perf/x86/intel: Update event constraints when HT is off
[linux-2.6-block.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
27f6d22b 40#include "perf_event.h"
de0428a7 41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
1b7b938f 138static atomic_t pmc_refcount;
4e935e47
PZ
139static DEFINE_MUTEX(pmc_reserve_mutex);
140
b27ea29c
RR
141#ifdef CONFIG_X86_LOCAL_APIC
142
4e935e47
PZ
143static bool reserve_pmc_hardware(void)
144{
145 int i;
146
948b1bb8 147 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
149 goto perfctr_fail;
150 }
151
948b1bb8 152 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
154 goto eventsel_fail;
155 }
156
157 return true;
158
159eventsel_fail:
160 for (i--; i >= 0; i--)
41bf4989 161 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 162
948b1bb8 163 i = x86_pmu.num_counters;
4e935e47
PZ
164
165perfctr_fail:
166 for (i--; i >= 0; i--)
41bf4989 167 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 168
4e935e47
PZ
169 return false;
170}
171
172static void release_pmc_hardware(void)
173{
174 int i;
175
948b1bb8 176 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 179 }
4e935e47
PZ
180}
181
b27ea29c
RR
182#else
183
184static bool reserve_pmc_hardware(void) { return true; }
185static void release_pmc_hardware(void) {}
186
187#endif
188
33c6d6a7
DZ
189static bool check_hw_exists(void)
190{
a5ebe0ba
GD
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
68ab7476 194 int reg_safe = -1;
33c6d6a7 195
4407204c
PZ
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 201 reg = x86_pmu_config_addr(i);
4407204c
PZ
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
a5ebe0ba
GD
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
68ab7476
DZ
209 } else {
210 reg_safe = i;
a5ebe0ba 211 }
4407204c
PZ
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
4407204c
PZ
225 }
226 }
227
68ab7476
DZ
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
4407204c 239 /*
bffd5fc2
AP
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 243 */
68ab7476 244 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
f285f92f
RR
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 250 if (ret || val != val_new)
4407204c 251 goto msr_fail;
33c6d6a7 252
45daae57
IM
253 /*
254 * We still allow the PMU driver to operate:
255 */
a5ebe0ba 256 if (bios_fail) {
1b74dde7
CY
257 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 reg_fail, val_fail);
a5ebe0ba 260 }
45daae57
IM
261
262 return true;
4407204c
PZ
263
264msr_fail:
1b74dde7
CY
265 pr_cont("Broken PMU hardware detected, using software events only.\n");
266 pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
65d71fe1
PZI
267 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 reg, val_new);
45daae57 269
4407204c 270 return false;
33c6d6a7
DZ
271}
272
cdd6c482 273static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 274{
6b099d9b 275 x86_release_hardware();
1b7b938f 276 atomic_dec(&active_events);
4e935e47
PZ
277}
278
48070342
AS
279void hw_perf_lbr_event_destroy(struct perf_event *event)
280{
281 hw_perf_event_destroy(event);
282
283 /* undo the lbr/bts event accounting */
284 x86_del_exclusive(x86_lbr_exclusive_lbr);
285}
286
85cf9dba
RR
287static inline int x86_pmu_initialized(void)
288{
289 return x86_pmu.handle_irq != NULL;
290}
291
8326f44d 292static inline int
e994d7d2 293set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 294{
e994d7d2 295 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
296 unsigned int cache_type, cache_op, cache_result;
297 u64 config, val;
298
299 config = attr->config;
300
301 cache_type = (config >> 0) & 0xff;
302 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 return -EINVAL;
304
305 cache_op = (config >> 8) & 0xff;
306 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 return -EINVAL;
308
309 cache_result = (config >> 16) & 0xff;
310 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 return -EINVAL;
312
313 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314
315 if (val == 0)
316 return -ENOENT;
317
318 if (val == -1)
319 return -EINVAL;
320
321 hwc->config |= val;
e994d7d2
AK
322 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 return x86_pmu_extra_regs(val, event);
8326f44d
IM
324}
325
6b099d9b
AS
326int x86_reserve_hardware(void)
327{
328 int err = 0;
329
1b7b938f 330 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 331 mutex_lock(&pmc_reserve_mutex);
1b7b938f 332 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
333 if (!reserve_pmc_hardware())
334 err = -EBUSY;
335 else
336 reserve_ds_buffers();
337 }
338 if (!err)
1b7b938f 339 atomic_inc(&pmc_refcount);
6b099d9b
AS
340 mutex_unlock(&pmc_reserve_mutex);
341 }
342
343 return err;
344}
345
346void x86_release_hardware(void)
347{
1b7b938f 348 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
349 release_pmc_hardware();
350 release_ds_buffers();
351 mutex_unlock(&pmc_reserve_mutex);
352 }
353}
354
48070342
AS
355/*
356 * Check if we can create event of a certain type (that no conflicting events
357 * are present).
358 */
359int x86_add_exclusive(unsigned int what)
360{
93472aff 361 int i;
48070342 362
ccbebba4
AS
363 if (x86_pmu.lbr_pt_coexist)
364 return 0;
365
93472aff
PZ
366 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
367 mutex_lock(&pmc_reserve_mutex);
368 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
369 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
370 goto fail_unlock;
371 }
372 atomic_inc(&x86_pmu.lbr_exclusive[what]);
373 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 374 }
48070342 375
93472aff
PZ
376 atomic_inc(&active_events);
377 return 0;
48070342 378
93472aff 379fail_unlock:
48070342 380 mutex_unlock(&pmc_reserve_mutex);
93472aff 381 return -EBUSY;
48070342
AS
382}
383
384void x86_del_exclusive(unsigned int what)
385{
ccbebba4
AS
386 if (x86_pmu.lbr_pt_coexist)
387 return;
388
48070342 389 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 390 atomic_dec(&active_events);
48070342
AS
391}
392
de0428a7 393int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
394{
395 struct perf_event_attr *attr = &event->attr;
396 struct hw_perf_event *hwc = &event->hw;
397 u64 config;
398
6c7e550f 399 if (!is_sampling_event(event)) {
c1726f34
RR
400 hwc->sample_period = x86_pmu.max_period;
401 hwc->last_period = hwc->sample_period;
e7850595 402 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
403 }
404
405 if (attr->type == PERF_TYPE_RAW)
ed13ec58 406 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
407
408 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 409 return set_ext_hw_attr(hwc, event);
c1726f34
RR
410
411 if (attr->config >= x86_pmu.max_events)
412 return -EINVAL;
413
414 /*
415 * The generic map:
416 */
417 config = x86_pmu.event_map(attr->config);
418
419 if (config == 0)
420 return -ENOENT;
421
422 if (config == -1LL)
423 return -EINVAL;
424
425 /*
426 * Branch tracing:
427 */
18a073a3
PZ
428 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
429 !attr->freq && hwc->sample_period == 1) {
c1726f34 430 /* BTS is not supported by this architecture. */
6809b6ea 431 if (!x86_pmu.bts_active)
c1726f34
RR
432 return -EOPNOTSUPP;
433
434 /* BTS is currently only allowed for user-mode. */
435 if (!attr->exclude_kernel)
436 return -EOPNOTSUPP;
48070342
AS
437
438 /* disallow bts if conflicting events are present */
439 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
440 return -EBUSY;
441
442 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
443 }
444
445 hwc->config |= config;
446
447 return 0;
448}
4261e0e0 449
ff3fb511
SE
450/*
451 * check that branch_sample_type is compatible with
452 * settings needed for precise_ip > 1 which implies
453 * using the LBR to capture ALL taken branches at the
454 * priv levels of the measurement
455 */
456static inline int precise_br_compat(struct perf_event *event)
457{
458 u64 m = event->attr.branch_sample_type;
459 u64 b = 0;
460
461 /* must capture all branches */
462 if (!(m & PERF_SAMPLE_BRANCH_ANY))
463 return 0;
464
465 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
466
467 if (!event->attr.exclude_user)
468 b |= PERF_SAMPLE_BRANCH_USER;
469
470 if (!event->attr.exclude_kernel)
471 b |= PERF_SAMPLE_BRANCH_KERNEL;
472
473 /*
474 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
475 */
476
477 return m == b;
478}
479
de0428a7 480int x86_pmu_hw_config(struct perf_event *event)
a072738e 481{
ab608344
PZ
482 if (event->attr.precise_ip) {
483 int precise = 0;
484
485 /* Support for constant skid */
c93dc84c 486 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
487 precise++;
488
5553be26 489 /* Support for IP fixup */
03de874a 490 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26 491 precise++;
72469764
AK
492
493 if (x86_pmu.pebs_prec_dist)
494 precise++;
5553be26 495 }
ab608344
PZ
496
497 if (event->attr.precise_ip > precise)
498 return -EOPNOTSUPP;
4b854900
YZ
499 }
500 /*
501 * check that PEBS LBR correction does not conflict with
502 * whatever the user is asking with attr->branch_sample_type
503 */
504 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
505 u64 *br_type = &event->attr.branch_sample_type;
506
507 if (has_branch_stack(event)) {
508 if (!precise_br_compat(event))
509 return -EOPNOTSUPP;
510
511 /* branch_sample_type is compatible */
512
513 } else {
514 /*
515 * user did not specify branch_sample_type
516 *
517 * For PEBS fixups, we capture all
518 * the branches at the priv level of the
519 * event.
