x86/mm/kasan: Don't use vmemmap_populate() to initialize shadow
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
d36f9479 26#include "calling.h"
e2d5df93 27#include <asm/asm-offsets.h>
1da177e4
LT
28#include <asm/msr.h>
29#include <asm/unistd.h>
30#include <asm/thread_info.h>
31#include <asm/hw_irq.h>
0341c14d 32#include <asm/page_types.h>
2601e64d 33#include <asm/irqflags.h>
72fe4858 34#include <asm/paravirt.h>
9939ddaf 35#include <asm/percpu.h>
d7abc0fa 36#include <asm/asm.h>
63bcff2a 37#include <asm/smap.h>
3891a04a 38#include <asm/pgtable_types.h>
784d5699 39#include <asm/export.h>
8c1f7558 40#include <asm/frame.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
4d732138
IM
43.code64
44.section .entry.text, "ax"
16444a8a 45
72fe4858 46#ifdef CONFIG_PARAVIRT
2be29982 47ENTRY(native_usergs_sysret64)
8c1f7558 48 UNWIND_HINT_EMPTY
72fe4858
GOC
49 swapgs
50 sysretq
8c1f7558 51END(native_usergs_sysret64)
72fe4858
GOC
52#endif /* CONFIG_PARAVIRT */
53
f2db9382 54.macro TRACE_IRQS_IRETQ
2601e64d 55#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
56 bt $9, EFLAGS(%rsp) /* interrupts off? */
57 jnc 1f
2601e64d
IM
58 TRACE_IRQS_ON
591:
60#endif
61.endm
62
5963e317
SR
63/*
64 * When dynamic function tracer is enabled it will add a breakpoint
65 * to all locations that it is about to modify, sync CPUs, update
66 * all the code, sync CPUs, then remove the breakpoints. In this time
67 * if lockdep is enabled, it might jump back into the debug handler
68 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
69 *
70 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
71 * make sure the stack pointer does not get reset back to the top
72 * of the debug stack, and instead just reuses the current stack.
73 */
74#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
75
76.macro TRACE_IRQS_OFF_DEBUG
4d732138 77 call debug_stack_set_zero
5963e317 78 TRACE_IRQS_OFF
4d732138 79 call debug_stack_reset
5963e317
SR
80.endm
81
82.macro TRACE_IRQS_ON_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_ON
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
f2db9382 88.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
89 bt $9, EFLAGS(%rsp) /* interrupts off? */
90 jnc 1f
5963e317
SR
91 TRACE_IRQS_ON_DEBUG
921:
93.endm
94
95#else
4d732138
IM
96# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
97# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
98# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
99#endif
100
1da177e4 101/*
4d732138 102 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 103 *
fda57b22
AL
104 * This is the only entry point used for 64-bit system calls. The
105 * hardware interface is reasonably well designed and the register to
106 * argument mapping Linux uses fits well with the registers that are
107 * available when SYSCALL is used.
108 *
109 * SYSCALL instructions can be found inlined in libc implementations as
110 * well as some other programs and libraries. There are also a handful
111 * of SYSCALL instructions in the vDSO used, for example, as a
112 * clock_gettimeofday fallback.
113 *
4d732138 114 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
115 * then loads new ss, cs, and rip from previously programmed MSRs.
116 * rflags gets masked by a value from another MSR (so CLD and CLAC
117 * are not needed). SYSCALL does not save anything on the stack
118 * and does not change rsp.
119 *
120 * Registers on entry:
1da177e4 121 * rax system call number
b87cf63e
DV
122 * rcx return address
123 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 124 * rdi arg0
1da177e4 125 * rsi arg1
0bd7b798 126 * rdx arg2
b87cf63e 127 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
128 * r8 arg4
129 * r9 arg5
4d732138 130 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 131 *
1da177e4
LT
132 * Only called from user space.
133 *
7fcb3bc3 134 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
135 * it deals with uncanonical addresses better. SYSRET has trouble
136 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 137 */
1da177e4 138
b2502b41 139ENTRY(entry_SYSCALL_64)
8c1f7558 140 UNWIND_HINT_EMPTY
9ed8e7d8
DV
141 /*
142 * Interrupts are off on entry.
143 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
144 * it is too small to ever cause noticeable irq latency.
