Merge tag 'audit-pr-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux-2.6-block.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
eb008eb6
PG
20#include <linux/export.h>
21#include <linux/init.h>
241771ef 22#include <linux/kdebug.h>
589ee628 23#include <linux/sched/mm.h>
e6017571 24#include <linux/sched/clock.h>
d7d59fb3 25#include <linux/uaccess.h>
5a0e3ad6 26#include <linux/slab.h>
30dd568c 27#include <linux/cpu.h>
272d30be 28#include <linux/bitops.h>
0c9d42ed 29#include <linux/device.h>
46b1b577 30#include <linux/nospec.h>
241771ef 31
241771ef 32#include <asm/apic.h>
d7d59fb3 33#include <asm/stacktrace.h>
4e935e47 34#include <asm/nmi.h>
69092624 35#include <asm/smp.h>
c8e5910e 36#include <asm/alternative.h>
7911d3f7 37#include <asm/mmu_context.h>
375074cc 38#include <asm/tlbflush.h>
e3f3541c 39#include <asm/timer.h>
d07bdfd3
PZ
40#include <asm/desc.h>
41#include <asm/ldt.h>
35f4d9b3 42#include <asm/unwind.h>
241771ef 43
27f6d22b 44#include "perf_event.h"
de0428a7 45
de0428a7 46struct x86_pmu x86_pmu __read_mostly;
efc9f05d 47
de0428a7 48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
49 .enabled = 1,
50};
241771ef 51
631fe154 52DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
a6673429 53
de0428a7 54u64 __read_mostly hw_cache_event_ids
8326f44d
IM
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 58u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 62
ee06094f 63/*
cdd6c482
IM
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
ee06094f
IM
66 * Returns the delta events processed.
67 */
de0428a7 68u64 x86_perf_event_update(struct perf_event *event)
ee06094f 69{
cc2ad4ba 70 struct hw_perf_event *hwc = &event->hw;
948b1bb8 71 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 72 u64 prev_raw_count, new_raw_count;
cc2ad4ba 73 int idx = hwc->idx;
7f612a7f 74 u64 delta;
ee06094f 75
15c7ad51 76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
77 return 0;
78
ee06094f 79 /*
cdd6c482 80 * Careful: an NMI might modify the previous event value.
ee06094f
IM
81 *
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
cdd6c482 84 * count to the generic event atomically:
ee06094f
IM
85 */
86again:
e7850595 87 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 89
e7850595 90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
91 new_raw_count) != prev_raw_count)
92 goto again;
93
94 /*
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
cdd6c482 97 * (event-)time and add that to the generic event.
ee06094f
IM
98 *
99 * Careful, not all hw sign-extends above the physical width
ec3232bd 100 * of the count.
ee06094f 101 */
ec3232bd
PZ
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
ee06094f 104
e7850595
PZ
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
107
108 return new_raw_count;
ee06094f
IM
109}
110
a7e3ed1e
AK
111/*
112 * Find and validate any extra registers to set up.
113 */
114static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115{
efc9f05d 116 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
117 struct extra_reg *er;
118
efc9f05d 119 reg = &event->hw.extra_reg;
a7e3ed1e
AK
120
121 if (!x86_pmu.extra_regs)
122 return 0;
123
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
338b522c
KL
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
131 return -ENXIO;
efc9f05d
SE
132
133 reg->idx = er->idx;
134 reg->config = event->attr.config1;
135 reg->reg = er->msr;
a7e3ed1e
AK
136 break;
137 }
138 return 0;
139}
140
cdd6c482 141static atomic_t active_events;
1b7b938f 142static atomic_t pmc_refcount;
4e935e47
PZ
143static DEFINE_MUTEX(pmc_reserve_mutex);
144
b27ea29c
RR
145#ifdef CONFIG_X86_LOCAL_APIC
146
4e935e47
PZ
147static bool reserve_pmc_hardware(void)
148{
149 int i;
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
153 goto perfctr_fail;
154 }
155
948b1bb8 156 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
158 goto eventsel_fail;
159 }
160
161 return true;
162
163eventsel_fail:
164 for (i--; i >= 0; i--)
41bf4989 165 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 166
948b1bb8 167 i = x86_pmu.num_counters;
4e935e47
PZ
168
169perfctr_fail:
170 for (i--; i >= 0; i--)
41bf4989 171 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 172
4e935e47
PZ
173 return false;
174}
175
176static void release_pmc_hardware(void)
177{
178 int i;
179
948b1bb8 180 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 183 }
4e935e47
PZ
184}
185
b27ea29c
RR
186#else
187
188static bool reserve_pmc_hardware(void) { return true; }
189static void release_pmc_hardware(void) {}
190
191#endif
192
33c6d6a7
DZ
193static bool check_hw_exists(void)
194{
11d8b058
AB
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
a5ebe0ba 197 int bios_fail = 0;
68ab7476 198 int reg_safe = -1;
33c6d6a7 199
4407204c
PZ
200 /*
201 * Check to see if the BIOS enabled any of the counters, if so
202 * complain and bail.
203 */
204 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 205 reg = x86_pmu_config_addr(i);
4407204c
PZ
206 ret = rdmsrl_safe(reg, &val);
207 if (ret)
208 goto msr_fail;
a5ebe0ba
GD
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
68ab7476
DZ
213 } else {
214 reg_safe = i;
a5ebe0ba 215 }
4407204c
PZ
216 }
217
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
221 if (ret)
222 goto msr_fail;
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
224 if (val & (0x03 << i*4)) {
225 bios_fail = 1;
226 val_fail = val;
227 reg_fail = reg;
228 }
4407204c
PZ
229 }
230 }
231
68ab7476
DZ
232 /*
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
236 */
237
238 if (reg_safe == -1) {
239 reg = reg_safe;
240 goto msr_fail;
241 }
242
4407204c 243 /*
bffd5fc2
AP
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 247 */
68ab7476 248 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
249 if (rdmsrl_safe(reg, &val))
250 goto msr_fail;
251 val ^= 0xffffUL;
f285f92f
RR
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 254 if (ret || val != val_new)
4407204c 255 goto msr_fail;
33c6d6a7 256
45daae57
IM
257 /*
258 * We still allow the PMU driver to operate:
259 */
a5ebe0ba 260 if (bios_fail) {
1b74dde7
CY
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 reg_fail, val_fail);
a5ebe0ba 264 }
45daae57
IM
265
266 return true;
4407204c
PZ
267
268msr_fail:
005bd007
JG
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 } else {
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 reg, val_new);
275 }
45daae57 276
4407204c 277 return false;
33c6d6a7
DZ
278}
279
cdd6c482 280static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 281{
6b099d9b 282 x86_release_hardware();
1b7b938f 283 atomic_dec(&active_events);
4e935e47
PZ
284}
285
48070342
AS
286void hw_perf_lbr_event_destroy(struct perf_event *event)
287{
288 hw_perf_event_destroy(event);
289
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
292}
293
85cf9dba
RR
294static inline int x86_pmu_initialized(void)
295{
296 return x86_pmu.handle_irq != NULL;
297}
298
8326f44d 299static inline int
e994d7d2 300set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 301{
e994d7d2 302 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
303 unsigned int cache_type, cache_op, cache_result;
304 u64 config, val;
305
306 config = attr->config;
307
ef9ee4ad 308 cache_type = (config >> 0) & 0xff;
8326f44d
IM
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
ef9ee4ad 311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
8326f44d
IM
312
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 return -EINVAL;
ef9ee4ad 316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
8326f44d
IM
317
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 return -EINVAL;
ef9ee4ad 321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
8326f44d
IM
322
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325 if (val == 0)
326 return -ENOENT;
327
328 if (val == -1)
329 return -EINVAL;
330
331 hwc->config |= val;
e994d7d2
AK
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
8326f44d
IM
334}
335
6b099d9b
AS
336int x86_reserve_hardware(void)
337{
338 int err = 0;
339
1b7b938f 340 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 341 mutex_lock(&pmc_reserve_mutex);
1b7b938f 342 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
343 if (!reserve_pmc_hardware())
344 err = -EBUSY;
345 else
346 reserve_ds_buffers();
347 }
348 if (!err)
1b7b938f 349 atomic_inc(&pmc_refcount);
6b099d9b
AS
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352
353 return err;
354}
355
356void x86_release_hardware(void)
357{
1b7b938f 358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
362 }
363}
364
48070342
AS
365/*
366 * Check if we can create event of a certain type (that no conflicting events
367 * are present).
