treewide: Add SPDX license identifier for missed files
[linux-block.git] / arch / x86 / events / amd / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
de0428a7 2#include <linux/perf_event.h>
1018faa6 3#include <linux/export.h>
de0428a7
KW
4#include <linux/types.h>
5#include <linux/init.h>
6#include <linux/slab.h>
914123fa 7#include <linux/delay.h>
d6eed550 8#include <asm/apicdef.h>
3966c3fe 9#include <asm/nmi.h>
de0428a7 10
27f6d22b 11#include "../perf_event.h"
f22f54f4 12
6d3edaae
LT
13static DEFINE_PER_CPU(unsigned int, perf_nmi_counter);
14
caaa8be3 15static __initconst const u64 amd_hw_cache_event_ids
f22f54f4
PZ
16 [PERF_COUNT_HW_CACHE_MAX]
17 [PERF_COUNT_HW_CACHE_OP_MAX]
18 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
19{
20 [ C(L1D) ] = {
21 [ C(OP_READ) ] = {
22 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
83112e68 23 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
f22f54f4
PZ
24 },
25 [ C(OP_WRITE) ] = {
9cc2617d 26 [ C(RESULT_ACCESS) ] = 0,
f22f54f4
PZ
27 [ C(RESULT_MISS) ] = 0,
28 },
29 [ C(OP_PREFETCH) ] = {
30 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
31 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
32 },
33 },
34 [ C(L1I ) ] = {
35 [ C(OP_READ) ] = {
36 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
37 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
38 },
39 [ C(OP_WRITE) ] = {
40 [ C(RESULT_ACCESS) ] = -1,
41 [ C(RESULT_MISS) ] = -1,
42 },
43 [ C(OP_PREFETCH) ] = {
44 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
45 [ C(RESULT_MISS) ] = 0,
46 },
47 },
48 [ C(LL ) ] = {
49 [ C(OP_READ) ] = {
50 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
51 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
52 },
53 [ C(OP_WRITE) ] = {
54 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
55 [ C(RESULT_MISS) ] = 0,
56 },
57 [ C(OP_PREFETCH) ] = {
58 [ C(RESULT_ACCESS) ] = 0,
59 [ C(RESULT_MISS) ] = 0,
60 },
61 },
62 [ C(DTLB) ] = {
63 [ C(OP_READ) ] = {
64 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
ba0cef3d 65 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
f22f54f4
PZ
66 },
67 [ C(OP_WRITE) ] = {
68 [ C(RESULT_ACCESS) ] = 0,
69 [ C(RESULT_MISS) ] = 0,
70 },
71 [ C(OP_PREFETCH) ] = {
72 [ C(RESULT_ACCESS) ] = 0,
73 [ C(RESULT_MISS) ] = 0,
74 },
75 },
76 [ C(ITLB) ] = {
77 [ C(OP_READ) ] = {
78 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
ba0cef3d 79 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
f22f54f4
PZ
80 },
81 [ C(OP_WRITE) ] = {
82 [ C(RESULT_ACCESS) ] = -1,
83 [ C(RESULT_MISS) ] = -1,
84 },
85 [ C(OP_PREFETCH) ] = {
86 [ C(RESULT_ACCESS) ] = -1,
87 [ C(RESULT_MISS) ] = -1,
88 },
89 },
90 [ C(BPU ) ] = {
91 [ C(OP_READ) ] = {
92 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
93 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
94 },
95 [ C(OP_WRITE) ] = {
96 [ C(RESULT_ACCESS) ] = -1,
97 [ C(RESULT_MISS) ] = -1,
98 },
99 [ C(OP_PREFETCH) ] = {
100 [ C(RESULT_ACCESS) ] = -1,
101 [ C(RESULT_MISS) ] = -1,
102 },
103 },
89d6c0b5
PZ
104 [ C(NODE) ] = {
105 [ C(OP_READ) ] = {
106 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
107 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
108 },
109 [ C(OP_WRITE) ] = {
110 [ C(RESULT_ACCESS) ] = -1,
111 [ C(RESULT_MISS) ] = -1,
112 },
113 [ C(OP_PREFETCH) ] = {
114 [ C(RESULT_ACCESS) ] = -1,
115 [ C(RESULT_MISS) ] = -1,
116 },
117 },
f22f54f4
PZ
118};
119
0e3b74e2
KP
120static __initconst const u64 amd_hw_cache_event_ids_f17h
121 [PERF_COUNT_HW_CACHE_MAX]
122 [PERF_COUNT_HW_CACHE_OP_MAX]
123 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
124[C(L1D)] = {
125 [C(OP_READ)] = {
126 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
127 [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
128 },
129 [C(OP_WRITE)] = {
130 [C(RESULT_ACCESS)] = 0,
131 [C(RESULT_MISS)] = 0,
132 },
133 [C(OP_PREFETCH)] = {
134 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
135 [C(RESULT_MISS)] = 0,
136 },
137},
138[C(L1I)] = {
139 [C(OP_READ)] = {
140 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
141 [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
142 },
143 [C(OP_WRITE)] = {
144 [C(RESULT_ACCESS)] = -1,
145 [C(RESULT_MISS)] = -1,
146 },
147 [C(OP_PREFETCH)] = {
148 [C(RESULT_ACCESS)] = 0,
149 [C(RESULT_MISS)] = 0,
150 },
151},
152[C(LL)] = {
153 [C(OP_READ)] = {
