x86/entry/32: Relax a pvops stub clobber specification
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
ff3f7e24 39#include <asm/frame.h>
d7e7528b 40#include <linux/err.h>
1da177e4 41
4d732138
IM
42.code64
43.section .entry.text, "ax"
16444a8a 44
72fe4858 45#ifdef CONFIG_PARAVIRT
2be29982 46ENTRY(native_usergs_sysret64)
72fe4858
GOC
47 swapgs
48 sysretq
b3baaa13 49ENDPROC(native_usergs_sysret64)
72fe4858
GOC
50#endif /* CONFIG_PARAVIRT */
51
f2db9382 52.macro TRACE_IRQS_IRETQ
2601e64d 53#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
54 bt $9, EFLAGS(%rsp) /* interrupts off? */
55 jnc 1f
2601e64d
IM
56 TRACE_IRQS_ON
571:
58#endif
59.endm
60
5963e317
SR
61/*
62 * When dynamic function tracer is enabled it will add a breakpoint
63 * to all locations that it is about to modify, sync CPUs, update
64 * all the code, sync CPUs, then remove the breakpoints. In this time
65 * if lockdep is enabled, it might jump back into the debug handler
66 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
67 *
68 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
69 * make sure the stack pointer does not get reset back to the top
70 * of the debug stack, and instead just reuses the current stack.
71 */
72#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
73
74.macro TRACE_IRQS_OFF_DEBUG
4d732138 75 call debug_stack_set_zero
5963e317 76 TRACE_IRQS_OFF
4d732138 77 call debug_stack_reset
5963e317
SR
78.endm
79
80.macro TRACE_IRQS_ON_DEBUG
4d732138 81 call debug_stack_set_zero
5963e317 82 TRACE_IRQS_ON
4d732138 83 call debug_stack_reset
5963e317
SR
84.endm
85
f2db9382 86.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
87 bt $9, EFLAGS(%rsp) /* interrupts off? */
88 jnc 1f
5963e317
SR
89 TRACE_IRQS_ON_DEBUG
901:
91.endm
92
93#else
4d732138
IM
94# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
95# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
96# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
97#endif
98
1da177e4 99/*
4d732138 100 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 101 *
fda57b22
AL
102 * This is the only entry point used for 64-bit system calls. The
103 * hardware interface is reasonably well designed and the register to
104 * argument mapping Linux uses fits well with the registers that are
105 * available when SYSCALL is used.
106 *
107 * SYSCALL instructions can be found inlined in libc implementations as
108 * well as some other programs and libraries. There are also a handful
109 * of SYSCALL instructions in the vDSO used, for example, as a
110 * clock_gettimeofday fallback.
111 *
4d732138 112 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
113 * then loads new ss, cs, and rip from previously programmed MSRs.
114 * rflags gets masked by a value from another MSR (so CLD and CLAC
115 * are not needed). SYSCALL does not save anything on the stack
116 * and does not change rsp.
117 *
118 * Registers on entry:
1da177e4 119 * rax system call number
b87cf63e
DV
120 * rcx return address
121 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 122 * rdi arg0
1da177e4 123 * rsi arg1
0bd7b798 124 * rdx arg2
b87cf63e 125 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
126 * r8 arg4
127 * r9 arg5
4d732138 128 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 129 *
1da177e4
LT
130 * Only called from user space.
131 *
7fcb3bc3 132 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
133 * it deals with uncanonical addresses better. SYSRET has trouble
134 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 135 */
1da177e4 136
b2502b41 137ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
138 /*
139 * Interrupts are off on entry.
140 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
141 * it is too small to ever cause noticeable irq latency.
142 */
72fe4858
GOC
143 SWAPGS_UNSAFE_STACK
144 /*
145 * A hypervisor implementation might want to use a label
146 * after the swapgs, so that it can do the swapgs
147 * for the guest and jump here on syscall.
148 */
b2502b41 149GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 150
4d732138
IM
151 movq %rsp, PER_CPU_VAR(rsp_scratch)
152 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 153
1e423bff
AL
154 TRACE_IRQS_OFF
155
9ed8e7d8 156 /* Construct struct pt_regs on stack */
4d732138
IM
157 pushq $__USER_DS /* pt_regs->ss */
158 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173
1e423bff
AL
174 /*
175 * If we need to do entry work or if we guess we'll need to do
176 * exit work, go straight to the slow path.
177 */
15f4eae7
AL
178 movq PER_CPU_VAR(current_task), %r11
179 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
180 jnz entry_SYSCALL64_slow_path
181
b2502b41 182entry_SYSCALL_64_fastpath:
1e423bff
AL
183 /*
184 * Easy case: enable interrupts and issue the syscall. If the syscall
185 * needs pt_regs, we'll call a stub that disables interrupts again
186 * and jumps to the slow path.
187 */
188 TRACE_IRQS_ON
189 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 190#if __SYSCALL_MASK == ~0
4d732138 191 cmpq $__NR_syscall_max, %rax
fca460f9 192#else
4d732138
IM
193 andl $__SYSCALL_MASK, %eax
194 cmpl $__NR_syscall_max, %eax
fca460f9 195#endif
4d732138
IM
196 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
197 movq %r10, %rcx
302f5b26
AL
198
199 /*
200 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
201 * It might end up jumping to the slow path. If it jumps, RAX
202 * and all argument registers are clobbered.
302f5b26 203 */
4d732138 204 call *sys_call_table(, %rax, 8)
302f5b26
AL
205.Lentry_SYSCALL_64_after_fastpath_call:
206
4d732138 207 movq %rax, RAX(%rsp)
146b2b09 2081:
b3494a4a
AL
209
210 /*
1e423bff
AL
211 * If we get here, then we know that pt_regs is clean for SYSRET64.
212 * If we see that no exit work is required (which we are required
213 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 214 */
1e423bff
AL
215 DISABLE_INTERRUPTS(CLBR_NONE)
216 TRACE_IRQS_OFF
15f4eae7
AL
217 movq PER_CPU_VAR(current_task), %r11
218 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 219 jnz 1f
b3494a4a 220
1e423bff
AL
221 LOCKDEP_SYS_EXIT
222 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
223 movq RIP(%rsp), %rcx
224 movq EFLAGS(%rsp), %r11
225 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 226 movq RSP(%rsp), %rsp
2be29982 227 USERGS_SYSRET64
1da177e4 228
1e423bff
AL
2291:
230 /*
231 * The fast path looked good when we started, but something changed
232 * along the way and we need to switch to the slow path. Calling
233 * raise(3) will trigger this, for example. IRQs are off.
