perf/core: Implement fast breakpoint modification via _IOC_MODIFY_ATTRIBUTES
[linux-2.6-block.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
eb008eb6
PG
20#include <linux/export.h>
21#include <linux/init.h>
241771ef 22#include <linux/kdebug.h>
589ee628 23#include <linux/sched/mm.h>
e6017571 24#include <linux/sched/clock.h>
d7d59fb3 25#include <linux/uaccess.h>
5a0e3ad6 26#include <linux/slab.h>
30dd568c 27#include <linux/cpu.h>
272d30be 28#include <linux/bitops.h>
0c9d42ed 29#include <linux/device.h>
241771ef 30
241771ef 31#include <asm/apic.h>
d7d59fb3 32#include <asm/stacktrace.h>
4e935e47 33#include <asm/nmi.h>
69092624 34#include <asm/smp.h>
c8e5910e 35#include <asm/alternative.h>
7911d3f7 36#include <asm/mmu_context.h>
375074cc 37#include <asm/tlbflush.h>
e3f3541c 38#include <asm/timer.h>
d07bdfd3
PZ
39#include <asm/desc.h>
40#include <asm/ldt.h>
35f4d9b3 41#include <asm/unwind.h>
241771ef 42
27f6d22b 43#include "perf_event.h"
de0428a7 44
de0428a7 45struct x86_pmu x86_pmu __read_mostly;
efc9f05d 46
de0428a7 47DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
48 .enabled = 1,
49};
241771ef 50
a6673429
AL
51struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52
de0428a7 53u64 __read_mostly hw_cache_event_ids
8326f44d
IM
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 57u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 61
ee06094f 62/*
cdd6c482
IM
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
ee06094f
IM
65 * Returns the delta events processed.
66 */
de0428a7 67u64 x86_perf_event_update(struct perf_event *event)
ee06094f 68{
cc2ad4ba 69 struct hw_perf_event *hwc = &event->hw;
948b1bb8 70 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 71 u64 prev_raw_count, new_raw_count;
cc2ad4ba 72 int idx = hwc->idx;
7f612a7f 73 u64 delta;
ee06094f 74
15c7ad51 75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
76 return 0;
77
ee06094f 78 /*
cdd6c482 79 * Careful: an NMI might modify the previous event value.
ee06094f
IM
80 *
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
cdd6c482 83 * count to the generic event atomically:
ee06094f
IM
84 */
85again:
e7850595 86 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 88
e7850595 89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
90 new_raw_count) != prev_raw_count)
91 goto again;
92
93 /*
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
cdd6c482 96 * (event-)time and add that to the generic event.
ee06094f
IM
97 *
98 * Careful, not all hw sign-extends above the physical width
ec3232bd 99 * of the count.
ee06094f 100 */
ec3232bd
PZ
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
ee06094f 103
e7850595
PZ
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
106
107 return new_raw_count;
ee06094f
IM
108}
109
a7e3ed1e
AK
110/*
111 * Find and validate any extra registers to set up.
112 */
113static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114{
efc9f05d 115 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
116 struct extra_reg *er;
117
efc9f05d 118 reg = &event->hw.extra_reg;
a7e3ed1e
AK
119
120 if (!x86_pmu.extra_regs)
121 return 0;
122
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
338b522c
KL
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
efc9f05d
SE
131
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
a7e3ed1e
AK
135 break;
136 }
137 return 0;
138}
139
cdd6c482 140static atomic_t active_events;
1b7b938f 141static atomic_t pmc_refcount;
4e935e47
PZ
142static DEFINE_MUTEX(pmc_reserve_mutex);
143
b27ea29c
RR
144#ifdef CONFIG_X86_LOCAL_APIC
145
4e935e47
PZ
146static bool reserve_pmc_hardware(void)
147{
148 int i;
149
948b1bb8 150 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
152 goto perfctr_fail;
153 }
154
948b1bb8 155 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
157 goto eventsel_fail;
158 }
159
160 return true;
161
162eventsel_fail:
163 for (i--; i >= 0; i--)
41bf4989 164 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 165
948b1bb8 166 i = x86_pmu.num_counters;
4e935e47
PZ
167
168perfctr_fail:
169 for (i--; i >= 0; i--)
41bf4989 170 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 171
4e935e47
PZ
172 return false;
173}
174
175static void release_pmc_hardware(void)
176{
177 int i;
178
948b1bb8 179 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 182 }
4e935e47
PZ
183}
184
b27ea29c
RR
185#else
186
187static bool reserve_pmc_hardware(void) { return true; }
188static void release_pmc_hardware(void) {}
189
190#endif
191
33c6d6a7
DZ
192static bool check_hw_exists(void)
193{
11d8b058
AB
194 u64 val, val_fail = -1, val_new= ~0;
195 int i, reg, reg_fail = -1, ret = 0;
a5ebe0ba 196 int bios_fail = 0;
68ab7476 197 int reg_safe = -1;
33c6d6a7 198
4407204c
PZ
199 /*
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
202 */
203 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 204 reg = x86_pmu_config_addr(i);
4407204c
PZ
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
a5ebe0ba
GD
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
68ab7476
DZ
212 } else {
213 reg_safe = i;
a5ebe0ba 214 }
4407204c
PZ
215 }
216
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
227 }
4407204c
PZ
228 }
229 }
230
68ab7476
DZ
231 /*
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
235 */
236
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
240 }
241
4407204c 242 /*
bffd5fc2
AP
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 246 */
68ab7476 247 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
f285f92f
RR
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 253 if (ret || val != val_new)
4407204c 254 goto msr_fail;
33c6d6a7 255
45daae57
IM
256 /*
257 * We still allow the PMU driver to operate:
258 */
a5ebe0ba 259 if (bios_fail) {
1b74dde7
CY
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
a5ebe0ba 263 }
45daae57
IM
264
265 return true;
4407204c
PZ
266
267msr_fail:
005bd007
JG
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
274 }
45daae57 275
4407204c 276 return false;
33c6d6a7
DZ
277}
278
cdd6c482 279static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 280{
6b099d9b 281 x86_release_hardware();
1b7b938f 282 atomic_dec(&active_events);
4e935e47
PZ
283}
284
48070342
AS
285void hw_perf_lbr_event_destroy(struct perf_event *event)
286{
287 hw_perf_event_destroy(event);
288
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
291}
292
85cf9dba
RR
293static inline int x86_pmu_initialized(void)
294{
295 return x86_pmu.handle_irq != NULL;
296}
297
8326f44d 298static inline int
e994d7d2 299set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 300{
e994d7d2 301 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
304
305 config = attr->config;
306
307 cache_type = (config >> 0) & 0xff;
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
310
311 cache_op = (config >> 8) & 0xff;
312 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
313 return -EINVAL;
314
315 cache_result = (config >> 16) & 0xff;
316 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
317 return -EINVAL;
318
319 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
320
321 if (val == 0)
322 return -ENOENT;
323
324 if (val == -1)
325 return -EINVAL;
326
327 hwc->config |= val;
e994d7d2
AK
328 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
329 return x86_pmu_extra_regs(val, event);
8326f44d
IM
330}
331
6b099d9b
AS
332int x86_reserve_hardware(void)
333{
334 int err = 0;
335
1b7b938f 336 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 337 mutex_lock(&pmc_reserve_mutex);
1b7b938f 338 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
339 if (!reserve_pmc_hardware())
340 err = -EBUSY;
341 else
342 reserve_ds_buffers();
343 }
344 if (!err)
1b7b938f 345 atomic_inc(&pmc_refcount);
6b099d9b
AS
346 mutex_unlock(&pmc_reserve_mutex);
347 }
348
349 return err;
350}
351
352void x86_release_hardware(void)
353{
1b7b938f 354 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
355 release_pmc_hardware();
356 release_ds_buffers();
357 mutex_unlock(&pmc_reserve_mutex);
358 }
359}
360
48070342
AS
361/*
362 * Check if we can create event of a certain type (that no conflicting events
363 * are present).
364 */
365int x86_add_exclusive(unsigned int what)
366{
93472aff 367 int i;
48070342 368
b0c1ef52
AK
369 /*
370 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
371 * LBR and BTS are still mutually exclusive.