145 */
72fe4858 146
8a9949bc 147 swapgs
4d732138
IM
148 movq %rsp, PER_CPU_VAR(rsp_scratch)
149 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
150
151 /* Construct struct pt_regs on stack */
4d732138
IM
152 pushq $__USER_DS /* pt_regs->ss */
153 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
154 pushq %r11 /* pt_regs->flags */
155 pushq $__USER_CS /* pt_regs->cs */
156 pushq %rcx /* pt_regs->ip */
8a9949bc 157GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
158 pushq %rax /* pt_regs->orig_ax */
159 pushq %rdi /* pt_regs->di */
160 pushq %rsi /* pt_regs->si */
161 pushq %rdx /* pt_regs->dx */
162 pushq %rcx /* pt_regs->cx */
163 pushq $-ENOSYS /* pt_regs->ax */
164 pushq %r8 /* pt_regs->r8 */
165 pushq %r9 /* pt_regs->r9 */
166 pushq %r10 /* pt_regs->r10 */
167 pushq %r11 /* pt_regs->r11 */
168 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
8c1f7558 169 UNWIND_HINT_REGS extra=0
4d732138 170
548c3050
AL
171 TRACE_IRQS_OFF
172
1e423bff
AL
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
15f4eae7
AL
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
179 jnz entry_SYSCALL64_slow_path
180
b2502b41 181entry_SYSCALL_64_fastpath:
1e423bff
AL
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 189#if __SYSCALL_MASK == ~0
4d732138 190 cmpq $__NR_syscall_max, %rax
fca460f9 191#else
4d732138
IM
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
fca460f9 194#endif
4d732138
IM
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
302f5b26
AL
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
302f5b26 202 */
4d732138 203 call *sys_call_table(, %rax, 8)
302f5b26
AL
204.Lentry_SYSCALL_64_after_fastpath_call:
205
4d732138 206 movq %rax, RAX(%rsp)
146b2b09 2071:
b3494a4a
AL
208
209 /*
1e423bff
AL
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 213 */
2140a994 214 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 215 TRACE_IRQS_OFF
15f4eae7
AL
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 218 jnz 1f
b3494a4a 219
1e423bff
AL
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
a5122106 224 addq $6*8, %rsp /* skip extra regs -- they were preserved */
8c1f7558 225 UNWIND_HINT_EMPTY
a5122106 226 jmp .Lpop_c_regs_except_rcx_r11_and_sysret
1da177e4 227
1e423bff
AL
2281:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
29ea1b25 234 TRACE_IRQS_ON
2140a994 235 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 236 SAVE_EXTRA_REGS
4d732138 237 movq %rsp, %rdi
1e423bff
AL
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
0bd7b798 240
1e423bff
AL
241entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
76f5df43 243 SAVE_EXTRA_REGS
29ea1b25 244 movq %rsp, %rdi
1e423bff
AL
245 call do_syscall_64 /* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
29ea1b25 248 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
249
250 /*
251 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
252 * a completely clean 64-bit userspace context. If we're not,
253 * go to the slow exit path.
fffbb5dc 254 */
4d732138
IM
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
8a055d7f
AL
257
258 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
259 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
260
261 /*
262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263 * in kernel space. This essentially lets the user take over
17be0aec 264 * the kernel, since userspace controls RSP.
fffbb5dc 265 *
17be0aec 266 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 267 * to be updated to remain correct on both old and new CPUs.
361b4b58 268 *
cbe0317b
KS
269 * Change top bits to match most significant bit (47th or 56th bit
270 * depending on paging mode) in the address.
fffbb5dc 271 */
17be0aec
DV
272 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 274
17be0aec
DV
275 /* If this changed %rcx, it was not canonical */
276 cmpq %rcx, %r11
8a055d7f 277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 278
4d732138 279 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 280 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 281
4d732138
IM
282 movq R11(%rsp), %r11
283 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 284 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
285
286 /*
3e035305
BP
287 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
288 * restore RF properly. If the slowpath sets it for whatever reason, we
289 * need to restore it correctly.