520 */
521 *br_type = PERF_SAMPLE_BRANCH_ANY;
522
523 if (!event->attr.exclude_user)
524 *br_type |= PERF_SAMPLE_BRANCH_USER;
525
526 if (!event->attr.exclude_kernel)
527 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 528 }
ab608344
PZ
529 }
530
e18bf526
YZ
531 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
532 event->attach_state |= PERF_ATTACH_TASK_DATA;
533
a072738e
CG
534 /*
535 * Generate PMC IRQs:
536 * (keep 'enabled' bit clear for now)
537 */
b4cdc5c2 538 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
539
540 /*
541 * Count user and OS events unless requested not to
542 */
b4cdc5c2
PZ
543 if (!event->attr.exclude_user)
544 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
545 if (!event->attr.exclude_kernel)
546 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 547
b4cdc5c2
PZ
548 if (event->attr.type == PERF_TYPE_RAW)
549 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 550
294fe0f5
AK
551 if (event->attr.sample_period && x86_pmu.limit_period) {
552 if (x86_pmu.limit_period(event, event->attr.sample_period) >
553 event->attr.sample_period)
554 return -EINVAL;
555 }
556
9d0fcba6 557 return x86_setup_perfctr(event);
a098f448
RR
558}
559
241771ef 560/*
0d48696f 561 * Setup the hardware configuration for a given attr_type
241771ef 562 */
b0a873eb 563static int __x86_pmu_event_init(struct perf_event *event)
241771ef 564{
4e935e47 565 int err;
241771ef 566
85cf9dba
RR
567 if (!x86_pmu_initialized())
568 return -ENODEV;
241771ef 569
6b099d9b 570 err = x86_reserve_hardware();
4e935e47
PZ
571 if (err)
572 return err;
573
1b7b938f 574 atomic_inc(&active_events);
cdd6c482 575 event->destroy = hw_perf_event_destroy;
a1792cda 576
4261e0e0
RR
577 event->hw.idx = -1;
578 event->hw.last_cpu = -1;
579 event->hw.last_tag = ~0ULL;
b690081d 580
efc9f05d
SE
581 /* mark unused */
582 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
583 event->hw.branch_reg.idx = EXTRA_REG_NONE;
584
9d0fcba6 585 return x86_pmu.hw_config(event);
4261e0e0
RR
586}
587
de0428a7 588void x86_pmu_disable_all(void)
f87ad35d 589{
89cbc767 590 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
591 int idx;
592
948b1bb8 593 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
594 u64 val;
595
43f6201a 596 if (!test_bit(idx, cpuc->active_mask))
4295ee62 597 continue;
41bf4989 598 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 599 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 600 continue;
bb1165d6 601 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 602 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 603 }
f87ad35d
JSR
604}
605
c3d266c8
KL
606/*
607 * There may be PMI landing after enabled=0. The PMI hitting could be before or
608 * after disable_all.
609 *
610 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
611 * It will not be re-enabled in the NMI handler again, because enabled=0. After
612 * handling the NMI, disable_all will be called, which will not change the
613 * state either. If PMI hits after disable_all, the PMU is already disabled
614 * before entering NMI handler. The NMI handler will not change the state
615 * either.
616 *
617 * So either situation is harmless.
618 */
a4eaf7f1 619static void x86_pmu_disable(struct pmu *pmu)
b56a3802 620{
89cbc767 621 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 622
85cf9dba 623 if (!x86_pmu_initialized())
9e35ad38 624 return;
1da53e02 625
1a6e21f7
PZ
626 if (!cpuc->enabled)
627 return;
628
629 cpuc->n_added = 0;
630 cpuc->enabled = 0;
631 barrier();
1da53e02
SE
632
633 x86_pmu.disable_all();
b56a3802 634}
241771ef 635
de0428a7 636void x86_pmu_enable_all(int added)
f87ad35d 637{
89cbc767 638 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
639 int idx;
640
948b1bb8 641 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 642 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 643
43f6201a 644 if (!test_bit(idx, cpuc->active_mask))
4295ee62 645 continue;
984b838c 646
d45dd923 647 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
648 }
649}
650
51b0fe39 651static struct pmu pmu;
1da53e02
SE
652
653static inline int is_x86_event(struct perf_event *event)
654{
655 return event->pmu == &pmu;
656}
657
1e2ad28f
RR
658/*
659 * Event scheduler state:
660 *
661 * Assign events iterating over all events and counters, beginning
662 * with events with least weights first. Keep the current iterator
663 * state in struct sched_state.
664 */
665struct sched_state {
666 int weight;
667 int event; /* event index */
668 int counter; /* counter index */
669 int unassigned; /* number of events to be assigned left */
cc1790cf 670 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
671 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
672};
673
bc1738f6
RR
674/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
675#define SCHED_STATES_MAX 2
676
1e2ad28f
RR
677struct perf_sched {
678 int max_weight;
679 int max_events;
cc1790cf
PZ
680 int max_gp;
681 int saved_states;
b371b594 682 struct event_constraint **constraints;
1e2ad28f 683 struct sched_state state;
bc1738f6 684 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
685};
686
687/*
688 * Initialize interator that runs through all events and counters.
689 */
b371b594 690static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 691 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
692{
693 int idx;
694
695 memset(sched, 0, sizeof(*sched));
696 sched->max_events = num;
697 sched->max_weight = wmax;
cc1790cf 698 sched->max_gp = gpmax;
b371b594 699 sched->constraints = constraints;
1e2ad28f
RR
700
701 for (idx = 0; idx < num; idx++) {
b371b594 702 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
703 break;
704 }
705
706 sched->state.event = idx; /* start with min weight */
707 sched->state.weight = wmin;
708 sched->state.unassigned = num;
709}
710
bc1738f6
RR
711static void perf_sched_save_state(struct perf_sched *sched)
712{
713 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
714 return;
715
716 sched->saved[sched->saved_states] = sched->state;
717 sched->saved_states++;
718}
719
720static bool perf_sched_restore_state(struct perf_sched *sched)
721{
722 if (!sched->saved_states)
723 return false;
724
725 sched->saved_states--;
726 sched->state = sched->saved[sched->saved_states];
727
728 /* continue with next counter: */
729 clear_bit(sched->state.counter++, sched->state.used);
730
731 return true;
732}
733
1e2ad28f
RR
734/*
735 * Select a counter for the current event to schedule. Return true on
736 * success.
737 */
bc1738f6 738static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
739{
740 struct event_constraint *c;
741 int idx;
742
743 if (!sched->state.unassigned)
744 return false;
745
746 if (sched->state.event >= sched->max_events)
747 return false;
748
b371b594 749 c = sched->constraints[sched->state.event];
4defea85 750 /* Prefer fixed purpose counters */
15c7ad51
RR
751 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
752 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 753 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
754 if (!__test_and_set_bit(idx, sched->state.used))
755 goto done;
756 }
757 }
cc1790cf 758
1e2ad28f
RR
759 /* Grab the first unused counter starting with idx */
760 idx = sched->state.counter;
15c7ad51 761 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
762 if (!__test_and_set_bit(idx, sched->state.used)) {
763 if (sched->state.nr_gp++ >= sched->max_gp)
764 return false;
765
4defea85 766 goto done;
cc1790cf 767 }
1e2ad28f 768 }
1e2ad28f 769
4defea85
PZ
770 return false;
771
772done:
773 sched->state.counter = idx;
1e2ad28f 774
bc1738f6
RR
775 if (c->overlap)
776 perf_sched_save_state(sched);
777
778 return true;
779}
780
781static bool perf_sched_find_counter(struct perf_sched *sched)
782{
783 while (!__perf_sched_find_counter(sched)) {
784 if (!perf_sched_restore_state(sched))
785 return false;
786 }
787
1e2ad28f
RR
788 return true;
789}
790
791/*
792 * Go through all unassigned events and find the next one to schedule.
793 * Take events with the least weight first. Return true on success.