368 */
369int x86_add_exclusive(unsigned int what)
370{
93472aff 371 int i;
48070342 372
b0c1ef52
AK
373 /*
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
376 */
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
378 return 0;
379
93472aff
PZ
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 goto fail_unlock;
385 }
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 388 }
48070342 389
93472aff
PZ
390 atomic_inc(&active_events);
391 return 0;
48070342 392
93472aff 393fail_unlock:
48070342 394 mutex_unlock(&pmc_reserve_mutex);
93472aff 395 return -EBUSY;
48070342
AS
396}
397
398void x86_del_exclusive(unsigned int what)
399{
b0c1ef52 400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
401 return;
402
48070342 403 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 404 atomic_dec(&active_events);
48070342
AS
405}
406
de0428a7 407int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
408{
409 struct perf_event_attr *attr = &event->attr;
410 struct hw_perf_event *hwc = &event->hw;
411 u64 config;
412
6c7e550f 413 if (!is_sampling_event(event)) {
c1726f34
RR
414 hwc->sample_period = x86_pmu.max_period;
415 hwc->last_period = hwc->sample_period;
e7850595 416 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
417 }
418
419 if (attr->type == PERF_TYPE_RAW)
ed13ec58 420 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
421
422 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 423 return set_ext_hw_attr(hwc, event);
c1726f34
RR
424
425 if (attr->config >= x86_pmu.max_events)
426 return -EINVAL;
427
46b1b577
PZ
428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
c1726f34
RR
430 /*
431 * The generic map:
432 */
433 config = x86_pmu.event_map(attr->config);
434
435 if (config == 0)
436 return -ENOENT;
437
438 if (config == -1LL)
439 return -EINVAL;
440
c1726f34
RR
441 hwc->config |= config;
442
443 return 0;
444}
4261e0e0 445
ff3fb511
SE
446/*
447 * check that branch_sample_type is compatible with
448 * settings needed for precise_ip > 1 which implies
449 * using the LBR to capture ALL taken branches at the
450 * priv levels of the measurement
451 */
452static inline int precise_br_compat(struct perf_event *event)
453{
454 u64 m = event->attr.branch_sample_type;
455 u64 b = 0;
456
457 /* must capture all branches */
458 if (!(m & PERF_SAMPLE_BRANCH_ANY))
459 return 0;
460
461 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462
463 if (!event->attr.exclude_user)
464 b |= PERF_SAMPLE_BRANCH_USER;
465
466 if (!event->attr.exclude_kernel)
467 b |= PERF_SAMPLE_BRANCH_KERNEL;
468
469 /*
470 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471 */
472
473 return m == b;
474}
475
b00233b5 476int x86_pmu_max_precise(void)
a072738e 477{
b00233b5
AK
478 int precise = 0;
479
480 /* Support for constant skid */
481 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482 precise++;
ab608344 483
b00233b5
AK
484 /* Support for IP fixup */
485 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
ab608344
PZ
486 precise++;
487
b00233b5
AK
488 if (x86_pmu.pebs_prec_dist)
489 precise++;
490 }
491 return precise;
492}
72469764 493
b00233b5
AK
494int x86_pmu_hw_config(struct perf_event *event)
495{
496 if (event->attr.precise_ip) {
497 int precise = x86_pmu_max_precise();
ab608344
PZ
498
499 if (event->attr.precise_ip > precise)
500 return -EOPNOTSUPP;
18e7a45a
JO
501
502 /* There's no sense in having PEBS for non sampling events: */
503 if (!is_sampling_event(event))
504 return -EINVAL;
4b854900
YZ
505 }
506 /*
507 * check that PEBS LBR correction does not conflict with
508 * whatever the user is asking with attr->branch_sample_type
509 */
510 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511 u64 *br_type = &event->attr.branch_sample_type;
512
513 if (has_branch_stack(event)) {
514 if (!precise_br_compat(event))
515 return -EOPNOTSUPP;
516
517 /* branch_sample_type is compatible */
518
519 } else {
520 /*
521 * user did not specify branch_sample_type
522 *
523 * For PEBS fixups, we capture all
524 * the branches at the priv level of the
525 * event.
526 */
527 *br_type = PERF_SAMPLE_BRANCH_ANY;
528
529 if (!event->attr.exclude_user)
530 *br_type |= PERF_SAMPLE_BRANCH_USER;
531
532 if (!event->attr.exclude_kernel)
533 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 534 }
ab608344
PZ
535 }
536
e18bf526
YZ
537 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538 event->attach_state |= PERF_ATTACH_TASK_DATA;
539
a072738e
CG
540 /*
541 * Generate PMC IRQs:
542 * (keep 'enabled' bit clear for now)
543 */
b4cdc5c2 544 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
545
546 /*
547 * Count user and OS events unless requested not to
548 */
b4cdc5c2
PZ
549 if (!event->attr.exclude_user)
550 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551 if (!event->attr.exclude_kernel)
552 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 553
b4cdc5c2
PZ
554 if (event->attr.type == PERF_TYPE_RAW)
555 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 556
294fe0f5
AK
557 if (event->attr.sample_period && x86_pmu.limit_period) {
558 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559 event->attr.sample_period)
560 return -EINVAL;
561 }
562
878068ea
KL
563 /* sample_regs_user never support XMM registers */
564 if (unlikely(event->attr.sample_regs_user & PEBS_XMM_REGS))
565 return -EINVAL;
566 /*
567 * Besides the general purpose registers, XMM registers may
568 * be collected in PEBS on some platforms, e.g. Icelake
569 */
570 if (unlikely(event->attr.sample_regs_intr & PEBS_XMM_REGS)) {
571 if (x86_pmu.pebs_no_xmm_regs)
572 return -EINVAL;
573
574 if (!event->attr.precise_ip)
575 return -EINVAL;
576 }
577
9d0fcba6 578 return x86_setup_perfctr(event);
a098f448
RR
579}
580
241771ef 581/*
0d48696f 582 * Setup the hardware configuration for a given attr_type
241771ef 583 */
b0a873eb 584static int __x86_pmu_event_init(struct perf_event *event)
241771ef 585{
4e935e47 586 int err;
241771ef 587
85cf9dba
RR
588 if (!x86_pmu_initialized())
589 return -ENODEV;
241771ef 590
6b099d9b 591 err = x86_reserve_hardware();
4e935e47
PZ
592 if (err)
593 return err;
594
1b7b938f 595 atomic_inc(&active_events);
cdd6c482 596 event->destroy = hw_perf_event_destroy;
a1792cda 597
4261e0e0
RR
598 event->hw.idx = -1;
599 event->hw.last_cpu = -1;
600 event->hw.last_tag = ~0ULL;
b690081d 601
efc9f05d
SE
602 /* mark unused */
603 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
604 event->hw.branch_reg.idx = EXTRA_REG_NONE;
605
9d0fcba6 606 return x86_pmu.hw_config(event);
4261e0e0
RR
607}
608
de0428a7 609void x86_pmu_disable_all(void)
f87ad35d 610{
89cbc767 611 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
612 int idx;
613
948b1bb8 614 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
615 u64 val;
616
43f6201a 617 if (!test_bit(idx, cpuc->active_mask))
4295ee62 618 continue;
41bf4989 619 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 620 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 621 continue;
bb1165d6 622 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 623 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 624 }
f87ad35d
JSR
625}
626
c3d266c8
KL
627/*
628 * There may be PMI landing after enabled=0. The PMI hitting could be before or
629 * after disable_all.
630 *
631 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
632 * It will not be re-enabled in the NMI handler again, because enabled=0. After
633 * handling the NMI, disable_all will be called, which will not change the
634 * state either. If PMI hits after disable_all, the PMU is already disabled
635 * before entering NMI handler. The NMI handler will not change the state
636 * either.
637 *
638 * So either situation is harmless.
639 */
a4eaf7f1 640static void x86_pmu_disable(struct pmu *pmu)
b56a3802 641{
89cbc767 642 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 643
85cf9dba 644 if (!x86_pmu_initialized())
9e35ad38 645 return;
1da53e02 646
1a6e21f7
PZ
647 if (!cpuc->enabled)
648 return;
649
650 cpuc->n_added = 0;
651 cpuc->enabled = 0;
652 barrier();
1da53e02
SE
653
654 x86_pmu.disable_all();
b56a3802 655}
241771ef 656
de0428a7 657void x86_pmu_enable_all(int added)
f87ad35d 658{
89cbc767 659 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
660 int idx;
661
948b1bb8 662 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 663 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 664
43f6201a 665 if (!test_bit(idx, cpuc->active_mask))
4295ee62 666 continue;
984b838c 667
d45dd923 668 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
669 }
670}
671
51b0fe39 672static struct pmu pmu;
1da53e02
SE
673
674static inline int is_x86_event(struct perf_event *event)
675{
676 return event->pmu == &pmu;
677}
678
f447e4eb
SE
679struct pmu *x86_get_pmu(void)
680{
681 return &pmu;
682}
1e2ad28f
RR
683/*
684 * Event scheduler state:
685 *
686 * Assign events iterating over all events and counters, beginning
687 * with events with least weights first. Keep the current iterator
688 * state in struct sched_state.
689 */
690struct sched_state {
691 int weight;
692 int event; /* event index */
693 int counter; /* counter index */
694 int unassigned; /* number of events to be assigned left */
cc1790cf 695 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
696 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
697};
698
bc1738f6
RR
699/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
700#define SCHED_STATES_MAX 2
701
1e2ad28f
RR
702struct perf_sched {
703 int max_weight;
704 int max_events;
cc1790cf
PZ
705 int max_gp;
706 int saved_states;
b371b594 707 struct event_constraint **constraints;
1e2ad28f 708 struct sched_state state;
bc1738f6 709 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
710};
711
712/*
713 * Initialize interator that runs through all events and counters.
714 */
b371b594 715static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 716 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
717{
718 int idx;
719
720 memset(sched, 0, sizeof(*sched));
721 sched->max_events = num;
722 sched->max_weight = wmax;
cc1790cf 723 sched->max_gp = gpmax;
b371b594 724 sched->constraints = constraints;
1e2ad28f
RR
725
726 for (idx = 0; idx < num; idx++) {
b371b594 727 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
728 break;
729 }
730
731 sched->state.event = idx; /* start with min weight */
732 sched->state.weight = wmin;
733 sched->state.unassigned = num;
734}
735
bc1738f6
RR
736static void perf_sched_save_state(struct perf_sched *sched)
737{
738 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
739 return;
740
741 sched->saved[sched->saved_states] = sched->state;
742 sched->saved_states++;
743}
744
745static bool perf_sched_restore_state(struct perf_sched *sched)
746{
747 if (!sched->saved_states)
748 return false;
749
750 sched->saved_states--;
751 sched->state = sched->saved[sched->saved_states];
752
753 /* continue with next counter: */
754 clear_bit(sched->state.counter++, sched->state.used);
755
756 return true;
757}
758
1e2ad28f
RR
759/*
760 * Select a counter for the current event to schedule. Return true on
761 * success.