372 */
373 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
374 return 0;
375
93472aff
PZ
376 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
377 mutex_lock(&pmc_reserve_mutex);
378 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
379 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
380 goto fail_unlock;
381 }
382 atomic_inc(&x86_pmu.lbr_exclusive[what]);
383 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 384 }
48070342 385
93472aff
PZ
386 atomic_inc(&active_events);
387 return 0;
48070342 388
93472aff 389fail_unlock:
48070342 390 mutex_unlock(&pmc_reserve_mutex);
93472aff 391 return -EBUSY;
48070342
AS
392}
393
394void x86_del_exclusive(unsigned int what)
395{
b0c1ef52 396 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
397 return;
398
48070342 399 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 400 atomic_dec(&active_events);
48070342
AS
401}
402
de0428a7 403int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
404{
405 struct perf_event_attr *attr = &event->attr;
406 struct hw_perf_event *hwc = &event->hw;
407 u64 config;
408
6c7e550f 409 if (!is_sampling_event(event)) {
c1726f34
RR
410 hwc->sample_period = x86_pmu.max_period;
411 hwc->last_period = hwc->sample_period;
e7850595 412 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
413 }
414
415 if (attr->type == PERF_TYPE_RAW)
ed13ec58 416 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
417
418 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 419 return set_ext_hw_attr(hwc, event);
c1726f34
RR
420
421 if (attr->config >= x86_pmu.max_events)
422 return -EINVAL;
423
424 /*
425 * The generic map:
426 */
427 config = x86_pmu.event_map(attr->config);
428
429 if (config == 0)
430 return -ENOENT;
431
432 if (config == -1LL)
433 return -EINVAL;
434
435 /*
436 * Branch tracing:
437 */
18a073a3
PZ
438 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
439 !attr->freq && hwc->sample_period == 1) {
c1726f34 440 /* BTS is not supported by this architecture. */
6809b6ea 441 if (!x86_pmu.bts_active)
c1726f34
RR
442 return -EOPNOTSUPP;
443
444 /* BTS is currently only allowed for user-mode. */
445 if (!attr->exclude_kernel)
446 return -EOPNOTSUPP;
48070342
AS
447
448 /* disallow bts if conflicting events are present */
449 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
450 return -EBUSY;
451
452 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
453 }
454
455 hwc->config |= config;
456
457 return 0;
458}
4261e0e0 459
ff3fb511
SE
460/*
461 * check that branch_sample_type is compatible with
462 * settings needed for precise_ip > 1 which implies
463 * using the LBR to capture ALL taken branches at the
464 * priv levels of the measurement
465 */
466static inline int precise_br_compat(struct perf_event *event)
467{
468 u64 m = event->attr.branch_sample_type;
469 u64 b = 0;
470
471 /* must capture all branches */
472 if (!(m & PERF_SAMPLE_BRANCH_ANY))
473 return 0;
474
475 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
476
477 if (!event->attr.exclude_user)
478 b |= PERF_SAMPLE_BRANCH_USER;
479
480 if (!event->attr.exclude_kernel)
481 b |= PERF_SAMPLE_BRANCH_KERNEL;
482
483 /*
484 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
485 */
486
487 return m == b;
488}
489
b00233b5 490int x86_pmu_max_precise(void)
a072738e 491{
b00233b5
AK
492 int precise = 0;
493
494 /* Support for constant skid */
495 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496 precise++;
ab608344 497
b00233b5
AK
498 /* Support for IP fixup */
499 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
ab608344
PZ
500 precise++;
501
b00233b5
AK
502 if (x86_pmu.pebs_prec_dist)
503 precise++;
504 }
505 return precise;
506}
72469764 507
b00233b5
AK
508int x86_pmu_hw_config(struct perf_event *event)
509{
510 if (event->attr.precise_ip) {
511 int precise = x86_pmu_max_precise();
ab608344
PZ
512
513 if (event->attr.precise_ip > precise)
514 return -EOPNOTSUPP;
18e7a45a
JO
515
516 /* There's no sense in having PEBS for non sampling events: */
517 if (!is_sampling_event(event))
518 return -EINVAL;
4b854900
YZ
519 }
520 /*
521 * check that PEBS LBR correction does not conflict with
522 * whatever the user is asking with attr->branch_sample_type
523 */
524 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
525 u64 *br_type = &event->attr.branch_sample_type;
526
527 if (has_branch_stack(event)) {
528 if (!precise_br_compat(event))
529 return -EOPNOTSUPP;
530
531 /* branch_sample_type is compatible */
532
533 } else {
534 /*
535 * user did not specify branch_sample_type
536 *
537 * For PEBS fixups, we capture all
538 * the branches at the priv level of the
539 * event.
540 */
541 *br_type = PERF_SAMPLE_BRANCH_ANY;
542
543 if (!event->attr.exclude_user)
544 *br_type |= PERF_SAMPLE_BRANCH_USER;
545
546 if (!event->attr.exclude_kernel)
547 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 548 }
ab608344
PZ
549 }
550
e18bf526
YZ
551 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
552 event->attach_state |= PERF_ATTACH_TASK_DATA;
553
a072738e
CG
554 /*
555 * Generate PMC IRQs:
556 * (keep 'enabled' bit clear for now)
557 */
b4cdc5c2 558 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
559
560 /*
561 * Count user and OS events unless requested not to
562 */
b4cdc5c2
PZ
563 if (!event->attr.exclude_user)
564 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
565 if (!event->attr.exclude_kernel)
566 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 567
b4cdc5c2
PZ
568 if (event->attr.type == PERF_TYPE_RAW)
569 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 570
294fe0f5
AK
571 if (event->attr.sample_period && x86_pmu.limit_period) {
572 if (x86_pmu.limit_period(event, event->attr.sample_period) >
573 event->attr.sample_period)
574 return -EINVAL;
575 }
576
9d0fcba6 577 return x86_setup_perfctr(event);
a098f448
RR
578}
579
241771ef 580/*
0d48696f 581 * Setup the hardware configuration for a given attr_type
241771ef 582 */
b0a873eb 583static int __x86_pmu_event_init(struct perf_event *event)
241771ef 584{
4e935e47 585 int err;
241771ef 586
85cf9dba
RR
587 if (!x86_pmu_initialized())
588 return -ENODEV;
241771ef 589
6b099d9b 590 err = x86_reserve_hardware();
4e935e47
PZ
591 if (err)
592 return err;
593
1b7b938f 594 atomic_inc(&active_events);
cdd6c482 595 event->destroy = hw_perf_event_destroy;
a1792cda 596
4261e0e0
RR
597 event->hw.idx = -1;
598 event->hw.last_cpu = -1;
599 event->hw.last_tag = ~0ULL;
b690081d 600
efc9f05d
SE
601 /* mark unused */
602 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
603 event->hw.branch_reg.idx = EXTRA_REG_NONE;
604
9d0fcba6 605 return x86_pmu.hw_config(event);
4261e0e0
RR
606}
607
de0428a7 608void x86_pmu_disable_all(void)
f87ad35d 609{
89cbc767 610 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
611 int idx;
612
948b1bb8 613 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
614 u64 val;
615
43f6201a 616 if (!test_bit(idx, cpuc->active_mask))
4295ee62 617 continue;
41bf4989 618 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 619 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 620 continue;
bb1165d6 621 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 622 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 623 }
f87ad35d
JSR
624}
625
c3d266c8
KL
626/*
627 * There may be PMI landing after enabled=0. The PMI hitting could be before or
628 * after disable_all.
629 *
630 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
631 * It will not be re-enabled in the NMI handler again, because enabled=0. After
632 * handling the NMI, disable_all will be called, which will not change the
633 * state either. If PMI hits after disable_all, the PMU is already disabled
634 * before entering NMI handler. The NMI handler will not change the state
635 * either.
636 *
637 * So either situation is harmless.
638 */
a4eaf7f1 639static void x86_pmu_disable(struct pmu *pmu)
b56a3802 640{
89cbc767 641 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 642
85cf9dba 643 if (!x86_pmu_initialized())
9e35ad38 644 return;
1da53e02 645
1a6e21f7
PZ
646 if (!cpuc->enabled)
647 return;
648
649 cpuc->n_added = 0;
650 cpuc->enabled = 0;
651 barrier();
1da53e02
SE
652
653 x86_pmu.disable_all();
b56a3802 654}
241771ef 655
de0428a7 656void x86_pmu_enable_all(int added)
f87ad35d 657{
89cbc767 658 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
659 int idx;
660
948b1bb8 661 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 662 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 663
43f6201a 664 if (!test_bit(idx, cpuc->active_mask))
4295ee62 665 continue;
984b838c 666
d45dd923 667 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
668 }
669}
670
51b0fe39 671static struct pmu pmu;
1da53e02
SE
672
673static inline int is_x86_event(struct perf_event *event)
674{
675 return event->pmu == &pmu;
676}
677
1e2ad28f
RR
678/*
679 * Event scheduler state:
680 *
681 * Assign events iterating over all events and counters, beginning
682 * with events with least weights first. Keep the current iterator
683 * state in struct sched_state.
684 */
685struct sched_state {
686 int weight;
687 int event; /* event index */
688 int counter; /* counter index */
689 int unassigned; /* number of events to be assigned left */
cc1790cf 690 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
691 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
692};
693
bc1738f6
RR
694/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
695#define SCHED_STATES_MAX 2
696
1e2ad28f
RR
697struct perf_sched {
698 int max_weight;
699 int max_events;
cc1790cf
PZ
700 int max_gp;
701 int saved_states;
b371b594 702 struct event_constraint **constraints;
1e2ad28f 703 struct sched_state state;
bc1738f6 704 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
705};
706
707/*
708 * Initialize interator that runs through all events and counters.
709 */
b371b594 710static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 711 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
712{
713 int idx;
714
715 memset(sched, 0, sizeof(*sched));
716 sched->max_events = num;
717 sched->max_weight = wmax;
cc1790cf 718 sched->max_gp = gpmax;
b371b594 719 sched->constraints = constraints;
1e2ad28f
RR
720
721 for (idx = 0; idx < num; idx++) {
b371b594 722 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
723 break;
724 }
725
726 sched->state.event = idx; /* start with min weight */
727 sched->state.weight = wmin;
728 sched->state.unassigned = num;
729}
730
bc1738f6
RR
731static void perf_sched_save_state(struct perf_sched *sched)
732{
733 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
734 return;
735
736 sched->saved[sched->saved_states] = sched->state;
737 sched->saved_states++;
738}
739
740static bool perf_sched_restore_state(struct perf_sched *sched)
741{
742 if (!sched->saved_states)
743 return false;
744
745 sched->saved_states--;
746 sched->state = sched->saved[sched->saved_states];
747
748 /* continue with next counter: */
749 clear_bit(sched->state.counter++, sched->state.used);
750
751 return true;
752}
753
1e2ad28f
RR
754/*
755 * Select a counter for the current event to schedule. Return true on
756 * success.