290 *
291 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
292 * trap from userspace immediately after SYSRET. This would cause an
293 * infinite loop whenever #DB happens with register state that satisfies
294 * the opportunistic SYSRET conditions. For example, single-stepping
295 * this user code:
fffbb5dc 296 *
4d732138 297 * movq $stuck_here, %rcx
fffbb5dc
DV
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
4d732138 304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 305 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
306
307 /* nothing to check for RSP */
308
4d732138 309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 310 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
311
312 /*
4d732138
IM
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
fffbb5dc
DV
315 */
316syscall_return_via_sysret:
17be0aec 317 /* rcx and r11 are already restored (see code above) */
8c1f7558 318 UNWIND_HINT_EMPTY
4fbb3910 319 POP_EXTRA_REGS
a5122106 320.Lpop_c_regs_except_rcx_r11_and_sysret:
4fbb3910
AL
321 popq %rsi /* skip r11 */
322 popq %r10
323 popq %r9
324 popq %r8
325 popq %rax
326 popq %rsi /* skip rcx */
327 popq %rdx
328 popq %rsi
329 popq %rdi
330 movq RSP-ORIG_RAX(%rsp), %rsp
fffbb5dc 331 USERGS_SYSRET64
b2502b41 332END(entry_SYSCALL_64)
0bd7b798 333
302f5b26
AL
334ENTRY(stub_ptregs_64)
335 /*
336 * Syscalls marked as needing ptregs land here.
b7765086
AL
337 * If we are on the fast path, we need to save the extra regs,
338 * which we achieve by trying again on the slow path. If we are on
339 * the slow path, the extra regs are already saved.
302f5b26
AL
340 *
341 * RAX stores a pointer to the C function implementing the syscall.
b7765086 342 * IRQs are on.
302f5b26
AL
343 */
344 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
345 jne 1f
346
b7765086
AL
347 /*
348 * Called from fast path -- disable IRQs again, pop return address
349 * and jump to slow path
350 */
2140a994 351 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 352 TRACE_IRQS_OFF
302f5b26 353 popq %rax
8c1f7558 354 UNWIND_HINT_REGS extra=0
b7765086 355 jmp entry_SYSCALL64_slow_path
302f5b26
AL
356
3571:
b3830e8d 358 jmp *%rax /* Called from C */
302f5b26
AL
359END(stub_ptregs_64)
360
361.macro ptregs_stub func
362ENTRY(ptregs_\func)
8c1f7558 363 UNWIND_HINT_FUNC
302f5b26
AL
364 leaq \func(%rip), %rax
365 jmp stub_ptregs_64
366END(ptregs_\func)
367.endm
368
369/* Instantiate ptregs_stub for each ptregs-using syscall */
370#define __SYSCALL_64_QUAL_(sym)
371#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
372#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
373#include <asm/syscalls_64.h>
fffbb5dc 374
0100301b
BG
375/*
376 * %rdi: prev task
377 * %rsi: next task
378 */
379ENTRY(__switch_to_asm)
8c1f7558 380 UNWIND_HINT_FUNC
0100301b
BG
381 /*
382 * Save callee-saved registers
383 * This must match the order in inactive_task_frame
384 */
385 pushq %rbp
386 pushq %rbx
387 pushq %r12
388 pushq %r13
389 pushq %r14
390 pushq %r15
391
392 /* switch stack */
393 movq %rsp, TASK_threadsp(%rdi)
394 movq TASK_threadsp(%rsi), %rsp
395
396#ifdef CONFIG_CC_STACKPROTECTOR
397 movq TASK_stack_canary(%rsi), %rbx
398 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
399#endif
400
401 /* restore callee-saved registers */
402 popq %r15
403 popq %r14
404 popq %r13
405 popq %r12
406 popq %rbx
407 popq %rbp
408
409 jmp __switch_to
410END(__switch_to_asm)
411
1eeb207f
DV
412/*
413 * A newly forked process directly context switches into this address.
414 *
0100301b 415 * rax: prev task we switched from
616d2483
BG
416 * rbx: kernel thread func (NULL for user thread)
417 * r12: kernel thread arg
1eeb207f
DV
418 */
419ENTRY(ret_from_fork)
8c1f7558 420 UNWIND_HINT_EMPTY
0100301b 421 movq %rax, %rdi
ebd57499 422 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 423
ebd57499
JP
424 testq %rbx, %rbx /* from kernel_thread? */
425 jnz 1f /* kernel threads are uncommon */
24d978b7 426
616d2483 4272:
8c1f7558 428 UNWIND_HINT_REGS
ebd57499 429 movq %rsp, %rdi
24d978b7
AL
430 call syscall_return_slowpath /* returns with IRQs disabled */
431 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 432 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
433
4341:
435 /* kernel thread */
436 movq %r12, %rdi
437 call *%rbx
438 /*
439 * A kernel thread is allowed to return here after successfully
440 * calling do_execve(). Exit to userspace to complete the execve()
441 * syscall.