794 */
795static bool perf_sched_next_event(struct perf_sched *sched)
796{
797 struct event_constraint *c;
798
799 if (!sched->state.unassigned || !--sched->state.unassigned)
800 return false;
801
802 do {
803 /* next event */
804 sched->state.event++;
805 if (sched->state.event >= sched->max_events) {
806 /* next weight */
807 sched->state.event = 0;
808 sched->state.weight++;
809 if (sched->state.weight > sched->max_weight)
810 return false;
811 }
b371b594 812 c = sched->constraints[sched->state.event];
1e2ad28f
RR
813 } while (c->weight != sched->state.weight);
814
815 sched->state.counter = 0; /* start with first counter */
816
817 return true;
818}
819
820/*
821 * Assign a counter for each event.
822 */
b371b594 823int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 824 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
825{
826 struct perf_sched sched;
827
cc1790cf 828 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
829
830 do {
831 if (!perf_sched_find_counter(&sched))
832 break; /* failed */
833 if (assign)
834 assign[sched.state.event] = sched.state.counter;
835 } while (perf_sched_next_event(&sched));
836
837 return sched.state.unassigned;
838}
4a3dc121 839EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 840
de0428a7 841int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 842{
43b45780 843 struct event_constraint *c;
1da53e02 844 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 845 struct perf_event *e;
e979121b 846 int i, wmin, wmax, unsched = 0;
1da53e02
SE
847 struct hw_perf_event *hwc;
848
849 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
850
c5362c0c
MD
851 if (x86_pmu.start_scheduling)
852 x86_pmu.start_scheduling(cpuc);
853
1e2ad28f 854 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 855 cpuc->event_constraint[i] = NULL;
79cba822 856 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 857 cpuc->event_constraint[i] = c;
43b45780 858
1e2ad28f
RR
859 wmin = min(wmin, c->weight);
860 wmax = max(wmax, c->weight);
1da53e02
SE
861 }
862
8113070d
SE
863 /*
864 * fastpath, try to reuse previous register
865 */
c933c1a6 866 for (i = 0; i < n; i++) {
8113070d 867 hwc = &cpuc->event_list[i]->hw;
b371b594 868 c = cpuc->event_constraint[i];
8113070d
SE
869
870 /* never assigned */
871 if (hwc->idx == -1)
872 break;
873
874 /* constraint still honored */
63b14649 875 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
876 break;
877
878 /* not already used */
879 if (test_bit(hwc->idx, used_mask))
880 break;
881
34538ee7 882 __set_bit(hwc->idx, used_mask);
8113070d
SE
883 if (assign)
884 assign[i] = hwc->idx;
885 }
8113070d 886
1e2ad28f 887 /* slow path */
b371b594 888 if (i != n) {
cc1790cf
PZ
889 int gpmax = x86_pmu.num_counters;
890
891 /*
892 * Do not allow scheduling of more than half the available
893 * generic counters.
894 *
895 * This helps avoid counter starvation of sibling thread by
896 * ensuring at most half the counters cannot be in exclusive
897 * mode. There is no designated counters for the limits. Any
898 * N/2 counters can be used. This helps with events with
899 * specific counter constraints.
900 */
901 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
902 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
903 gpmax /= 2;
904
b371b594 905 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 906 wmax, gpmax, assign);
b371b594 907 }
8113070d 908
2f7f73a5 909 /*
e979121b
MD
910 * In case of success (unsched = 0), mark events as committed,
911 * so we do not put_constraint() in case new events are added
912 * and fail to be scheduled
913 *
914 * We invoke the lower level commit callback to lock the resource
915 *
916 * We do not need to do all of this in case we are called to
917 * validate an event group (assign == NULL)
2f7f73a5 918 */
e979121b 919 if (!unsched && assign) {
2f7f73a5
SE
920 for (i = 0; i < n; i++) {
921 e = cpuc->event_list[i];
922 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 923 if (x86_pmu.commit_scheduling)
b371b594 924 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 925 }
8736e548 926 } else {
1da53e02 927 for (i = 0; i < n; i++) {
2f7f73a5
SE
928 e = cpuc->event_list[i];
929 /*
930 * do not put_constraint() on comitted events,
931 * because they are good to go
932 */
933 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
934 continue;
935
e979121b
MD
936 /*
937 * release events that failed scheduling
938 */
1da53e02 939 if (x86_pmu.put_event_constraints)
2f7f73a5 940 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
941 }
942 }
c5362c0c
MD
943
944 if (x86_pmu.stop_scheduling)
945 x86_pmu.stop_scheduling(cpuc);
946
e979121b 947 return unsched ? -EINVAL : 0;
1da53e02
SE
948}
949
950/*
951 * dogrp: true if must collect siblings events (group)
952 * returns total number of events and error code
953 */
954static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
955{
956 struct perf_event *event;
957 int n, max_count;
958
948b1bb8 959 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
960
961 /* current number of events already accepted */
962 n = cpuc->n_events;
963
964 if (is_x86_event(leader)) {
965 if (n >= max_count)
aa2bc1ad 966 return -EINVAL;
1da53e02
SE
967 cpuc->event_list[n] = leader;
968 n++;
969 }
970 if (!dogrp)
971 return n;
972
973 list_for_each_entry(event, &leader->sibling_list, group_entry) {
974 if (!is_x86_event(event) ||
8113070d 975 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
976 continue;
977
978 if (n >= max_count)
aa2bc1ad 979 return -EINVAL;
1da53e02
SE
980
981 cpuc->event_list[n] = event;
982 n++;
983 }
984 return n;
985}
986
1da53e02 987static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 988 struct cpu_hw_events *cpuc, int i)
1da53e02 989{
447a194b
SE
990 struct hw_perf_event *hwc = &event->hw;
991
992 hwc->idx = cpuc->assign[i];
993 hwc->last_cpu = smp_processor_id();
994 hwc->last_tag = ++cpuc->tags[i];
1da53e02 995
15c7ad51 996 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
997 hwc->config_base = 0;
998 hwc->event_base = 0;
15c7ad51 999 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 1000 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
1001 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1002 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 1003 } else {
73d6e522
RR
1004 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1005 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 1006 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
1007 }
1008}
1009
447a194b
SE
1010static inline int match_prev_assignment(struct hw_perf_event *hwc,
1011 struct cpu_hw_events *cpuc,
1012 int i)
1013{
1014 return hwc->idx == cpuc->assign[i] &&
1015 hwc->last_cpu == smp_processor_id() &&
1016 hwc->last_tag == cpuc->tags[i];
1017}
1018
a4eaf7f1 1019static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1020
a4eaf7f1 1021static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1022{
89cbc767 1023 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1024 struct perf_event *event;
1025 struct hw_perf_event *hwc;
11164cd4 1026 int i, added = cpuc->n_added;
1da53e02 1027
85cf9dba 1028 if (!x86_pmu_initialized())
2b9ff0db 1029 return;
1a6e21f7
PZ
1030
1031 if (cpuc->enabled)
1032 return;
1033
1da53e02 1034 if (cpuc->n_added) {
19925ce7 1035 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1036 /*
1037 * apply assignment obtained either from
1038 * hw_perf_group_sched_in() or x86_pmu_enable()
1039 *
1040 * step1: save events moving to new counters
1da53e02 1041 */
19925ce7 1042 for (i = 0; i < n_running; i++) {
1da53e02
SE
1043 event = cpuc->event_list[i];
1044 hwc = &event->hw;
1045
447a194b
SE
1046 /*
1047 * we can avoid reprogramming counter if:
1048 * - assigned same counter as last time
1049 * - running on same CPU as last time
1050 * - no other event has used the counter since
1051 */
1052 if (hwc->idx == -1 ||
1053 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1054 continue;
1055
a4eaf7f1
PZ
1056 /*
1057 * Ensure we don't accidentally enable a stopped
1058 * counter simply because we rescheduled.