757 */
bc1738f6 758static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
759{
760 struct event_constraint *c;
761 int idx;
762
763 if (!sched->state.unassigned)
764 return false;
765
766 if (sched->state.event >= sched->max_events)
767 return false;
768
b371b594 769 c = sched->constraints[sched->state.event];
4defea85 770 /* Prefer fixed purpose counters */
15c7ad51
RR
771 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
772 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 773 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
774 if (!__test_and_set_bit(idx, sched->state.used))
775 goto done;
776 }
777 }
cc1790cf 778
1e2ad28f
RR
779 /* Grab the first unused counter starting with idx */
780 idx = sched->state.counter;
15c7ad51 781 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
782 if (!__test_and_set_bit(idx, sched->state.used)) {
783 if (sched->state.nr_gp++ >= sched->max_gp)
784 return false;
785
4defea85 786 goto done;
cc1790cf 787 }
1e2ad28f 788 }
1e2ad28f 789
4defea85
PZ
790 return false;
791
792done:
793 sched->state.counter = idx;
1e2ad28f 794
bc1738f6
RR
795 if (c->overlap)
796 perf_sched_save_state(sched);
797
798 return true;
799}
800
801static bool perf_sched_find_counter(struct perf_sched *sched)
802{
803 while (!__perf_sched_find_counter(sched)) {
804 if (!perf_sched_restore_state(sched))
805 return false;
806 }
807
1e2ad28f
RR
808 return true;
809}
810
811/*
812 * Go through all unassigned events and find the next one to schedule.
813 * Take events with the least weight first. Return true on success.
814 */
815static bool perf_sched_next_event(struct perf_sched *sched)
816{
817 struct event_constraint *c;
818
819 if (!sched->state.unassigned || !--sched->state.unassigned)
820 return false;
821
822 do {
823 /* next event */
824 sched->state.event++;
825 if (sched->state.event >= sched->max_events) {
826 /* next weight */
827 sched->state.event = 0;
828 sched->state.weight++;
829 if (sched->state.weight > sched->max_weight)
830 return false;
831 }
b371b594 832 c = sched->constraints[sched->state.event];
1e2ad28f
RR
833 } while (c->weight != sched->state.weight);
834
835 sched->state.counter = 0; /* start with first counter */
836
837 return true;
838}
839
840/*
841 * Assign a counter for each event.
842 */
b371b594 843int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 844 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
845{
846 struct perf_sched sched;
847
cc1790cf 848 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
849
850 do {
851 if (!perf_sched_find_counter(&sched))
852 break; /* failed */
853 if (assign)
854 assign[sched.state.event] = sched.state.counter;
855 } while (perf_sched_next_event(&sched));
856
857 return sched.state.unassigned;
858}
4a3dc121 859EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 860
de0428a7 861int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 862{
43b45780 863 struct event_constraint *c;
1da53e02 864 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 865 struct perf_event *e;
e979121b 866 int i, wmin, wmax, unsched = 0;
1da53e02
SE
867 struct hw_perf_event *hwc;
868
869 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
870
c5362c0c
MD
871 if (x86_pmu.start_scheduling)
872 x86_pmu.start_scheduling(cpuc);
873
1e2ad28f 874 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 875 cpuc->event_constraint[i] = NULL;
79cba822 876 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 877 cpuc->event_constraint[i] = c;
43b45780 878
1e2ad28f
RR
879 wmin = min(wmin, c->weight);
880 wmax = max(wmax, c->weight);
1da53e02
SE
881 }
882
8113070d
SE
883 /*
884 * fastpath, try to reuse previous register
885 */
c933c1a6 886 for (i = 0; i < n; i++) {
8113070d 887 hwc = &cpuc->event_list[i]->hw;
b371b594 888 c = cpuc->event_constraint[i];
8113070d
SE
889
890 /* never assigned */
891 if (hwc->idx == -1)
892 break;
893
894 /* constraint still honored */
63b14649 895 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
896 break;
897
898 /* not already used */
899 if (test_bit(hwc->idx, used_mask))
900 break;
901
34538ee7 902 __set_bit(hwc->idx, used_mask);
8113070d
SE
903 if (assign)
904 assign[i] = hwc->idx;
905 }
8113070d 906
1e2ad28f 907 /* slow path */
b371b594 908 if (i != n) {
cc1790cf
PZ
909 int gpmax = x86_pmu.num_counters;
910
911 /*
912 * Do not allow scheduling of more than half the available
913 * generic counters.
914 *
915 * This helps avoid counter starvation of sibling thread by
916 * ensuring at most half the counters cannot be in exclusive
917 * mode. There is no designated counters for the limits. Any
918 * N/2 counters can be used. This helps with events with
919 * specific counter constraints.
920 */
921 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
922 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
923 gpmax /= 2;
924
b371b594 925 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 926 wmax, gpmax, assign);
b371b594 927 }
8113070d 928
2f7f73a5 929 /*
e979121b
MD
930 * In case of success (unsched = 0), mark events as committed,
931 * so we do not put_constraint() in case new events are added
932 * and fail to be scheduled
933 *
934 * We invoke the lower level commit callback to lock the resource
935 *
936 * We do not need to do all of this in case we are called to
937 * validate an event group (assign == NULL)
2f7f73a5 938 */
e979121b 939 if (!unsched && assign) {
2f7f73a5
SE
940 for (i = 0; i < n; i++) {
941 e = cpuc->event_list[i];
942 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 943 if (x86_pmu.commit_scheduling)
b371b594 944 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 945 }
8736e548 946 } else {
1da53e02 947 for (i = 0; i < n; i++) {
2f7f73a5
SE
948 e = cpuc->event_list[i];
949 /*
950 * do not put_constraint() on comitted events,
951 * because they are good to go
952 */
953 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
954 continue;
955
e979121b
MD
956 /*
957 * release events that failed scheduling
958 */
1da53e02 959 if (x86_pmu.put_event_constraints)
2f7f73a5 960 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
961 }
962 }
c5362c0c
MD
963
964 if (x86_pmu.stop_scheduling)
965 x86_pmu.stop_scheduling(cpuc);
966
e979121b 967 return unsched ? -EINVAL : 0;
1da53e02
SE
968}
969
970/*
971 * dogrp: true if must collect siblings events (group)
972 * returns total number of events and error code
973 */
974static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
975{
976 struct perf_event *event;
977 int n, max_count;
978
948b1bb8 979 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
980
981 /* current number of events already accepted */
982 n = cpuc->n_events;
983
984 if (is_x86_event(leader)) {
985 if (n >= max_count)
aa2bc1ad 986 return -EINVAL;
1da53e02
SE
987 cpuc->event_list[n] = leader;
988 n++;
989 }
990 if (!dogrp)
991 return n;
992
8343aae6 993 list_for_each_entry(event, &leader->sibling_list, sibling_list) {
1da53e02 994 if (!is_x86_event(event) ||
8113070d 995 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
996 continue;
997
998 if (n >= max_count)
aa2bc1ad 999 return -EINVAL;
1da53e02
SE
1000
1001 cpuc->event_list[n] = event;
1002 n++;
1003 }
1004 return n;
1005}
1006
1da53e02 1007static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 1008 struct cpu_hw_events *cpuc, int i)
1da53e02 1009{
447a194b
SE
1010 struct hw_perf_event *hwc = &event->hw;
1011
1012 hwc->idx = cpuc->assign[i];
1013 hwc->last_cpu = smp_processor_id();
1014 hwc->last_tag = ++cpuc->tags[i];
1da53e02 1015
15c7ad51 1016 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
1017 hwc->config_base = 0;
1018 hwc->event_base = 0;
15c7ad51 1019 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 1020 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
1021 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1022 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 1023 } else {
73d6e522
RR
1024 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1025 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 1026 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
1027 }
1028}
1029
447a194b
SE
1030static inline int match_prev_assignment(struct hw_perf_event *hwc,
1031 struct cpu_hw_events *cpuc,
1032 int i)
1033{
1034 return hwc->idx == cpuc->assign[i] &&
1035 hwc->last_cpu == smp_processor_id() &&
1036 hwc->last_tag == cpuc->tags[i];
1037}
1038
a4eaf7f1 1039static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1040
a4eaf7f1 1041static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1042{
89cbc767 1043 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1044 struct perf_event *event;
1045 struct hw_perf_event *hwc;
11164cd4 1046 int i, added = cpuc->n_added;
1da53e02 1047
85cf9dba 1048 if (!x86_pmu_initialized())
2b9ff0db 1049 return;
1a6e21f7
PZ
1050
1051 if (cpuc->enabled)
1052 return;
1053
1da53e02 1054 if (cpuc->n_added) {
19925ce7 1055 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1056 /*
1057 * apply assignment obtained either from
1058 * hw_perf_group_sched_in() or x86_pmu_enable()
1059 *
1060 * step1: save events moving to new counters
1da53e02 1061 */
19925ce7 1062 for (i = 0; i < n_running; i++) {
1da53e02
SE
1063 event = cpuc->event_list[i];
1064 hwc = &event->hw;
1065
447a194b
SE
1066 /*
1067 * we can avoid reprogramming counter if:
1068 * - assigned same counter as last time
1069 * - running on same CPU as last time
1070 * - no other event has used the counter since
1071 */
1072 if (hwc->idx == -1 ||
1073 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1074 continue;
1075
a4eaf7f1
PZ
1076 /*
1077 * Ensure we don't accidentally enable a stopped
1078 * counter simply because we rescheduled.