154 [C(RESULT_ACCESS)] = 0,
155 [C(RESULT_MISS)] = 0,
156 },
157 [C(OP_WRITE)] = {
158 [C(RESULT_ACCESS)] = 0,
159 [C(RESULT_MISS)] = 0,
160 },
161 [C(OP_PREFETCH)] = {
162 [C(RESULT_ACCESS)] = 0,
163 [C(RESULT_MISS)] = 0,
164 },
165},
166[C(DTLB)] = {
167 [C(OP_READ)] = {
168 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
169 [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
170 },
171 [C(OP_WRITE)] = {
172 [C(RESULT_ACCESS)] = 0,
173 [C(RESULT_MISS)] = 0,
174 },
175 [C(OP_PREFETCH)] = {
176 [C(RESULT_ACCESS)] = 0,
177 [C(RESULT_MISS)] = 0,
178 },
179},
180[C(ITLB)] = {
181 [C(OP_READ)] = {
182 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
183 [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
184 },
185 [C(OP_WRITE)] = {
186 [C(RESULT_ACCESS)] = -1,
187 [C(RESULT_MISS)] = -1,
188 },
189 [C(OP_PREFETCH)] = {
190 [C(RESULT_ACCESS)] = -1,
191 [C(RESULT_MISS)] = -1,
192 },
193},
194[C(BPU)] = {
195 [C(OP_READ)] = {
196 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
197 [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
198 },
199 [C(OP_WRITE)] = {
200 [C(RESULT_ACCESS)] = -1,
201 [C(RESULT_MISS)] = -1,
202 },
203 [C(OP_PREFETCH)] = {
204 [C(RESULT_ACCESS)] = -1,
205 [C(RESULT_MISS)] = -1,
206 },
207},
208[C(NODE)] = {
209 [C(OP_READ)] = {
210 [C(RESULT_ACCESS)] = 0,
211 [C(RESULT_MISS)] = 0,
212 },
213 [C(OP_WRITE)] = {
214 [C(RESULT_ACCESS)] = -1,
215 [C(RESULT_MISS)] = -1,
216 },
217 [C(OP_PREFETCH)] = {
218 [C(RESULT_ACCESS)] = -1,
219 [C(RESULT_MISS)] = -1,
220 },
221},
222};
223
f22f54f4 224/*
3fe3331b 225 * AMD Performance Monitor K7 and later, up to and including Family 16h:
f22f54f4 226 */
0a25556f 227static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
f22f54f4 228{
3fe3331b
KP
229 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
230 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
231 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
232 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
233 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
234 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
235 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
236 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
237};
238
239/*
240 * AMD Performance Monitor Family 17h and later:
241 */
242static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
243{
244 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
245 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
246 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
247 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
248 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
249 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
250 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
f22f54f4
PZ
251};
252
253static u64 amd_pmu_event_map(int hw_event)
254{
3fe3331b
KP
255 if (boot_cpu_data.x86 >= 0x17)
256 return amd_f17h_perfmon_event_map[hw_event];
257
f22f54f4
PZ
258 return amd_perfmon_event_map[hw_event];
259}
260
4c1fd17a
JS
261/*
262 * Previously calculated offsets
263 */
264static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
265static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
266
267/*
268 * Legacy CPUs:
269 * 4 counters starting at 0xc0010000 each offset by 1
270 *
271 * CPUs with core performance counter extensions:
272 * 6 counters starting at 0xc0010200 each offset by 2
273 */
274static inline int amd_pmu_addr_offset(int index, bool eventsel)
275{
0cf5f432 276 int offset;
4c1fd17a
JS
277
278 if (!index)
279 return index;
280
281 if (eventsel)
282 offset = event_offsets[index];
283 else
284 offset = count_offsets[index];
285
286 if (offset)
287 return offset;
288
362f924b 289 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4c1fd17a
JS
290 offset = index;
291 else
292 offset = index << 1;
293
294 if (eventsel)
295 event_offsets[index] = offset;
296 else
297 count_offsets[index] = offset;
298
299 return offset;
300}
301
e259514e
JS
302static int amd_core_hw_config(struct perf_event *event)
303{
011af857
JR
304 if (event->attr.exclude_host && event->attr.exclude_guest)
305 /*
306 * When HO == GO == 1 the hardware treats that as GO == HO == 0
307 * and will count in both modes. We don't want to count in that
308 * case so we emulate no-counting by setting US = OS = 0.