1059 */
1060 if (hwc->state & PERF_HES_STOPPED)
1061 hwc->state |= PERF_HES_ARCH;
1062
1063 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1064 }
1065
c347a2f1
PZ
1066 /*
1067 * step2: reprogram moved events into new counters
1068 */
1da53e02 1069 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1070 event = cpuc->event_list[i];
1071 hwc = &event->hw;
1072
45e16a68 1073 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1074 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1075 else if (i < n_running)
1076 continue;
1da53e02 1077
a4eaf7f1
PZ
1078 if (hwc->state & PERF_HES_ARCH)
1079 continue;
1080
1081 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1082 }
1083 cpuc->n_added = 0;
1084 perf_events_lapic_init();
1085 }
1a6e21f7
PZ
1086
1087 cpuc->enabled = 1;
1088 barrier();
1089
11164cd4 1090 x86_pmu.enable_all(added);
ee06094f 1091}
ee06094f 1092
245b2e70 1093static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1094
ee06094f
IM
1095/*
1096 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1097 * To be called with the event disabled in hw:
ee06094f 1098 */
de0428a7 1099int x86_perf_event_set_period(struct perf_event *event)
241771ef 1100{
07088edb 1101 struct hw_perf_event *hwc = &event->hw;
e7850595 1102 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1103 s64 period = hwc->sample_period;
7645a24c 1104 int ret = 0, idx = hwc->idx;
ee06094f 1105
15c7ad51 1106 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1107 return 0;
1108
ee06094f 1109 /*
af901ca1 1110 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1111 */
1112 if (unlikely(left <= -period)) {
1113 left = period;
e7850595 1114 local64_set(&hwc->period_left, left);
9e350de3 1115 hwc->last_period = period;
e4abb5d4 1116 ret = 1;
ee06094f
IM
1117 }
1118
1119 if (unlikely(left <= 0)) {
1120 left += period;
e7850595 1121 local64_set(&hwc->period_left, left);
9e350de3 1122 hwc->last_period = period;
e4abb5d4 1123 ret = 1;
ee06094f 1124 }
1c80f4b5 1125 /*
dfc65094 1126 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1127 */
1128 if (unlikely(left < 2))
1129 left = 2;
241771ef 1130
e4abb5d4
PZ
1131 if (left > x86_pmu.max_period)
1132 left = x86_pmu.max_period;
1133
294fe0f5
AK
1134 if (x86_pmu.limit_period)
1135 left = x86_pmu.limit_period(event, left);
1136
245b2e70 1137 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1138
851559e3
YZ
1139 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1140 local64_read(&hwc->prev_count) != (u64)-left) {
1141 /*
1142 * The hw event starts counting from this event offset,
1143 * mark it to be able to extra future deltas:
1144 */
1145 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1146
851559e3
YZ
1147 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1148 }
68aa00ac
CG
1149
1150 /*
1151 * Due to erratum on certan cpu we need
1152 * a second write to be sure the register
1153 * is updated properly
1154 */
1155 if (x86_pmu.perfctr_second_write) {
73d6e522 1156 wrmsrl(hwc->event_base,
948b1bb8 1157 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1158 }
e4abb5d4 1159
cdd6c482 1160 perf_event_update_userpage(event);
194002b2 1161
e4abb5d4 1162 return ret;
2f18d1e8
IM
1163}
1164
de0428a7 1165void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1166{
0a3aee0d 1167 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1168 __x86_pmu_enable_event(&event->hw,
1169 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1170}
1171
b690081d 1172/*
a4eaf7f1 1173 * Add a single event to the PMU.
1da53e02
SE
1174 *
1175 * The event is added to the group of enabled events
1176 * but only if it can be scehduled with existing events.
fe9081cc 1177 */
a4eaf7f1 1178static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1179{
89cbc767 1180 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1181 struct hw_perf_event *hwc;
1182 int assign[X86_PMC_IDX_MAX];
1183 int n, n0, ret;
fe9081cc 1184
1da53e02 1185 hwc = &event->hw;
fe9081cc 1186
1da53e02 1187 n0 = cpuc->n_events;
24cd7f54
PZ
1188 ret = n = collect_events(cpuc, event, false);
1189 if (ret < 0)
1190 goto out;
53b441a5 1191
a4eaf7f1
PZ
1192 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1193 if (!(flags & PERF_EF_START))
1194 hwc->state |= PERF_HES_ARCH;
1195
4d1c52b0
LM
1196 /*
1197 * If group events scheduling transaction was started,
0d2eb44f 1198 * skip the schedulability test here, it will be performed
c347a2f1 1199 * at commit time (->commit_txn) as a whole.
4d1c52b0 1200 */
8f3e5684 1201 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1202 goto done_collect;
4d1c52b0 1203
a072738e 1204 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1205 if (ret)
24cd7f54 1206 goto out;
1da53e02
SE
1207 /*
1208 * copy new assignment, now we know it is possible
1209 * will be used by hw_perf_enable()
1210 */
1211 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1212
24cd7f54 1213done_collect:
c347a2f1
PZ
1214 /*
1215 * Commit the collect_events() state. See x86_pmu_del() and
1216 * x86_pmu_*_txn().
1217 */
1da53e02 1218 cpuc->n_events = n;
356e1f2e 1219 cpuc->n_added += n - n0;
90151c35 1220 cpuc->n_txn += n - n0;
95cdd2e7 1221
24cd7f54
PZ
1222 ret = 0;
1223out:
24cd7f54 1224 return ret;
241771ef
IM
1225}
1226
a4eaf7f1 1227static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1228{
89cbc767 1229 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1230 int idx = event->hw.idx;
1231
a4eaf7f1
PZ
1232 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1233 return;
1234
1235 if (WARN_ON_ONCE(idx == -1))
1236 return;
1237
1238 if (flags & PERF_EF_RELOAD) {
1239 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1240 x86_perf_event_set_period(event);
1241 }
1242
1243 event->hw.state = 0;
d76a0812 1244
c08053e6
PZ
1245 cpuc->events[idx] = event;
1246 __set_bit(idx, cpuc->active_mask);
63e6be6d 1247 __set_bit(idx, cpuc->running);
aff3d91a 1248 x86_pmu.enable(event);
c08053e6 1249 perf_event_update_userpage(event);
a78ac325
PZ
1250}
1251
cdd6c482 1252void perf_event_print_debug(void)
241771ef 1253{
2f18d1e8 1254 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1255 u64 pebs, debugctl;
cdd6c482 1256 struct cpu_hw_events *cpuc;
5bb9efe3 1257 unsigned long flags;
1e125676
IM
1258 int cpu, idx;
1259
948b1bb8 1260 if (!x86_pmu.num_counters)
1e125676 1261 return;
241771ef 1262
5bb9efe3 1263 local_irq_save(flags);
241771ef
IM
1264
1265 cpu = smp_processor_id();
cdd6c482 1266 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1267
faa28ae0 1268 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1269 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1270 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1271 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1272 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1273
1274 pr_info("\n");
1275 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1276 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1277 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1278 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1279 if (x86_pmu.pebs_constraints) {
1280 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1281 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1282 }
da3e606d
AK
1283 if (x86_pmu.lbr_nr) {
1284 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1285 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1286 }
f87ad35d 1287 }
7645a24c 1288 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1289
948b1bb8 1290 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1291 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1292 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1293
245b2e70 1294 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1295
a1ef58f4 1296 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1297 cpu, idx, pmc_ctrl);
a1ef58f4 1298 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1299 cpu, idx, pmc_count);
a1ef58f4 1300 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1301 cpu, idx, prev_left);
241771ef 1302 }
948b1bb8 1303 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1304 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1305
a1ef58f4 1306 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1307 cpu, idx, pmc_count);
1308 }
5bb9efe3 1309 local_irq_restore(flags);
241771ef
IM
1310}
1311
de0428a7 1312void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1313{
89cbc767 1314 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1315 struct hw_perf_event *hwc = &event->hw;
241771ef 1316
a4eaf7f1
PZ
1317 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1318 x86_pmu.disable(event);
1319 cpuc->events[hwc->idx] = NULL;
1320 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1321 hwc->state |= PERF_HES_STOPPED;
1322 }
30dd568c 1323
a4eaf7f1
PZ
1324 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1325 /*
1326 * Drain the remaining delta count out of a event
1327 * that we are disabling:
1328 */
1329 x86_perf_event_update(event);
1330 hwc->state |= PERF_HES_UPTODATE;
1331 }
2e841873
PZ
1332}
1333
a4eaf7f1 1334static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1335{
89cbc767 1336 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1337 int i;
1338
2f7f73a5
SE
1339 /*
1340 * event is descheduled
1341 */
1342 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1343
90151c35
SE
1344 /*
1345 * If we're called during a txn, we don't need to do anything.
1346 * The events never got scheduled and ->cancel_txn will truncate
1347 * the event_list.
c347a2f1
PZ
1348 *
1349 * XXX assumes any ->del() called during a TXN will only be on
1350 * an event added during that same TXN.
90151c35 1351 */
8f3e5684 1352 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
90151c35
SE
1353 return;
1354
c347a2f1
PZ
1355 /*
1356 * Not a TXN, therefore cleanup properly.