1079 */
1080 if (hwc->state & PERF_HES_STOPPED)
1081 hwc->state |= PERF_HES_ARCH;
1082
1083 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1084 }
1085
c347a2f1
PZ
1086 /*
1087 * step2: reprogram moved events into new counters
1088 */
1da53e02 1089 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1090 event = cpuc->event_list[i];
1091 hwc = &event->hw;
1092
45e16a68 1093 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1094 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1095 else if (i < n_running)
1096 continue;
1da53e02 1097
a4eaf7f1
PZ
1098 if (hwc->state & PERF_HES_ARCH)
1099 continue;
1100
1101 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1102 }
1103 cpuc->n_added = 0;
1104 perf_events_lapic_init();
1105 }
1a6e21f7
PZ
1106
1107 cpuc->enabled = 1;
1108 barrier();
1109
11164cd4 1110 x86_pmu.enable_all(added);
ee06094f 1111}
ee06094f 1112
245b2e70 1113static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1114
ee06094f
IM
1115/*
1116 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1117 * To be called with the event disabled in hw:
ee06094f 1118 */
de0428a7 1119int x86_perf_event_set_period(struct perf_event *event)
241771ef 1120{
07088edb 1121 struct hw_perf_event *hwc = &event->hw;
e7850595 1122 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1123 s64 period = hwc->sample_period;
7645a24c 1124 int ret = 0, idx = hwc->idx;
ee06094f 1125
15c7ad51 1126 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1127 return 0;
1128
ee06094f 1129 /*
af901ca1 1130 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1131 */
1132 if (unlikely(left <= -period)) {
1133 left = period;
e7850595 1134 local64_set(&hwc->period_left, left);
9e350de3 1135 hwc->last_period = period;
e4abb5d4 1136 ret = 1;
ee06094f
IM
1137 }
1138
1139 if (unlikely(left <= 0)) {
1140 left += period;
e7850595 1141 local64_set(&hwc->period_left, left);
9e350de3 1142 hwc->last_period = period;
e4abb5d4 1143 ret = 1;
ee06094f 1144 }
1c80f4b5 1145 /*
dfc65094 1146 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1147 */
1148 if (unlikely(left < 2))
1149 left = 2;
241771ef 1150
e4abb5d4
PZ
1151 if (left > x86_pmu.max_period)
1152 left = x86_pmu.max_period;
1153
294fe0f5
AK
1154 if (x86_pmu.limit_period)
1155 left = x86_pmu.limit_period(event, left);
1156
245b2e70 1157 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1158
d31fc13f
KL
1159 /*
1160 * The hw event starts counting from this event offset,
1161 * mark it to be able to extra future deltas:
1162 */
1163 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1164
d31fc13f 1165 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1166
1167 /*
1168 * Due to erratum on certan cpu we need
1169 * a second write to be sure the register
1170 * is updated properly
1171 */
1172 if (x86_pmu.perfctr_second_write) {
73d6e522 1173 wrmsrl(hwc->event_base,
948b1bb8 1174 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1175 }
e4abb5d4 1176
cdd6c482 1177 perf_event_update_userpage(event);
194002b2 1178
e4abb5d4 1179 return ret;
2f18d1e8
IM
1180}
1181
de0428a7 1182void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1183{
0a3aee0d 1184 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1185 __x86_pmu_enable_event(&event->hw,
1186 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1187}
1188
b690081d 1189/*
a4eaf7f1 1190 * Add a single event to the PMU.
1da53e02
SE
1191 *
1192 * The event is added to the group of enabled events
1193 * but only if it can be scehduled with existing events.
fe9081cc 1194 */
a4eaf7f1 1195static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1196{
89cbc767 1197 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1198 struct hw_perf_event *hwc;
1199 int assign[X86_PMC_IDX_MAX];
1200 int n, n0, ret;
fe9081cc 1201
1da53e02 1202 hwc = &event->hw;
fe9081cc 1203
1da53e02 1204 n0 = cpuc->n_events;
24cd7f54
PZ
1205 ret = n = collect_events(cpuc, event, false);
1206 if (ret < 0)
1207 goto out;
53b441a5 1208
a4eaf7f1
PZ
1209 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1210 if (!(flags & PERF_EF_START))
1211 hwc->state |= PERF_HES_ARCH;
1212
4d1c52b0
LM
1213 /*
1214 * If group events scheduling transaction was started,
0d2eb44f 1215 * skip the schedulability test here, it will be performed
c347a2f1 1216 * at commit time (->commit_txn) as a whole.
68f7082f
PZ
1217 *
1218 * If commit fails, we'll call ->del() on all events
1219 * for which ->add() was called.
4d1c52b0 1220 */
8f3e5684 1221 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1222 goto done_collect;
4d1c52b0 1223
a072738e 1224 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1225 if (ret)
24cd7f54 1226 goto out;
1da53e02
SE
1227 /*
1228 * copy new assignment, now we know it is possible
1229 * will be used by hw_perf_enable()
1230 */
1231 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1232
24cd7f54 1233done_collect:
c347a2f1
PZ
1234 /*
1235 * Commit the collect_events() state. See x86_pmu_del() and
1236 * x86_pmu_*_txn().
1237 */
1da53e02 1238 cpuc->n_events = n;
356e1f2e 1239 cpuc->n_added += n - n0;
90151c35 1240 cpuc->n_txn += n - n0;
95cdd2e7 1241
68f7082f
PZ
1242 if (x86_pmu.add) {
1243 /*
1244 * This is before x86_pmu_enable() will call x86_pmu_start(),
1245 * so we enable LBRs before an event needs them etc..
1246 */
1247 x86_pmu.add(event);
1248 }
1249
24cd7f54
PZ
1250 ret = 0;
1251out:
24cd7f54 1252 return ret;
241771ef
IM
1253}
1254
a4eaf7f1 1255static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1256{
89cbc767 1257 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1258 int idx = event->hw.idx;
1259
a4eaf7f1
PZ
1260 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1261 return;
1262
1263 if (WARN_ON_ONCE(idx == -1))
1264 return;
1265
1266 if (flags & PERF_EF_RELOAD) {
1267 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1268 x86_perf_event_set_period(event);
1269 }
1270
1271 event->hw.state = 0;
d76a0812 1272
c08053e6
PZ
1273 cpuc->events[idx] = event;
1274 __set_bit(idx, cpuc->active_mask);
63e6be6d 1275 __set_bit(idx, cpuc->running);
aff3d91a 1276 x86_pmu.enable(event);
c08053e6 1277 perf_event_update_userpage(event);
a78ac325
PZ
1278}
1279
cdd6c482 1280void perf_event_print_debug(void)
241771ef 1281{
2f18d1e8 1282 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1283 u64 pebs, debugctl;
cdd6c482 1284 struct cpu_hw_events *cpuc;
5bb9efe3 1285 unsigned long flags;
1e125676
IM
1286 int cpu, idx;
1287
948b1bb8 1288 if (!x86_pmu.num_counters)
1e125676 1289 return;
241771ef 1290
5bb9efe3 1291 local_irq_save(flags);
241771ef
IM
1292
1293 cpu = smp_processor_id();
cdd6c482 1294 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1295
faa28ae0 1296 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1297 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1298 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1299 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1300 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1301
1302 pr_info("\n");
1303 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1304 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1305 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1306 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1307 if (x86_pmu.pebs_constraints) {
1308 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1309 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1310 }
da3e606d
AK
1311 if (x86_pmu.lbr_nr) {
1312 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1313 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1314 }
f87ad35d 1315 }
7645a24c 1316 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1317
948b1bb8 1318 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1319 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1320 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1321
245b2e70 1322 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1323
a1ef58f4 1324 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1325 cpu, idx, pmc_ctrl);
a1ef58f4 1326 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1327 cpu, idx, pmc_count);
a1ef58f4 1328 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1329 cpu, idx, prev_left);
241771ef 1330 }
948b1bb8 1331 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1332 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1333
a1ef58f4 1334 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1335 cpu, idx, pmc_count);
1336 }
5bb9efe3 1337 local_irq_restore(flags);
241771ef
IM
1338}
1339
de0428a7 1340void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1341{
89cbc767 1342 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1343 struct hw_perf_event *hwc = &event->hw;
241771ef 1344
a4eaf7f1
PZ
1345 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1346 x86_pmu.disable(event);
1347 cpuc->events[hwc->idx] = NULL;
1348 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1349 hwc->state |= PERF_HES_STOPPED;
1350 }
30dd568c 1351
a4eaf7f1
PZ
1352 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1353 /*
1354 * Drain the remaining delta count out of a event
1355 * that we are disabling:
1356 */
1357 x86_perf_event_update(event);
1358 hwc->state |= PERF_HES_UPTODATE;
1359 }
2e841873
PZ
1360}
1361
a4eaf7f1 1362static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1363{
89cbc767 1364 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1365 int i;
1366
2f7f73a5
SE
1367 /*
1368 * event is descheduled
1369 */
1370 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1371
90151c35 1372 /*
68f7082f 1373 * If we're called during a txn, we only need to undo x86_pmu.add.
90151c35
SE
1374 * The events never got scheduled and ->cancel_txn will truncate
1375 * the event_list.
c347a2f1
PZ
1376 *
1377 * XXX assumes any ->del() called during a TXN will only be on
1378 * an event added during that same TXN.
90151c35 1379 */
8f3e5684 1380 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
68f7082f 1381 goto do_del;
90151c35 1382
c347a2f1
PZ
1383 /*
1384 * Not a TXN, therefore cleanup properly.