442 */
443 movq $0, RAX(%rsp)
444 jmp 2b
1eeb207f
DV
445END(ret_from_fork)
446
939b7871 447/*
3304c9c3
DV
448 * Build the entry stubs with some assembler magic.
449 * We pack 1 stub into every 8-byte block.
939b7871 450 */
3304c9c3 451 .align 8
939b7871 452ENTRY(irq_entries_start)
3304c9c3
DV
453 vector=FIRST_EXTERNAL_VECTOR
454 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 455 UNWIND_HINT_IRET_REGS
4d732138 456 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 457 jmp common_interrupt
3304c9c3 458 .align 8
8c1f7558 459 vector=vector+1
3304c9c3 460 .endr
939b7871
PA
461END(irq_entries_start)
462
1d3e53e8
AL
463.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
464#ifdef CONFIG_DEBUG_ENTRY
465 pushfq
466 testl $X86_EFLAGS_IF, (%rsp)
467 jz .Lokay_\@
468 ud2
469.Lokay_\@:
470 addq $8, %rsp
471#endif
472.endm
473
474/*
475 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
476 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
477 * Requires kernel GSBASE.
478 *
479 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
480 */
8c1f7558 481.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
482 DEBUG_ENTRY_ASSERT_IRQS_OFF
483 movq %rsp, \old_rsp
8c1f7558
JP
484
485 .if \regs
486 UNWIND_HINT_REGS base=\old_rsp
487 .endif
488
1d3e53e8 489 incl PER_CPU_VAR(irq_count)
29955909 490 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
491
492 /*
493 * Right now, if we just incremented irq_count to zero, we've
494 * claimed the IRQ stack but we haven't switched to it yet.
495 *
496 * If anything is added that can interrupt us here without using IST,
497 * it must be *extremely* careful to limit its stack usage. This
498 * could include kprobes and a hypothetical future IST-less #DB
499 * handler.
29955909
AL
500 *
501 * The OOPS unwinder relies on the word at the top of the IRQ
502 * stack linking back to the previous RSP for the entire time we're
503 * on the IRQ stack. For this to work reliably, we need to write
504 * it before we actually move ourselves to the IRQ stack.
505 */
506
507 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
508 movq PER_CPU_VAR(irq_stack_ptr), %rsp
509
510#ifdef CONFIG_DEBUG_ENTRY
511 /*
512 * If the first movq above becomes wrong due to IRQ stack layout
513 * changes, the only way we'll notice is if we try to unwind right
514 * here. Assert that we set up the stack right to catch this type
515 * of bug quickly.
1d3e53e8 516 */
29955909
AL
517 cmpq -8(%rsp), \old_rsp
518 je .Lirq_stack_okay\@
519 ud2
520 .Lirq_stack_okay\@:
521#endif
1d3e53e8 522
29955909 523.Lirq_stack_push_old_rsp_\@:
1d3e53e8 524 pushq \old_rsp
8c1f7558
JP
525
526 .if \regs
527 UNWIND_HINT_REGS indirect=1
528 .endif
1d3e53e8
AL
529.endm
530
531/*
532 * Undoes ENTER_IRQ_STACK.
533 */
8c1f7558 534.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
535 DEBUG_ENTRY_ASSERT_IRQS_OFF
536 /* We need to be off the IRQ stack before decrementing irq_count. */
537 popq %rsp
538
8c1f7558
JP
539 .if \regs
540 UNWIND_HINT_REGS
541 .endif
542
1d3e53e8
AL
543 /*
544 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
545 * the irq stack but we're not on it.
546 */
547
548 decl PER_CPU_VAR(irq_count)
549.endm
550
d99015b1 551/*
1da177e4
LT
552 * Interrupt entry/exit.
553 *
554 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
555 *
556 * Entry runs with interrupts off.
