
d01b1f96 2338
d9977c43
KL
2339 if (is_hybrid()) {
2340 struct x86_hybrid_pmu *h_pmu;
2341
2342 h_pmu = hybrid_pmu(event_pmu);
2343 if (cpumask_empty(&h_pmu->supported_cpus))
2344 goto error;
2345 cpu = cpumask_first(&h_pmu->supported_cpus);
2346 } else
2347 cpu = raw_smp_processor_id();
2348 cpuc->pmu = event_pmu;
2349
d01b1f96
PZI
2350 if (intel_cpuc_prepare(cpuc, cpu))
2351 goto error;
2352
cd8a38d3
SE
2353 return cpuc;
2354error:
2355 free_fake_cpuc(cpuc);
2356 return ERR_PTR(-ENOMEM);
2357}
4d1c52b0 2358
ca037701
PZ
2359/*
2360 * validate that we can schedule this event
2361 */
2362static int validate_event(struct perf_event *event)
2363{
2364 struct cpu_hw_events *fake_cpuc;
2365 struct event_constraint *c;
2366 int ret = 0;
2367
d9977c43 2368 fake_cpuc = allocate_fake_cpuc(event->pmu);
cd8a38d3
SE
2369 if (IS_ERR(fake_cpuc))
2370 return PTR_ERR(fake_cpuc);
ca037701 2371
21d65555 2372 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
ca037701
PZ
2373
2374 if (!c || !c->weight)
aa2bc1ad 2375 ret = -EINVAL;
ca037701
PZ
2376
2377 if (x86_pmu.put_event_constraints)
2378 x86_pmu.put_event_constraints(fake_cpuc, event);
2379
cd8a38d3 2380 free_fake_cpuc(fake_cpuc);
ca037701
PZ
2381
2382 return ret;
2383}
2384
1da53e02
SE
2385/*
2386 * validate a single event group
2387 *
2388 * validation include:
184f412c
IM
2389 * - check events are compatible which each other
2390 * - events do not compete for the same counter
2391 * - number of events <= number of counters
1da53e02
SE
2392 *
2393 * validation ensures the group can be loaded onto the
2394 * PMU if it was the only group available.
2395 */
fe9081cc
PZ
2396static int validate_group(struct perf_event *event)
2397{
1da53e02 2398 struct perf_event *leader = event->group_leader;
502568d5 2399 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 2400 int ret = -EINVAL, n;
fe9081cc 2401
d9977c43
KL
2402 /*
2403 * Reject events from different hybrid PMUs.
2404 */
2405 if (is_hybrid()) {
2406 struct perf_event *sibling;
2407 struct pmu *pmu = NULL;
2408
2409 if (is_x86_event(leader))
2410 pmu = leader->pmu;
2411
2412 for_each_sibling_event(sibling, leader) {
2413 if (!is_x86_event(sibling))
2414 continue;
2415 if (!pmu)
2416 pmu = sibling->pmu;
2417 else if (pmu != sibling->pmu)
2418 return ret;
2419 }
2420 }
2421
2422 fake_cpuc = allocate_fake_cpuc(event->pmu);
cd8a38d3
SE
2423 if (IS_ERR(fake_cpuc))
2424 return PTR_ERR(fake_cpuc);
1da53e02
SE
2425 /*
2426 * the event is not yet connected with its
2427 * siblings therefore we must first collect
2428 * existing siblings, then add the new event
2429 * before we can simulate the scheduling
2430 */
502568d5 2431 n = collect_events(fake_cpuc, leader, true);
1da53e02 2432 if (n < 0)
cd8a38d3 2433 goto out;
fe9081cc 2434
502568d5
PZ
2435 fake_cpuc->n_events = n;
2436 n = collect_events(fake_cpuc, event, false);
1da53e02 2437 if (n < 0)
cd8a38d3 2438 goto out;
fe9081cc 2439
1f6a1e2d 2440 fake_cpuc->n_events = 0;
a072738e 2441 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 2442
502568d5 2443out:
cd8a38d3 2444 free_fake_cpuc(fake_cpuc);
502568d5 2445 return ret;
fe9081cc
PZ
2446}
2447
dda99116 2448static int x86_pmu_event_init(struct perf_event *event)
621a01ea 2449{
d9977c43 2450 struct x86_hybrid_pmu *pmu = NULL;
621a01ea
IM
2451 int err;
2452
d9977c43
KL
2453 if ((event->attr.type != event->pmu->type) &&
2454 (event->attr.type != PERF_TYPE_HARDWARE) &&
2455 (event->attr.type != PERF_TYPE_HW_CACHE))
b0a873eb 2456 return -ENOENT;
d9977c43
KL
2457
2458 if (is_hybrid() && (event->cpu != -1)) {
2459 pmu = hybrid_pmu(event->pmu);
2460 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2461 return -ENOENT;
b0a873eb
PZ
2462 }
2463
2464 err = __x86_pmu_event_init(event);
fe9081cc
PZ
2465 if (!err) {
2466 if (event->group_leader != event)
2467 err = validate_group(event);
ca037701
PZ
2468 else