1385 */
a4eaf7f1 1386 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1387
1da53e02 1388 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1389 if (event == cpuc->event_list[i])
1390 break;
1391 }
1da53e02 1392
c347a2f1
PZ
1393 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1394 return;
26e61e89 1395
c347a2f1
PZ
1396 /* If we have a newly added event; make sure to decrease n_added. */
1397 if (i >= cpuc->n_events - cpuc->n_added)
1398 --cpuc->n_added;
1da53e02 1399
c347a2f1
PZ
1400 if (x86_pmu.put_event_constraints)
1401 x86_pmu.put_event_constraints(cpuc, event);
1402
1403 /* Delete the array entry. */
b371b594 1404 while (++i < cpuc->n_events) {
c347a2f1 1405 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1406 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1407 }
c347a2f1 1408 --cpuc->n_events;
1da53e02 1409
cdd6c482 1410 perf_event_update_userpage(event);
68f7082f
PZ
1411
1412do_del:
1413 if (x86_pmu.del) {
1414 /*
1415 * This is after x86_pmu_stop(); so we disable LBRs after any
1416 * event can need them etc..
1417 */
1418 x86_pmu.del(event);
1419 }
241771ef
IM
1420}
1421
de0428a7 1422int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1423{
df1a132b 1424 struct perf_sample_data data;
cdd6c482
IM
1425 struct cpu_hw_events *cpuc;
1426 struct perf_event *event;
11d1578f 1427 int idx, handled = 0;
9029a5e3
IM
1428 u64 val;
1429
89cbc767 1430 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1431
2bce5dac
DZ
1432 /*
1433 * Some chipsets need to unmask the LVTPC in a particular spot
1434 * inside the nmi handler. As a result, the unmasking was pushed
1435 * into all the nmi handlers.
1436 *
1437 * This generic handler doesn't seem to have any issues where the
1438 * unmasking occurs so it was left at the top.
1439 */
1440 apic_write(APIC_LVTPC, APIC_DM_NMI);
1441
948b1bb8 1442 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1443 if (!test_bit(idx, cpuc->active_mask)) {
1444 /*
1445 * Though we deactivated the counter some cpus
1446 * might still deliver spurious interrupts still
1447 * in flight. Catch them:
1448 */
1449 if (__test_and_clear_bit(idx, cpuc->running))
1450 handled++;
a29aa8a7 1451 continue;
63e6be6d 1452 }
962bf7a6 1453
cdd6c482 1454 event = cpuc->events[idx];
a4016a79 1455
cc2ad4ba 1456 val = x86_perf_event_update(event);
948b1bb8 1457 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1458 continue;
962bf7a6 1459
9e350de3 1460 /*
cdd6c482 1461 * event overflow
9e350de3 1462 */
4177c42a 1463 handled++;
fd0d000b 1464 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1465
07088edb 1466 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1467 continue;
1468
a8b0ca17 1469 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1470 x86_pmu_stop(event, 0);
a29aa8a7 1471 }
962bf7a6 1472
9e350de3
PZ
1473 if (handled)
1474 inc_irq_stat(apic_perf_irqs);
1475
a29aa8a7
RR
1476 return handled;
1477}
39d81eab 1478
cdd6c482 1479void perf_events_lapic_init(void)
241771ef 1480{
04da8a43 1481 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1482 return;
85cf9dba 1483
241771ef 1484 /*
c323d95f 1485 * Always use NMI for PMU
241771ef 1486 */
c323d95f 1487 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1488}
1489
9326638c 1490static int
9c48f1c6 1491perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1492{
14c63f17
DH
1493 u64 start_clock;
1494 u64 finish_clock;
e8a923cc 1495 int ret;
14c63f17 1496
1b7b938f
AS
1497 /*
1498 * All PMUs/events that share this PMI handler should make sure to
1499 * increment active_events for their events.
1500 */
cdd6c482 1501 if (!atomic_read(&active_events))
9c48f1c6 1502 return NMI_DONE;
4177c42a 1503
e8a923cc 1504 start_clock = sched_clock();
14c63f17 1505 ret = x86_pmu.handle_irq(regs);
e8a923cc 1506 finish_clock = sched_clock();
14c63f17
DH
1507
1508 perf_sample_event_took(finish_clock - start_clock);
1509
1510 return ret;
241771ef 1511}
9326638c 1512NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1513
de0428a7
KW
1514struct event_constraint emptyconstraint;
1515struct event_constraint unconstrained;
f87ad35d 1516
95ca792c 1517static int x86_pmu_prepare_cpu(unsigned int cpu)
3f6da390 1518{
7fdba1ca 1519 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
95ca792c 1520 int i;
3f6da390 1521
95ca792c
TG
1522 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1523 cpuc->kfree_on_online[i] = NULL;
1524 if (x86_pmu.cpu_prepare)
1525 return x86_pmu.cpu_prepare(cpu);
1526 return 0;
1527}
7fdba1ca 1528
95ca792c
TG
1529static int x86_pmu_dead_cpu(unsigned int cpu)
1530{
1531 if (x86_pmu.cpu_dead)
1532 x86_pmu.cpu_dead(cpu);
1533 return 0;
1534}
3f6da390 1535
95ca792c
TG
1536static int x86_pmu_online_cpu(unsigned int cpu)
1537{
1538 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1539 int i;
3f6da390 1540
95ca792c
TG
1541 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1542 kfree(cpuc->kfree_on_online[i]);
1543 cpuc->kfree_on_online[i] = NULL;
3f6da390 1544 }
95ca792c
TG
1545 return 0;
1546}
3f6da390 1547
95ca792c
TG
1548static int x86_pmu_starting_cpu(unsigned int cpu)
1549{
1550 if (x86_pmu.cpu_starting)
1551 x86_pmu.cpu_starting(cpu);
1552 return 0;
1553}
1554
1555static int x86_pmu_dying_cpu(unsigned int cpu)
1556{
1557 if (x86_pmu.cpu_dying)
1558 x86_pmu.cpu_dying(cpu);
1559 return 0;
3f6da390
PZ
1560}
1561
12558038
CG
1562static void __init pmu_check_apic(void)
1563{
93984fbd 1564 if (boot_cpu_has(X86_FEATURE_APIC))
12558038
CG
1565 return;
1566
1567 x86_pmu.apic = 0;
1568 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1569 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1570
1571 /*
1572 * If we have a PMU initialized but no APIC
1573 * interrupts, we cannot sample hardware
1574 * events (user-space has to fall back and
1575 * sample via a hrtimer based software event):
1576 */
1577 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1578
12558038
CG
1579}
1580
641cc938
JO
1581static struct attribute_group x86_pmu_format_group = {
1582 .name = "format",
1583 .attrs = NULL,
1584};
1585
8300daa2
JO
1586/*
1587 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1588 * out of events_attr attributes.
1589 */
1590static void __init filter_events(struct attribute **attrs)
1591{
3a54aaa0
SE
1592 struct device_attribute *d;
1593 struct perf_pmu_events_attr *pmu_attr;
61b87cae 1594 int offset = 0;
8300daa2
JO
1595 int i, j;
1596
1597 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1598 d = (struct device_attribute *)attrs[i];
1599 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1600 /* str trumps id */
1601 if (pmu_attr->event_str)
1602 continue;
61b87cae 1603 if (x86_pmu.event_map(i + offset))
8300daa2
JO
1604 continue;
1605
1606 for (j = i; attrs[j]; j++)
1607 attrs[j] = attrs[j + 1];
1608
1609 /* Check the shifted attr. */
1610 i--;
61b87cae
SE
1611
1612 /*
1613 * event_map() is index based, the attrs array is organized
1614 * by increasing event index. If we shift the events, then
1615 * we need to compensate for the event_map(), otherwise
1616 * we are looking up the wrong event in the map
1617 */
1618 offset++;
8300daa2
JO
1619 }
1620}
1621
1a6461b1 1622/* Merge two pointer arrays */
47732d88 1623__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1624{
1625 struct attribute **new;
1626 int j, i;
1627
1628 for (j = 0; a[j]; j++)
1629 ;
1630 for (i = 0; b[i]; i++)
1631 j++;
1632 j++;
1633
1634 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1635 if (!new)
1636 return NULL;
1637
1638 j = 0;
1639 for (i = 0; a[i]; i++)
1640 new[j++] = a[i];
1641 for (i = 0; b[i]; i++)
1642 new[j++] = b[i];
1643 new[j] = NULL;
1644
1645 return new;
1646}
1647
c7ab62bf 1648ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
a4747393
JO
1649{
1650 struct perf_pmu_events_attr *pmu_attr = \
1651 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1652 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1653
3a54aaa0
SE
1654 /* string trumps id */
1655 if (pmu_attr->event_str)
1656 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1657
3a54aaa0
SE
1658 return x86_pmu.events_sysfs_show(page, config);
1659}
c7ab62bf 1660EXPORT_SYMBOL_GPL(events_sysfs_show);
a4747393 1661
fc07e9f9
AK
1662ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1663 char *page)
1664{
1665 struct perf_pmu_events_ht_attr *pmu_attr =
1666 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1667
1668 /*
1669 * Report conditional events depending on Hyper-Threading.
1670 *
1671 * This is overly conservative as usually the HT special
1672 * handling is not needed if the other CPU thread is idle.
1673 *
1674 * Note this does not (and cannot) handle the case when thread
1675 * siblings are invisible, for example with virtualization
1676 * if they are owned by some other guest. The user tool
1677 * has to re-read when a thread sibling gets onlined later.
1678 */
1679 return sprintf(page, "%s",
1680 topology_max_smt_threads() > 1 ?