309 */
310 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
311 ARCH_PERFMON_EVENTSEL_OS);
312 else if (event->attr.exclude_host)
9f19010a 313 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
011af857 314 else if (event->attr.exclude_guest)
9f19010a 315 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
011af857 316
e259514e
JS
317 return 0;
318}
b4cdc5c2 319
f22f54f4
PZ
320/*
321 * AMD64 events are detected based on their event codes.
322 */
4979d272
RR
323static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
324{
325 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
326}
327
f22f54f4
PZ
328static inline int amd_is_nb_event(struct hw_perf_event *hwc)
329{
330 return (hwc->config & 0xe0) == 0xe0;
331}
332
b38b24ea
PZ
333static inline int amd_has_nb(struct cpu_hw_events *cpuc)
334{
335 struct amd_nb *nb = cpuc->amd_nb;
336
337 return nb && nb->nb_id != -1;
338}
339
e259514e
JS
340static int amd_pmu_hw_config(struct perf_event *event)
341{
342 int ret;
343
344 /* pass precise event sampling to ibs: */
345 if (event->attr.precise_ip && get_ibs_caps())
346 return -ENOENT;
347
348 if (has_branch_stack(event))
349 return -EOPNOTSUPP;
350
351 ret = x86_pmu_hw_config(event);
352 if (ret)
353 return ret;
354
355 if (event->attr.type == PERF_TYPE_RAW)
356 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
357
e259514e
JS
358 return amd_core_hw_config(event);
359}
360
4dd4c2ae
RR
361static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
362 struct perf_event *event)
f22f54f4 363{
f22f54f4
PZ
364 struct amd_nb *nb = cpuc->amd_nb;
365 int i;
366
f22f54f4
PZ
367 /*
368 * need to scan whole list because event may not have
369 * been assigned during scheduling
370 *
371 * no race condition possible because event can only
372 * be removed on one CPU at a time AND PMU is disabled
373 * when we come here
374 */
948b1bb8 375 for (i = 0; i < x86_pmu.num_counters; i++) {
5f09fc68 376 if (cmpxchg(nb->owners + i, event, NULL) == event)
f22f54f4 377 break;
f22f54f4
PZ
378 }
379}
380
381 /*
382 * AMD64 NorthBridge events need special treatment because
383 * counter access needs to be synchronized across all cores
384 * of a package. Refer to BKDG section 3.12
385 *
386 * NB events are events measuring L3 cache, Hypertransport
387 * traffic. They are identified by an event code >= 0xe00.
388 * They measure events on the NorthBride which is shared
389 * by all cores on a package. NB events are counted on a
390 * shared set of counters. When a NB event is programmed
391 * in a counter, the data actually comes from a shared
392 * counter. Thus, access to those counters needs to be
393 * synchronized.
394 *
395 * We implement the synchronization such that no two cores
396 * can be measuring NB events using the same counters. Thus,
397 * we maintain a per-NB allocation table. The available slot
398 * is propagated using the event_constraint structure.
399 *
400 * We provide only one choice for each NB event based on
401 * the fact that only NB events have restrictions. Consequently,
402 * if a counter is available, there is a guarantee the NB event
403 * will be assigned to it. If no slot is available, an empty
404 * constraint is returned and scheduling will eventually fail
405 * for this event.