234 */
29ea1b25
AL
235 TRACE_IRQS_ON
236 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 237 SAVE_EXTRA_REGS
4d732138 238 movq %rsp, %rdi
1e423bff
AL
239 call syscall_return_slowpath /* returns with IRQs disabled */
240 jmp return_from_SYSCALL_64
0bd7b798 241
1e423bff
AL
242entry_SYSCALL64_slow_path:
243 /* IRQs are off. */
76f5df43 244 SAVE_EXTRA_REGS
29ea1b25 245 movq %rsp, %rdi
1e423bff
AL
246 call do_syscall_64 /* returns with IRQs disabled */
247
248return_from_SYSCALL_64:
76f5df43 249 RESTORE_EXTRA_REGS
29ea1b25 250 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
251
252 /*
253 * Try to use SYSRET instead of IRET if we're returning to
254 * a completely clean 64-bit userspace context.
255 */
4d732138
IM
256 movq RCX(%rsp), %rcx
257 movq RIP(%rsp), %r11
258 cmpq %rcx, %r11 /* RCX == RIP */
259 jne opportunistic_sysret_failed
fffbb5dc
DV
260
261 /*
262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263 * in kernel space. This essentially lets the user take over
17be0aec 264 * the kernel, since userspace controls RSP.
fffbb5dc 265 *
17be0aec 266 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
267 * to be updated to remain correct on both old and new CPUs.
268 */
269 .ifne __VIRTUAL_MASK_SHIFT - 47
270 .error "virtual address width changed -- SYSRET checks need update"
271 .endif
4d732138 272
17be0aec
DV
273 /* Change top 16 bits to be the sign-extension of 47th bit */
274 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
275 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 276
17be0aec
DV
277 /* If this changed %rcx, it was not canonical */
278 cmpq %rcx, %r11
279 jne opportunistic_sysret_failed
fffbb5dc 280
4d732138
IM
281 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
282 jne opportunistic_sysret_failed
fffbb5dc 283
4d732138
IM
284 movq R11(%rsp), %r11
285 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
286 jne opportunistic_sysret_failed
fffbb5dc
DV
287
288 /*
3e035305
BP
289 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
290 * restore RF properly. If the slowpath sets it for whatever reason, we
291 * need to restore it correctly.
292 *
293 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
294 * trap from userspace immediately after SYSRET. This would cause an
295 * infinite loop whenever #DB happens with register state that satisfies
296 * the opportunistic SYSRET conditions. For example, single-stepping
297 * this user code:
fffbb5dc 298 *
4d732138 299 * movq $stuck_here, %rcx
fffbb5dc
DV
300 * pushfq
301 * popq %r11
302 * stuck_here:
303 *
304 * would never get past 'stuck_here'.
305 */
4d732138
IM
306 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
307 jnz opportunistic_sysret_failed
fffbb5dc
DV
308
309 /* nothing to check for RSP */
310
4d732138
IM
311 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
312 jne opportunistic_sysret_failed
fffbb5dc
DV
313
314 /*
4d732138
IM
315 * We win! This label is here just for ease of understanding
316 * perf profiles. Nothing jumps here.
fffbb5dc
DV
317 */
318syscall_return_via_sysret:
17be0aec
DV
319 /* rcx and r11 are already restored (see code above) */
320 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 321 movq RSP(%rsp), %rsp
fffbb5dc 322 USERGS_SYSRET64
fffbb5dc
DV
323
324opportunistic_sysret_failed:
325 SWAPGS
326 jmp restore_c_regs_and_iret
b2502b41 327END(entry_SYSCALL_64)
0bd7b798 328
302f5b26
AL
329ENTRY(stub_ptregs_64)
330 /*
331 * Syscalls marked as needing ptregs land here.
b7765086
AL
332 * If we are on the fast path, we need to save the extra regs,
333 * which we achieve by trying again on the slow path. If we are on
334 * the slow path, the extra regs are already saved.
302f5b26
AL
335 *
336 * RAX stores a pointer to the C function implementing the syscall.
b7765086 337 * IRQs are on.
302f5b26
AL
338 */
339 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
340 jne 1f
341
b7765086
AL
342 /*
343 * Called from fast path -- disable IRQs again, pop return address
344 * and jump to slow path
345 */
346 DISABLE_INTERRUPTS(CLBR_NONE)
347 TRACE_IRQS_OFF
302f5b26 348 popq %rax
b7765086 349 jmp entry_SYSCALL64_slow_path
302f5b26
AL
350
3511:
b3830e8d 352 jmp *%rax /* Called from C */
302f5b26
AL
353END(stub_ptregs_64)
354
355.macro ptregs_stub func
356ENTRY(ptregs_\func)
357 leaq \func(%rip), %rax
358 jmp stub_ptregs_64
359END(ptregs_\func)
360.endm
361
362/* Instantiate ptregs_stub for each ptregs-using syscall */
363#define __SYSCALL_64_QUAL_(sym)
364#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
365#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
366#include <asm/syscalls_64.h>
fffbb5dc 367
0100301b
BG
368/*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372ENTRY(__switch_to_asm)
373 /*
374 * Save callee-saved registers
375 * This must match the order in inactive_task_frame
376 */
377 pushq %rbp
378 pushq %rbx
379 pushq %r12
380 pushq %r13
381 pushq %r14
382 pushq %r15
383
384 /* switch stack */
385 movq %rsp, TASK_threadsp(%rdi)
386 movq TASK_threadsp(%rsi), %rsp
387
388#ifdef CONFIG_CC_STACKPROTECTOR
389 movq TASK_stack_canary(%rsi), %rbx
390 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
391#endif
392
393 /* restore callee-saved registers */
394 popq %r15
395 popq %r14
396 popq %r13
397 popq %r12
398 popq %rbx
399 popq %rbp
400
401 jmp __switch_to
402END(__switch_to_asm)
403
1eeb207f
DV
404/*
405 * A newly forked process directly context switches into this address.
406 *
0100301b 407 * rax: prev task we switched from
616d2483
BG
408 * rbx: kernel thread func (NULL for user thread)
409 * r12: kernel thread arg
1eeb207f
DV
410 */
411ENTRY(ret_from_fork)
ff3f7e24 412 FRAME_BEGIN /* help unwinder find end of stack */
0100301b 413 movq %rax, %rdi
ff3f7e24 414 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 415
ff3f7e24
JP
416 testq %rbx, %rbx /* from kernel_thread? */
417 jnz 1f /* kernel threads are uncommon */
24d978b7 418
616d2483 4192:
ff3f7e24 420 leaq FRAME_OFFSET(%rsp),%rdi /* pt_regs pointer */
24d978b7
AL
421 call syscall_return_slowpath /* returns with IRQs disabled */
422 TRACE_IRQS_ON /* user mode is traced as IRQS on */
423 SWAPGS
ff3f7e24 424 FRAME_END
24d978b7 425 jmp restore_regs_and_iret
616d2483
BG
426
4271:
428 /* kernel thread */
429 movq %r12, %rdi
430 call *%rbx
431 /*
432 * A kernel thread is allowed to return here after successfully
433 * calling do_execve(). Exit to userspace to complete the execve()
434 * syscall.