1681 pmu_attr->event_str_ht :
1682 pmu_attr->event_str_noht);
1683}
1684
a4747393
JO
1685EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1686EVENT_ATTR(instructions, INSTRUCTIONS );
1687EVENT_ATTR(cache-references, CACHE_REFERENCES );
1688EVENT_ATTR(cache-misses, CACHE_MISSES );
1689EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1690EVENT_ATTR(branch-misses, BRANCH_MISSES );
1691EVENT_ATTR(bus-cycles, BUS_CYCLES );
1692EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1693EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1694EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1695
1696static struct attribute *empty_attrs;
1697
95d18aa2 1698static struct attribute *events_attr[] = {
a4747393
JO
1699 EVENT_PTR(CPU_CYCLES),
1700 EVENT_PTR(INSTRUCTIONS),
1701 EVENT_PTR(CACHE_REFERENCES),
1702 EVENT_PTR(CACHE_MISSES),
1703 EVENT_PTR(BRANCH_INSTRUCTIONS),
1704 EVENT_PTR(BRANCH_MISSES),
1705 EVENT_PTR(BUS_CYCLES),
1706 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1707 EVENT_PTR(STALLED_CYCLES_BACKEND),
1708 EVENT_PTR(REF_CPU_CYCLES),
1709 NULL,
1710};
1711
1712static struct attribute_group x86_pmu_events_group = {
1713 .name = "events",
1714 .attrs = events_attr,
1715};
1716
0bf79d44 1717ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1718{
43c032fe
JO
1719 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1720 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1721 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1722 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1723 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1724 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1725 ssize_t ret;
1726
1727 /*
1728 * We have whole page size to spend and just little data
1729 * to write, so we can safely use sprintf.
1730 */
1731 ret = sprintf(page, "event=0x%02llx", event);
1732
1733 if (umask)
1734 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1735
1736 if (edge)
1737 ret += sprintf(page + ret, ",edge");
1738
1739 if (pc)
1740 ret += sprintf(page + ret, ",pc");
1741
1742 if (any)
1743 ret += sprintf(page + ret, ",any");
1744
1745 if (inv)
1746 ret += sprintf(page + ret, ",inv");
1747
1748 if (cmask)
1749 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1750
1751 ret += sprintf(page + ret, "\n");
1752
1753 return ret;
1754}
1755
6089327f 1756static struct attribute_group x86_pmu_attr_group;
5da382eb 1757static struct attribute_group x86_pmu_caps_group;
6089327f 1758
dda99116 1759static int __init init_hw_perf_events(void)
b56a3802 1760{
c1d6f42f 1761 struct x86_pmu_quirk *quirk;
72eae04d
RR
1762 int err;
1763
cdd6c482 1764 pr_info("Performance Events: ");
1123e3ad 1765
b56a3802
JSR
1766 switch (boot_cpu_data.x86_vendor) {
1767 case X86_VENDOR_INTEL:
72eae04d 1768 err = intel_pmu_init();
b56a3802 1769 break;
f87ad35d 1770 case X86_VENDOR_AMD:
72eae04d 1771 err = amd_pmu_init();
f87ad35d 1772 break;
4138960a 1773 default:
8a3da6c7 1774 err = -ENOTSUPP;
b56a3802 1775 }
1123e3ad 1776 if (err != 0) {
cdd6c482 1777 pr_cont("no PMU driver, software events only.\n");
004417a6 1778 return 0;
1123e3ad 1779 }
b56a3802 1780
12558038
CG
1781 pmu_check_apic();
1782
33c6d6a7 1783 /* sanity check that the hardware exists or is emulated */
4407204c 1784 if (!check_hw_exists())
004417a6 1785 return 0;
33c6d6a7 1786
1123e3ad 1787 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1788
e97df763
PZ
1789 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1790
c1d6f42f
PZ
1791 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1792 quirk->func();
3c44780b 1793
a1eac7ac
RR
1794 if (!x86_pmu.intel_ctrl)
1795 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1796
cdd6c482 1797 perf_events_lapic_init();
9c48f1c6 1798 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1799
63b14649 1800 unconstrained = (struct event_constraint)
948b1bb8 1801 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1802 0, x86_pmu.num_counters, 0, 0);
63b14649 1803
641cc938 1804 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1805
5da382eb
PZ
1806 if (x86_pmu.caps_attrs) {
1807 struct attribute **tmp;
1808
1809 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1810 if (!WARN_ON(!tmp))
1811 x86_pmu_caps_group.attrs = tmp;
1812 }
0c9d42ed 1813
f20093ee
SE
1814 if (x86_pmu.event_attrs)
1815 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1816
a4747393
JO
1817 if (!x86_pmu.events_sysfs_show)
1818 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1819 else
1820 filter_events(x86_pmu_events_group.attrs);
a4747393 1821
1a6461b1
AK
1822 if (x86_pmu.cpu_events) {
1823 struct attribute **tmp;
1824
1825 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1826 if (!WARN_ON(!tmp))
1827 x86_pmu_events_group.attrs = tmp;
1828 }
1829
6089327f
KL
1830 if (x86_pmu.attrs) {
1831 struct attribute **tmp;
1832
1833 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1834 if (!WARN_ON(!tmp))
1835 x86_pmu_attr_group.attrs = tmp;
1836 }
1837
57c0c15b 1838 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1839 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1840 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1841 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1842 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1843 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1844 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1845
95ca792c
TG
1846 /*
1847 * Install callbacks. Core will call them for each online
1848 * cpu.
1849 */
73c1b41e 1850 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
95ca792c
TG
1851 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1852 if (err)
1853 return err;
1854
1855 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
73c1b41e 1856 "perf/x86:starting", x86_pmu_starting_cpu,
95ca792c
TG
1857 x86_pmu_dying_cpu);
1858 if (err)
1859 goto out;
1860
73c1b41e 1861 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
95ca792c
TG
1862 x86_pmu_online_cpu, NULL);
1863 if (err)
1864 goto out1;
1865
1866 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1867 if (err)
1868 goto out2;
004417a6
PZ
1869
1870 return 0;
95ca792c
TG
1871
1872out2:
1873 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1874out1:
1875 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1876out:
1877 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1878 return err;
241771ef 1879}
004417a6 1880early_initcall(init_hw_perf_events);
621a01ea 1881
cdd6c482 1882static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1883{
bcfbe5c4
KL
1884 if (x86_pmu.read)
1885 return x86_pmu.read(event);
cc2ad4ba 1886 x86_perf_event_update(event);
ee06094f
IM
1887}
1888
4d1c52b0
LM
1889/*
1890 * Start group events scheduling transaction
1891 * Set the flag to make pmu::enable() not perform the
1892 * schedulability test, it will be performed at commit time
fbbe0701
SB
1893 *
1894 * We only support PERF_PMU_TXN_ADD transactions. Save the
1895 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1896 * transactions.
4d1c52b0 1897 */
fbbe0701 1898static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1899{
fbbe0701
SB
1900 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1901
1902 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1903
1904 cpuc->txn_flags = txn_flags;
1905 if (txn_flags & ~PERF_PMU_TXN_ADD)
1906 return;
1907
33696fc0 1908 perf_pmu_disable(pmu);
0a3aee0d 1909 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1910}
1911
1912/*
1913 * Stop group events scheduling transaction
1914 * Clear the flag and pmu::enable() will perform the
1915 * schedulability test.
1916 */
51b0fe39 1917static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1918{
fbbe0701
SB
1919 unsigned int txn_flags;
1920 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1921
1922 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1923
1924 txn_flags = cpuc->txn_flags;
1925 cpuc->txn_flags = 0;
1926 if (txn_flags & ~PERF_PMU_TXN_ADD)
1927 return;
1928
90151c35 1929 /*
c347a2f1
PZ
1930 * Truncate collected array by the number of events added in this
1931 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1932 */
0a3aee0d
TH
1933 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1934 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1935 perf_pmu_enable(pmu);
4d1c52b0
LM
1936}
1937
1938/*
1939 * Commit group events scheduling transaction
1940 * Perform the group schedulability test as a whole
1941 * Return 0 if success
c347a2f1
PZ
1942 *
1943 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1944 */
51b0fe39 1945static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1946{
89cbc767 1947 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1948 int assign[X86_PMC_IDX_MAX];
1949 int n, ret;
1950
fbbe0701
SB
1951 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1952
1953 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1954 cpuc->txn_flags = 0;
1955 return 0;
1956 }
1957
4d1c52b0
LM
1958 n = cpuc->n_events;
1959
1960 if (!x86_pmu_initialized())
1961 return -EAGAIN;
1962
1963 ret = x86_pmu.schedule_events(cpuc, n, assign);
1964 if (ret)
1965 return ret;
1966
1967 /*
1968 * copy new assignment, now we know it is possible
1969 * will be used by hw_perf_enable()
1970 */
1971 memcpy(cpuc->assign, assign, n*sizeof(int));
1972
fbbe0701 1973 cpuc->txn_flags = 0;
33696fc0 1974 perf_pmu_enable(pmu);
4d1c52b0
LM
1975 return 0;
1976}
cd8a38d3
SE
1977/*
1978 * a fake_cpuc is used to validate event groups. Due to
1979 * the extra reg logic, we need to also allocate a fake
1980 * per_core and per_cpu structure. Otherwise, group events
1981 * using extra reg may conflict without the kernel being
1982 * able to catch this when the last event gets added to
1983 * the group.