1357 */
a4eaf7f1 1358 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1359
1da53e02 1360 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1361 if (event == cpuc->event_list[i])
1362 break;
1363 }
1da53e02 1364
c347a2f1
PZ
1365 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1366 return;
26e61e89 1367
c347a2f1
PZ
1368 /* If we have a newly added event; make sure to decrease n_added. */
1369 if (i >= cpuc->n_events - cpuc->n_added)
1370 --cpuc->n_added;
1da53e02 1371
c347a2f1
PZ
1372 if (x86_pmu.put_event_constraints)
1373 x86_pmu.put_event_constraints(cpuc, event);
1374
1375 /* Delete the array entry. */
b371b594 1376 while (++i < cpuc->n_events) {
c347a2f1 1377 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1378 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1379 }
c347a2f1 1380 --cpuc->n_events;
1da53e02 1381
cdd6c482 1382 perf_event_update_userpage(event);
241771ef
IM
1383}
1384
de0428a7 1385int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1386{
df1a132b 1387 struct perf_sample_data data;
cdd6c482
IM
1388 struct cpu_hw_events *cpuc;
1389 struct perf_event *event;
11d1578f 1390 int idx, handled = 0;
9029a5e3
IM
1391 u64 val;
1392
89cbc767 1393 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1394
2bce5dac
DZ
1395 /*
1396 * Some chipsets need to unmask the LVTPC in a particular spot
1397 * inside the nmi handler. As a result, the unmasking was pushed
1398 * into all the nmi handlers.
1399 *
1400 * This generic handler doesn't seem to have any issues where the
1401 * unmasking occurs so it was left at the top.
1402 */
1403 apic_write(APIC_LVTPC, APIC_DM_NMI);
1404
948b1bb8 1405 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1406 if (!test_bit(idx, cpuc->active_mask)) {
1407 /*
1408 * Though we deactivated the counter some cpus
1409 * might still deliver spurious interrupts still
1410 * in flight. Catch them:
1411 */
1412 if (__test_and_clear_bit(idx, cpuc->running))
1413 handled++;
a29aa8a7 1414 continue;
63e6be6d 1415 }
962bf7a6 1416
cdd6c482 1417 event = cpuc->events[idx];
a4016a79 1418
cc2ad4ba 1419 val = x86_perf_event_update(event);
948b1bb8 1420 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1421 continue;
962bf7a6 1422
9e350de3 1423 /*
cdd6c482 1424 * event overflow
9e350de3 1425 */
4177c42a 1426 handled++;
fd0d000b 1427 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1428
07088edb 1429 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1430 continue;
1431
a8b0ca17 1432 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1433 x86_pmu_stop(event, 0);
a29aa8a7 1434 }
962bf7a6 1435
9e350de3
PZ
1436 if (handled)
1437 inc_irq_stat(apic_perf_irqs);
1438
a29aa8a7
RR
1439 return handled;
1440}
39d81eab 1441
cdd6c482 1442void perf_events_lapic_init(void)
241771ef 1443{
04da8a43 1444 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1445 return;
85cf9dba 1446
241771ef 1447 /*
c323d95f 1448 * Always use NMI for PMU
241771ef 1449 */
c323d95f 1450 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1451}
1452
9326638c 1453static int
9c48f1c6 1454perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1455{
14c63f17
DH
1456 u64 start_clock;
1457 u64 finish_clock;
e8a923cc 1458 int ret;
14c63f17 1459
1b7b938f
AS
1460 /*
1461 * All PMUs/events that share this PMI handler should make sure to
1462 * increment active_events for their events.
1463 */
cdd6c482 1464 if (!atomic_read(&active_events))
9c48f1c6 1465 return NMI_DONE;
4177c42a 1466
e8a923cc 1467 start_clock = sched_clock();
14c63f17 1468 ret = x86_pmu.handle_irq(regs);
e8a923cc 1469 finish_clock = sched_clock();
14c63f17
DH
1470
1471 perf_sample_event_took(finish_clock - start_clock);
1472
1473 return ret;
241771ef 1474}
9326638c 1475NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1476
de0428a7
KW
1477struct event_constraint emptyconstraint;
1478struct event_constraint unconstrained;
f87ad35d 1479
148f9bb8 1480static int
3f6da390
PZ
1481x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1482{
1483 unsigned int cpu = (long)hcpu;
7fdba1ca 1484 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1485 int i, ret = NOTIFY_OK;
3f6da390
PZ
1486
1487 switch (action & ~CPU_TASKS_FROZEN) {
1488 case CPU_UP_PREPARE:
90413464
SE
1489 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1490 cpuc->kfree_on_online[i] = NULL;
3f6da390 1491 if (x86_pmu.cpu_prepare)
b38b24ea 1492 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1493 break;
1494
1495 case CPU_STARTING:
1496 if (x86_pmu.cpu_starting)
1497 x86_pmu.cpu_starting(cpu);
1498 break;
1499
7fdba1ca 1500 case CPU_ONLINE:
90413464
SE
1501 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1502 kfree(cpuc->kfree_on_online[i]);
1503 cpuc->kfree_on_online[i] = NULL;
1504 }
7fdba1ca
PZ
1505 break;
1506
3f6da390
PZ
1507 case CPU_DYING:
1508 if (x86_pmu.cpu_dying)
1509 x86_pmu.cpu_dying(cpu);
1510 break;
1511
b38b24ea 1512 case CPU_UP_CANCELED:
3f6da390
PZ
1513 case CPU_DEAD:
1514 if (x86_pmu.cpu_dead)
1515 x86_pmu.cpu_dead(cpu);
1516 break;
1517
1518 default:
1519 break;
1520 }
1521
b38b24ea 1522 return ret;
3f6da390
PZ
1523}
1524
12558038
CG
1525static void __init pmu_check_apic(void)
1526{
93984fbd 1527 if (boot_cpu_has(X86_FEATURE_APIC))
12558038
CG
1528 return;
1529
1530 x86_pmu.apic = 0;
1531 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1532 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1533
1534 /*
1535 * If we have a PMU initialized but no APIC
1536 * interrupts, we cannot sample hardware
1537 * events (user-space has to fall back and
1538 * sample via a hrtimer based software event):
1539 */
1540 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1541
12558038
CG
1542}
1543
641cc938
JO
1544static struct attribute_group x86_pmu_format_group = {
1545 .name = "format",
1546 .attrs = NULL,
1547};
1548
8300daa2
JO
1549/*
1550 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1551 * out of events_attr attributes.
1552 */
1553static void __init filter_events(struct attribute **attrs)
1554{
3a54aaa0
SE
1555 struct device_attribute *d;
1556 struct perf_pmu_events_attr *pmu_attr;
61b87cae 1557 int offset = 0;
8300daa2
JO
1558 int i, j;
1559
1560 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1561 d = (struct device_attribute *)attrs[i];
1562 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1563 /* str trumps id */
1564 if (pmu_attr->event_str)
1565 continue;
61b87cae 1566 if (x86_pmu.event_map(i + offset))
8300daa2
JO
1567 continue;
1568
1569 for (j = i; attrs[j]; j++)
1570 attrs[j] = attrs[j + 1];
1571
1572 /* Check the shifted attr. */
1573 i--;
61b87cae
SE
1574
1575 /*
1576 * event_map() is index based, the attrs array is organized
1577 * by increasing event index. If we shift the events, then
1578 * we need to compensate for the event_map(), otherwise
1579 * we are looking up the wrong event in the map
1580 */
1581 offset++;
8300daa2
JO
1582 }
1583}
1584
1a6461b1 1585/* Merge two pointer arrays */
47732d88 1586__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1587{
1588 struct attribute **new;
1589 int j, i;
1590
1591 for (j = 0; a[j]; j++)
1592 ;
1593 for (i = 0; b[i]; i++)
1594 j++;
1595 j++;
1596
1597 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1598 if (!new)
1599 return NULL;
1600
1601 j = 0;
1602 for (i = 0; a[i]; i++)
1603 new[j++] = a[i];
1604 for (i = 0; b[i]; i++)
1605 new[j++] = b[i];
1606 new[j] = NULL;
1607
1608 return new;
1609}
1610
c7ab62bf 1611ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
a4747393
JO
1612{
1613 struct perf_pmu_events_attr *pmu_attr = \
1614 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1615 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1616
3a54aaa0
SE
1617 /* string trumps id */
1618 if (pmu_attr->event_str)
1619 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1620
3a54aaa0
SE
1621 return x86_pmu.events_sysfs_show(page, config);
1622}
c7ab62bf 1623EXPORT_SYMBOL_GPL(events_sysfs_show);
a4747393
JO
1624
1625EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1626EVENT_ATTR(instructions, INSTRUCTIONS );
1627EVENT_ATTR(cache-references, CACHE_REFERENCES );
1628EVENT_ATTR(cache-misses, CACHE_MISSES );
1629EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1630EVENT_ATTR(branch-misses, BRANCH_MISSES );
1631EVENT_ATTR(bus-cycles, BUS_CYCLES );
1632EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1633EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1634EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1635
1636static struct attribute *empty_attrs;
1637
95d18aa2 1638static struct attribute *events_attr[] = {
a4747393
JO
1639 EVENT_PTR(CPU_CYCLES),
1640 EVENT_PTR(INSTRUCTIONS),
1641 EVENT_PTR(CACHE_REFERENCES),
1642 EVENT_PTR(CACHE_MISSES),
1643 EVENT_PTR(BRANCH_INSTRUCTIONS),
1644 EVENT_PTR(BRANCH_MISSES),
1645 EVENT_PTR(BUS_CYCLES),
1646 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1647 EVENT_PTR(STALLED_CYCLES_BACKEND),
1648 EVENT_PTR(REF_CPU_CYCLES),
1649 NULL,
1650};
1651
1652static struct attribute_group x86_pmu_events_group = {
1653 .name = "events",
1654 .attrs = events_attr,
1655};
1656
0bf79d44 1657ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1658{
43c032fe
JO
1659 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1660 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1661 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1662 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1663 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1664 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1665 ssize_t ret;
1666
1667 /*
1668 * We have whole page size to spend and just little data
1669 * to write, so we can safely use sprintf.