435 */
436 movq $0, RAX(%rsp)
437 jmp 2b
1eeb207f
DV
438END(ret_from_fork)
439
939b7871 440/*
3304c9c3
DV
441 * Build the entry stubs with some assembler magic.
442 * We pack 1 stub into every 8-byte block.
939b7871 443 */
3304c9c3 444 .align 8
939b7871 445ENTRY(irq_entries_start)
3304c9c3
DV
446 vector=FIRST_EXTERNAL_VECTOR
447 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 448 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
449 vector=vector+1
450 jmp common_interrupt
3304c9c3
DV
451 .align 8
452 .endr
939b7871
PA
453END(irq_entries_start)
454
d99015b1 455/*
1da177e4
LT
456 * Interrupt entry/exit.
457 *
458 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
459 *
460 * Entry runs with interrupts off.
461 */
1da177e4 462
722024db 463/* 0(%rsp): ~(interrupt number) */
1da177e4 464 .macro interrupt func
f6f64681 465 cld
ff467594
AL
466 ALLOC_PT_GPREGS_ON_STACK
467 SAVE_C_REGS
468 SAVE_EXTRA_REGS
946c1911 469 ENCODE_FRAME_POINTER
76f5df43 470
ff467594 471 testb $3, CS(%rsp)
dde74f2e 472 jz 1f
02bc7768
AL
473
474 /*
475 * IRQ from user mode. Switch to kernel gsbase and inform context
476 * tracking that we're in kernel mode.
477 */
f6f64681 478 SWAPGS
f1075053
AL
479
480 /*
481 * We need to tell lockdep that IRQs are off. We can't do this until
482 * we fix gsbase, and we should do it before enter_from_user_mode
483 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
484 * the simplest way to handle it is to just call it twice if
485 * we enter from user mode. There's no reason to optimize this since
486 * TRACE_IRQS_OFF is a no-op if lockdep is off.
487 */
488 TRACE_IRQS_OFF
489
478dc89c 490 CALL_enter_from_user_mode
02bc7768 491
76f5df43 4921:
f6f64681 493 /*
e90e147c 494 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
495 * irq_count is used to check if a CPU is already on an interrupt stack
496 * or not. While this is essentially redundant with preempt_count it is
497 * a little cheaper to use a separate counter in the PDA (short of
498 * moving irq_enter into assembly, which would be too much work)
499 */
a586f98e 500 movq %rsp, %rdi
4d732138
IM
501 incl PER_CPU_VAR(irq_count)
502 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 503 pushq %rdi
f6f64681
DV
504 /* We entered an interrupt context - irqs are off: */
505 TRACE_IRQS_OFF
506
a586f98e 507 call \func /* rdi points to pt_regs */
1da177e4
LT
508 .endm
509
722024db
AH
510 /*
511 * The interrupt stubs push (~vector+0x80) onto the stack and
512 * then jump to common_interrupt.
513 */
939b7871
PA
514 .p2align CONFIG_X86_L1_CACHE_SHIFT
515common_interrupt:
ee4eb87b 516 ASM_CLAC
4d732138 517 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 518 interrupt do_IRQ
34061f13 519 /* 0(%rsp): old RSP */
7effaa88 520ret_from_intr:
72fe4858 521 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 522 TRACE_IRQS_OFF
4d732138 523 decl PER_CPU_VAR(irq_count)
625dbc3b 524
a2bbe750 525 /* Restore saved previous stack */
ff467594 526 popq %rsp
625dbc3b 527
03335e95 528 testb $3, CS(%rsp)
dde74f2e 529 jz retint_kernel
4d732138 530
02bc7768 531 /* Interrupt came from user space */
02bc7768
AL
532GLOBAL(retint_user)
533 mov %rsp,%rdi
534 call prepare_exit_to_usermode
2601e64d 535 TRACE_IRQS_IRETQ
72fe4858 536 SWAPGS
ff467594 537 jmp restore_regs_and_iret
2601e64d 538
627276cb 539/* Returning to kernel space */
6ba71b76 540retint_kernel:
627276cb
DV
541#ifdef CONFIG_PREEMPT
542 /* Interrupts are off */
543 /* Check if we need preemption */
4d732138 544 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 545 jnc 1f
4d732138 5460: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 547 jnz 1f
627276cb 548 call preempt_schedule_irq
36acef25 549 jmp 0b
6ba71b76 5501:
627276cb 551#endif
2601e64d
IM
552 /*
553 * The iretq could re-enable interrupts:
554 */
555 TRACE_IRQS_IRETQ
fffbb5dc
DV
556
557/*
558 * At this label, code paths which return to kernel and to user,
559 * which come from interrupts/exception and from syscalls, merge.
560 */
ee08c6bd 561GLOBAL(restore_regs_and_iret)
ff467594 562 RESTORE_EXTRA_REGS
fffbb5dc 563restore_c_regs_and_iret:
76f5df43
DV
564 RESTORE_C_REGS
565 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
566 INTERRUPT_RETURN
567
568ENTRY(native_iret)
3891a04a
PA
569 /*
570 * Are we returning to a stack segment from the LDT? Note: in
571 * 64-bit mode SS:RSP on the exception stack is always valid.
572 */
34273f41 573#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
574 testb $4, (SS-RIP)(%rsp)
575 jnz native_irq_return_ldt
34273f41 576#endif
3891a04a 577
af726f21 578.global native_irq_return_iret
7209a75d 579native_irq_return_iret:
b645af2d
AL
580 /*
581 * This may fault. Non-paranoid faults on return to userspace are
582 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
583 * Double-faults due to espfix64 are handled in do_double_fault.
584 * Other faults here are fatal.
585 */
1da177e4 586 iretq
3701d863 587
34273f41 588#ifdef CONFIG_X86_ESPFIX64
7209a75d 589native_irq_return_ldt:
85063fac
AL
590 /*
591 * We are running with user GSBASE. All GPRs contain their user
592 * values. We have a percpu ESPFIX stack that is eight slots
593 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
594 * of the ESPFIX stack.
595 *
596 * We clobber RAX and RDI in this code. We stash RDI on the
597 * normal stack and RAX on the ESPFIX stack.