406 *
407 * Note that all cores attached the same NB compete for the same
408 * counters to host NB events, this is why we use atomic ops. Some
409 * multi-chip CPUs may have more than one NB.
410 *
411 * Given that resources are allocated (cmpxchg), they must be
412 * eventually freed for others to use. This is accomplished by
4dd4c2ae 413 * calling __amd_put_nb_event_constraints()
f22f54f4
PZ
414 *
415 * Non NB events are not impacted by this restriction.
416 */
417static struct event_constraint *
4dd4c2ae
RR
418__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
419 struct event_constraint *c)
f22f54f4
PZ
420{
421 struct hw_perf_event *hwc = &event->hw;
422 struct amd_nb *nb = cpuc->amd_nb;
2c53c3dd
RR
423 struct perf_event *old;
424 int idx, new = -1;
f22f54f4 425
e259514e
JS
426 if (!c)
427 c = &unconstrained;
428
429 if (cpuc->is_fake)
430 return c;
431
f22f54f4
PZ
432 /*
433 * detect if already present, if so reuse
434 *
435 * cannot merge with actual allocation
436 * because of possible holes
437 *
438 * event can already be present yet not assigned (in hwc->idx)
439 * because of successive calls to x86_schedule_events() from
440 * hw_perf_group_sched_in() without hw_perf_enable()
441 */
4dd4c2ae 442 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
2c53c3dd
RR
443 if (new == -1 || hwc->idx == idx)
444 /* assign free slot, prefer hwc->idx */
445 old = cmpxchg(nb->owners + idx, NULL, event);
446 else if (nb->owners[idx] == event)
447 /* event already present */
448 old = event;
449 else
450 continue;
451
452 if (old && old != event)
453 continue;
454
455 /* reassign to this slot */
456 if (new != -1)
457 cmpxchg(nb->owners + new, event, NULL);
458 new = idx;
f22f54f4
PZ
459
460 /* already present, reuse */
2c53c3dd 461 if (old == event)
f22f54f4 462 break;
2c53c3dd
RR
463 }
464
465 if (new == -1)
466 return &emptyconstraint;
467
468 return &nb->event_constraints[new];
f22f54f4
PZ
469}
470
c079c791 471static struct amd_nb *amd_alloc_nb(int cpu)
f22f54f4
PZ
472{
473 struct amd_nb *nb;
474 int i;
475
7bfb7e6b 476 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
f22f54f4
PZ
477 if (!nb)
478 return NULL;
479
c079c791 480 nb->nb_id = -1;
f22f54f4
PZ
481
482 /*
483 * initialize all possible NB constraints
484 */
948b1bb8 485 for (i = 0; i < x86_pmu.num_counters; i++) {
34538ee7 486 __set_bit(i, nb->event_constraints[i].idxmsk);
f22f54f4
PZ
487 nb->event_constraints[i].weight = 1;
488 }
489 return nb;
490}
491
b38b24ea
PZ
492static int amd_pmu_cpu_prepare(int cpu)
493{
494 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
495
496 WARN_ON_ONCE(cpuc->amd_nb);
497
32b62f44 498 if (!x86_pmu.amd_nb_constraints)
95ca792c 499 return 0;
b38b24ea 500
c079c791 501 cpuc->amd_nb = amd_alloc_nb(cpu);
b38b24ea 502 if (!cpuc->amd_nb)
95ca792c 503 return -ENOMEM;
b38b24ea 504
95ca792c 505 return 0;
b38b24ea
PZ
506}
507
508static void amd_pmu_cpu_starting(int cpu)
f22f54f4 509{
b38b24ea 510 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 511 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
b38b24ea 512 struct amd_nb *nb;
f22f54f4
PZ
513 int i, nb_id;
514
9f19010a 515 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1018faa6 516
32b62f44 517 if (!x86_pmu.amd_nb_constraints)
f22f54f4
PZ
518 return;
519
f22f54f4 520 nb_id = amd_get_nb_id(cpu);
b38b24ea 521 WARN_ON_ONCE(nb_id == BAD_APICID);
f22f54f4 522
f22f54f4 523 for_each_online_cpu(i) {
b38b24ea
PZ
524 nb = per_cpu(cpu_hw_events, i).amd_nb;
525 if (WARN_ON_ONCE(!nb))
f22f54f4 526 continue;
f22f54f4 527
b38b24ea 528 if (nb->nb_id == nb_id) {
90413464 529 *onln = cpuc->amd_nb;
b38b24ea
PZ
530 cpuc->amd_nb = nb;
531 break;
532 }
f22f54f4 533 }
b38b24ea
PZ
534
535 cpuc->amd_nb->nb_id = nb_id;
536 cpuc->amd_nb->refcnt++;
f22f54f4
PZ
537}
538
b38b24ea 539static void amd_pmu_cpu_dead(int cpu)