557 */
1da177e4 558
722024db 559/* 0(%rsp): ~(interrupt number) */
1da177e4 560 .macro interrupt func
f6f64681 561 cld
ff467594
AL
562 ALLOC_PT_GPREGS_ON_STACK
563 SAVE_C_REGS
564 SAVE_EXTRA_REGS
946c1911 565 ENCODE_FRAME_POINTER
76f5df43 566
ff467594 567 testb $3, CS(%rsp)
dde74f2e 568 jz 1f
02bc7768
AL
569
570 /*
571 * IRQ from user mode. Switch to kernel gsbase and inform context
572 * tracking that we're in kernel mode.
573 */
f6f64681 574 SWAPGS
f1075053
AL
575
576 /*
577 * We need to tell lockdep that IRQs are off. We can't do this until
578 * we fix gsbase, and we should do it before enter_from_user_mode
579 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
580 * the simplest way to handle it is to just call it twice if
581 * we enter from user mode. There's no reason to optimize this since
582 * TRACE_IRQS_OFF is a no-op if lockdep is off.
583 */
584 TRACE_IRQS_OFF
585
478dc89c 586 CALL_enter_from_user_mode
02bc7768 587
76f5df43 5881:
1d3e53e8 589 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
590 /* We entered an interrupt context - irqs are off: */
591 TRACE_IRQS_OFF
592
a586f98e 593 call \func /* rdi points to pt_regs */
1da177e4
LT
594 .endm
595
722024db
AH
596 /*
597 * The interrupt stubs push (~vector+0x80) onto the stack and
598 * then jump to common_interrupt.
599 */
939b7871
PA
600 .p2align CONFIG_X86_L1_CACHE_SHIFT
601common_interrupt:
ee4eb87b 602 ASM_CLAC
4d732138 603 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 604 interrupt do_IRQ
34061f13 605 /* 0(%rsp): old RSP */
7effaa88 606ret_from_intr:
2140a994 607 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 608 TRACE_IRQS_OFF
625dbc3b 609
1d3e53e8 610 LEAVE_IRQ_STACK
625dbc3b 611
03335e95 612 testb $3, CS(%rsp)
dde74f2e 613 jz retint_kernel
4d732138 614
02bc7768 615 /* Interrupt came from user space */
02bc7768
AL
616GLOBAL(retint_user)
617 mov %rsp,%rdi
618 call prepare_exit_to_usermode
2601e64d 619 TRACE_IRQS_IRETQ
26c4ef9c 620
8a055d7f 621GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
622#ifdef CONFIG_DEBUG_ENTRY
623 /* Assert that pt_regs indicates user mode. */
1e4c4f61 624 testb $3, CS(%rsp)
26c4ef9c
AL
625 jnz 1f
626 ud2
6271:
628#endif
8a055d7f 629 SWAPGS
e872045b
AL
630 POP_EXTRA_REGS
631 POP_C_REGS
632 addq $8, %rsp /* skip regs->orig_ax */
26c4ef9c
AL
633 INTERRUPT_RETURN
634
2601e64d 635
627276cb 636/* Returning to kernel space */
6ba71b76 637retint_kernel:
627276cb
DV
638#ifdef CONFIG_PREEMPT
639 /* Interrupts are off */
640 /* Check if we need preemption */
4d732138 641 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 642 jnc 1f
4d732138 6430: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 644 jnz 1f
627276cb 645 call preempt_schedule_irq
36acef25 646 jmp 0b
6ba71b76 6471:
627276cb 648#endif
2601e64d
IM
649 /*
650 * The iretq could re-enable interrupts:
651 */
652 TRACE_IRQS_IRETQ
fffbb5dc 653
26c4ef9c
AL
654GLOBAL(restore_regs_and_return_to_kernel)
655#ifdef CONFIG_DEBUG_ENTRY
656 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 657 testb $3, CS(%rsp)
26c4ef9c
AL
658 jz 1f
659 ud2
6601:
661#endif
e872045b
AL
662 POP_EXTRA_REGS
663 POP_C_REGS
664 addq $8, %rsp /* skip regs->orig_ax */
7209a75d
AL
665 INTERRUPT_RETURN
666
667ENTRY(native_iret)
8c1f7558 668 UNWIND_HINT_IRET_REGS
3891a04a
PA
669 /*
670 * Are we returning to a stack segment from the LDT? Note: in
671 * 64-bit mode SS:RSP on the exception stack is always valid.