598 *
599 * The ESPFIX stack layout we set up looks like this:
600 *
601 * --- top of ESPFIX stack ---
602 * SS
603 * RSP
604 * RFLAGS
605 * CS
606 * RIP <-- RSP points here when we're done
607 * RAX <-- espfix_waddr points here
608 * --- bottom of ESPFIX stack ---
609 */
610
611 pushq %rdi /* Stash user RDI */
3891a04a 612 SWAPGS
4d732138 613 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
614 movq %rax, (0*8)(%rdi) /* user RAX */
615 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 616 movq %rax, (1*8)(%rdi)
85063fac 617 movq (2*8)(%rsp), %rax /* user CS */
4d732138 618 movq %rax, (2*8)(%rdi)
85063fac 619 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 620 movq %rax, (3*8)(%rdi)
85063fac 621 movq (5*8)(%rsp), %rax /* user SS */
4d732138 622 movq %rax, (5*8)(%rdi)
85063fac 623 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 624 movq %rax, (4*8)(%rdi)
85063fac
AL
625 /* Now RAX == RSP. */
626
627 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
628 popq %rdi /* Restore user RDI */
629
630 /*
631 * espfix_stack[31:16] == 0. The page tables are set up such that
632 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
633 * espfix_waddr for any X. That is, there are 65536 RO aliases of
634 * the same page. Set up RSP so that RSP[31:16] contains the
635 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
636 * still points to an RO alias of the ESPFIX stack.
637 */
4d732138 638 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 639 SWAPGS
4d732138 640 movq %rax, %rsp
85063fac
AL
641
642 /*
643 * At this point, we cannot write to the stack any more, but we can
644 * still read.
645 */
646 popq %rax /* Restore user RAX */
647
648 /*
649 * RSP now points to an ordinary IRET frame, except that the page
650 * is read-only and RSP[31:16] are preloaded with the userspace
651 * values. We can now IRET back to userspace.
652 */
4d732138 653 jmp native_irq_return_iret
34273f41 654#endif
4b787e0b 655END(common_interrupt)
3891a04a 656
1da177e4
LT
657/*
658 * APIC interrupts.
0bd7b798 659 */
cf910e83 660.macro apicinterrupt3 num sym do_sym
322648d1 661ENTRY(\sym)
ee4eb87b 662 ASM_CLAC
4d732138 663 pushq $~(\num)
39e95433 664.Lcommon_\sym:
322648d1 665 interrupt \do_sym
4d732138 666 jmp ret_from_intr
322648d1
AH
667END(\sym)
668.endm
1da177e4 669
cf910e83
SA
670#ifdef CONFIG_TRACING
671#define trace(sym) trace_##sym
672#define smp_trace(sym) smp_trace_##sym
673
674.macro trace_apicinterrupt num sym
675apicinterrupt3 \num trace(\sym) smp_trace(\sym)
676.endm
677#else
678.macro trace_apicinterrupt num sym do_sym
679.endm
680#endif
681
469f0023
AP
682/* Make sure APIC interrupt handlers end up in the irqentry section: */
683#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
684# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
685# define POP_SECTION_IRQENTRY .popsection
686#else
687# define PUSH_SECTION_IRQENTRY
688# define POP_SECTION_IRQENTRY
689#endif
690
cf910e83 691.macro apicinterrupt num sym do_sym
469f0023 692PUSH_SECTION_IRQENTRY
cf910e83
SA
693apicinterrupt3 \num \sym \do_sym
694trace_apicinterrupt \num \sym
469f0023 695POP_SECTION_IRQENTRY
cf910e83
SA
696.endm
697
322648d1 698#ifdef CONFIG_SMP
4d732138
IM
699apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
700apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 701#endif
1da177e4 702
03b48632 703#ifdef CONFIG_X86_UV
4d732138 704apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 705#endif
4d732138
IM
706
707apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
708apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 709
d78f2664 710#ifdef CONFIG_HAVE_KVM
4d732138
IM
711apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
712apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
713#endif
714
33e5ff63 715#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 716apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
717#endif
718
24fd78a8 719#ifdef CONFIG_X86_MCE_AMD
4d732138 720apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
721#endif
722
33e5ff63 723#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 724apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 725#endif
1812924b 726
322648d1 727#ifdef CONFIG_SMP
4d732138
IM
728apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
729apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
730apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 731#endif
1da177e4 732
4d732138
IM
733apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
734apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 735
e360adbe 736#ifdef CONFIG_IRQ_WORK
4d732138 737apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
738#endif
739
1da177e4
LT
740/*
741 * Exception entry points.
0bd7b798 742 */
9b476688 743#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
744
745.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 746ENTRY(\sym)
577ed45e
AL
747 /* Sanity check */
748 .if \shift_ist != -1 && \paranoid == 0
749 .error "using shift_ist requires paranoid=1"
750 .endif
751
ee4eb87b 752 ASM_CLAC
b8b1d08b 753 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
754
755 .ifeq \has_error_code
4d732138 756 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
757 .endif
758
76f5df43 759 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
760
761 .if \paranoid
48e08d0f 762 .if \paranoid == 1
4d732138
IM
763 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
764 jnz 1f
48e08d0f 765 .endif
4d732138 766 call paranoid_entry
cb5dd2c5 767 .else
4d732138 768 call error_entry
cb5dd2c5 769 .endif
ebfc453e 770 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 771
cb5dd2c5 772 .if \paranoid
577ed45e 773 .if \shift_ist != -1
4d732138 774 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 775 .else
b8b1d08b 776 TRACE_IRQS_OFF
cb5dd2c5 777 .endif
577ed45e 778 .endif
cb5dd2c5 779
4d732138 780 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
781
782 .if \has_error_code
4d732138
IM
783 movq ORIG_RAX(%rsp), %rsi /* get error code */
784 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 785 .else
4d732138 786 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
787 .endif
788
577ed45e 789 .if \shift_ist != -1
4d732138 790 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
791 .endif
792
4d732138 793 call \do_sym
cb5dd2c5 794
577ed45e 795 .if \shift_ist != -1
4d732138 796 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
797 .endif
798
ebfc453e 799 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 800 .if \paranoid
4d732138 801 jmp paranoid_exit
cb5dd2c5 802 .else
4d732138 803 jmp error_exit
cb5dd2c5
AL
804 .endif
805
48e08d0f 806 .if \paranoid == 1
48e08d0f
AL
807 /*
808 * Paranoid entry from userspace. Switch stacks and treat it
809 * as a normal entry. This means that paranoid handlers
810 * run in real process context if user_mode(regs).