f22f54f4
PZ
540{
541 struct cpu_hw_events *cpuhw;
542
32b62f44 543 if (!x86_pmu.amd_nb_constraints)
f22f54f4
PZ
544 return;
545
546 cpuhw = &per_cpu(cpu_hw_events, cpu);
547
a90110c6 548 if (cpuhw->amd_nb) {
b38b24ea
PZ
549 struct amd_nb *nb = cpuhw->amd_nb;
550
551 if (nb->nb_id == -1 || --nb->refcnt == 0)
552 kfree(nb);
f22f54f4 553
a90110c6
RW
554 cpuhw->amd_nb = NULL;
555 }
f22f54f4
PZ
556}
557
914123fa
LT
558/*
559 * When a PMC counter overflows, an NMI is used to process the event and
560 * reset the counter. NMI latency can result in the counter being updated
561 * before the NMI can run, which can result in what appear to be spurious
562 * NMIs. This function is intended to wait for the NMI to run and reset
563 * the counter to avoid possible unhandled NMI messages.
564 */
565#define OVERFLOW_WAIT_COUNT 50
566
567static void amd_pmu_wait_on_overflow(int idx)
568{
569 unsigned int i;
570 u64 counter;
571
572 /*
573 * Wait for the counter to be reset if it has overflowed. This loop
574 * should exit very, very quickly, but just in case, don't wait
575 * forever...
576 */
577 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
578 rdmsrl(x86_pmu_event_addr(idx), counter);
579 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
580 break;
581
582 /* Might be in IRQ context, so can't sleep */
583 udelay(1);
584 }
585}
586
587static void amd_pmu_disable_all(void)
588{
589 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
590 int idx;
591
592 x86_pmu_disable_all();
593
594 /*
595 * This shouldn't be called from NMI context, but add a safeguard here
596 * to return, since if we're in NMI context we can't wait for an NMI
597 * to reset an overflowed counter value.
598 */
599 if (in_nmi())
600 return;
601
602 /*
603 * Check each counter for overflow and wait for it to be reset by the
604 * NMI if it has overflowed. This relies on the fact that all active
605 * counters are always enabled when this function is caled and
606 * ARCH_PERFMON_EVENTSEL_INT is always set.
607 */
608 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609 if (!test_bit(idx, cpuc->active_mask))
610 continue;
611
612 amd_pmu_wait_on_overflow(idx);
613 }
614}
615
3966c3fe
LT
616static void amd_pmu_disable_event(struct perf_event *event)
617{
618 x86_pmu_disable_event(event);
619
620 /*
621 * This can be called from NMI context (via x86_pmu_stop). The counter
622 * may have overflowed, but either way, we'll never see it get reset
623 * by the NMI if we're already in the NMI. And the NMI latency support
624 * below will take care of any pending NMI that might have been
625 * generated by the overflow.
626 */
627 if (in_nmi())
628 return;
629
630 amd_pmu_wait_on_overflow(event->hw.idx);
631}
632
6d3edaae
LT
633/*
634 * Because of NMI latency, if multiple PMC counters are active or other sources
635 * of NMIs are received, the perf NMI handler can handle one or more overflowed
636 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
637 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
638 * back-to-back NMI support won't be active. This PMC handler needs to take into
639 * account that this can occur, otherwise this could result in unknown NMI
640 * messages being issued. Examples of this is PMC overflow while in the NMI
641 * handler when multiple PMCs are active or PMC overflow while handling some
642 * other source of an NMI.
643 *
644 * Attempt to mitigate this by using the number of active PMCs to determine
645 * whether to return NMI_HANDLED if the perf NMI handler did not handle/reset
646 * any PMCs. The per-CPU perf_nmi_counter variable is set to a minimum of the
647 * number of active PMCs or 2. The value of 2 is used in case an NMI does not
648 * arrive at the LAPIC in time to be collapsed into an already pending NMI.