762 */
bc1738f6 763static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
764{
765 struct event_constraint *c;
766 int idx;
767
768 if (!sched->state.unassigned)
769 return false;
770
771 if (sched->state.event >= sched->max_events)
772 return false;
773
b371b594 774 c = sched->constraints[sched->state.event];
4defea85 775 /* Prefer fixed purpose counters */
15c7ad51
RR
776 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
777 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 778 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
779 if (!__test_and_set_bit(idx, sched->state.used))
780 goto done;
781 }
782 }
cc1790cf 783
1e2ad28f
RR
784 /* Grab the first unused counter starting with idx */
785 idx = sched->state.counter;
15c7ad51 786 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
787 if (!__test_and_set_bit(idx, sched->state.used)) {
788 if (sched->state.nr_gp++ >= sched->max_gp)
789 return false;
790
4defea85 791 goto done;
cc1790cf 792 }
1e2ad28f 793 }
1e2ad28f 794
4defea85
PZ
795 return false;
796
797done:
798 sched->state.counter = idx;
1e2ad28f 799
bc1738f6
RR
800 if (c->overlap)
801 perf_sched_save_state(sched);
802
803 return true;
804}
805
806static bool perf_sched_find_counter(struct perf_sched *sched)
807{
808 while (!__perf_sched_find_counter(sched)) {
809 if (!perf_sched_restore_state(sched))
810 return false;
811 }
812
1e2ad28f
RR
813 return true;
814}
815
816/*
817 * Go through all unassigned events and find the next one to schedule.
818 * Take events with the least weight first. Return true on success.
819 */
820static bool perf_sched_next_event(struct perf_sched *sched)
821{
822 struct event_constraint *c;
823
824 if (!sched->state.unassigned || !--sched->state.unassigned)
825 return false;
826
827 do {
828 /* next event */
829 sched->state.event++;
830 if (sched->state.event >= sched->max_events) {
831 /* next weight */
832 sched->state.event = 0;
833 sched->state.weight++;
834 if (sched->state.weight > sched->max_weight)
835 return false;
836 }
b371b594 837 c = sched->constraints[sched->state.event];
1e2ad28f
RR
838 } while (c->weight != sched->state.weight);
839
840 sched->state.counter = 0; /* start with first counter */
841
842 return true;
843}
844
845/*
846 * Assign a counter for each event.
847 */
b371b594 848int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 849 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
850{
851 struct perf_sched sched;
852
cc1790cf 853 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
854
855 do {
856 if (!perf_sched_find_counter(&sched))
857 break; /* failed */
858 if (assign)
859 assign[sched.state.event] = sched.state.counter;
860 } while (perf_sched_next_event(&sched));
861
862 return sched.state.unassigned;
863}
4a3dc121 864EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 865
de0428a7 866int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 867{
43b45780 868 struct event_constraint *c;
1da53e02 869 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 870 struct perf_event *e;
f80deefa 871 int n0, i, wmin, wmax, unsched = 0;
1da53e02
SE
872 struct hw_perf_event *hwc;
873
874 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
875
f80deefa
PZ
876 /*
877 * Compute the number of events already present; see x86_pmu_add(),
878 * validate_group() and x86_pmu_commit_txn(). For the former two
879 * cpuc->n_events hasn't been updated yet, while for the latter
880 * cpuc->n_txn contains the number of events added in the current
881 * transaction.
882 */
883 n0 = cpuc->n_events;
884 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
885 n0 -= cpuc->n_txn;
886
c5362c0c
MD
887 if (x86_pmu.start_scheduling)
888 x86_pmu.start_scheduling(cpuc);
889
1e2ad28f 890 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
109717de
PZ
891 c = cpuc->event_constraint[i];
892
f80deefa
PZ
893 /*
894 * Previously scheduled events should have a cached constraint,
895 * while new events should not have one.
896 */
897 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
898
109717de
PZ
899 /*
900 * Request constraints for new events; or for those events that
901 * have a dynamic constraint -- for those the constraint can
902 * change due to external factors (sibling state, allow_tfa).
903 */
904 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
905 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
906 cpuc->event_constraint[i] = c;
907 }
43b45780 908
1e2ad28f
RR
909 wmin = min(wmin, c->weight);
910 wmax = max(wmax, c->weight);
1da53e02
SE
911 }
912
8113070d
SE
913 /*
914 * fastpath, try to reuse previous register
915 */
c933c1a6 916 for (i = 0; i < n; i++) {
8113070d 917 hwc = &cpuc->event_list[i]->hw;
b371b594 918 c = cpuc->event_constraint[i];
8113070d
SE
919
920 /* never assigned */
921 if (hwc->idx == -1)
922 break;
923
924 /* constraint still honored */
63b14649 925 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
926 break;
927
928 /* not already used */
929 if (test_bit(hwc->idx, used_mask))
930 break;
931
34538ee7 932 __set_bit(hwc->idx, used_mask);
8113070d
SE
933 if (assign)
934 assign[i] = hwc->idx;
935 }
8113070d 936
1e2ad28f 937 /* slow path */
b371b594 938 if (i != n) {
cc1790cf
PZ
939 int gpmax = x86_pmu.num_counters;
940
941 /*
942 * Do not allow scheduling of more than half the available
943 * generic counters.
944 *
945 * This helps avoid counter starvation of sibling thread by
946 * ensuring at most half the counters cannot be in exclusive
947 * mode. There is no designated counters for the limits. Any
948 * N/2 counters can be used. This helps with events with
949 * specific counter constraints.
950 */
951 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
952 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
953 gpmax /= 2;
954
b371b594 955 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 956 wmax, gpmax, assign);
b371b594 957 }
8113070d 958
2f7f73a5 959 /*
e979121b
MD
960 * In case of success (unsched = 0), mark events as committed,
961 * so we do not put_constraint() in case new events are added
962 * and fail to be scheduled
963 *
964 * We invoke the lower level commit callback to lock the resource
965 *
966 * We do not need to do all of this in case we are called to
967 * validate an event group (assign == NULL)
2f7f73a5 968 */
e979121b 969 if (!unsched && assign) {
2f7f73a5
SE
970 for (i = 0; i < n; i++) {
971 e = cpuc->event_list[i];
c5362c0c 972 if (x86_pmu.commit_scheduling)
b371b594 973 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 974 }
8736e548 975 } else {
f80deefa 976 for (i = n0; i < n; i++) {
2f7f73a5 977 e = cpuc->event_list[i];
2f7f73a5 978
e979121b
MD
979 /*
980 * release events that failed scheduling
981 */
1da53e02 982 if (x86_pmu.put_event_constraints)
2f7f73a5 983 x86_pmu.put_event_constraints(cpuc, e);
2c9651c3
PZ
984
985 cpuc->event_constraint[i] = NULL;
1da53e02
SE
986 }
987 }
c5362c0c
MD
988
989 if (x86_pmu.stop_scheduling)
990 x86_pmu.stop_scheduling(cpuc);
991
e979121b 992 return unsched ? -EINVAL : 0;
1da53e02
SE
993}
994
995/*
996 * dogrp: true if must collect siblings events (group)
997 * returns total number of events and error code
998 */
999static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1000{
1001 struct perf_event *event;
1002 int n, max_count;
1003
948b1bb8 1004 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
1005
1006 /* current number of events already accepted */
1007 n = cpuc->n_events;
1008
1009 if (is_x86_event(leader)) {
1010 if (n >= max_count)
aa2bc1ad 1011 return -EINVAL;
1da53e02
SE
1012 cpuc->event_list[n] = leader;
1013 n++;
1014 }
1015 if (!dogrp)
1016 return n;
1017
edb39592 1018 for_each_sibling_event(event, leader) {
1da53e02 1019 if (!is_x86_event(event) ||
8113070d 1020 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
1021 continue;
1022
1023 if (n >= max_count)
aa2bc1ad 1024 return -EINVAL;
1da53e02
SE
1025
1026 cpuc->event_list[n] = event;
1027 n++;
1028 }
1029 return n;
1030}
1031
1da53e02 1032static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 1033 struct cpu_hw_events *cpuc, int i)
1da53e02 1034{
447a194b
SE
1035 struct hw_perf_event *hwc = &event->hw;
1036
1037 hwc->idx = cpuc->assign[i];
1038 hwc->last_cpu = smp_processor_id();
1039 hwc->last_tag = ++cpuc->tags[i];
1da53e02 1040
15c7ad51 1041 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
1042 hwc->config_base = 0;
1043 hwc->event_base = 0;
15c7ad51 1044 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 1045 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
1046 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1047 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 1048 } else {
73d6e522
RR
1049 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1050 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 1051 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
1052 }
1053}
1054
1182a495
RC
1055/**
1056 * x86_perf_rdpmc_index - Return PMC counter used for event
1057 * @event: the perf_event to which the PMC counter was assigned
1058 *
1059 * The counter assigned to this performance event may change if interrupts
1060 * are enabled. This counter should thus never be used while interrupts are
1061 * enabled. Before this function is used to obtain the assigned counter the
1062 * event should be checked for validity using, for example,
1063 * perf_event_read_local(), within the same interrupt disabled section in
1064 * which this counter is planned to be used.
1065 *
1066 * Return: The index of the performance monitoring counter assigned to
1067 * @perf_event.
1068 */
1069int x86_perf_rdpmc_index(struct perf_event *event)
1070{
1071 lockdep_assert_irqs_disabled();
1072
1073 return event->hw.event_base_rdpmc;
1074}
1075
447a194b
SE
1076static inline int match_prev_assignment(struct hw_perf_event *hwc,
1077 struct cpu_hw_events *cpuc,
1078 int i)
1079{
1080 return hwc->idx == cpuc->assign[i] &&
1081 hwc->last_cpu == smp_processor_id() &&
1082 hwc->last_tag == cpuc->tags[i];
1083}
1084
a4eaf7f1 1085static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1086
a4eaf7f1 1087static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1088{
89cbc767 1089 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1090 struct perf_event *event;
1091 struct hw_perf_event *hwc;
11164cd4 1092 int i, added = cpuc->n_added;
1da53e02 1093
85cf9dba 1094 if (!x86_pmu_initialized())
2b9ff0db 1095 return;
1a6e21f7
PZ
1096
1097 if (cpuc->enabled)
1098 return;
1099
1da53e02 1100 if (cpuc->n_added) {
19925ce7 1101 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1102 /*
1103 * apply assignment obtained either from
1104 * hw_perf_group_sched_in() or x86_pmu_enable()
1105 *
1106 * step1: save events moving to new counters
1da53e02 1107 */
19925ce7 1108 for (i = 0; i < n_running; i++) {
1da53e02
SE
1109 event = cpuc->event_list[i];
1110 hwc = &event->hw;
1111
447a194b
SE
1112 /*
1113 * we can avoid reprogramming counter if:
1114 * - assigned same counter as last time
1115 * - running on same CPU as last time
1116 * - no other event has used the counter since
1117 */
1118 if (hwc->idx == -1 ||
1119 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1120 continue;
1121
a4eaf7f1
PZ
1122 /*
1123 * Ensure we don't accidentally enable a stopped
1124 * counter simply because we rescheduled.