811 */
8121:
4d732138 813 call error_entry
48e08d0f 814
48e08d0f 815
4d732138
IM
816 movq %rsp, %rdi /* pt_regs pointer */
817 call sync_regs
818 movq %rax, %rsp /* switch stack */
48e08d0f 819
4d732138 820 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
821
822 .if \has_error_code
4d732138
IM
823 movq ORIG_RAX(%rsp), %rsi /* get error code */
824 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 825 .else
4d732138 826 xorl %esi, %esi /* no error code */
48e08d0f
AL
827 .endif
828
4d732138 829 call \do_sym
48e08d0f 830
4d732138 831 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 832 .endif
ddeb8f21 833END(\sym)
322648d1 834.endm
b8b1d08b 835
25c74b10 836#ifdef CONFIG_TRACING
cb5dd2c5
AL
837.macro trace_idtentry sym do_sym has_error_code:req
838idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
839idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
840.endm
841#else
cb5dd2c5
AL
842.macro trace_idtentry sym do_sym has_error_code:req
843idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
844.endm
845#endif
846
4d732138
IM
847idtentry divide_error do_divide_error has_error_code=0
848idtentry overflow do_overflow has_error_code=0
849idtentry bounds do_bounds has_error_code=0
850idtentry invalid_op do_invalid_op has_error_code=0
851idtentry device_not_available do_device_not_available has_error_code=0
852idtentry double_fault do_double_fault has_error_code=1 paranoid=2
853idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
854idtentry invalid_TSS do_invalid_TSS has_error_code=1
855idtentry segment_not_present do_segment_not_present has_error_code=1
856idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
857idtentry coprocessor_error do_coprocessor_error has_error_code=0
858idtentry alignment_check do_alignment_check has_error_code=1
859idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
860
861
862 /*
863 * Reload gs selector with exception handling
864 * edi: new selector
865 */
9f9d489a 866ENTRY(native_load_gs_index)
131484c8 867 pushfq
b8aa287f 868 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 869 SWAPGS
42c748bb 870.Lgs_change:
4d732138 871 movl %edi, %gs
96e5d28a 8722: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 873 SWAPGS
131484c8 874 popfq
9f1e87ea 875 ret
6efdcfaf 876END(native_load_gs_index)
784d5699 877EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 878
42c748bb 879 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 880 .section .fixup, "ax"
1da177e4 881 /* running with kernelgs */
0bd7b798 882bad_gs:
4d732138 883 SWAPGS /* switch back to user gs */
b038c842
AL
884.macro ZAP_GS
885 /* This can't be a string because the preprocessor needs to see it. */
886 movl $__USER_DS, %eax
887 movl %eax, %gs
888.endm
889 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
890 xorl %eax, %eax
891 movl %eax, %gs
892 jmp 2b
9f1e87ea 893 .previous
0bd7b798 894
2699500b 895/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 896ENTRY(do_softirq_own_stack)
4d732138
IM
897 pushq %rbp
898 mov %rsp, %rbp
899 incl PER_CPU_VAR(irq_count)
900 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
901 push %rbp /* frame pointer backlink */
902 call __do_softirq
2699500b 903 leaveq
4d732138 904 decl PER_CPU_VAR(irq_count)
ed6b676c 905 ret
7d65f4a6 906END(do_softirq_own_stack)
75154f40 907
3d75e1b8 908#ifdef CONFIG_XEN
cb5dd2c5 909idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
910
911/*
9f1e87ea
CG
912 * A note on the "critical region" in our callback handler.
913 * We want to avoid stacking callback handlers due to events occurring
914 * during handling of the last event. To do this, we keep events disabled
915 * until we've done all processing. HOWEVER, we must enable events before
916 * popping the stack frame (can't be done atomically) and so it would still
917 * be possible to get enough handler activations to overflow the stack.
918 * Although unlikely, bugs of that kind are hard to track down, so we'd
919 * like to avoid the possibility.
920 * So, on entry to the handler we detect whether we interrupted an
921 * existing activation in its critical region -- if so, we pop the current
922 * activation and restart the handler using the previous one.
923 */
4d732138
IM
924ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
925
9f1e87ea
CG
926/*
927 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
928 * see the correct pointer to the pt_regs
929 */
4d732138
IM
930 movq %rdi, %rsp /* we don't return, adjust the stack frame */
93111: incl PER_CPU_VAR(irq_count)
932 movq %rsp, %rbp
933 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
934 pushq %rbp /* frame pointer backlink */
935 call xen_evtchn_do_upcall
936 popq %rsp
937 decl PER_CPU_VAR(irq_count)
fdfd811d 938#ifndef CONFIG_PREEMPT
4d732138 939 call xen_maybe_preempt_hcall
fdfd811d 940#endif
4d732138 941 jmp error_exit
371c394a 942END(xen_do_hypervisor_callback)
3d75e1b8
JF
943
944/*
9f1e87ea
CG
945 * Hypervisor uses this for application faults while it executes.
946 * We get here for two reasons:
947 * 1. Fault while reloading DS, ES, FS or GS
948 * 2. Fault while executing IRET
949 * Category 1 we do not need to fix up as Xen has already reloaded all segment
950 * registers that could be reloaded and zeroed the others.
951 * Category 2 we fix up by killing the current process. We cannot use the
952 * normal Linux return path in this case because if we use the IRET hypercall
953 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
954 * We distinguish between categories by comparing each saved segment register
955 * with its current contents: any discrepancy means we in category 1.
956 */
3d75e1b8 957ENTRY(xen_failsafe_callback)
4d732138
IM
958 movl %ds, %ecx
959 cmpw %cx, 0x10(%rsp)
960 jne 1f
961 movl %es, %ecx
962 cmpw %cx, 0x18(%rsp)
963 jne 1f
964 movl %fs, %ecx
965 cmpw %cx, 0x20(%rsp)
966 jne 1f
967 movl %gs, %ecx
968 cmpw %cx, 0x28(%rsp)
969 jne 1f
3d75e1b8 970 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
971 movq (%rsp), %rcx
972 movq 8(%rsp), %r11
973 addq $0x30, %rsp
974 pushq $0 /* RIP */
975 pushq %r11
976 pushq %rcx
977 jmp general_protection
3d75e1b8 9781: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
979 movq (%rsp), %rcx
980 movq 8(%rsp), %r11
981 addq $0x30, %rsp
982 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
983 ALLOC_PT_GPREGS_ON_STACK
984 SAVE_C_REGS
985 SAVE_EXTRA_REGS
946c1911 986 ENCODE_FRAME_POINTER
4d732138 987 jmp error_exit
3d75e1b8
JF
988END(xen_failsafe_callback)
989
cf910e83 990apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
991 xen_hvm_callback_vector xen_evtchn_do_upcall
992
3d75e1b8 993#endif /* CONFIG_XEN */
ddeb8f21 994
bc2b0331 995#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 996apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
997 hyperv_callback_vector hyperv_vector_handler
998#endif /* CONFIG_HYPERV */
999
4d732138
IM
1000idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1001idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1002idtentry stack_segment do_stack_segment has_error_code=1
1003
6cac5a92 1004#ifdef CONFIG_XEN
4d732138
IM
1005idtentry xen_debug do_debug has_error_code=0
1006idtentry xen_int3 do_int3 has_error_code=0
1007idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 1008#endif
4d732138
IM
1009
1010idtentry general_protection do_general_protection has_error_code=1
1011trace_idtentry page_fault do_page_fault has_error_code=1
1012
631bc487 1013#ifdef CONFIG_KVM_GUEST
4d732138 1014idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1015#endif
4d732138 1016
ddeb8f21 1017#ifdef CONFIG_X86_MCE
4d732138 1018idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1019#endif
1020
ebfc453e
DV
1021/*
1022 * Save all registers in pt_regs, and switch gs if needed.