2469 err = validate_event(event);
fe9081cc 2470 }
a1792cda 2471 if (err) {
cdd6c482
IM
2472 if (event->destroy)
2473 event->destroy(event);
02d029a4 2474 event->destroy = NULL;
a1792cda 2475 }
621a01ea 2476
1af22eba 2477 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
174afc3e 2478 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
7911d3f7
AL
2479 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2480
b0a873eb 2481 return err;
621a01ea 2482}
d7d59fb3 2483
5471eea5
KL
2484void perf_clear_dirty_counters(void)
2485{
2486 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2487 int i;
2488
2489 /* Don't need to clear the assigned counter. */
2490 for (i = 0; i < cpuc->n_events; i++)
2491 __clear_bit(cpuc->assign[i], cpuc->dirty);
2492
2493 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2494 return;
2495
2496 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
f4b4b456
PZ
2497 if (i >= INTEL_PMC_IDX_FIXED) {
2498 /* Metrics and fake events don't have corresponding HW counters. */
2499 if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2500 continue;
2501
5471eea5 2502 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
f4b4b456 2503 } else {
5471eea5 2504 wrmsrl(x86_pmu_event_addr(i), 0);
f4b4b456 2505 }
5471eea5
KL
2506 }
2507
2508 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2509}
2510
bfe33492 2511static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7
AL
2512{
2513 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2514 return;
2515
4b07372a
AL
2516 /*
2517 * This function relies on not being called concurrently in two
2518 * tasks in the same mm. Otherwise one task could observe
2519 * perf_rdpmc_allowed > 1 and return all the way back to
2520 * userspace with CR4.PCE clear while another task is still
2521 * doing on_each_cpu_mask() to propagate CR4.PCE.
2522 *
c1e8d7c6 2523 * For now, this can't happen because all callers hold mmap_lock
4b07372a
AL
2524 * for write. If this changes, we'll need a different solution.
2525 */
42fc5414 2526 mmap_assert_write_locked(mm);
4b07372a 2527
bfe33492 2528 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
cb2a0235 2529 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
7911d3f7
AL
2530}
2531
bfe33492 2532static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7 2533{
7911d3f7
AL
2534 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2535 return;
2536
bfe33492 2537 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
cb2a0235 2538 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
7911d3f7
AL
2539}
2540
fe4a3308
PZ
2541static int x86_pmu_event_idx(struct perf_event *event)
2542{
75608cb0 2543 struct hw_perf_event *hwc = &event->hw;
fe4a3308 2544
75608cb0 2545 if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2546 return 0;
2547
2cb5383b
KL
2548 if (is_metric_idx(hwc->idx))
2549 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2550 else
2551 return hwc->event_base_rdpmc + 1;
fe4a3308
PZ
2552}
2553
0c9d42ed
PZ
2554static ssize_t get_attr_rdpmc(struct device *cdev,
2555 struct device_attribute *attr,
2556 char *buf)
2557{
2558 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2559}
2560
0c9d42ed
PZ
2561static ssize_t set_attr_rdpmc(struct device *cdev,
2562 struct device_attribute *attr,
2563 const char *buf, size_t count)
2564{
e2b297fc
SK
2565 unsigned long val;
2566 ssize_t ret;
2567
2568 ret = kstrtoul(buf, 0, &val);
2569 if (ret)
2570 return ret;
e97df763 2571
a6673429
AL
2572 if (val > 2)
2573 return -EINVAL;
2574
e97df763
PZ
2575 if (x86_pmu.attr_rdpmc_broken)
2576 return -ENOTSUPP;
0c9d42ed 2577
405b4537 2578 if (val != x86_pmu.attr_rdpmc) {
a6673429 2579 /*
405b4537
AS
2580 * Changing into or out of never available or always available,
2581 * aka perf-event-bypassing mode. This path is extremely slow,
a6673429
AL
2582 * but only root can trigger it, so it's okay.