1125 */
1126 if (hwc->state & PERF_HES_STOPPED)
1127 hwc->state |= PERF_HES_ARCH;
1128
1129 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1130 }
1131
c347a2f1
PZ
1132 /*
1133 * step2: reprogram moved events into new counters
1134 */
1da53e02 1135 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1136 event = cpuc->event_list[i];
1137 hwc = &event->hw;
1138
45e16a68 1139 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1140 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1141 else if (i < n_running)
1142 continue;
1da53e02 1143
a4eaf7f1
PZ
1144 if (hwc->state & PERF_HES_ARCH)
1145 continue;
1146
1147 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1148 }
1149 cpuc->n_added = 0;
1150 perf_events_lapic_init();
1151 }
1a6e21f7
PZ
1152
1153 cpuc->enabled = 1;
1154 barrier();
1155
11164cd4 1156 x86_pmu.enable_all(added);
ee06094f 1157}
ee06094f 1158
245b2e70 1159static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1160
ee06094f
IM
1161/*
1162 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1163 * To be called with the event disabled in hw:
ee06094f 1164 */
de0428a7 1165int x86_perf_event_set_period(struct perf_event *event)
241771ef 1166{
07088edb 1167 struct hw_perf_event *hwc = &event->hw;
e7850595 1168 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1169 s64 period = hwc->sample_period;
7645a24c 1170 int ret = 0, idx = hwc->idx;
ee06094f 1171
15c7ad51 1172 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1173 return 0;
1174
ee06094f 1175 /*
af901ca1 1176 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1177 */
1178 if (unlikely(left <= -period)) {
1179 left = period;
e7850595 1180 local64_set(&hwc->period_left, left);
9e350de3 1181 hwc->last_period = period;
e4abb5d4 1182 ret = 1;
ee06094f
IM
1183 }
1184
1185 if (unlikely(left <= 0)) {
1186 left += period;
e7850595 1187 local64_set(&hwc->period_left, left);
9e350de3 1188 hwc->last_period = period;
e4abb5d4 1189 ret = 1;
ee06094f 1190 }
1c80f4b5 1191 /*
dfc65094 1192 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1193 */
1194 if (unlikely(left < 2))
1195 left = 2;
241771ef 1196
e4abb5d4
PZ
1197 if (left > x86_pmu.max_period)
1198 left = x86_pmu.max_period;
1199
294fe0f5
AK
1200 if (x86_pmu.limit_period)
1201 left = x86_pmu.limit_period(event, left);
1202
245b2e70 1203 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1204
d31fc13f
KL
1205 /*
1206 * The hw event starts counting from this event offset,
1207 * mark it to be able to extra future deltas:
1208 */
1209 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1210
d31fc13f 1211 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1212
1213 /*
1214 * Due to erratum on certan cpu we need
1215 * a second write to be sure the register
1216 * is updated properly
1217 */
1218 if (x86_pmu.perfctr_second_write) {
73d6e522 1219 wrmsrl(hwc->event_base,
948b1bb8 1220 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1221 }
e4abb5d4 1222
cdd6c482 1223 perf_event_update_userpage(event);
194002b2 1224
e4abb5d4 1225 return ret;
2f18d1e8
IM
1226}
1227
de0428a7 1228void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1229{
0a3aee0d 1230 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1231 __x86_pmu_enable_event(&event->hw,
1232 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1233}
1234
b690081d 1235/*
a4eaf7f1 1236 * Add a single event to the PMU.
1da53e02
SE
1237 *
1238 * The event is added to the group of enabled events
1239 * but only if it can be scehduled with existing events.
fe9081cc 1240 */
a4eaf7f1 1241static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1242{
89cbc767 1243 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1244 struct hw_perf_event *hwc;
1245 int assign[X86_PMC_IDX_MAX];
1246 int n, n0, ret;
fe9081cc 1247
1da53e02 1248 hwc = &event->hw;
fe9081cc 1249
1da53e02 1250 n0 = cpuc->n_events;
24cd7f54
PZ
1251 ret = n = collect_events(cpuc, event, false);
1252 if (ret < 0)
1253 goto out;
53b441a5 1254
a4eaf7f1
PZ
1255 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1256 if (!(flags & PERF_EF_START))
1257 hwc->state |= PERF_HES_ARCH;
1258
4d1c52b0
LM
1259 /*
1260 * If group events scheduling transaction was started,
0d2eb44f 1261 * skip the schedulability test here, it will be performed
c347a2f1 1262 * at commit time (->commit_txn) as a whole.
68f7082f
PZ
1263 *
1264 * If commit fails, we'll call ->del() on all events
1265 * for which ->add() was called.
4d1c52b0 1266 */
8f3e5684 1267 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1268 goto done_collect;
4d1c52b0 1269
a072738e 1270 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1271 if (ret)
24cd7f54 1272 goto out;
1da53e02
SE
1273 /*
1274 * copy new assignment, now we know it is possible
1275 * will be used by hw_perf_enable()
1276 */
1277 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1278
24cd7f54 1279done_collect:
c347a2f1
PZ
1280 /*
1281 * Commit the collect_events() state. See x86_pmu_del() and
1282 * x86_pmu_*_txn().
1283 */
1da53e02 1284 cpuc->n_events = n;
356e1f2e 1285 cpuc->n_added += n - n0;
90151c35 1286 cpuc->n_txn += n - n0;
95cdd2e7 1287
68f7082f
PZ
1288 if (x86_pmu.add) {
1289 /*
1290 * This is before x86_pmu_enable() will call x86_pmu_start(),
1291 * so we enable LBRs before an event needs them etc..
1292 */
1293 x86_pmu.add(event);
1294 }
1295
24cd7f54
PZ
1296 ret = 0;
1297out:
24cd7f54 1298 return ret;
241771ef
IM
1299}
1300
a4eaf7f1 1301static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1302{
89cbc767 1303 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1304 int idx = event->hw.idx;
1305
a4eaf7f1
PZ
1306 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1307 return;
1308
1309 if (WARN_ON_ONCE(idx == -1))
1310 return;
1311
1312 if (flags & PERF_EF_RELOAD) {
1313 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1314 x86_perf_event_set_period(event);
1315 }
1316
1317 event->hw.state = 0;
d76a0812 1318
c08053e6
PZ
1319 cpuc->events[idx] = event;
1320 __set_bit(idx, cpuc->active_mask);
63e6be6d 1321 __set_bit(idx, cpuc->running);
aff3d91a 1322 x86_pmu.enable(event);
c08053e6 1323 perf_event_update_userpage(event);
a78ac325
PZ
1324}
1325
cdd6c482 1326void perf_event_print_debug(void)
241771ef 1327{
2f18d1e8 1328 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1329 u64 pebs, debugctl;
cdd6c482 1330 struct cpu_hw_events *cpuc;
5bb9efe3 1331 unsigned long flags;
1e125676
IM
1332 int cpu, idx;
1333
948b1bb8 1334 if (!x86_pmu.num_counters)
1e125676 1335 return;
241771ef 1336
5bb9efe3 1337 local_irq_save(flags);
241771ef
IM
1338
1339 cpu = smp_processor_id();
cdd6c482 1340 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1341
faa28ae0 1342 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1343 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1344 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1345 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1346 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1347
1348 pr_info("\n");
1349 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1350 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1351 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1352 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1353 if (x86_pmu.pebs_constraints) {
1354 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1355 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1356 }
da3e606d
AK
1357 if (x86_pmu.lbr_nr) {
1358 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1359 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1360 }
f87ad35d 1361 }
7645a24c 1362 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1363
948b1bb8 1364 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1365 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1366 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1367
245b2e70 1368 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1369
a1ef58f4 1370 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1371 cpu, idx, pmc_ctrl);
a1ef58f4 1372 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1373 cpu, idx, pmc_count);
a1ef58f4 1374 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1375 cpu, idx, prev_left);
241771ef 1376 }
948b1bb8 1377 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1378 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1379
a1ef58f4 1380 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1381 cpu, idx, pmc_count);
1382 }
5bb9efe3 1383 local_irq_restore(flags);
241771ef
IM
1384}
1385
de0428a7 1386void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1387{
89cbc767 1388 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1389 struct hw_perf_event *hwc = &event->hw;
241771ef 1390
3966c3fe 1391 if (test_bit(hwc->idx, cpuc->active_mask)) {
a4eaf7f1 1392 x86_pmu.disable(event);
3966c3fe 1393 __clear_bit(hwc->idx, cpuc->active_mask);
a4eaf7f1
PZ
1394 cpuc->events[hwc->idx] = NULL;
1395 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1396 hwc->state |= PERF_HES_STOPPED;
1397 }
30dd568c 1398
a4eaf7f1
PZ
1399 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1400 /*
1401 * Drain the remaining delta count out of a event
1402 * that we are disabling:
1403 */
1404 x86_perf_event_update(event);
1405 hwc->state |= PERF_HES_UPTODATE;
1406 }
2e841873
PZ
1407}
1408
a4eaf7f1 1409static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1410{
89cbc767 1411 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1412 int i;
1413
90151c35 1414 /*
68f7082f 1415 * If we're called during a txn, we only need to undo x86_pmu.add.
90151c35
SE
1416 * The events never got scheduled and ->cancel_txn will truncate
1417 * the event_list.
c347a2f1
PZ
1418 *
1419 * XXX assumes any ->del() called during a TXN will only be on
1420 * an event added during that same TXN.
90151c35 1421 */
8f3e5684 1422 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
68f7082f 1423 goto do_del;
90151c35 1424
c347a2f1
PZ
1425 /*
1426 * Not a TXN, therefore cleanup properly.