1023 * Use slow, but surefire "are we in kernel?" check.
1024 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1025 */
1026ENTRY(paranoid_entry)
1eeb207f
DV
1027 cld
1028 SAVE_C_REGS 8
1029 SAVE_EXTRA_REGS 8
946c1911 1030 ENCODE_FRAME_POINTER 8
4d732138
IM
1031 movl $1, %ebx
1032 movl $MSR_GS_BASE, %ecx
1eeb207f 1033 rdmsr
4d732138
IM
1034 testl %edx, %edx
1035 js 1f /* negative -> in kernel */
1eeb207f 1036 SWAPGS
4d732138 1037 xorl %ebx, %ebx
1eeb207f 10381: ret
ebfc453e 1039END(paranoid_entry)
ddeb8f21 1040
ebfc453e
DV
1041/*
1042 * "Paranoid" exit path from exception stack. This is invoked
1043 * only on return from non-NMI IST interrupts that came
1044 * from kernel space.
1045 *
1046 * We may be returning to very strange contexts (e.g. very early
1047 * in syscall entry), so checking for preemption here would
1048 * be complicated. Fortunately, we there's no good reason
1049 * to try to handle preemption here.
4d732138
IM
1050 *
1051 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1052 */
ddeb8f21 1053ENTRY(paranoid_exit)
ddeb8f21 1054 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 1055 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1056 testl %ebx, %ebx /* swapgs needed? */
1057 jnz paranoid_exit_no_swapgs
f2db9382 1058 TRACE_IRQS_IRETQ
ddeb8f21 1059 SWAPGS_UNSAFE_STACK
4d732138 1060 jmp paranoid_exit_restore
0d550836 1061paranoid_exit_no_swapgs:
f2db9382 1062 TRACE_IRQS_IRETQ_DEBUG
0d550836 1063paranoid_exit_restore:
76f5df43
DV
1064 RESTORE_EXTRA_REGS
1065 RESTORE_C_REGS
1066 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1067 INTERRUPT_RETURN
ddeb8f21
AH
1068END(paranoid_exit)
1069
1070/*
ebfc453e 1071 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1072 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1073 */
1074ENTRY(error_entry)
ddeb8f21 1075 cld
76f5df43
DV
1076 SAVE_C_REGS 8
1077 SAVE_EXTRA_REGS 8
946c1911 1078 ENCODE_FRAME_POINTER 8
4d732138 1079 xorl %ebx, %ebx
03335e95 1080 testb $3, CS+8(%rsp)
cb6f64ed 1081 jz .Lerror_kernelspace
539f5113 1082
cb6f64ed
AL
1083 /*
1084 * We entered from user mode or we're pretending to have entered
1085 * from user mode due to an IRET fault.
1086 */
ddeb8f21 1087 SWAPGS
539f5113 1088
cb6f64ed 1089.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1090 /*
1091 * We need to tell lockdep that IRQs are off. We can't do this until
1092 * we fix gsbase, and we should do it before enter_from_user_mode
1093 * (which can take locks).
1094 */
1095 TRACE_IRQS_OFF
478dc89c 1096 CALL_enter_from_user_mode
f1075053 1097 ret
02bc7768 1098
cb6f64ed 1099.Lerror_entry_done:
ddeb8f21
AH
1100 TRACE_IRQS_OFF
1101 ret
ddeb8f21 1102
ebfc453e
DV
1103 /*
1104 * There are two places in the kernel that can potentially fault with
1105 * usergs. Handle them here. B stepping K8s sometimes report a
1106 * truncated RIP for IRET exceptions returning to compat mode. Check
1107 * for these here too.
1108 */
cb6f64ed 1109.Lerror_kernelspace:
4d732138
IM
1110 incl %ebx
1111 leaq native_irq_return_iret(%rip), %rcx
1112 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1113 je .Lerror_bad_iret
4d732138
IM
1114 movl %ecx, %eax /* zero extend */
1115 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1116 je .Lbstep_iret
42c748bb 1117 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1118 jne .Lerror_entry_done
539f5113
AL
1119
1120 /*
42c748bb 1121 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1122 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1123 * .Lgs_change's error handler with kernel gsbase.
539f5113 1124 */
2fa5f04f
WL
1125 SWAPGS
1126 jmp .Lerror_entry_done
ae24ffe5 1127
cb6f64ed 1128.Lbstep_iret:
ae24ffe5 1129 /* Fix truncated RIP */
4d732138 1130 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1131 /* fall through */
1132
cb6f64ed 1133.Lerror_bad_iret:
539f5113
AL
1134 /*
1135 * We came from an IRET to user mode, so we have user gsbase.
1136 * Switch to kernel gsbase:
1137 */
b645af2d 1138 SWAPGS
539f5113
AL
1139
1140 /*
1141 * Pretend that the exception came from user mode: set up pt_regs
1142 * as if we faulted immediately after IRET and clear EBX so that
1143 * error_exit knows that we will be returning to user mode.
1144 */
4d732138
IM
1145 mov %rsp, %rdi
1146 call fixup_bad_iret
1147 mov %rax, %rsp
539f5113 1148 decl %ebx
cb6f64ed 1149 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1150END(error_entry)
1151
1152
539f5113 1153/*
75ca5b22 1154 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1155 * 1: already in kernel mode, don't need SWAPGS
1156 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1157 */
ddeb8f21 1158ENTRY(error_exit)
4d732138 1159 movl %ebx, %eax
ddeb8f21
AH
1160 DISABLE_INTERRUPTS(CLBR_NONE)
1161 TRACE_IRQS_OFF
4d732138
IM
1162 testl %eax, %eax
1163 jnz retint_kernel
1164 jmp retint_user
ddeb8f21
AH
1165END(error_exit)
1166
0784b364 1167/* Runs on exception stack */
ddeb8f21 1168ENTRY(nmi)
fc57a7c6
AL
1169 /*
1170 * Fix up the exception frame if we're on Xen.
1171 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1172 * one value to the stack on native, so it may clobber the rdx
1173 * scratch slot, but it won't clobber any of the important
1174 * slots past it.
1175 *
1176 * Xen is a different story, because the Xen frame itself overlaps
1177 * the "NMI executing" variable.
1178 */
ddeb8f21 1179 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1180
3f3c8b8c
SR
1181 /*
1182 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1183 * the iretq it performs will take us out of NMI context.
1184 * This means that we can have nested NMIs where the next
1185 * NMI is using the top of the stack of the previous NMI. We
1186 * can't let it execute because the nested NMI will corrupt the
1187 * stack of the previous NMI. NMI handlers are not re-entrant
1188 * anyway.
1189 *
1190 * To handle this case we do the following:
1191 * Check the a special location on the stack that contains
1192 * a variable that is set when NMIs are executing.
1193 * The interrupted task's stack is also checked to see if it
1194 * is an NMI stack.