649 */
650static int amd_pmu_handle_irq(struct pt_regs *regs)
651{
652 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653 int active, handled;
654
655 /*
656 * Obtain the active count before calling x86_pmu_handle_irq() since
657 * it is possible that x86_pmu_handle_irq() may make a counter
658 * inactive (through x86_pmu_stop).
659 */
660 active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);
661
662 /* Process any counter overflows */
663 handled = x86_pmu_handle_irq(regs);
664
665 /*
666 * If a counter was handled, record the number of possible remaining
667 * NMIs that can occur.
668 */
669 if (handled) {
670 this_cpu_write(perf_nmi_counter,
671 min_t(unsigned int, 2, active));
672
673 return handled;
674 }
675
676 if (!this_cpu_read(perf_nmi_counter))
677 return NMI_DONE;
678
679 this_cpu_dec(perf_nmi_counter);
680
681 return NMI_HANDLED;
682}
683
4dd4c2ae 684static struct event_constraint *
79cba822
SE
685amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
686 struct perf_event *event)
4dd4c2ae
RR
687{
688 /*
689 * if not NB event or no NB, then no constraints
690 */
691 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
692 return &unconstrained;
693
0cf5f432 694 return __amd_get_nb_event_constraints(cpuc, event, NULL);
4dd4c2ae
RR
695}
696
697static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
698 struct perf_event *event)
699{
700 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
701 __amd_put_nb_event_constraints(cpuc, event);
702}
703
641cc938
JO
704PMU_FORMAT_ATTR(event, "config:0-7,32-35");
705PMU_FORMAT_ATTR(umask, "config:8-15" );
706PMU_FORMAT_ATTR(edge, "config:18" );
707PMU_FORMAT_ATTR(inv, "config:23" );
708PMU_FORMAT_ATTR(cmask, "config:24-31" );
709
710static struct attribute *amd_format_attr[] = {
711 &format_attr_event.attr,
712 &format_attr_umask.attr,
713 &format_attr_edge.attr,
714 &format_attr_inv.attr,
715 &format_attr_cmask.attr,
716 NULL,
717};
718
4979d272
RR
719/* AMD Family 15h */
720
721#define AMD_EVENT_TYPE_MASK 0x000000F0ULL
722
723#define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
724#define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
725#define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
726#define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
727#define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
728#define AMD_EVENT_EX_LS 0x000000C0ULL
729#define AMD_EVENT_DE 0x000000D0ULL
730#define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
731
732/*
733 * AMD family 15h event code/PMC mappings:
734 *
735 * type = event_code & 0x0F0:
736 *
737 * 0x000 FP PERF_CTL[5:3]
738 * 0x010 FP PERF_CTL[5:3]
739 * 0x020 LS PERF_CTL[5:0]
740 * 0x030 LS PERF_CTL[5:0]
741 * 0x040 DC PERF_CTL[5:0]
742 * 0x050 DC PERF_CTL[5:0]
743 * 0x060 CU PERF_CTL[2:0]
744 * 0x070 CU PERF_CTL[2:0]
745 * 0x080 IC/DE PERF_CTL[2:0]
746 * 0x090 IC/DE PERF_CTL[2:0]
747 * 0x0A0 ---
748 * 0x0B0 ---
749 * 0x0C0 EX/LS PERF_CTL[5:0]
750 * 0x0D0 DE PERF_CTL[2:0]
751 * 0x0E0 NB NB_PERF_CTL[3:0]
752 * 0x0F0 NB NB_PERF_CTL[3:0]
753 *
754 * Exceptions:
755 *
855357a2 756 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
4979d272 757 * 0x003 FP PERF_CTL[3]
855357a2 758 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
4979d272
RR
759 * 0x00B FP PERF_CTL[3]
760 * 0x00D FP PERF_CTL[3]
761 * 0x023 DE PERF_CTL[2:0]
762 * 0x02D LS PERF_CTL[3]
763 * 0x02E LS PERF_CTL[3,0]
5bcdf5e4 764 * 0x031 LS PERF_CTL[2:0] (**)
4979d272
RR
765 * 0x043 CU PERF_CTL[2:0]
766 * 0x045 CU PERF_CTL[2:0]
767 * 0x046 CU PERF_CTL[2:0]
768 * 0x054 CU PERF_CTL[2:0]
769 * 0x055 CU PERF_CTL[2:0]
770 * 0x08F IC PERF_CTL[0]
771 * 0x187 DE PERF_CTL[0]
772 * 0x188 DE PERF_CTL[0]