1427 */
a4eaf7f1 1428 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1429
1da53e02 1430 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1431 if (event == cpuc->event_list[i])
1432 break;
1433 }
1da53e02 1434
c347a2f1
PZ
1435 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1436 return;
26e61e89 1437
c347a2f1
PZ
1438 /* If we have a newly added event; make sure to decrease n_added. */
1439 if (i >= cpuc->n_events - cpuc->n_added)
1440 --cpuc->n_added;
1da53e02 1441
c347a2f1
PZ
1442 if (x86_pmu.put_event_constraints)
1443 x86_pmu.put_event_constraints(cpuc, event);
1444
1445 /* Delete the array entry. */
b371b594 1446 while (++i < cpuc->n_events) {
c347a2f1 1447 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1448 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1449 }
2c9651c3 1450 cpuc->event_constraint[i-1] = NULL;
c347a2f1 1451 --cpuc->n_events;
1da53e02 1452
cdd6c482 1453 perf_event_update_userpage(event);
68f7082f
PZ
1454
1455do_del:
1456 if (x86_pmu.del) {
1457 /*
1458 * This is after x86_pmu_stop(); so we disable LBRs after any
1459 * event can need them etc..
1460 */
1461 x86_pmu.del(event);
1462 }
241771ef
IM
1463}
1464
de0428a7 1465int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1466{
df1a132b 1467 struct perf_sample_data data;
cdd6c482
IM
1468 struct cpu_hw_events *cpuc;
1469 struct perf_event *event;
11d1578f 1470 int idx, handled = 0;
9029a5e3
IM
1471 u64 val;
1472
89cbc767 1473 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1474
2bce5dac
DZ
1475 /*
1476 * Some chipsets need to unmask the LVTPC in a particular spot
1477 * inside the nmi handler. As a result, the unmasking was pushed
1478 * into all the nmi handlers.
1479 *
1480 * This generic handler doesn't seem to have any issues where the
1481 * unmasking occurs so it was left at the top.
1482 */
1483 apic_write(APIC_LVTPC, APIC_DM_NMI);
1484
948b1bb8 1485 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3966c3fe 1486 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1487 continue;
962bf7a6 1488
cdd6c482 1489 event = cpuc->events[idx];
a4016a79 1490
cc2ad4ba 1491 val = x86_perf_event_update(event);
948b1bb8 1492 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1493 continue;
962bf7a6 1494
9e350de3 1495 /*
cdd6c482 1496 * event overflow
9e350de3 1497 */
4177c42a 1498 handled++;
fd0d000b 1499 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1500
07088edb 1501 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1502 continue;
1503
a8b0ca17 1504 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1505 x86_pmu_stop(event, 0);
a29aa8a7 1506 }
962bf7a6 1507
9e350de3
PZ
1508 if (handled)
1509 inc_irq_stat(apic_perf_irqs);
1510
a29aa8a7
RR
1511 return handled;
1512}
39d81eab 1513
cdd6c482 1514void perf_events_lapic_init(void)
241771ef 1515{
04da8a43 1516 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1517 return;
85cf9dba 1518
241771ef 1519 /*
c323d95f 1520 * Always use NMI for PMU
241771ef 1521 */
c323d95f 1522 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1523}
1524
9326638c 1525static int
9c48f1c6 1526perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1527{
14c63f17
DH
1528 u64 start_clock;
1529 u64 finish_clock;
e8a923cc 1530 int ret;
14c63f17 1531
1b7b938f
AS
1532 /*
1533 * All PMUs/events that share this PMI handler should make sure to
1534 * increment active_events for their events.
1535 */
cdd6c482 1536 if (!atomic_read(&active_events))
9c48f1c6 1537 return NMI_DONE;
4177c42a 1538
e8a923cc 1539 start_clock = sched_clock();
14c63f17 1540 ret = x86_pmu.handle_irq(regs);
e8a923cc 1541 finish_clock = sched_clock();
14c63f17
DH
1542
1543 perf_sample_event_took(finish_clock - start_clock);
1544
1545 return ret;
241771ef 1546}
9326638c 1547NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1548
de0428a7
KW
1549struct event_constraint emptyconstraint;
1550struct event_constraint unconstrained;
f87ad35d 1551
95ca792c 1552static int x86_pmu_prepare_cpu(unsigned int cpu)
3f6da390 1553{
7fdba1ca 1554 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
95ca792c 1555 int i;
3f6da390 1556
95ca792c
TG
1557 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1558 cpuc->kfree_on_online[i] = NULL;
1559 if (x86_pmu.cpu_prepare)
1560 return x86_pmu.cpu_prepare(cpu);
1561 return 0;
1562}
7fdba1ca 1563
95ca792c
TG
1564static int x86_pmu_dead_cpu(unsigned int cpu)
1565{
1566 if (x86_pmu.cpu_dead)
1567 x86_pmu.cpu_dead(cpu);
1568 return 0;
1569}
3f6da390 1570
95ca792c
TG
1571static int x86_pmu_online_cpu(unsigned int cpu)
1572{
1573 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1574 int i;
3f6da390 1575
95ca792c
TG
1576 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1577 kfree(cpuc->kfree_on_online[i]);
1578 cpuc->kfree_on_online[i] = NULL;
3f6da390 1579 }
95ca792c
TG
1580 return 0;
1581}
3f6da390 1582
95ca792c
TG
1583static int x86_pmu_starting_cpu(unsigned int cpu)
1584{
1585 if (x86_pmu.cpu_starting)
1586 x86_pmu.cpu_starting(cpu);
1587 return 0;
1588}
1589
1590static int x86_pmu_dying_cpu(unsigned int cpu)
1591{
1592 if (x86_pmu.cpu_dying)
1593 x86_pmu.cpu_dying(cpu);
1594 return 0;
3f6da390
PZ
1595}
1596
12558038
CG
1597static void __init pmu_check_apic(void)
1598{
93984fbd 1599 if (boot_cpu_has(X86_FEATURE_APIC))
12558038
CG
1600 return;
1601
1602 x86_pmu.apic = 0;
1603 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1604 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1605
1606 /*
1607 * If we have a PMU initialized but no APIC
1608 * interrupts, we cannot sample hardware
1609 * events (user-space has to fall back and
1610 * sample via a hrtimer based software event):
1611 */
1612 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1613
12558038
CG
1614}
1615
2766d2ee 1616static struct attribute_group x86_pmu_format_group __ro_after_init = {
641cc938
JO
1617 .name = "format",
1618 .attrs = NULL,
1619};
1620
8300daa2
JO
1621/*
1622 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1623 * out of events_attr attributes.
1624 */
1625static void __init filter_events(struct attribute **attrs)
1626{
3a54aaa0
SE
1627 struct device_attribute *d;
1628 struct perf_pmu_events_attr *pmu_attr;
61b87cae 1629 int offset = 0;
8300daa2
JO
1630 int i, j;
1631
1632 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1633 d = (struct device_attribute *)attrs[i];
1634 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1635 /* str trumps id */
1636 if (pmu_attr->event_str)
1637 continue;
61b87cae 1638 if (x86_pmu.event_map(i + offset))
8300daa2
JO
1639 continue;
1640
1641 for (j = i; attrs[j]; j++)
1642 attrs[j] = attrs[j + 1];
1643
1644 /* Check the shifted attr. */
1645 i--;
61b87cae
SE
1646
1647 /*
1648 * event_map() is index based, the attrs array is organized
1649 * by increasing event index. If we shift the events, then
1650 * we need to compensate for the event_map(), otherwise
1651 * we are looking up the wrong event in the map
1652 */
1653 offset++;
8300daa2
JO
1654 }
1655}
1656
1a6461b1 1657/* Merge two pointer arrays */
47732d88 1658__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1659{
1660 struct attribute **new;
1661 int j, i;
1662
d4ae5529 1663 for (j = 0; a && a[j]; j++)
1a6461b1 1664 ;
d4ae5529 1665 for (i = 0; b && b[i]; i++)
1a6461b1
AK
1666 j++;
1667 j++;
1668
6da2ec56 1669 new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1a6461b1
AK
1670 if (!new)
1671 return NULL;
1672
1673 j = 0;
d4ae5529 1674 for (i = 0; a && a[i]; i++)
1a6461b1 1675 new[j++] = a[i];
d4ae5529 1676 for (i = 0; b && b[i]; i++)
1a6461b1
AK
1677 new[j++] = b[i];
1678 new[j] = NULL;
1679
1680 return new;
1681}
1682
c7ab62bf 1683ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
a4747393
JO
1684{
1685 struct perf_pmu_events_attr *pmu_attr = \
1686 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1687 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1688
3a54aaa0
SE
1689 /* string trumps id */
1690 if (pmu_attr->event_str)
1691 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1692
3a54aaa0
SE
1693 return x86_pmu.events_sysfs_show(page, config);
1694}
c7ab62bf 1695EXPORT_SYMBOL_GPL(events_sysfs_show);
a4747393 1696
fc07e9f9
AK
1697ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1698 char *page)
1699{
1700 struct perf_pmu_events_ht_attr *pmu_attr =
1701 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1702
1703 /*
1704 * Report conditional events depending on Hyper-Threading.
1705 *
1706 * This is overly conservative as usually the HT special
1707 * handling is not needed if the other CPU thread is idle.
1708 *
1709 * Note this does not (and cannot) handle the case when thread
1710 * siblings are invisible, for example with virtualization
1711 * if they are owned by some other guest. The user tool
1712 * has to re-read when a thread sibling gets onlined later.
1713 */
1714 return sprintf(page, "%s",
1715 topology_max_smt_threads() > 1 ?