1195 * If the variable is not set and the stack is not the NMI
1196 * stack then:
1197 * o Set the special variable on the stack
0b22930e
AL
1198 * o Copy the interrupt frame into an "outermost" location on the
1199 * stack
1200 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1201 * o Continue processing the NMI
1202 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1203 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1204 * o return back to the first NMI
1205 *
1206 * Now on exit of the first NMI, we first clear the stack variable
1207 * The NMI stack will tell any nested NMIs at that point that it is
1208 * nested. Then we pop the stack normally with iret, and if there was
1209 * a nested NMI that updated the copy interrupt stack frame, a
1210 * jump will be made to the repeat_nmi code that will handle the second
1211 * NMI.
9b6e6a83
AL
1212 *
1213 * However, espfix prevents us from directly returning to userspace
1214 * with a single IRET instruction. Similarly, IRET to user mode
1215 * can fault. We therefore handle NMIs from user space like
1216 * other IST entries.
3f3c8b8c
SR
1217 */
1218
146b2b09 1219 /* Use %rdx as our temp variable throughout */
4d732138 1220 pushq %rdx
3f3c8b8c 1221
9b6e6a83
AL
1222 testb $3, CS-RIP+8(%rsp)
1223 jz .Lnmi_from_kernel
1224
1225 /*
1226 * NMI from user mode. We need to run on the thread stack, but we
1227 * can't go through the normal entry paths: NMIs are masked, and
1228 * we don't want to enable interrupts, because then we'll end
1229 * up in an awkward situation in which IRQs are on but NMIs
1230 * are off.
83c133cf
AL
1231 *
1232 * We also must not push anything to the stack before switching
1233 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1234 */
1235
83c133cf 1236 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1237 cld
1238 movq %rsp, %rdx
1239 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1240 pushq 5*8(%rdx) /* pt_regs->ss */
1241 pushq 4*8(%rdx) /* pt_regs->rsp */
1242 pushq 3*8(%rdx) /* pt_regs->flags */
1243 pushq 2*8(%rdx) /* pt_regs->cs */
1244 pushq 1*8(%rdx) /* pt_regs->rip */
1245 pushq $-1 /* pt_regs->orig_ax */
1246 pushq %rdi /* pt_regs->di */
1247 pushq %rsi /* pt_regs->si */
1248 pushq (%rdx) /* pt_regs->dx */
1249 pushq %rcx /* pt_regs->cx */
1250 pushq %rax /* pt_regs->ax */
1251 pushq %r8 /* pt_regs->r8 */
1252 pushq %r9 /* pt_regs->r9 */
1253 pushq %r10 /* pt_regs->r10 */
1254 pushq %r11 /* pt_regs->r11 */
1255 pushq %rbx /* pt_regs->rbx */
1256 pushq %rbp /* pt_regs->rbp */
1257 pushq %r12 /* pt_regs->r12 */
1258 pushq %r13 /* pt_regs->r13 */
1259 pushq %r14 /* pt_regs->r14 */
1260 pushq %r15 /* pt_regs->r15 */
946c1911 1261 ENCODE_FRAME_POINTER
9b6e6a83
AL
1262
1263 /*
1264 * At this point we no longer need to worry about stack damage
1265 * due to nesting -- we're on the normal thread stack and we're
1266 * done with the NMI stack.
1267 */
1268
1269 movq %rsp, %rdi
1270 movq $-1, %rsi
1271 call do_nmi
1272
45d5a168 1273 /*
9b6e6a83 1274 * Return back to user mode. We must *not* do the normal exit
946c1911 1275 * work, because we don't want to enable interrupts.
45d5a168 1276 */
9b6e6a83 1277 SWAPGS
946c1911 1278 jmp restore_regs_and_iret
45d5a168 1279
9b6e6a83 1280.Lnmi_from_kernel:
3f3c8b8c 1281 /*
0b22930e
AL
1282 * Here's what our stack frame will look like:
1283 * +---------------------------------------------------------+
1284 * | original SS |
1285 * | original Return RSP |
1286 * | original RFLAGS |
1287 * | original CS |
1288 * | original RIP |
1289 * +---------------------------------------------------------+
1290 * | temp storage for rdx |
1291 * +---------------------------------------------------------+
1292 * | "NMI executing" variable |
1293 * +---------------------------------------------------------+
1294 * | iret SS } Copied from "outermost" frame |
1295 * | iret Return RSP } on each loop iteration; overwritten |
1296 * | iret RFLAGS } by a nested NMI to force another |
1297 * | iret CS } iteration if needed. |
1298 * | iret RIP } |
1299 * +---------------------------------------------------------+
1300 * | outermost SS } initialized in first_nmi; |
1301 * | outermost Return RSP } will not be changed before |
1302 * | outermost RFLAGS } NMI processing is done. |
1303 * | outermost CS } Copied to "iret" frame on each |
1304 * | outermost RIP } iteration. |
1305 * +---------------------------------------------------------+
1306 * | pt_regs |
1307 * +---------------------------------------------------------+
1308 *
1309 * The "original" frame is used by hardware. Before re-enabling
1310 * NMIs, we need to be done with it, and we need to leave enough
1311 * space for the asm code here.
1312 *
1313 * We return by executing IRET while RSP points to the "iret" frame.
1314 * That will either return for real or it will loop back into NMI
1315 * processing.
1316 *
1317 * The "outermost" frame is copied to the "iret" frame on each
1318 * iteration of the loop, so each iteration starts with the "iret"
1319 * frame pointing to the final return target.
1320 */
1321
45d5a168 1322 /*
0b22930e
AL
1323 * Determine whether we're a nested NMI.
1324 *
a27507ca
AL
1325 * If we interrupted kernel code between repeat_nmi and
1326 * end_repeat_nmi, then we are a nested NMI. We must not
1327 * modify the "iret" frame because it's being written by
1328 * the outer NMI. That's okay; the outer NMI handler is
1329 * about to about to call do_nmi anyway, so we can just
1330 * resume the outer NMI.
45d5a168 1331 */
a27507ca
AL
1332
1333 movq $repeat_nmi, %rdx
1334 cmpq 8(%rsp), %rdx
1335 ja 1f
1336 movq $end_repeat_nmi, %rdx
1337 cmpq 8(%rsp), %rdx
1338 ja nested_nmi_out
13391:
45d5a168 1340
3f3c8b8c 1341 /*
a27507ca 1342 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1343 * This will not detect if we interrupted an outer NMI just
1344 * before IRET.
3f3c8b8c 1345 */
4d732138
IM
1346 cmpl $1, -8(%rsp)
1347 je nested_nmi
3f3c8b8c
SR
1348
1349 /*
0b22930e
AL
1350 * Now test if the previous stack was an NMI stack. This covers
1351 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1352 * "NMI executing" but before IRET. We need to be careful, though:
1353 * there is one case in which RSP could point to the NMI stack
1354 * despite there being no NMI active: naughty userspace controls
1355 * RSP at the very beginning of the SYSCALL targets. We can
1356 * pull a fast one on naughty userspace, though: we program
1357 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1358 * if it controls the kernel's RSP. We set DF before we clear
1359 * "NMI executing".