1670 */
1671 ret = sprintf(page, "event=0x%02llx", event);
1672
1673 if (umask)
1674 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1675
1676 if (edge)
1677 ret += sprintf(page + ret, ",edge");
1678
1679 if (pc)
1680 ret += sprintf(page + ret, ",pc");
1681
1682 if (any)
1683 ret += sprintf(page + ret, ",any");
1684
1685 if (inv)
1686 ret += sprintf(page + ret, ",inv");
1687
1688 if (cmask)
1689 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1690
1691 ret += sprintf(page + ret, "\n");
1692
1693 return ret;
1694}
1695
dda99116 1696static int __init init_hw_perf_events(void)
b56a3802 1697{
c1d6f42f 1698 struct x86_pmu_quirk *quirk;
72eae04d
RR
1699 int err;
1700
cdd6c482 1701 pr_info("Performance Events: ");
1123e3ad 1702
b56a3802
JSR
1703 switch (boot_cpu_data.x86_vendor) {
1704 case X86_VENDOR_INTEL:
72eae04d 1705 err = intel_pmu_init();
b56a3802 1706 break;
f87ad35d 1707 case X86_VENDOR_AMD:
72eae04d 1708 err = amd_pmu_init();
f87ad35d 1709 break;
4138960a 1710 default:
8a3da6c7 1711 err = -ENOTSUPP;
b56a3802 1712 }
1123e3ad 1713 if (err != 0) {
cdd6c482 1714 pr_cont("no PMU driver, software events only.\n");
004417a6 1715 return 0;
1123e3ad 1716 }
b56a3802 1717
12558038
CG
1718 pmu_check_apic();
1719
33c6d6a7 1720 /* sanity check that the hardware exists or is emulated */
4407204c 1721 if (!check_hw_exists())
004417a6 1722 return 0;
33c6d6a7 1723
1123e3ad 1724 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1725
e97df763
PZ
1726 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1727
c1d6f42f
PZ
1728 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1729 quirk->func();
3c44780b 1730
a1eac7ac
RR
1731 if (!x86_pmu.intel_ctrl)
1732 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1733
cdd6c482 1734 perf_events_lapic_init();
9c48f1c6 1735 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1736
63b14649 1737 unconstrained = (struct event_constraint)
948b1bb8 1738 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1739 0, x86_pmu.num_counters, 0, 0);
63b14649 1740
641cc938 1741 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1742
f20093ee
SE
1743 if (x86_pmu.event_attrs)
1744 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1745
a4747393
JO
1746 if (!x86_pmu.events_sysfs_show)
1747 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1748 else
1749 filter_events(x86_pmu_events_group.attrs);
a4747393 1750
1a6461b1
AK
1751 if (x86_pmu.cpu_events) {
1752 struct attribute **tmp;
1753
1754 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1755 if (!WARN_ON(!tmp))
1756 x86_pmu_events_group.attrs = tmp;
1757 }
1758
57c0c15b 1759 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1760 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1761 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1762 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1763 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1764 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1765 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1766
2e80a82a 1767 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1768 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1769
1770 return 0;
241771ef 1771}
004417a6 1772early_initcall(init_hw_perf_events);
621a01ea 1773
cdd6c482 1774static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1775{
cc2ad4ba 1776 x86_perf_event_update(event);
ee06094f
IM
1777}
1778
4d1c52b0
LM
1779/*
1780 * Start group events scheduling transaction
1781 * Set the flag to make pmu::enable() not perform the
1782 * schedulability test, it will be performed at commit time
fbbe0701
SB
1783 *
1784 * We only support PERF_PMU_TXN_ADD transactions. Save the
1785 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1786 * transactions.
4d1c52b0 1787 */
fbbe0701 1788static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1789{
fbbe0701
SB
1790 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1791
1792 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1793
1794 cpuc->txn_flags = txn_flags;
1795 if (txn_flags & ~PERF_PMU_TXN_ADD)
1796 return;
1797
33696fc0 1798 perf_pmu_disable(pmu);
0a3aee0d 1799 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1800}
1801
1802/*
1803 * Stop group events scheduling transaction
1804 * Clear the flag and pmu::enable() will perform the
1805 * schedulability test.
1806 */
51b0fe39 1807static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1808{
fbbe0701
SB
1809 unsigned int txn_flags;
1810 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1811
1812 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1813
1814 txn_flags = cpuc->txn_flags;
1815 cpuc->txn_flags = 0;
1816 if (txn_flags & ~PERF_PMU_TXN_ADD)
1817 return;
1818
90151c35 1819 /*
c347a2f1
PZ
1820 * Truncate collected array by the number of events added in this
1821 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1822 */
0a3aee0d
TH
1823 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1824 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1825 perf_pmu_enable(pmu);
4d1c52b0
LM
1826}
1827
1828/*
1829 * Commit group events scheduling transaction
1830 * Perform the group schedulability test as a whole
1831 * Return 0 if success
c347a2f1
PZ
1832 *
1833 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1834 */
51b0fe39 1835static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1836{
89cbc767 1837 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1838 int assign[X86_PMC_IDX_MAX];
1839 int n, ret;
1840
fbbe0701
SB
1841 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1842
1843 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1844 cpuc->txn_flags = 0;
1845 return 0;
1846 }
1847
4d1c52b0
LM
1848 n = cpuc->n_events;
1849
1850 if (!x86_pmu_initialized())
1851 return -EAGAIN;
1852
1853 ret = x86_pmu.schedule_events(cpuc, n, assign);
1854 if (ret)
1855 return ret;
1856
1857 /*
1858 * copy new assignment, now we know it is possible
1859 * will be used by hw_perf_enable()
1860 */
1861 memcpy(cpuc->assign, assign, n*sizeof(int));
1862
fbbe0701 1863 cpuc->txn_flags = 0;
33696fc0 1864 perf_pmu_enable(pmu);
4d1c52b0
LM
1865 return 0;
1866}
cd8a38d3
SE
1867/*
1868 * a fake_cpuc is used to validate event groups. Due to
1869 * the extra reg logic, we need to also allocate a fake
1870 * per_core and per_cpu structure. Otherwise, group events
1871 * using extra reg may conflict without the kernel being
1872 * able to catch this when the last event gets added to
1873 * the group.
1874 */
1875static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1876{
1877 kfree(cpuc->shared_regs);
1878 kfree(cpuc);
1879}
1880
1881static struct cpu_hw_events *allocate_fake_cpuc(void)
1882{
1883 struct cpu_hw_events *cpuc;
1884 int cpu = raw_smp_processor_id();
1885
1886 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1887 if (!cpuc)
1888 return ERR_PTR(-ENOMEM);
1889
1890 /* only needed, if we have extra_regs */
1891 if (x86_pmu.extra_regs) {
1892 cpuc->shared_regs = allocate_shared_regs(cpu);
1893 if (!cpuc->shared_regs)
1894 goto error;
1895 }
b430f7c4 1896 cpuc->is_fake = 1;
cd8a38d3
SE
1897 return cpuc;
1898error:
1899 free_fake_cpuc(cpuc);
1900 return ERR_PTR(-ENOMEM);
1901}
4d1c52b0 1902
ca037701
PZ
1903/*
1904 * validate that we can schedule this event
1905 */
1906static int validate_event(struct perf_event *event)
1907{
1908 struct cpu_hw_events *fake_cpuc;
1909 struct event_constraint *c;
1910 int ret = 0;
1911
cd8a38d3
SE
1912 fake_cpuc = allocate_fake_cpuc();
1913 if (IS_ERR(fake_cpuc))
1914 return PTR_ERR(fake_cpuc);
ca037701 1915
79cba822 1916 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1917
1918 if (!c || !c->weight)
aa2bc1ad 1919 ret = -EINVAL;
ca037701
PZ
1920
1921 if (x86_pmu.put_event_constraints)
1922 x86_pmu.put_event_constraints(fake_cpuc, event);
1923
cd8a38d3 1924 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1925
1926 return ret;
1927}
1928
1da53e02
SE
1929/*
1930 * validate a single event group
1931 *
1932 * validation include:
184f412c
IM
1933 * - check events are compatible which each other
1934 * - events do not compete for the same counter
1935 * - number of events <= number of counters
1da53e02
SE
1936 *
1937 * validation ensures the group can be loaded onto the
1938 * PMU if it was the only group available.