1716 pmu_attr->event_str_ht :
1717 pmu_attr->event_str_noht);
1718}
1719
a4747393
JO
1720EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1721EVENT_ATTR(instructions, INSTRUCTIONS );
1722EVENT_ATTR(cache-references, CACHE_REFERENCES );
1723EVENT_ATTR(cache-misses, CACHE_MISSES );
1724EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1725EVENT_ATTR(branch-misses, BRANCH_MISSES );
1726EVENT_ATTR(bus-cycles, BUS_CYCLES );
1727EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1728EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1729EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1730
1731static struct attribute *empty_attrs;
1732
95d18aa2 1733static struct attribute *events_attr[] = {
a4747393
JO
1734 EVENT_PTR(CPU_CYCLES),
1735 EVENT_PTR(INSTRUCTIONS),
1736 EVENT_PTR(CACHE_REFERENCES),
1737 EVENT_PTR(CACHE_MISSES),
1738 EVENT_PTR(BRANCH_INSTRUCTIONS),
1739 EVENT_PTR(BRANCH_MISSES),
1740 EVENT_PTR(BUS_CYCLES),
1741 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1742 EVENT_PTR(STALLED_CYCLES_BACKEND),
1743 EVENT_PTR(REF_CPU_CYCLES),
1744 NULL,
1745};
1746
2766d2ee 1747static struct attribute_group x86_pmu_events_group __ro_after_init = {
a4747393
JO
1748 .name = "events",
1749 .attrs = events_attr,
1750};
1751
0bf79d44 1752ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1753{
43c032fe
JO
1754 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1755 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1756 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1757 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1758 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1759 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1760 ssize_t ret;
1761
1762 /*
1763 * We have whole page size to spend and just little data
1764 * to write, so we can safely use sprintf.
1765 */
1766 ret = sprintf(page, "event=0x%02llx", event);
1767
1768 if (umask)
1769 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1770
1771 if (edge)
1772 ret += sprintf(page + ret, ",edge");
1773
1774 if (pc)
1775 ret += sprintf(page + ret, ",pc");
1776
1777 if (any)
1778 ret += sprintf(page + ret, ",any");
1779
1780 if (inv)
1781 ret += sprintf(page + ret, ",inv");
1782
1783 if (cmask)
1784 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1785
1786 ret += sprintf(page + ret, "\n");
1787
1788 return ret;
1789}
1790
6089327f 1791static struct attribute_group x86_pmu_attr_group;
5da382eb 1792static struct attribute_group x86_pmu_caps_group;
6089327f 1793
dda99116 1794static int __init init_hw_perf_events(void)
b56a3802 1795{
c1d6f42f 1796 struct x86_pmu_quirk *quirk;
72eae04d
RR
1797 int err;
1798
cdd6c482 1799 pr_info("Performance Events: ");
1123e3ad 1800
b56a3802
JSR
1801 switch (boot_cpu_data.x86_vendor) {
1802 case X86_VENDOR_INTEL:
72eae04d 1803 err = intel_pmu_init();
b56a3802 1804 break;
f87ad35d 1805 case X86_VENDOR_AMD:
72eae04d 1806 err = amd_pmu_init();
f87ad35d 1807 break;
6d0ef316
PW
1808 case X86_VENDOR_HYGON:
1809 err = amd_pmu_init();
1810 x86_pmu.name = "HYGON";
1811 break;
4138960a 1812 default:
8a3da6c7 1813 err = -ENOTSUPP;
b56a3802 1814 }
1123e3ad 1815 if (err != 0) {
cdd6c482 1816 pr_cont("no PMU driver, software events only.\n");
004417a6 1817 return 0;
1123e3ad 1818 }
b56a3802 1819
12558038
CG
1820 pmu_check_apic();
1821
33c6d6a7 1822 /* sanity check that the hardware exists or is emulated */
4407204c 1823 if (!check_hw_exists())
004417a6 1824 return 0;
33c6d6a7 1825
1123e3ad 1826 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1827
e97df763
PZ
1828 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1829
c1d6f42f
PZ
1830 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1831 quirk->func();
3c44780b 1832
a1eac7ac
RR
1833 if (!x86_pmu.intel_ctrl)
1834 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1835
cdd6c482 1836 perf_events_lapic_init();
9c48f1c6 1837 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1838
63b14649 1839 unconstrained = (struct event_constraint)
948b1bb8 1840 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1841 0, x86_pmu.num_counters, 0, 0);
63b14649 1842
641cc938 1843 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1844
5da382eb
PZ
1845 if (x86_pmu.caps_attrs) {
1846 struct attribute **tmp;
1847
1848 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1849 if (!WARN_ON(!tmp))
1850 x86_pmu_caps_group.attrs = tmp;
1851 }
0c9d42ed 1852
f20093ee
SE
1853 if (x86_pmu.event_attrs)
1854 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1855
a4747393
JO
1856 if (!x86_pmu.events_sysfs_show)
1857 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1858 else
1859 filter_events(x86_pmu_events_group.attrs);
a4747393 1860
1a6461b1
AK
1861 if (x86_pmu.cpu_events) {
1862 struct attribute **tmp;
1863
1864 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1865 if (!WARN_ON(!tmp))
1866 x86_pmu_events_group.attrs = tmp;
1867 }
1868
6089327f
KL
1869 if (x86_pmu.attrs) {
1870 struct attribute **tmp;
1871
1872 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1873 if (!WARN_ON(!tmp))
1874 x86_pmu_attr_group.attrs = tmp;
1875 }
1876
57c0c15b 1877 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1878 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1879 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1880 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1881 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1882 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1883 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1884
95ca792c
TG
1885 /*
1886 * Install callbacks. Core will call them for each online
1887 * cpu.
1888 */
73c1b41e 1889 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
95ca792c
TG
1890 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1891 if (err)
1892 return err;
1893
1894 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
73c1b41e 1895 "perf/x86:starting", x86_pmu_starting_cpu,
95ca792c
TG
1896 x86_pmu_dying_cpu);
1897 if (err)
1898 goto out;
1899
73c1b41e 1900 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
95ca792c
TG
1901 x86_pmu_online_cpu, NULL);
1902 if (err)
1903 goto out1;
1904
1905 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1906 if (err)
1907 goto out2;
004417a6
PZ
1908
1909 return 0;
95ca792c
TG
1910
1911out2:
1912 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1913out1:
1914 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1915out:
1916 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1917 return err;
241771ef 1918}
004417a6 1919early_initcall(init_hw_perf_events);
621a01ea 1920
cdd6c482 1921static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1922{
bcfbe5c4
KL
1923 if (x86_pmu.read)
1924 return x86_pmu.read(event);
cc2ad4ba 1925 x86_perf_event_update(event);
ee06094f
IM
1926}
1927
4d1c52b0
LM
1928/*
1929 * Start group events scheduling transaction
1930 * Set the flag to make pmu::enable() not perform the
1931 * schedulability test, it will be performed at commit time
fbbe0701
SB
1932 *
1933 * We only support PERF_PMU_TXN_ADD transactions. Save the
1934 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1935 * transactions.
4d1c52b0 1936 */
fbbe0701 1937static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1938{
fbbe0701
SB
1939 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1940
1941 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1942
1943 cpuc->txn_flags = txn_flags;
1944 if (txn_flags & ~PERF_PMU_TXN_ADD)
1945 return;
1946
33696fc0 1947 perf_pmu_disable(pmu);
0a3aee0d 1948 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1949}
1950
1951/*
1952 * Stop group events scheduling transaction
1953 * Clear the flag and pmu::enable() will perform the
1954 * schedulability test.
1955 */
51b0fe39 1956static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1957{
fbbe0701
SB
1958 unsigned int txn_flags;
1959 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960
1961 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1962
1963 txn_flags = cpuc->txn_flags;
1964 cpuc->txn_flags = 0;
1965 if (txn_flags & ~PERF_PMU_TXN_ADD)
1966 return;
1967
90151c35 1968 /*
c347a2f1
PZ
1969 * Truncate collected array by the number of events added in this
1970 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1971 */
0a3aee0d
TH
1972 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1973 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1974 perf_pmu_enable(pmu);
4d1c52b0
LM
1975}
1976
1977/*
1978 * Commit group events scheduling transaction
1979 * Perform the group schedulability test as a whole
1980 * Return 0 if success
c347a2f1
PZ
1981 *
1982 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1983 */
51b0fe39 1984static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1985{
89cbc767 1986 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1987 int assign[X86_PMC_IDX_MAX];
1988 int n, ret;
1989
fbbe0701
SB
1990 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1991
1992 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1993 cpuc->txn_flags = 0;
1994 return 0;
1995 }
1996
4d1c52b0
LM
1997 n = cpuc->n_events;
1998
1999 if (!x86_pmu_initialized())
2000 return -EAGAIN;
2001
2002 ret = x86_pmu.schedule_events(cpuc, n, assign);
2003 if (ret)
2004 return ret;
2005
2006 /*
2007 * copy new assignment, now we know it is possible
2008 * will be used by hw_perf_enable()
2009 */
2010 memcpy(cpuc->assign, assign, n*sizeof(int));
2011
fbbe0701 2012 cpuc->txn_flags = 0;
33696fc0 2013 perf_pmu_enable(pmu);
4d1c52b0
LM
2014 return 0;
2015}
cd8a38d3
SE
2016/*
2017 * a fake_cpuc is used to validate event groups. Due to
2018 * the extra reg logic, we need to also allocate a fake
2019 * per_core and per_cpu structure. Otherwise, group events
2020 * using extra reg may conflict without the kernel being
2021 * able to catch this when the last event gets added to
2022 * the group.