773 * 0x0DB EX PERF_CTL[5:0]
774 * 0x0DC LS PERF_CTL[5:0]
775 * 0x0DD LS PERF_CTL[5:0]
776 * 0x0DE LS PERF_CTL[5:0]
777 * 0x0DF LS PERF_CTL[5:0]
5bcdf5e4 778 * 0x1C0 EX PERF_CTL[5:3]
4979d272
RR
779 * 0x1D6 EX PERF_CTL[5:0]
780 * 0x1D8 EX PERF_CTL[5:0]
855357a2 781 *
5bcdf5e4
RR
782 * (*) depending on the umask all FPU counters may be used
783 * (**) only one unitmask enabled at a time
4979d272
RR
784 */
785
786static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
787static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
788static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
bc1738f6 789static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
4979d272
RR
790static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
791static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
792
793static struct event_constraint *
79cba822
SE
794amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
795 struct perf_event *event)
4979d272 796{
855357a2
RR
797 struct hw_perf_event *hwc = &event->hw;
798 unsigned int event_code = amd_get_event_code(hwc);
4979d272
RR
799
800 switch (event_code & AMD_EVENT_TYPE_MASK) {
801 case AMD_EVENT_FP:
802 switch (event_code) {
855357a2
RR
803 case 0x000:
804 if (!(hwc->config & 0x0000F000ULL))
805 break;
806 if (!(hwc->config & 0x00000F00ULL))
807 break;
808 return &amd_f15_PMC3;
809 case 0x004:
810 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
811 break;
812 return &amd_f15_PMC3;
4979d272
RR
813 case 0x003:
814 case 0x00B:
815 case 0x00D:
816 return &amd_f15_PMC3;
4979d272 817 }
855357a2 818 return &amd_f15_PMC53;
4979d272
RR
819 case AMD_EVENT_LS:
820 case AMD_EVENT_DC:
821 case AMD_EVENT_EX_LS:
822 switch (event_code) {
823 case 0x023:
824 case 0x043:
825 case 0x045:
826 case 0x046:
827 case 0x054:
828 case 0x055:
829 return &amd_f15_PMC20;
830 case 0x02D:
831 return &amd_f15_PMC3;
832 case 0x02E:
833 return &amd_f15_PMC30;
5bcdf5e4
RR
834 case 0x031:
835 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
836 return &amd_f15_PMC20;
837 return &emptyconstraint;
838 case 0x1C0:
839 return &amd_f15_PMC53;
4979d272
RR
840 default:
841 return &amd_f15_PMC50;
842 }
843 case AMD_EVENT_CU:
844 case AMD_EVENT_IC_DE:
845 case AMD_EVENT_DE:
846 switch (event_code) {
847 case 0x08F:
848 case 0x187:
849 case 0x188:
850 return &amd_f15_PMC0;
851 case 0x0DB ... 0x0DF:
852 case 0x1D6:
853 case 0x1D8:
854 return &amd_f15_PMC50;
855 default:
856 return &amd_f15_PMC20;
857 }
858 case AMD_EVENT_NB:
940b2f2f 859 /* moved to uncore.c */
0cf5f432 860 return &emptyconstraint;
4979d272
RR
861 default:
862 return &emptyconstraint;
863 }
864}
865
0bf79d44
JO
866static ssize_t amd_event_sysfs_show(char *page, u64 config)
867{
868 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
869 (config & AMD64_EVENTSEL_EVENT) >> 24;
870
871 return x86_event_sysfs_show(page, config, event);
872}
873
b1dc3c48
RR
874static __initconst const struct x86_pmu amd_pmu = {
875 .name = "AMD",
6d3edaae 876 .handle_irq = amd_pmu_handle_irq,
914123fa 877 .disable_all = amd_pmu_disable_all,
4979d272
RR
878 .enable_all = x86_pmu_enable_all,
879 .enable = x86_pmu_enable_event,
3966c3fe 880 .disable = amd_pmu_disable_event,
4979d272
RR
881 .hw_config = amd_pmu_hw_config,
882 .schedule_events = x86_schedule_events,
b1dc3c48
RR
883 .eventsel = MSR_K7_EVNTSEL0,
884 .perfctr = MSR_K7_PERFCTR0,
4c1fd17a 885 .addr_offset = amd_pmu_addr_offset,
4979d272
RR
886 .event_map = amd_pmu_event_map,
887 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
b1dc3c48 888 .num_counters = AMD64_NUM_COUNTERS,
4979d272
RR
889 .cntval_bits = 48,
890 .cntval_mask = (1ULL << 48) - 1,
891 .apic = 1,
892 /* use highest bit to detect overflow */