1939 */
fe9081cc
PZ
1940static int validate_group(struct perf_event *event)
1941{
1da53e02 1942 struct perf_event *leader = event->group_leader;
502568d5 1943 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1944 int ret = -EINVAL, n;
fe9081cc 1945
cd8a38d3
SE
1946 fake_cpuc = allocate_fake_cpuc();
1947 if (IS_ERR(fake_cpuc))
1948 return PTR_ERR(fake_cpuc);
1da53e02
SE
1949 /*
1950 * the event is not yet connected with its
1951 * siblings therefore we must first collect
1952 * existing siblings, then add the new event
1953 * before we can simulate the scheduling
1954 */
502568d5 1955 n = collect_events(fake_cpuc, leader, true);
1da53e02 1956 if (n < 0)
cd8a38d3 1957 goto out;
fe9081cc 1958
502568d5
PZ
1959 fake_cpuc->n_events = n;
1960 n = collect_events(fake_cpuc, event, false);
1da53e02 1961 if (n < 0)
cd8a38d3 1962 goto out;
fe9081cc 1963
502568d5 1964 fake_cpuc->n_events = n;
1da53e02 1965
a072738e 1966 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1967
502568d5 1968out:
cd8a38d3 1969 free_fake_cpuc(fake_cpuc);
502568d5 1970 return ret;
fe9081cc
PZ
1971}
1972
dda99116 1973static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1974{
51b0fe39 1975 struct pmu *tmp;
621a01ea
IM
1976 int err;
1977
b0a873eb
PZ
1978 switch (event->attr.type) {
1979 case PERF_TYPE_RAW:
1980 case PERF_TYPE_HARDWARE:
1981 case PERF_TYPE_HW_CACHE:
1982 break;
1983
1984 default:
1985 return -ENOENT;
1986 }
1987
1988 err = __x86_pmu_event_init(event);
fe9081cc 1989 if (!err) {
8113070d
SE
1990 /*
1991 * we temporarily connect event to its pmu
1992 * such that validate_group() can classify
1993 * it as an x86 event using is_x86_event()
1994 */
1995 tmp = event->pmu;
1996 event->pmu = &pmu;
1997
fe9081cc
PZ
1998 if (event->group_leader != event)
1999 err = validate_group(event);
ca037701
PZ
2000 else
2001 err = validate_event(event);
8113070d
SE
2002
2003 event->pmu = tmp;
fe9081cc 2004 }
a1792cda 2005 if (err) {
cdd6c482
IM
2006 if (event->destroy)
2007 event->destroy(event);
a1792cda 2008 }
621a01ea 2009
7911d3f7
AL
2010 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2011 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2012
b0a873eb 2013 return err;
621a01ea 2014}
d7d59fb3 2015
7911d3f7
AL
2016static void refresh_pce(void *ignored)
2017{
2018 if (current->mm)
2019 load_mm_cr4(current->mm);
2020}
2021
2022static void x86_pmu_event_mapped(struct perf_event *event)
2023{
2024 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2025 return;
2026
2027 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2028 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2029}
2030
2031static void x86_pmu_event_unmapped(struct perf_event *event)
2032{
2033 if (!current->mm)
2034 return;
2035
2036 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2037 return;
2038
2039 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2040 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2041}
2042
fe4a3308
PZ
2043static int x86_pmu_event_idx(struct perf_event *event)
2044{
2045 int idx = event->hw.idx;
2046
7911d3f7 2047 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2048 return 0;
2049
15c7ad51
RR
2050 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2051 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2052 idx |= 1 << 30;
2053 }
2054
2055 return idx + 1;
2056}
2057
0c9d42ed
PZ
2058static ssize_t get_attr_rdpmc(struct device *cdev,
2059 struct device_attribute *attr,
2060 char *buf)
2061{
2062 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2063}
2064
0c9d42ed
PZ
2065static ssize_t set_attr_rdpmc(struct device *cdev,
2066 struct device_attribute *attr,
2067 const char *buf, size_t count)
2068{
e2b297fc
SK
2069 unsigned long val;
2070 ssize_t ret;
2071
2072 ret = kstrtoul(buf, 0, &val);
2073 if (ret)
2074 return ret;
e97df763 2075
a6673429
AL
2076 if (val > 2)
2077 return -EINVAL;
2078
e97df763
PZ
2079 if (x86_pmu.attr_rdpmc_broken)
2080 return -ENOTSUPP;
0c9d42ed 2081
a6673429
AL
2082 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2083 /*
2084 * Changing into or out of always available, aka
2085 * perf-event-bypassing mode. This path is extremely slow,
2086 * but only root can trigger it, so it's okay.
2087 */
2088 if (val == 2)
2089 static_key_slow_inc(&rdpmc_always_available);
2090 else
2091 static_key_slow_dec(&rdpmc_always_available);
2092 on_each_cpu(refresh_pce, NULL, 1);
2093 }
2094
2095 x86_pmu.attr_rdpmc = val;
2096
0c9d42ed
PZ
2097 return count;
2098}
2099
2100static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2101
2102static struct attribute *x86_pmu_attrs[] = {
2103 &dev_attr_rdpmc.attr,
2104 NULL,
2105};
2106
2107static struct attribute_group x86_pmu_attr_group = {
2108 .attrs = x86_pmu_attrs,
2109};
2110
2111static const struct attribute_group *x86_pmu_attr_groups[] = {
2112 &x86_pmu_attr_group,
641cc938 2113 &x86_pmu_format_group,
a4747393 2114 &x86_pmu_events_group,
0c9d42ed
PZ
2115 NULL,
2116};
2117
ba532500 2118static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2119{
ba532500
YZ
2120 if (x86_pmu.sched_task)
2121 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2122}
2123
c93dc84c
PZ
2124void perf_check_microcode(void)
2125{
2126 if (x86_pmu.check_microcode)
2127 x86_pmu.check_microcode();
2128}
2129EXPORT_SYMBOL_GPL(perf_check_microcode);
2130
b0a873eb 2131static struct pmu pmu = {
d010b332
SE
2132 .pmu_enable = x86_pmu_enable,
2133 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2134
c93dc84c 2135 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2136
c93dc84c 2137 .event_init = x86_pmu_event_init,
a4eaf7f1 2138
7911d3f7
AL
2139 .event_mapped = x86_pmu_event_mapped,
2140 .event_unmapped = x86_pmu_event_unmapped,
2141
d010b332
SE
2142 .add = x86_pmu_add,
2143 .del = x86_pmu_del,
2144 .start = x86_pmu_start,
2145 .stop = x86_pmu_stop,
2146 .read = x86_pmu_read,
a4eaf7f1 2147
c93dc84c
PZ
2148 .start_txn = x86_pmu_start_txn,
2149 .cancel_txn = x86_pmu_cancel_txn,
2150 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2151
c93dc84c 2152 .event_idx = x86_pmu_event_idx,
ba532500 2153 .sched_task = x86_pmu_sched_task,
e18bf526 2154 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2155};
2156
c1317ec2
AL
2157void arch_perf_update_userpage(struct perf_event *event,
2158 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2159{
20d1c86a
PZ
2160 struct cyc2ns_data *data;
2161
fa731587
PZ
2162 userpg->cap_user_time = 0;
2163 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2164 userpg->cap_user_rdpmc =
2165 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2166 userpg->pmc_width = x86_pmu.cntval_bits;
2167
35af99e6 2168 if (!sched_clock_stable())
e3f3541c
PZ
2169 return;
2170
20d1c86a
PZ
2171 data = cyc2ns_read_begin();
2172
34f43927
PZ
2173 /*
2174 * Internal timekeeping for enabled/running/stopped times
2175 * is always in the local_clock domain.
2176 */
fa731587 2177 userpg->cap_user_time = 1;
20d1c86a
PZ
2178 userpg->time_mult = data->cyc2ns_mul;
2179 userpg->time_shift = data->cyc2ns_shift;
2180 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2181
34f43927
PZ
2182 /*
2183 * cap_user_time_zero doesn't make sense when we're using a different
2184 * time base for the records.