1984 */
1985static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1986{
1987 kfree(cpuc->shared_regs);
1988 kfree(cpuc);
1989}
1990
1991static struct cpu_hw_events *allocate_fake_cpuc(void)
1992{
1993 struct cpu_hw_events *cpuc;
1994 int cpu = raw_smp_processor_id();
1995
1996 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1997 if (!cpuc)
1998 return ERR_PTR(-ENOMEM);
1999
2000 /* only needed, if we have extra_regs */
2001 if (x86_pmu.extra_regs) {
2002 cpuc->shared_regs = allocate_shared_regs(cpu);
2003 if (!cpuc->shared_regs)
2004 goto error;
2005 }
b430f7c4 2006 cpuc->is_fake = 1;
cd8a38d3
SE
2007 return cpuc;
2008error:
2009 free_fake_cpuc(cpuc);
2010 return ERR_PTR(-ENOMEM);
2011}
4d1c52b0 2012
ca037701
PZ
2013/*
2014 * validate that we can schedule this event
2015 */
2016static int validate_event(struct perf_event *event)
2017{
2018 struct cpu_hw_events *fake_cpuc;
2019 struct event_constraint *c;
2020 int ret = 0;
2021
cd8a38d3
SE
2022 fake_cpuc = allocate_fake_cpuc();
2023 if (IS_ERR(fake_cpuc))
2024 return PTR_ERR(fake_cpuc);
ca037701 2025
79cba822 2026 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
2027
2028 if (!c || !c->weight)
aa2bc1ad 2029 ret = -EINVAL;
ca037701
PZ
2030
2031 if (x86_pmu.put_event_constraints)
2032 x86_pmu.put_event_constraints(fake_cpuc, event);
2033
cd8a38d3 2034 free_fake_cpuc(fake_cpuc);
ca037701
PZ
2035
2036 return ret;
2037}
2038
1da53e02
SE
2039/*
2040 * validate a single event group
2041 *
2042 * validation include:
184f412c
IM
2043 * - check events are compatible which each other
2044 * - events do not compete for the same counter
2045 * - number of events <= number of counters
1da53e02
SE
2046 *
2047 * validation ensures the group can be loaded onto the
2048 * PMU if it was the only group available.
2049 */
fe9081cc
PZ
2050static int validate_group(struct perf_event *event)
2051{
1da53e02 2052 struct perf_event *leader = event->group_leader;
502568d5 2053 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 2054 int ret = -EINVAL, n;
fe9081cc 2055
cd8a38d3
SE
2056 fake_cpuc = allocate_fake_cpuc();
2057 if (IS_ERR(fake_cpuc))
2058 return PTR_ERR(fake_cpuc);
1da53e02
SE
2059 /*
2060 * the event is not yet connected with its
2061 * siblings therefore we must first collect
2062 * existing siblings, then add the new event
2063 * before we can simulate the scheduling
2064 */
502568d5 2065 n = collect_events(fake_cpuc, leader, true);
1da53e02 2066 if (n < 0)
cd8a38d3 2067 goto out;
fe9081cc 2068
502568d5
PZ
2069 fake_cpuc->n_events = n;
2070 n = collect_events(fake_cpuc, event, false);
1da53e02 2071 if (n < 0)
cd8a38d3 2072 goto out;
fe9081cc 2073
502568d5 2074 fake_cpuc->n_events = n;
1da53e02 2075
a072738e 2076 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 2077
502568d5 2078out:
cd8a38d3 2079 free_fake_cpuc(fake_cpuc);
502568d5 2080 return ret;
fe9081cc
PZ
2081}
2082
dda99116 2083static int x86_pmu_event_init(struct perf_event *event)
621a01ea 2084{
51b0fe39 2085 struct pmu *tmp;
621a01ea
IM
2086 int err;
2087
b0a873eb
PZ
2088 switch (event->attr.type) {
2089 case PERF_TYPE_RAW:
2090 case PERF_TYPE_HARDWARE:
2091 case PERF_TYPE_HW_CACHE:
2092 break;
2093
2094 default:
2095 return -ENOENT;
2096 }
2097
2098 err = __x86_pmu_event_init(event);
fe9081cc 2099 if (!err) {
8113070d
SE
2100 /*
2101 * we temporarily connect event to its pmu
2102 * such that validate_group() can classify
2103 * it as an x86 event using is_x86_event()
2104 */
2105 tmp = event->pmu;
2106 event->pmu = &pmu;
2107
fe9081cc
PZ
2108 if (event->group_leader != event)
2109 err = validate_group(event);
ca037701
PZ
2110 else
2111 err = validate_event(event);
8113070d
SE
2112
2113 event->pmu = tmp;
fe9081cc 2114 }
a1792cda 2115 if (err) {
cdd6c482
IM
2116 if (event->destroy)
2117 event->destroy(event);
a1792cda 2118 }
621a01ea 2119
1af22eba
KL
2120 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2121 !(event->hw.flags & PERF_X86_EVENT_FREERUNNING))
7911d3f7
AL
2122 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2123
b0a873eb 2124 return err;
621a01ea 2125}
d7d59fb3 2126
7911d3f7
AL
2127static void refresh_pce(void *ignored)
2128{
3d28ebce 2129 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
7911d3f7
AL
2130}
2131
bfe33492 2132static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7
AL
2133{
2134 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2135 return;
2136
4b07372a
AL
2137 /*
2138 * This function relies on not being called concurrently in two
2139 * tasks in the same mm. Otherwise one task could observe
2140 * perf_rdpmc_allowed > 1 and return all the way back to
2141 * userspace with CR4.PCE clear while another task is still
2142 * doing on_each_cpu_mask() to propagate CR4.PCE.
2143 *
2144 * For now, this can't happen because all callers hold mmap_sem
2145 * for write. If this changes, we'll need a different solution.
2146 */
bfe33492 2147 lockdep_assert_held_exclusive(&mm->mmap_sem);
4b07372a 2148
bfe33492
PZ
2149 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2150 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
7911d3f7
AL
2151}
2152
bfe33492 2153static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7 2154{
7911d3f7
AL
2155
2156 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2157 return;
2158
bfe33492
PZ
2159 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2160 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
7911d3f7
AL
2161}
2162
fe4a3308
PZ
2163static int x86_pmu_event_idx(struct perf_event *event)
2164{
2165 int idx = event->hw.idx;
2166
7911d3f7 2167 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2168 return 0;
2169
15c7ad51
RR
2170 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2171 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2172 idx |= 1 << 30;
2173 }
2174
2175 return idx + 1;
2176}
2177
0c9d42ed
PZ
2178static ssize_t get_attr_rdpmc(struct device *cdev,
2179 struct device_attribute *attr,
2180 char *buf)
2181{
2182 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2183}
2184
0c9d42ed
PZ
2185static ssize_t set_attr_rdpmc(struct device *cdev,
2186 struct device_attribute *attr,
2187 const char *buf, size_t count)
2188{
e2b297fc
SK
2189 unsigned long val;
2190 ssize_t ret;
2191
2192 ret = kstrtoul(buf, 0, &val);
2193 if (ret)
2194 return ret;
e97df763 2195
a6673429
AL
2196 if (val > 2)
2197 return -EINVAL;
2198
e97df763
PZ
2199 if (x86_pmu.attr_rdpmc_broken)
2200 return -ENOTSUPP;
0c9d42ed 2201
a6673429
AL
2202 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2203 /*
2204 * Changing into or out of always available, aka
2205 * perf-event-bypassing mode. This path is extremely slow,
2206 * but only root can trigger it, so it's okay.
2207 */
2208 if (val == 2)
2209 static_key_slow_inc(&rdpmc_always_available);
2210 else
2211 static_key_slow_dec(&rdpmc_always_available);
2212 on_each_cpu(refresh_pce, NULL, 1);
2213 }
2214
2215 x86_pmu.attr_rdpmc = val;
2216
0c9d42ed
PZ
2217 return count;
2218}
2219
2220static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2221
2222static struct attribute *x86_pmu_attrs[] = {
2223 &dev_attr_rdpmc.attr,
2224 NULL,
2225};
2226
2227static struct attribute_group x86_pmu_attr_group = {
2228 .attrs = x86_pmu_attrs,
2229};
2230
5da382eb
PZ
2231static ssize_t max_precise_show(struct device *cdev,
2232 struct device_attribute *attr,
2233 char *buf)
2234{
2235 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2236}
2237
2238static DEVICE_ATTR_RO(max_precise);
2239
2240static struct attribute *x86_pmu_caps_attrs[] = {
2241 &dev_attr_max_precise.attr,
2242 NULL
2243};
2244
2245static struct attribute_group x86_pmu_caps_group = {
2246 .name = "caps",
2247 .attrs = x86_pmu_caps_attrs,
2248};
2249
0c9d42ed
PZ
2250static const struct attribute_group *x86_pmu_attr_groups[] = {
2251 &x86_pmu_attr_group,
641cc938 2252 &x86_pmu_format_group,
a4747393 2253 &x86_pmu_events_group,
b00233b5 2254 &x86_pmu_caps_group,
0c9d42ed
PZ
2255 NULL,
2256};
2257
ba532500 2258static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2259{
ba532500
YZ
2260 if (x86_pmu.sched_task)
2261 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2262}
2263
c93dc84c
PZ
2264void perf_check_microcode(void)
2265{
2266 if (x86_pmu.check_microcode)
2267 x86_pmu.check_microcode();
2268}
c93dc84c 2269
b0a873eb 2270static struct pmu pmu = {
d010b332
SE
2271 .pmu_enable = x86_pmu_enable,
2272 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2273
c93dc84c 2274 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2275
c93dc84c 2276 .event_init = x86_pmu_event_init,
a4eaf7f1 2277
7911d3f7
AL
2278 .event_mapped = x86_pmu_event_mapped,
2279 .event_unmapped = x86_pmu_event_unmapped,
2280
d010b332
SE
2281 .add = x86_pmu_add,
2282 .del = x86_pmu_del,
2283 .start = x86_pmu_start,
2284 .stop = x86_pmu_stop,
2285 .read = x86_pmu_read,
a4eaf7f1 2286
c93dc84c
PZ
2287 .start_txn = x86_pmu_start_txn,
2288 .cancel_txn = x86_pmu_cancel_txn,
2289 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2290
c93dc84c 2291 .event_idx = x86_pmu_event_idx,
ba532500 2292 .sched_task = x86_pmu_sched_task,
e18bf526 2293 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2294};
2295
c1317ec2
AL
2296void arch_perf_update_userpage(struct perf_event *event,
2297 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2298{
59eaef78 2299 struct cyc2ns_data data;
698eff63 2300 u64 offset;
20d1c86a 2301
fa731587
PZ
2302 userpg->cap_user_time = 0;
2303 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2304 userpg->cap_user_rdpmc =
2305 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2306 userpg->pmc_width = x86_pmu.cntval_bits;
2307
698eff63 2308 if (!using_native_sched_clock() || !sched_clock_stable())
e3f3541c
PZ
2309 return;
2310
59eaef78 2311 cyc2ns_read_begin(&data);
20d1c86a 2312
59eaef78 2313 offset = data.cyc2ns_offset + __sched_clock_offset;
698eff63 2314
34f43927
PZ
2315 /*
2316 * Internal timekeeping for enabled/running/stopped times
2317 * is always in the local_clock domain.