2583 */
405b4537
AS
2584 if (val == 0)
2585 static_branch_inc(&rdpmc_never_available_key);
2586 else if (x86_pmu.attr_rdpmc == 0)
2587 static_branch_dec(&rdpmc_never_available_key);
2588
a6673429 2589 if (val == 2)
631fe154 2590 static_branch_inc(&rdpmc_always_available_key);
405b4537 2591 else if (x86_pmu.attr_rdpmc == 2)
631fe154 2592 static_branch_dec(&rdpmc_always_available_key);
405b4537 2593
cb2a0235 2594 on_each_cpu(cr4_update_pce, NULL, 1);
405b4537 2595 x86_pmu.attr_rdpmc = val;
a6673429
AL
2596 }
2597
0c9d42ed
PZ
2598 return count;
2599}
2600
2601static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2602
2603static struct attribute *x86_pmu_attrs[] = {
2604 &dev_attr_rdpmc.attr,
2605 NULL,
2606};
2607
2766d2ee 2608static struct attribute_group x86_pmu_attr_group __ro_after_init = {
0c9d42ed
PZ
2609 .attrs = x86_pmu_attrs,
2610};
2611
5da382eb
PZ
2612static ssize_t max_precise_show(struct device *cdev,
2613 struct device_attribute *attr,
2614 char *buf)
2615{
2616 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2617}
2618
2619static DEVICE_ATTR_RO(max_precise);
2620
2621static struct attribute *x86_pmu_caps_attrs[] = {
2622 &dev_attr_max_precise.attr,
2623 NULL
2624};
2625
2766d2ee 2626static struct attribute_group x86_pmu_caps_group __ro_after_init = {
5da382eb
PZ
2627 .name = "caps",
2628 .attrs = x86_pmu_caps_attrs,
2629};
2630
0c9d42ed
PZ
2631static const struct attribute_group *x86_pmu_attr_groups[] = {
2632 &x86_pmu_attr_group,
641cc938 2633 &x86_pmu_format_group,
a4747393 2634 &x86_pmu_events_group,
b00233b5 2635 &x86_pmu_caps_group,
0c9d42ed
PZ
2636 NULL,
2637};
2638
ba532500 2639static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2640{
7c9903c9 2641 static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
d010b332
SE
2642}
2643
a4439970
AB
2644static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2645 struct perf_event_context *next)
2646{
7c9903c9 2647 static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
a4439970
AB
2648}
2649
c93dc84c
PZ
2650void perf_check_microcode(void)
2651{
2652 if (x86_pmu.check_microcode)
2653 x86_pmu.check_microcode();
2654}
c93dc84c 2655
81ec3f3c
JO
2656static int x86_pmu_check_period(struct perf_event *event, u64 value)
2657{
2658 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2659 return -EINVAL;
2660
2661 if (value && x86_pmu.limit_period) {
2662 if (x86_pmu.limit_period(event, value) > value)
2663 return -EINVAL;
2664 }
2665
2666 return 0;
2667}
2668
42880f72
AS
2669static int x86_pmu_aux_output_match(struct perf_event *event)
2670{
2671 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2672 return 0;
2673
2674 if (x86_pmu.aux_output_match)
2675 return x86_pmu.aux_output_match(event);
2676
2677 return 0;
2678}
2679
3e9a8b21