2185 */
f454bfdd 2186 if (!event->attr.use_clockid) {
34f43927
PZ
2187 userpg->cap_user_time_zero = 1;
2188 userpg->time_zero = data->cyc2ns_offset;
2189 }
20d1c86a
PZ
2190
2191 cyc2ns_read_end(data);
e3f3541c
PZ
2192}
2193
d7d59fb3
PZ
2194/*
2195 * callchain support
2196 */
2197
d7d59fb3
PZ
2198static int backtrace_stack(void *data, char *name)
2199{
038e836e 2200 return 0;
d7d59fb3
PZ
2201}
2202
568b329a 2203static int backtrace_address(void *data, unsigned long addr, int reliable)
d7d59fb3 2204{
cfbcf468 2205 struct perf_callchain_entry_ctx *entry = data;
d7d59fb3 2206
568b329a 2207 return perf_callchain_store(entry, addr);
d7d59fb3
PZ
2208}
2209
2210static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2211 .stack = backtrace_stack,
2212 .address = backtrace_address,
06d65bda 2213 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2214};
2215
56962b44 2216void
cfbcf468 2217perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2218{
927c7a9e
FW
2219 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2220 /* TODO: We don't support guest os callchain now */
ed805261 2221 return;
927c7a9e
FW
2222 }
2223
70791ce9 2224 perf_callchain_store(entry, regs->ip);
d7d59fb3 2225
e8e999cf 2226 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2227}
2228
bc6ca7b3
AS
2229static inline int
2230valid_user_frame(const void __user *fp, unsigned long size)
2231{
2232 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2233}
2234
d07bdfd3
PZ
2235static unsigned long get_segment_base(unsigned int segment)
2236{
2237 struct desc_struct *desc;
2238 int idx = segment >> 3;
2239
2240 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2241#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2242 struct ldt_struct *ldt;
2243
d07bdfd3
PZ
2244 if (idx > LDT_ENTRIES)
2245 return 0;
2246
37868fe1
AL
2247 /* IRQs are off, so this synchronizes with smp_store_release */
2248 ldt = lockless_dereference(current->active_mm->context.ldt);
2249 if (!ldt || idx > ldt->size)
d07bdfd3
PZ
2250 return 0;
2251
37868fe1 2252 desc = &ldt->entries[idx];
a5b9e5a2
AL
2253#else
2254 return 0;
2255#endif
d07bdfd3
PZ
2256 } else {
2257 if (idx > GDT_ENTRIES)
2258 return 0;
2259
37868fe1 2260 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2261 }
2262
37868fe1 2263 return get_desc_base(desc);
d07bdfd3
PZ
2264}
2265
10ed3493 2266#ifdef CONFIG_IA32_EMULATION
d1a797f3
PA
2267
2268#include <asm/compat.h>
2269
257ef9d2 2270static inline int
cfbcf468 2271perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
74193ef0 2272{
257ef9d2 2273 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2274 unsigned long ss_base, cs_base;
257ef9d2
TE
2275 struct stack_frame_ia32 frame;
2276 const void __user *fp;
74193ef0 2277
257ef9d2
TE
2278 if (!test_thread_flag(TIF_IA32))
2279 return 0;
2280
d07bdfd3
PZ
2281 cs_base = get_segment_base(regs->cs);
2282 ss_base = get_segment_base(regs->ss);
2283
2284 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2285 pagefault_disable();
3b1fff08 2286 while (entry->nr < entry->max_stack) {
257ef9d2
TE
2287 unsigned long bytes;
2288 frame.next_frame = 0;
2289 frame.return_address = 0;
2290
75925e1a
AK
2291 if (!access_ok(VERIFY_READ, fp, 8))
2292 break;
2293
2294 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2295 if (bytes != 0)
2296 break;
2297 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
0a196848 2298 if (bytes != 0)
257ef9d2 2299 break;
74193ef0 2300
bc6ca7b3
AS
2301 if (!valid_user_frame(fp, sizeof(frame)))
2302 break;
2303
d07bdfd3
PZ
2304 perf_callchain_store(entry, cs_base + frame.return_address);
2305 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2306 }
75925e1a 2307 pagefault_enable();
257ef9d2 2308 return 1;
d7d59fb3 2309}
257ef9d2
TE
2310#else
2311static inline int
cfbcf468 2312perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
257ef9d2
TE
2313{
2314 return 0;
2315}
2316#endif
d7d59fb3 2317
56962b44 2318void
cfbcf468 2319perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3
PZ
2320{
2321 struct stack_frame frame;
2322 const void __user *fp;
2323
927c7a9e
FW
2324 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2325 /* TODO: We don't support guest os callchain now */
ed805261 2326 return;
927c7a9e 2327 }
5a6cec3a 2328
d07bdfd3
PZ
2329 /*
2330 * We don't know what to do with VM86 stacks.. ignore them for now.
2331 */
2332 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2333 return;
2334
74193ef0 2335 fp = (void __user *)regs->bp;
d7d59fb3 2336
70791ce9 2337 perf_callchain_store(entry, regs->ip);
d7d59fb3 2338
20afc60f
AV
2339 if (!current->mm)
2340 return;
2341
257ef9d2
TE
2342 if (perf_callchain_user32(regs, entry))
2343 return;
2344
75925e1a 2345 pagefault_disable();
3b1fff08 2346 while (entry->nr < entry->max_stack) {
257ef9d2 2347 unsigned long bytes;
038e836e 2348 frame.next_frame = NULL;
d7d59fb3
PZ
2349 frame.return_address = 0;
2350
75925e1a
AK
2351 if (!access_ok(VERIFY_READ, fp, 16))
2352 break;
2353
2354 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2355 if (bytes != 0)
2356 break;
2357 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
0a196848 2358 if (bytes != 0)
d7d59fb3
PZ
2359 break;
2360
bc6ca7b3
AS
2361 if (!valid_user_frame(fp, sizeof(frame)))
2362 break;
2363
70791ce9 2364 perf_callchain_store(entry, frame.return_address);
75925e1a 2365 fp = (void __user *)frame.next_frame;
d7d59fb3 2366 }
75925e1a 2367 pagefault_enable();
d7d59fb3
PZ
2368}
2369
d07bdfd3
PZ
2370/*
2371 * Deal with code segment offsets for the various execution modes:
2372 *
2373 * VM86 - the good olde 16 bit days, where the linear address is
2374 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2375 *
2376 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2377 * to figure out what the 32bit base address is.
2378 *
2379 * X32 - has TIF_X32 set, but is running in x86_64
2380 *
2381 * X86_64 - CS,DS,SS,ES are all zero based.
2382 */
2383static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2384{
383f3af3
AL
2385 /*
2386 * For IA32 we look at the GDT/LDT segment base to convert the
2387 * effective IP to a linear address.
2388 */
2389
2390#ifdef CONFIG_X86_32
d07bdfd3
PZ
2391 /*
2392 * If we are in VM86 mode, add the segment offset to convert to a
2393 * linear address.
2394 */
2395 if (regs->flags & X86_VM_MASK)
2396 return 0x10 * regs->cs;
2397
55474c48 2398 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2399 return get_segment_base(regs->cs);
2400#else
c56716af
AL
2401 if (user_mode(regs) && !user_64bit_mode(regs) &&
2402 regs->cs != __USER32_CS)
2403 return get_segment_base(regs->cs);
d07bdfd3
PZ
2404#endif
2405 return 0;
2406}
dcf46b94 2407
d07bdfd3
PZ
2408unsigned long perf_instruction_pointer(struct pt_regs *regs)
2409{
39447b38 2410 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2411 return perf_guest_cbs->get_guest_ip();
dcf46b94 2412
d07bdfd3 2413 return regs->ip + code_segment_base(regs);
39447b38
ZY
2414}
2415
2416unsigned long perf_misc_flags(struct pt_regs *regs)
2417{
2418 int misc = 0;
dcf46b94 2419
39447b38 2420 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2421 if (perf_guest_cbs->is_user_mode())
2422 misc |= PERF_RECORD_MISC_GUEST_USER;
2423 else
2424 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2425 } else {
d07bdfd3 2426 if (user_mode(regs))
dcf46b94
ZY
2427 misc |= PERF_RECORD_MISC_USER;
2428 else
2429 misc |= PERF_RECORD_MISC_KERNEL;
2430 }
2431
39447b38 2432 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2433 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2434
2435 return misc;
2436}
b3d9468a
GN
2437
2438void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2439{
2440 cap->version = x86_pmu.version;
2441 cap->num_counters_gp = x86_pmu.num_counters;
2442 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2443 cap->bit_width_gp = x86_pmu.cntval_bits;
2444 cap->bit_width_fixed = x86_pmu.cntval_bits;
2445 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2446 cap->events_mask_len = x86_pmu.events_mask_len;
2447}
2448EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);