2318 */
fa731587 2319 userpg->cap_user_time = 1;
59eaef78
PZ
2320 userpg->time_mult = data.cyc2ns_mul;
2321 userpg->time_shift = data.cyc2ns_shift;
698eff63 2322 userpg->time_offset = offset - now;
c73deb6a 2323
34f43927
PZ
2324 /*
2325 * cap_user_time_zero doesn't make sense when we're using a different
2326 * time base for the records.
2327 */
f454bfdd 2328 if (!event->attr.use_clockid) {
34f43927 2329 userpg->cap_user_time_zero = 1;
698eff63 2330 userpg->time_zero = offset;
34f43927 2331 }
20d1c86a 2332
59eaef78 2333 cyc2ns_read_end();
e3f3541c
PZ
2334}
2335
56962b44 2336void
cfbcf468 2337perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2338{
35f4d9b3
JP
2339 struct unwind_state state;
2340 unsigned long addr;
2341
927c7a9e
FW
2342 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2343 /* TODO: We don't support guest os callchain now */
ed805261 2344 return;
927c7a9e
FW
2345 }
2346
019e579d
JP
2347 if (perf_callchain_store(entry, regs->ip))
2348 return;
d7d59fb3 2349
35f4d9b3
JP
2350 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2351 unwind_next_frame(&state)) {
2352 addr = unwind_get_return_address(&state);
2353 if (!addr || perf_callchain_store(entry, addr))
2354 return;
2355 }
d7d59fb3
PZ
2356}
2357
bc6ca7b3
AS
2358static inline int
2359valid_user_frame(const void __user *fp, unsigned long size)
2360{
2361 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2362}
2363
d07bdfd3
PZ
2364static unsigned long get_segment_base(unsigned int segment)
2365{
2366 struct desc_struct *desc;
990e9dc3 2367 unsigned int idx = segment >> 3;
d07bdfd3
PZ
2368
2369 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2370#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2371 struct ldt_struct *ldt;
2372
37868fe1 2373 /* IRQs are off, so this synchronizes with smp_store_release */
506458ef 2374 ldt = READ_ONCE(current->active_mm->context.ldt);
eaa2f87c 2375 if (!ldt || idx >= ldt->nr_entries)
d07bdfd3
PZ
2376 return 0;
2377
37868fe1 2378 desc = &ldt->entries[idx];
a5b9e5a2
AL
2379#else
2380 return 0;
2381#endif
d07bdfd3 2382 } else {
eaa2f87c 2383 if (idx >= GDT_ENTRIES)
d07bdfd3
PZ
2384 return 0;
2385
37868fe1 2386 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2387 }
2388
37868fe1 2389 return get_desc_base(desc);
d07bdfd3
PZ
2390}
2391
10ed3493 2392#ifdef CONFIG_IA32_EMULATION
d1a797f3
PA
2393
2394#include <asm/compat.h>
2395
257ef9d2 2396static inline int
cfbcf468 2397perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
74193ef0 2398{
257ef9d2 2399 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2400 unsigned long ss_base, cs_base;
257ef9d2
TE
2401 struct stack_frame_ia32 frame;
2402 const void __user *fp;
74193ef0 2403
257ef9d2
TE
2404 if (!test_thread_flag(TIF_IA32))
2405 return 0;
2406
d07bdfd3
PZ
2407 cs_base = get_segment_base(regs->cs);
2408 ss_base = get_segment_base(regs->ss);
2409
2410 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2411 pagefault_disable();
3b1fff08 2412 while (entry->nr < entry->max_stack) {
257ef9d2
TE
2413 unsigned long bytes;
2414 frame.next_frame = 0;
2415 frame.return_address = 0;
2416
ae31fe51 2417 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2418 break;
2419
2420 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2421 if (bytes != 0)
2422 break;
2423 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
0a196848 2424 if (bytes != 0)
257ef9d2 2425 break;
74193ef0 2426
d07bdfd3
PZ
2427 perf_callchain_store(entry, cs_base + frame.return_address);
2428 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2429 }
75925e1a 2430 pagefault_enable();
257ef9d2 2431 return 1;
d7d59fb3 2432}
257ef9d2
TE
2433#else
2434static inline int
cfbcf468 2435perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
257ef9d2
TE
2436{
2437 return 0;
2438}
2439#endif
d7d59fb3 2440
56962b44 2441void
cfbcf468 2442perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3
PZ
2443{
2444 struct stack_frame frame;
fc188225 2445 const unsigned long __user *fp;
d7d59fb3 2446
927c7a9e
FW
2447 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2448 /* TODO: We don't support guest os callchain now */
ed805261 2449 return;
927c7a9e 2450 }
5a6cec3a 2451
d07bdfd3
PZ
2452 /*
2453 * We don't know what to do with VM86 stacks.. ignore them for now.
2454 */
2455 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2456 return;
2457
fc188225 2458 fp = (unsigned long __user *)regs->bp;
d7d59fb3 2459
70791ce9 2460 perf_callchain_store(entry, regs->ip);
d7d59fb3 2461
20afc60f
AV
2462 if (!current->mm)
2463 return;
2464
257ef9d2
TE
2465 if (perf_callchain_user32(regs, entry))
2466 return;
2467
75925e1a 2468 pagefault_disable();
3b1fff08 2469 while (entry->nr < entry->max_stack) {
257ef9d2 2470 unsigned long bytes;
fc188225 2471
038e836e 2472 frame.next_frame = NULL;
d7d59fb3
PZ
2473 frame.return_address = 0;
2474
ae31fe51 2475 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2476 break;
2477
fc188225 2478 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
75925e1a
AK
2479 if (bytes != 0)
2480 break;
fc188225 2481 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
0a196848 2482 if (bytes != 0)
d7d59fb3
PZ
2483 break;
2484
70791ce9 2485 perf_callchain_store(entry, frame.return_address);
75925e1a 2486 fp = (void __user *)frame.next_frame;
d7d59fb3 2487 }
75925e1a 2488 pagefault_enable();
d7d59fb3
PZ
2489}
2490
d07bdfd3
PZ
2491/*
2492 * Deal with code segment offsets for the various execution modes:
2493 *
2494 * VM86 - the good olde 16 bit days, where the linear address is
2495 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2496 *
2497 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2498 * to figure out what the 32bit base address is.
2499 *
2500 * X32 - has TIF_X32 set, but is running in x86_64
2501 *
2502 * X86_64 - CS,DS,SS,ES are all zero based.
2503 */
2504static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2505{
383f3af3
AL
2506 /*
2507 * For IA32 we look at the GDT/LDT segment base to convert the
2508 * effective IP to a linear address.
2509 */
2510
2511#ifdef CONFIG_X86_32
d07bdfd3
PZ
2512 /*
2513 * If we are in VM86 mode, add the segment offset to convert to a
2514 * linear address.
2515 */
2516 if (regs->flags & X86_VM_MASK)
2517 return 0x10 * regs->cs;
2518
55474c48 2519 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2520 return get_segment_base(regs->cs);
2521#else
c56716af
AL
2522 if (user_mode(regs) && !user_64bit_mode(regs) &&
2523 regs->cs != __USER32_CS)
2524 return get_segment_base(regs->cs);
d07bdfd3
PZ
2525#endif
2526 return 0;
2527}
dcf46b94 2528
d07bdfd3
PZ
2529unsigned long perf_instruction_pointer(struct pt_regs *regs)
2530{
39447b38 2531 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2532 return perf_guest_cbs->get_guest_ip();
dcf46b94 2533
d07bdfd3 2534 return regs->ip + code_segment_base(regs);
39447b38
ZY
2535}
2536
2537unsigned long perf_misc_flags(struct pt_regs *regs)
2538{
2539 int misc = 0;
dcf46b94 2540
39447b38 2541 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2542 if (perf_guest_cbs->is_user_mode())
2543 misc |= PERF_RECORD_MISC_GUEST_USER;
2544 else
2545 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2546 } else {
d07bdfd3 2547 if (user_mode(regs))
dcf46b94
ZY
2548 misc |= PERF_RECORD_MISC_USER;
2549 else
2550 misc |= PERF_RECORD_MISC_KERNEL;
2551 }
2552
39447b38 2553 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2554 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2555
2556 return misc;
2557}
b3d9468a
GN
2558
2559void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2560{
2561 cap->version = x86_pmu.version;
2562 cap->num_counters_gp = x86_pmu.num_counters;
2563 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2564 cap->bit_width_gp = x86_pmu.cntval_bits;
2565 cap->bit_width_fixed = x86_pmu.cntval_bits;
2566 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2567 cap->events_mask_len = x86_pmu.events_mask_len;
2568}
2569EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);