2023 */
2024static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2025{
d01b1f96 2026 intel_cpuc_finish(cpuc);
cd8a38d3
SE
2027 kfree(cpuc);
2028}
2029
2030static struct cpu_hw_events *allocate_fake_cpuc(void)
2031{
2032 struct cpu_hw_events *cpuc;
2033 int cpu = raw_smp_processor_id();
2034
2035 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2036 if (!cpuc)
2037 return ERR_PTR(-ENOMEM);
b430f7c4 2038 cpuc->is_fake = 1;
d01b1f96
PZI
2039
2040 if (intel_cpuc_prepare(cpuc, cpu))
2041 goto error;
2042
cd8a38d3
SE
2043 return cpuc;
2044error:
2045 free_fake_cpuc(cpuc);
2046 return ERR_PTR(-ENOMEM);
2047}
4d1c52b0 2048
ca037701
PZ
2049/*
2050 * validate that we can schedule this event
2051 */
2052static int validate_event(struct perf_event *event)
2053{
2054 struct cpu_hw_events *fake_cpuc;
2055 struct event_constraint *c;
2056 int ret = 0;
2057
cd8a38d3
SE
2058 fake_cpuc = allocate_fake_cpuc();
2059 if (IS_ERR(fake_cpuc))
2060 return PTR_ERR(fake_cpuc);
ca037701 2061
21d65555 2062 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
ca037701
PZ
2063
2064 if (!c || !c->weight)
aa2bc1ad 2065 ret = -EINVAL;
ca037701
PZ
2066
2067 if (x86_pmu.put_event_constraints)
2068 x86_pmu.put_event_constraints(fake_cpuc, event);
2069
cd8a38d3 2070 free_fake_cpuc(fake_cpuc);
ca037701
PZ
2071
2072 return ret;
2073}
2074
1da53e02
SE
2075/*
2076 * validate a single event group
2077 *
2078 * validation include:
184f412c
IM
2079 * - check events are compatible which each other
2080 * - events do not compete for the same counter
2081 * - number of events <= number of counters
1da53e02
SE
2082 *
2083 * validation ensures the group can be loaded onto the
2084 * PMU if it was the only group available.
2085 */
fe9081cc
PZ
2086static int validate_group(struct perf_event *event)
2087{
1da53e02 2088 struct perf_event *leader = event->group_leader;
502568d5 2089 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 2090 int ret = -EINVAL, n;
fe9081cc 2091
cd8a38d3
SE
2092 fake_cpuc = allocate_fake_cpuc();
2093 if (IS_ERR(fake_cpuc))
2094 return PTR_ERR(fake_cpuc);
1da53e02
SE
2095 /*
2096 * the event is not yet connected with its
2097 * siblings therefore we must first collect
2098 * existing siblings, then add the new event
2099 * before we can simulate the scheduling
2100 */
502568d5 2101 n = collect_events(fake_cpuc, leader, true);
1da53e02 2102 if (n < 0)
cd8a38d3 2103 goto out;
fe9081cc 2104
502568d5
PZ
2105 fake_cpuc->n_events = n;
2106 n = collect_events(fake_cpuc, event, false);
1da53e02 2107 if (n < 0)
cd8a38d3 2108 goto out;
fe9081cc 2109
1f6a1e2d 2110 fake_cpuc->n_events = 0;
a072738e 2111 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 2112
502568d5 2113out:
cd8a38d3 2114 free_fake_cpuc(fake_cpuc);
502568d5 2115 return ret;
fe9081cc
PZ
2116}
2117
dda99116 2118static int x86_pmu_event_init(struct perf_event *event)
621a01ea 2119{
51b0fe39 2120 struct pmu *tmp;
621a01ea
IM
2121 int err;
2122
b0a873eb
PZ
2123 switch (event->attr.type) {
2124 case PERF_TYPE_RAW:
2125 case PERF_TYPE_HARDWARE:
2126 case PERF_TYPE_HW_CACHE:
2127 break;
2128
2129 default:
2130 return -ENOENT;
2131 }
2132
2133 err = __x86_pmu_event_init(event);
fe9081cc 2134 if (!err) {
8113070d
SE
2135 /*
2136 * we temporarily connect event to its pmu
2137 * such that validate_group() can classify
2138 * it as an x86 event using is_x86_event()
2139 */
2140 tmp = event->pmu;
2141 event->pmu = &pmu;
2142
fe9081cc
PZ
2143 if (event->group_leader != event)
2144 err = validate_group(event);
ca037701
PZ
2145 else
2146 err = validate_event(event);
8113070d
SE
2147
2148 event->pmu = tmp;
fe9081cc 2149 }
a1792cda 2150 if (err) {
cdd6c482
IM
2151 if (event->destroy)
2152 event->destroy(event);
a1792cda 2153 }
621a01ea 2154
1af22eba 2155 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
174afc3e 2156 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
7911d3f7
AL
2157 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2158
b0a873eb 2159 return err;
621a01ea 2160}
d7d59fb3 2161
7911d3f7
AL
2162static void refresh_pce(void *ignored)
2163{
3d28ebce 2164 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
7911d3f7
AL
2165}
2166
bfe33492 2167static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7
AL
2168{
2169 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2170 return;
2171
4b07372a
AL
2172 /*
2173 * This function relies on not being called concurrently in two
2174 * tasks in the same mm. Otherwise one task could observe
2175 * perf_rdpmc_allowed > 1 and return all the way back to
2176 * userspace with CR4.PCE clear while another task is still
2177 * doing on_each_cpu_mask() to propagate CR4.PCE.
2178 *
2179 * For now, this can't happen because all callers hold mmap_sem
2180 * for write. If this changes, we'll need a different solution.
2181 */
bfe33492 2182 lockdep_assert_held_exclusive(&mm->mmap_sem);
4b07372a 2183
bfe33492
PZ
2184 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2185 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
7911d3f7
AL
2186}
2187
bfe33492 2188static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7 2189{
7911d3f7
AL
2190
2191 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2192 return;
2193
bfe33492
PZ
2194 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2195 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
7911d3f7
AL
2196}
2197
fe4a3308
PZ
2198static int x86_pmu_event_idx(struct perf_event *event)
2199{
2200 int idx = event->hw.idx;
2201
7911d3f7 2202 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2203 return 0;
2204
15c7ad51
RR
2205 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2206 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2207 idx |= 1 << 30;
2208 }
2209
2210 return idx + 1;
2211}
2212
0c9d42ed
PZ
2213static ssize_t get_attr_rdpmc(struct device *cdev,
2214 struct device_attribute *attr,
2215 char *buf)
2216{
2217 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2218}
2219
0c9d42ed
PZ
2220static ssize_t set_attr_rdpmc(struct device *cdev,
2221 struct device_attribute *attr,
2222 const char *buf, size_t count)
2223{
e2b297fc
SK
2224 unsigned long val;
2225 ssize_t ret;
2226
2227 ret = kstrtoul(buf, 0, &val);
2228 if (ret)
2229 return ret;
e97df763 2230
a6673429
AL
2231 if (val > 2)
2232 return -EINVAL;
2233
e97df763
PZ
2234 if (x86_pmu.attr_rdpmc_broken)
2235 return -ENOTSUPP;
0c9d42ed 2236
a6673429
AL
2237 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2238 /*
2239 * Changing into or out of always available, aka
2240 * perf-event-bypassing mode. This path is extremely slow,
2241 * but only root can trigger it, so it's okay.
2242 */
2243 if (val == 2)
631fe154 2244 static_branch_inc(&rdpmc_always_available_key);
a6673429 2245 else
631fe154 2246 static_branch_dec(&rdpmc_always_available_key);
a6673429
AL
2247 on_each_cpu(refresh_pce, NULL, 1);
2248 }
2249
2250 x86_pmu.attr_rdpmc = val;
2251
0c9d42ed
PZ
2252 return count;
2253}
2254
2255static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2256
2257static struct attribute *x86_pmu_attrs[] = {
2258 &dev_attr_rdpmc.attr,
2259 NULL,
2260};
2261
2766d2ee 2262static struct attribute_group x86_pmu_attr_group __ro_after_init = {
0c9d42ed
PZ
2263 .attrs = x86_pmu_attrs,
2264};
2265
5da382eb
PZ
2266static ssize_t max_precise_show(struct device *cdev,
2267 struct device_attribute *attr,
2268 char *buf)
2269{
2270 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2271}
2272
2273static DEVICE_ATTR_RO(max_precise);
2274
2275static struct attribute *x86_pmu_caps_attrs[] = {
2276 &dev_attr_max_precise.attr,
2277 NULL
2278};
2279
2766d2ee 2280static struct attribute_group x86_pmu_caps_group __ro_after_init = {
5da382eb
PZ
2281 .name = "caps",
2282 .attrs = x86_pmu_caps_attrs,
2283};
2284
0c9d42ed
PZ
2285static const struct attribute_group *x86_pmu_attr_groups[] = {
2286 &x86_pmu_attr_group,
641cc938 2287 &x86_pmu_format_group,
a4747393 2288 &x86_pmu_events_group,
b00233b5 2289 &x86_pmu_caps_group,
0c9d42ed
PZ
2290 NULL,
2291};
2292
ba532500 2293static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2294{
ba532500
YZ
2295 if (x86_pmu.sched_task)
2296 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2297}
2298
c93dc84c
PZ
2299void perf_check_microcode(void)
2300{
2301 if (x86_pmu.check_microcode)
2302 x86_pmu.check_microcode();
2303}
c93dc84c 2304
81ec3f3c
JO
2305static int x86_pmu_check_period(struct perf_event *event, u64 value)
2306{
2307 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2308 return -EINVAL;
2309
2310 if (value && x86_pmu.limit_period) {
2311 if (x86_pmu.limit_period(event, value) > value)
2312 return -EINVAL;
2313 }
2314
2315 return 0;
2316}
2317
b0a873eb 2318static struct pmu pmu = {
d010b332
SE
2319 .pmu_enable = x86_pmu_enable,
2320 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2321
c93dc84c 2322 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2323
c93dc84c 2324 .event_init = x86_pmu_event_init,
a4eaf7f1 2325
7911d3f7
AL
2326 .event_mapped = x86_pmu_event_mapped,
2327 .event_unmapped = x86_pmu_event_unmapped,
2328
d010b332
SE
2329 .add = x86_pmu_add,
2330 .del = x86_pmu_del,
2331 .start = x86_pmu_start,
2332 .stop = x86_pmu_stop,
2333 .read = x86_pmu_read,
a4eaf7f1 2334
c93dc84c
PZ
2335 .start_txn = x86_pmu_start_txn,
2336 .cancel_txn = x86_pmu_cancel_txn,
2337 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2338
c93dc84c 2339 .event_idx = x86_pmu_event_idx,
ba532500 2340 .sched_task = x86_pmu_sched_task,
e18bf526 2341 .task_ctx_size = sizeof(struct x86_perf_task_context),
81ec3f3c 2342 .check_period = x86_pmu_check_period,
b0a873eb
PZ
2343};
2344
c1317ec2
AL
2345void arch_perf_update_userpage(struct perf_event *event,
2346 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2347{
59eaef78 2348 struct cyc2ns_data data;
698eff63 2349 u64 offset;
20d1c86a 2350
fa731587
PZ
2351 userpg->cap_user_time = 0;
2352 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2353 userpg->cap_user_rdpmc =
2354 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2355 userpg->pmc_width = x86_pmu.cntval_bits;
2356
698eff63 2357 if (!using_native_sched_clock() || !sched_clock_stable())
e3f3541c
PZ
2358 return;
2359
59eaef78 2360 cyc2ns_read_begin(&data);
20d1c86a 2361
59eaef78 2362 offset = data.cyc2ns_offset + __sched_clock_offset;
698eff63 2363
34f43927
PZ
2364 /*
2365 * Internal timekeeping for enabled/running/stopped times
2366 * is always in the local_clock domain.