3f3c8b8c 1360 */
0784b364
DV
1361 lea 6*8(%rsp), %rdx
1362 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1363 cmpq %rdx, 4*8(%rsp)
1364 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1365 ja first_nmi
4d732138 1366
0784b364
DV
1367 subq $EXCEPTION_STKSZ, %rdx
1368 cmpq %rdx, 4*8(%rsp)
1369 /* If it is below the NMI stack, it is a normal NMI */
1370 jb first_nmi
810bc075
AL
1371
1372 /* Ah, it is within the NMI stack. */
1373
1374 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1375 jz first_nmi /* RSP was user controlled. */
1376
1377 /* This is a nested NMI. */
0784b364 1378
3f3c8b8c
SR
1379nested_nmi:
1380 /*
0b22930e
AL
1381 * Modify the "iret" frame to point to repeat_nmi, forcing another
1382 * iteration of NMI handling.
3f3c8b8c 1383 */
23a781e9 1384 subq $8, %rsp
4d732138
IM
1385 leaq -10*8(%rsp), %rdx
1386 pushq $__KERNEL_DS
1387 pushq %rdx
131484c8 1388 pushfq
4d732138
IM
1389 pushq $__KERNEL_CS
1390 pushq $repeat_nmi
3f3c8b8c
SR
1391
1392 /* Put stack back */
4d732138 1393 addq $(6*8), %rsp
3f3c8b8c
SR
1394
1395nested_nmi_out:
4d732138 1396 popq %rdx
3f3c8b8c 1397
0b22930e 1398 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1399 INTERRUPT_RETURN
1400
1401first_nmi:
0b22930e 1402 /* Restore rdx. */
4d732138 1403 movq (%rsp), %rdx
62610913 1404
36f1a77b
AL
1405 /* Make room for "NMI executing". */
1406 pushq $0
3f3c8b8c 1407
0b22930e 1408 /* Leave room for the "iret" frame */
4d732138 1409 subq $(5*8), %rsp
28696f43 1410
0b22930e 1411 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1412 .rept 5
4d732138 1413 pushq 11*8(%rsp)
3f3c8b8c 1414 .endr
62610913 1415
79fb4ad6
SR
1416 /* Everything up to here is safe from nested NMIs */
1417
a97439aa
AL
1418#ifdef CONFIG_DEBUG_ENTRY
1419 /*
1420 * For ease of testing, unmask NMIs right away. Disabled by
1421 * default because IRET is very expensive.
1422 */
1423 pushq $0 /* SS */
1424 pushq %rsp /* RSP (minus 8 because of the previous push) */
1425 addq $8, (%rsp) /* Fix up RSP */
1426 pushfq /* RFLAGS */
1427 pushq $__KERNEL_CS /* CS */
1428 pushq $1f /* RIP */
1429 INTERRUPT_RETURN /* continues at repeat_nmi below */
14301:
1431#endif
1432
0b22930e 1433repeat_nmi:
62610913
JB
1434 /*
1435 * If there was a nested NMI, the first NMI's iret will return
1436 * here. But NMIs are still enabled and we can take another
1437 * nested NMI. The nested NMI checks the interrupted RIP to see
1438 * if it is between repeat_nmi and end_repeat_nmi, and if so
1439 * it will just return, as we are about to repeat an NMI anyway.
1440 * This makes it safe to copy to the stack frame that a nested
1441 * NMI will update.
0b22930e
AL
1442 *
1443 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1444 * we're repeating an NMI, gsbase has the same value that it had on
1445 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1446 * gsbase if needed before we call do_nmi. "NMI executing"
1447 * is zero.
62610913 1448 */
36f1a77b 1449 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1450
62610913 1451 /*
0b22930e
AL
1452 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1453 * here must not modify the "iret" frame while we're writing to
1454 * it or it will end up containing garbage.
62610913 1455 */
4d732138 1456 addq $(10*8), %rsp
3f3c8b8c 1457 .rept 5
4d732138 1458 pushq -6*8(%rsp)
3f3c8b8c 1459 .endr
4d732138 1460 subq $(5*8), %rsp
62610913 1461end_repeat_nmi:
3f3c8b8c
SR
1462
1463 /*
0b22930e
AL
1464 * Everything below this point can be preempted by a nested NMI.
1465 * If this happens, then the inner NMI will change the "iret"
1466 * frame to point back to repeat_nmi.
3f3c8b8c 1467 */
4d732138 1468 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1469 ALLOC_PT_GPREGS_ON_STACK
1470
1fd466ef 1471 /*
ebfc453e 1472 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1473 * as we should not be calling schedule in NMI context.
1474 * Even with normal interrupts enabled. An NMI should not be
1475 * setting NEED_RESCHED or anything that normal interrupts and
1476 * exceptions might do.
1477 */
4d732138 1478 call paranoid_entry
7fbb98c5 1479
ddeb8f21 1480 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1481 movq %rsp, %rdi
1482 movq $-1, %rsi
1483 call do_nmi
7fbb98c5 1484
4d732138
IM
1485 testl %ebx, %ebx /* swapgs needed? */
1486 jnz nmi_restore
ddeb8f21
AH
1487nmi_swapgs:
1488 SWAPGS_UNSAFE_STACK
1489nmi_restore:
76f5df43
DV
1490 RESTORE_EXTRA_REGS
1491 RESTORE_C_REGS
0b22930e
AL
1492
1493 /* Point RSP at the "iret" frame. */
76f5df43 1494 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1495
810bc075
AL
1496 /*
1497 * Clear "NMI executing". Set DF first so that we can easily
1498 * distinguish the remaining code between here and IRET from
1499 * the SYSCALL entry and exit paths. On a native kernel, we
1500 * could just inspect RIP, but, on paravirt kernels,
1501 * INTERRUPT_RETURN can translate into a jump into a
1502 * hypercall page.
1503 */
1504 std
1505 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1506
1507 /*
1508 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1509 * stack in a single instruction. We are returning to kernel
1510 * mode, so this cannot result in a fault.
1511 */
5ca6f70f 1512 INTERRUPT_RETURN
ddeb8f21
AH
1513END(nmi)
1514
1515ENTRY(ignore_sysret)
4d732138 1516 mov $-ENOSYS, %eax
ddeb8f21 1517 sysret
ddeb8f21 1518END(ignore_sysret)
2deb4be2
AL
1519
1520ENTRY(rewind_stack_do_exit)
1521 /* Prevent any naive code from trying to unwind to our caller. */
1522 xorl %ebp, %ebp
1523
1524 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1525 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1526
1527 call do_exit
15281: jmp 1b
1529END(rewind_stack_do_exit)