KL
2680static int x86_pmu_filter_match(struct perf_event *event)
2681{
2682 if (x86_pmu.filter_match)
2683 return x86_pmu.filter_match(event);
2684
2685 return 1;
2686}
2687
b0a873eb 2688static struct pmu pmu = {
d010b332
SE
2689 .pmu_enable = x86_pmu_enable,
2690 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2691
c93dc84c 2692 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2693
c93dc84c 2694 .event_init = x86_pmu_event_init,
a4eaf7f1 2695
7911d3f7
AL
2696 .event_mapped = x86_pmu_event_mapped,
2697 .event_unmapped = x86_pmu_event_unmapped,
2698
d010b332
SE
2699 .add = x86_pmu_add,
2700 .del = x86_pmu_del,
2701 .start = x86_pmu_start,
2702 .stop = x86_pmu_stop,
2703 .read = x86_pmu_read,
a4eaf7f1 2704
c93dc84c
PZ
2705 .start_txn = x86_pmu_start_txn,
2706 .cancel_txn = x86_pmu_cancel_txn,
2707 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2708
c93dc84c 2709 .event_idx = x86_pmu_event_idx,
ba532500 2710 .sched_task = x86_pmu_sched_task,
a4439970 2711 .swap_task_ctx = x86_pmu_swap_task_ctx,
81ec3f3c 2712 .check_period = x86_pmu_check_period,
42880f72
AS
2713
2714 .aux_output_match = x86_pmu_aux_output_match,
3e9a8b21
KL
2715
2716 .filter_match = x86_pmu_filter_match,
b0a873eb
PZ
2717};
2718
c1317ec2
AL
2719void arch_perf_update_userpage(struct perf_event *event,
2720 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2721{
59eaef78 2722 struct cyc2ns_data data;
698eff63 2723 u64 offset;
20d1c86a 2724
fa731587
PZ
2725 userpg->cap_user_time = 0;
2726 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2727 userpg->cap_user_rdpmc =
2728 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2729 userpg->pmc_width = x86_pmu.cntval_bits;
2730
698eff63 2731 if (!using_native_sched_clock() || !sched_clock_stable())
e3f3541c
PZ
2732 return;
2733
59eaef78 2734 cyc2ns_read_begin(&data);
20d1c86a 2735
59eaef78 2736 offset = data.cyc2ns_offset + __sched_clock_offset;
698eff63 2737
34f43927
PZ
2738 /*
2739 * Internal timekeeping for enabled/running/stopped times
2740 * is always in the local_clock domain.
2741 */
fa731587 2742 userpg->cap_user_time = 1;
59eaef78
PZ
2743 userpg->time_mult = data.cyc2ns_mul;
2744 userpg->time_shift = data.cyc2ns_shift;
698eff63 2745 userpg->time_offset = offset - now;
c73deb6a 2746
34f43927
PZ
2747 /*
2748 * cap_user_time_zero doesn't make sense when we're using a different
2749 * time base for the records.
2750 */
f454bfdd 2751 if (!event->attr.use_clockid) {
34f43927 2752 userpg->cap_user_time_zero = 1;
698eff63 2753 userpg->time_zero = offset;
34f43927 2754 }
20d1c86a 2755
59eaef78 2756 cyc2ns_read_end();
e3f3541c
PZ
2757}
2758
d15d3568
KS
2759/*
2760 * Determine whether the regs were taken from an irq/exception handler rather
2761 * than from perf_arch_fetch_caller_regs().