893 .max_period = (1ULL << 47) - 1,
b1dc3c48 894 .get_event_constraints = amd_get_event_constraints,
4979d272
RR
895 .put_event_constraints = amd_put_event_constraints,
896
b1dc3c48 897 .format_attrs = amd_format_attr,
0bf79d44 898 .events_sysfs_show = amd_event_sysfs_show,
b1dc3c48 899
4979d272 900 .cpu_prepare = amd_pmu_cpu_prepare,
1018faa6 901 .cpu_starting = amd_pmu_cpu_starting,
b1dc3c48 902 .cpu_dead = amd_pmu_cpu_dead,
32b62f44
PZ
903
904 .amd_nb_constraints = 1,
4979d272
RR
905};
906
1b45adcd 907static int __init amd_core_pmu_init(void)
b1dc3c48 908{
362f924b 909 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1b45adcd
PZ
910 return 0;
911
912 switch (boot_cpu_data.x86) {
913 case 0x15:
914 pr_cont("Fam15h ");
b1dc3c48 915 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1b45adcd 916 break;
e40ed154
JN
917 case 0x17:
918 pr_cont("Fam17h ");
919 /*
920 * In family 17h, there are no event constraints in the PMC hardware.
921 * We fallback to using default amd_get_event_constraints.
922 */
923 break;
6d0ef316
PW
924 case 0x18:
925 pr_cont("Fam18h ");
926 /* Using default amd_get_event_constraints. */
927 break;
1b45adcd
PZ
928 default:
929 pr_err("core perfctr but no constraints; unknown hardware!\n");
b1dc3c48
RR
930 return -ENODEV;
931 }
932
b1dc3c48
RR
933 /*
934 * If core performance counter extensions exists, we must use
935 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1b45adcd 936 * amd_pmu_addr_offset().
b1dc3c48
RR
937 */
938 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
939 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
940 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
32b62f44
PZ
941 /*
942 * AMD Core perfctr has separate MSRs for the NB events, see
943 * the amd/uncore.c driver.
944 */
945 x86_pmu.amd_nb_constraints = 0;
b1dc3c48 946
1b45adcd 947 pr_cont("core perfctr, ");
b1dc3c48
RR
948 return 0;
949}
950
de0428a7 951__init int amd_pmu_init(void)
f22f54f4 952{
1b45adcd
PZ
953 int ret;
954
f22f54f4
PZ
955 /* Performance-monitoring supported from K7 and later: */
956 if (boot_cpu_data.x86 < 6)
957 return -ENODEV;
958
b1dc3c48
RR
959 x86_pmu = amd_pmu;
960
1b45adcd
PZ
961 ret = amd_core_pmu_init();
962 if (ret)
963 return ret;
f22f54f4 964
32b62f44
PZ
965 if (num_possible_cpus() == 1) {
966 /*
967 * No point in allocating data structures to serialize
968 * against other CPUs, when there is only the one CPU.
969 */
970 x86_pmu.amd_nb_constraints = 0;
971 }
972
0e3b74e2
KP
973 if (boot_cpu_data.x86 >= 0x17)
974 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
975 else
976 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
f22f54f4 977
f22f54f4
PZ
978 return 0;
979}
1018faa6
JR
980
981void amd_pmu_enable_virt(void)
982{
89cbc767 983 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1018faa6
JR
984
985 cpuc->perf_ctr_virt_mask = 0;
986
987 /* Reload all events */
914123fa 988 amd_pmu_disable_all();
1018faa6
JR
989 x86_pmu_enable_all(0);
990}
991EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
992
993void amd_pmu_disable_virt(void)
994{
89cbc767 995 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1018faa6
JR
996
997 /*
998 * We only mask out the Host-only bit so that host-only counting works
999 * when SVM is disabled. If someone sets up a guest-only counter when
1000 * SVM is disabled the Guest-only bits still gets set and the counter
1001 * will not count anything.
1002 */
9f19010a 1003 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1018faa6
JR
1004
1005 /* Reload all events */
914123fa 1006 amd_pmu_disable_all();
1018faa6
JR
1007 x86_pmu_enable_all(0);
1008}
1009EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);