2367 */
fa731587 2368 userpg->cap_user_time = 1;
59eaef78
PZ
2369 userpg->time_mult = data.cyc2ns_mul;
2370 userpg->time_shift = data.cyc2ns_shift;
698eff63 2371 userpg->time_offset = offset - now;
c73deb6a 2372
34f43927
PZ
2373 /*
2374 * cap_user_time_zero doesn't make sense when we're using a different
2375 * time base for the records.
2376 */
f454bfdd 2377 if (!event->attr.use_clockid) {
34f43927 2378 userpg->cap_user_time_zero = 1;
698eff63 2379 userpg->time_zero = offset;
34f43927 2380 }
20d1c86a 2381
59eaef78 2382 cyc2ns_read_end();
e3f3541c
PZ
2383}
2384
d15d3568
KS
2385/*
2386 * Determine whether the regs were taken from an irq/exception handler rather
2387 * than from perf_arch_fetch_caller_regs().
2388 */
2389static bool perf_hw_regs(struct pt_regs *regs)
2390{
2391 return regs->flags & X86_EFLAGS_FIXED;
2392}
2393
56962b44 2394void
cfbcf468 2395perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2396{
35f4d9b3
JP
2397 struct unwind_state state;
2398 unsigned long addr;
2399
927c7a9e
FW
2400 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2401 /* TODO: We don't support guest os callchain now */
ed805261 2402 return;
927c7a9e
FW
2403 }
2404
d15d3568
KS
2405 if (perf_hw_regs(regs)) {
2406 if (perf_callchain_store(entry, regs->ip))
2407 return;
2408 unwind_start(&state, current, regs, NULL);
2409 } else {
2410 unwind_start(&state, current, NULL, (void *)regs->sp);
2411 }
d7d59fb3 2412
d15d3568 2413 for (; !unwind_done(&state); unwind_next_frame(&state)) {
35f4d9b3
JP
2414 addr = unwind_get_return_address(&state);
2415 if (!addr || perf_callchain_store(entry, addr))
2416 return;
2417 }
d7d59fb3
PZ
2418}
2419
bc6ca7b3
AS
2420static inline int
2421valid_user_frame(const void __user *fp, unsigned long size)
2422{
2423 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2424}
2425
d07bdfd3
PZ
2426static unsigned long get_segment_base(unsigned int segment)
2427{
2428 struct desc_struct *desc;
990e9dc3 2429 unsigned int idx = segment >> 3;
d07bdfd3
PZ
2430
2431 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2432#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2433 struct ldt_struct *ldt;
2434
37868fe1 2435 /* IRQs are off, so this synchronizes with smp_store_release */
506458ef 2436 ldt = READ_ONCE(current->active_mm->context.ldt);
eaa2f87c 2437 if (!ldt || idx >= ldt->nr_entries)
d07bdfd3
PZ
2438 return 0;
2439
37868fe1 2440 desc = &ldt->entries[idx];
a5b9e5a2
AL
2441#else
2442 return 0;
2443#endif
d07bdfd3 2444 } else {
eaa2f87c 2445 if (idx >= GDT_ENTRIES)
d07bdfd3
PZ
2446 return 0;
2447
37868fe1 2448 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2449 }
2450
37868fe1 2451 return get_desc_base(desc);
d07bdfd3
PZ
2452}
2453
10ed3493 2454#ifdef CONFIG_IA32_EMULATION
d1a797f3 2455
0d55303c 2456#include <linux/compat.h>
d1a797f3 2457
257ef9d2 2458static inline int
cfbcf468 2459perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
74193ef0 2460{
257ef9d2 2461 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2462 unsigned long ss_base, cs_base;
257ef9d2
TE
2463 struct stack_frame_ia32 frame;
2464 const void __user *fp;
74193ef0 2465
257ef9d2
TE
2466 if (!test_thread_flag(TIF_IA32))
2467 return 0;
2468
d07bdfd3
PZ
2469 cs_base = get_segment_base(regs->cs);
2470 ss_base = get_segment_base(regs->ss);
2471
2472 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2473 pagefault_disable();
3b1fff08 2474 while (entry->nr < entry->max_stack) {
257ef9d2
TE
2475 unsigned long bytes;
2476 frame.next_frame = 0;
2477 frame.return_address = 0;
2478
ae31fe51 2479 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2480 break;
2481
2482 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2483 if (bytes != 0)
2484 break;
2485 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
0a196848 2486 if (bytes != 0)
257ef9d2 2487 break;
74193ef0 2488
d07bdfd3
PZ
2489 perf_callchain_store(entry, cs_base + frame.return_address);
2490 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2491 }
75925e1a 2492 pagefault_enable();
257ef9d2 2493 return 1;
d7d59fb3 2494}
257ef9d2
TE
2495#else
2496static inline int
cfbcf468 2497perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
257ef9d2
TE
2498{
2499 return 0;
2500}
2501#endif
d7d59fb3 2502
56962b44 2503void
cfbcf468 2504perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3
PZ
2505{
2506 struct stack_frame frame;
fc188225 2507 const unsigned long __user *fp;
d7d59fb3 2508
927c7a9e
FW
2509 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2510 /* TODO: We don't support guest os callchain now */
ed805261 2511 return;
927c7a9e 2512 }
5a6cec3a 2513
d07bdfd3
PZ
2514 /*
2515 * We don't know what to do with VM86 stacks.. ignore them for now.
2516 */
2517 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2518 return;
2519
fc188225 2520 fp = (unsigned long __user *)regs->bp;
d7d59fb3 2521
70791ce9 2522 perf_callchain_store(entry, regs->ip);
d7d59fb3 2523
4012e77a 2524 if (!nmi_uaccess_okay())
20afc60f
AV
2525 return;
2526
257ef9d2
TE
2527 if (perf_callchain_user32(regs, entry))
2528 return;
2529
75925e1a 2530 pagefault_disable();
3b1fff08 2531 while (entry->nr < entry->max_stack) {
257ef9d2 2532 unsigned long bytes;
fc188225 2533
038e836e 2534 frame.next_frame = NULL;
d7d59fb3
PZ
2535 frame.return_address = 0;
2536
ae31fe51 2537 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2538 break;
2539
fc188225 2540 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
75925e1a
AK
2541 if (bytes != 0)
2542 break;
fc188225 2543 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
0a196848 2544 if (bytes != 0)
d7d59fb3
PZ
2545 break;
2546
70791ce9 2547 perf_callchain_store(entry, frame.return_address);
75925e1a 2548 fp = (void __user *)frame.next_frame;
d7d59fb3 2549 }
75925e1a 2550 pagefault_enable();
d7d59fb3
PZ
2551}
2552
d07bdfd3
PZ
2553/*
2554 * Deal with code segment offsets for the various execution modes:
2555 *
2556 * VM86 - the good olde 16 bit days, where the linear address is
2557 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2558 *
2559 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2560 * to figure out what the 32bit base address is.
2561 *
2562 * X32 - has TIF_X32 set, but is running in x86_64
2563 *
2564 * X86_64 - CS,DS,SS,ES are all zero based.
2565 */
2566static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2567{
383f3af3
AL
2568 /*
2569 * For IA32 we look at the GDT/LDT segment base to convert the
2570 * effective IP to a linear address.
2571 */
2572
2573#ifdef CONFIG_X86_32
d07bdfd3
PZ
2574 /*
2575 * If we are in VM86 mode, add the segment offset to convert to a
2576 * linear address.
2577 */
2578 if (regs->flags & X86_VM_MASK)
2579 return 0x10 * regs->cs;
2580
55474c48 2581 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2582 return get_segment_base(regs->cs);
2583#else
c56716af
AL
2584 if (user_mode(regs) && !user_64bit_mode(regs) &&
2585 regs->cs != __USER32_CS)
2586 return get_segment_base(regs->cs);
d07bdfd3
PZ
2587#endif
2588 return 0;
2589}
dcf46b94 2590
d07bdfd3
PZ
2591unsigned long perf_instruction_pointer(struct pt_regs *regs)
2592{
39447b38 2593 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2594 return perf_guest_cbs->get_guest_ip();
dcf46b94 2595
d07bdfd3 2596 return regs->ip + code_segment_base(regs);
39447b38
ZY
2597}
2598
2599unsigned long perf_misc_flags(struct pt_regs *regs)
2600{
2601 int misc = 0;
dcf46b94 2602
39447b38 2603 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2604 if (perf_guest_cbs->is_user_mode())
2605 misc |= PERF_RECORD_MISC_GUEST_USER;
2606 else
2607 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2608 } else {
d07bdfd3 2609 if (user_mode(regs))
dcf46b94
ZY
2610 misc |= PERF_RECORD_MISC_USER;
2611 else
2612 misc |= PERF_RECORD_MISC_KERNEL;
2613 }
2614
39447b38 2615 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2616 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2617
2618 return misc;
2619}
b3d9468a
GN
2620
2621void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2622{
2623 cap->version = x86_pmu.version;
2624 cap->num_counters_gp = x86_pmu.num_counters;
2625 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2626 cap->bit_width_gp = x86_pmu.cntval_bits;
2627 cap->bit_width_fixed = x86_pmu.cntval_bits;
2628 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2629 cap->events_mask_len = x86_pmu.events_mask_len;
2630}
2631EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);