2762 */
2763static bool perf_hw_regs(struct pt_regs *regs)
2764{
2765 return regs->flags & X86_EFLAGS_FIXED;
2766}
2767
56962b44 2768void
cfbcf468 2769perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2770{
ff083a2d 2771 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
35f4d9b3
JP
2772 struct unwind_state state;
2773 unsigned long addr;
2774
b9f5621c 2775 if (guest_cbs && guest_cbs->state()) {
927c7a9e 2776 /* TODO: We don't support guest os callchain now */
ed805261 2777 return;
927c7a9e
FW
2778 }
2779
83f44ae0
SL
2780 if (perf_callchain_store(entry, regs->ip))
2781 return;
2782
2783 if (perf_hw_regs(regs))
d15d3568 2784 unwind_start(&state, current, regs, NULL);
83f44ae0 2785 else
d15d3568 2786 unwind_start(&state, current, NULL, (void *)regs->sp);
d7d59fb3 2787
d15d3568 2788 for (; !unwind_done(&state); unwind_next_frame(&state)) {
35f4d9b3
JP
2789 addr = unwind_get_return_address(&state);
2790 if (!addr || perf_callchain_store(entry, addr))
2791 return;
2792 }
d7d59fb3
PZ
2793}
2794
bc6ca7b3
AS
2795static inline int
2796valid_user_frame(const void __user *fp, unsigned long size)
2797{
2798 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2799}
2800
d07bdfd3
PZ
2801static unsigned long get_segment_base(unsigned int segment)
2802{
2803 struct desc_struct *desc;
990e9dc3 2804 unsigned int idx = segment >> 3;
d07bdfd3
PZ
2805
2806 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2807#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2808 struct ldt_struct *ldt;
2809
37868fe1 2810 /* IRQs are off, so this synchronizes with smp_store_release */
506458ef 2811 ldt = READ_ONCE(current->active_mm->context.ldt);
eaa2f87c 2812 if (!ldt || idx >= ldt->nr_entries)
d07bdfd3
PZ
2813 return 0;
2814
37868fe1 2815 desc = &ldt->entries[idx];
a5b9e5a2
AL
2816#else
2817 return 0;
2818#endif
d07bdfd3 2819 } else {
eaa2f87c 2820 if (idx >= GDT_ENTRIES)
d07bdfd3
PZ
2821 return 0;
2822
37868fe1 2823 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2824 }
2825
37868fe1 2826 return get_desc_base(desc);
d07bdfd3
PZ
2827}
2828
10ed3493 2829#ifdef CONFIG_IA32_EMULATION
d1a797f3 2830
0d55303c 2831#include <linux/compat.h>
d1a797f3 2832
257ef9d2 2833static inline int
cfbcf468 2834perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
74193ef0 2835{
257ef9d2 2836 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2837 unsigned long ss_base, cs_base;
257ef9d2 2838 struct stack_frame_ia32 frame;
c8e3dd86 2839 const struct stack_frame_ia32 __user *fp;
74193ef0 2840
375d4bfd 2841 if (user_64bit_mode(regs))
257ef9d2
TE
2842 return 0;
2843
d07bdfd3
PZ
2844 cs_base = get_segment_base(regs->cs);
2845 ss_base = get_segment_base(regs->ss);
2846
2847 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2848 pagefault_disable();
3b1fff08 2849 while (entry->nr < entry->max_stack) {
ae31fe51 2850 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2851 break;
2852
c8e3dd86 2853 if (__get_user(frame.next_frame, &fp->next_frame))
75925e1a 2854 break;
c8e3dd86 2855 if (__get_user(frame.return_address, &fp->return_address))
257ef9d2 2856 break;
74193ef0 2857
d07bdfd3
PZ
2858 perf_callchain_store(entry, cs_base + frame.return_address);
2859 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2860 }
75925e1a 2861 pagefault_enable();
257ef9d2 2862 return 1;
d7d59fb3 2863}
257ef9d2
TE
2864#else
2865static inline int
cfbcf468 2866perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
257ef9d2
TE
2867{
2868 return 0;
2869}
2870#endif
d7d59fb3 2871
56962b44 2872void
cfbcf468 2873perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2874{
ff083a2d 2875 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
d7d59fb3 2876 struct stack_frame frame;
c8e3dd86 2877 const struct stack_frame __user *fp;
d7d59fb3 2878
b9f5621c 2879 if (guest_cbs && guest_cbs->state()) {
927c7a9e 2880 /* TODO: We don't support guest os callchain now */
ed805261 2881 return;
927c7a9e 2882 }
5a6cec3a 2883
d07bdfd3
PZ
2884 /*
2885 * We don't know what to do with VM86 stacks.. ignore them for now.
2886 */
2887 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2888 return;
2889
c8e3dd86 2890 fp = (void __user *)regs->bp;
d7d59fb3 2891
70791ce9 2892 perf_callchain_store(entry, regs->ip);
d7d59fb3 2893
4012e77a 2894 if (!nmi_uaccess_okay())
20afc60f
AV
2895 return;
2896
257ef9d2
TE
2897 if (perf_callchain_user32(regs, entry))
2898 return;
2899
75925e1a 2900 pagefault_disable();
3b1fff08 2901 while (entry->nr < entry->max_stack) {
ae31fe51 2902 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2903 break;
2904
c8e3dd86 2905 if (__get_user(frame.next_frame, &fp->next_frame))
75925e1a 2906 break;
c8e3dd86 2907 if (__get_user(frame.return_address, &fp->return_address))
d7d59fb3
PZ
2908 break;
2909
70791ce9 2910 perf_callchain_store(entry, frame.return_address);
75925e1a 2911 fp = (void __user *)frame.next_frame;
d7d59fb3 2912 }
75925e1a 2913 pagefault_enable();
d7d59fb3
PZ
2914}
2915
d07bdfd3
PZ
2916/*
2917 * Deal with code segment offsets for the various execution modes:
2918 *
2919 * VM86 - the good olde 16 bit days, where the linear address is
2920 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2921 *
2922 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2923 * to figure out what the 32bit base address is.
2924 *
2925 * X32 - has TIF_X32 set, but is running in x86_64
2926 *
2927 * X86_64 - CS,DS,SS,ES are all zero based.
2928 */
2929static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2930{
383f3af3
AL
2931 /*
2932 * For IA32 we look at the GDT/LDT segment base to convert the
2933 * effective IP to a linear address.
2934 */
2935
2936#ifdef CONFIG_X86_32
d07bdfd3
PZ
2937 /*
2938 * If we are in VM86 mode, add the segment offset to convert to a
2939 * linear address.
2940 */
2941 if (regs->flags & X86_VM_MASK)
2942 return 0x10 * regs->cs;
2943
55474c48 2944 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2945 return get_segment_base(regs->cs);
2946#else
c56716af
AL
2947 if (user_mode(regs) && !user_64bit_mode(regs) &&
2948 regs->cs != __USER32_CS)
2949 return get_segment_base(regs->cs);
d07bdfd3
PZ
2950#endif
2951 return 0;
2952}
dcf46b94 2953
d07bdfd3
PZ
2954unsigned long perf_instruction_pointer(struct pt_regs *regs)
2955{
ff083a2d
SC
2956 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2957
b9f5621c
LX
2958 if (guest_cbs && guest_cbs->state())
2959 return guest_cbs->get_ip();
dcf46b94 2960
d07bdfd3 2961 return regs->ip + code_segment_base(regs);
39447b38
ZY
2962}
2963
2964unsigned long perf_misc_flags(struct pt_regs *regs)
2965{
ff083a2d 2966 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
b9f5621c 2967 unsigned int guest_state = guest_cbs ? guest_cbs->state() : 0;
39447b38 2968 int misc = 0;
dcf46b94 2969
b9f5621c
LX
2970 if (guest_state) {
2971 if (guest_state & PERF_GUEST_USER)
dcf46b94
ZY
2972 misc |= PERF_RECORD_MISC_GUEST_USER;
2973 else
2974 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2975 } else {
d07bdfd3 2976 if (user_mode(regs))
dcf46b94
ZY
2977 misc |= PERF_RECORD_MISC_USER;
2978 else
2979 misc |= PERF_RECORD_MISC_KERNEL;
2980 }
2981
39447b38 2982 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2983 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2984
2985 return misc;
2986}
b3d9468a
GN
2987
2988void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2989{
2990 cap->version = x86_pmu.version;
d4b294bf
KL
2991 /*
2992 * KVM doesn't support the hybrid PMU yet.
2993 * Return the common value in global x86_pmu,
2994 * which available for all cores.
2995 */
b3d9468a
GN
2996 cap->num_counters_gp = x86_pmu.num_counters;
2997 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2998 cap->bit_width_gp = x86_pmu.cntval_bits;
2999 cap->bit_width_fixed = x86_pmu.cntval_bits;
3000 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
3001 cap->events_mask_len = x86_pmu.events_mask_len;
3002}
3003EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);