672 */
34273f41 673#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
674 testb $4, (SS-RIP)(%rsp)
675 jnz native_irq_return_ldt
34273f41 676#endif
3891a04a 677
af726f21 678.global native_irq_return_iret
7209a75d 679native_irq_return_iret:
b645af2d
AL
680 /*
681 * This may fault. Non-paranoid faults on return to userspace are
682 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
683 * Double-faults due to espfix64 are handled in do_double_fault.
684 * Other faults here are fatal.
685 */
1da177e4 686 iretq
3701d863 687
34273f41 688#ifdef CONFIG_X86_ESPFIX64
7209a75d 689native_irq_return_ldt:
85063fac
AL
690 /*
691 * We are running with user GSBASE. All GPRs contain their user
692 * values. We have a percpu ESPFIX stack that is eight slots
693 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
694 * of the ESPFIX stack.
695 *
696 * We clobber RAX and RDI in this code. We stash RDI on the
697 * normal stack and RAX on the ESPFIX stack.
698 *
699 * The ESPFIX stack layout we set up looks like this:
700 *
701 * --- top of ESPFIX stack ---
702 * SS
703 * RSP
704 * RFLAGS
705 * CS
706 * RIP <-- RSP points here when we're done
707 * RAX <-- espfix_waddr points here
708 * --- bottom of ESPFIX stack ---
709 */
710
711 pushq %rdi /* Stash user RDI */
3891a04a 712 SWAPGS
4d732138 713 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
714 movq %rax, (0*8)(%rdi) /* user RAX */
715 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 716 movq %rax, (1*8)(%rdi)
85063fac 717 movq (2*8)(%rsp), %rax /* user CS */
4d732138 718 movq %rax, (2*8)(%rdi)
85063fac 719 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 720 movq %rax, (3*8)(%rdi)
85063fac 721 movq (5*8)(%rsp), %rax /* user SS */
4d732138 722 movq %rax, (5*8)(%rdi)
85063fac 723 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 724 movq %rax, (4*8)(%rdi)
85063fac
AL
725 /* Now RAX == RSP. */
726
727 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
728 popq %rdi /* Restore user RDI */
729
730 /*
731 * espfix_stack[31:16] == 0. The page tables are set up such that
732 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
733 * espfix_waddr for any X. That is, there are 65536 RO aliases of
734 * the same page. Set up RSP so that RSP[31:16] contains the
735 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
736 * still points to an RO alias of the ESPFIX stack.
737 */
4d732138 738 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 739 SWAPGS
4d732138 740 movq %rax, %rsp
8c1f7558 741 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
742
743 /*
744 * At this point, we cannot write to the stack any more, but we can
745 * still read.
746 */
747 popq %rax /* Restore user RAX */
748
749 /*
750 * RSP now points to an ordinary IRET frame, except that the page
751 * is read-only and RSP[31:16] are preloaded with the userspace
752 * values. We can now IRET back to userspace.
753 */
4d732138 754 jmp native_irq_return_iret
34273f41 755#endif
4b787e0b 756END(common_interrupt)
3891a04a 757
1da177e4
LT
758/*
759 * APIC interrupts.
0bd7b798 760 */
cf910e83 761.macro apicinterrupt3 num sym do_sym
322648d1 762ENTRY(\sym)
8c1f7558 763 UNWIND_HINT_IRET_REGS
ee4eb87b 764 ASM_CLAC
4d732138 765 pushq $~(\num)
39e95433 766.Lcommon_\sym:
322648d1 767 interrupt \do_sym
4d732138 768 jmp ret_from_intr
322648d1
AH
769END(\sym)
770.endm
1da177e4 771
469f0023 772/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
773#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
774#define POP_SECTION_IRQENTRY .popsection
469f0023 775
cf910e83 776.macro apicinterrupt num sym do_sym
469f0023 777PUSH_SECTION_IRQENTRY
cf910e83 778apicinterrupt3 \num \sym \do_sym
469f0023 779POP_SECTION_IRQENTRY
cf910e83
SA
780.endm
781
322648d1 782#ifdef CONFIG_SMP
4d732138
IM
783apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
784apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 785#endif
1da177e4 786
03b48632 787#ifdef CONFIG_X86_UV
4d732138 788apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 789#endif
4d732138
IM
790
791apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
792apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 793
d78f2664 794#ifdef CONFIG_HAVE_KVM
4d732138
IM
795apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
796apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 797apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
798#endif
799
33e5ff63 800#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 801apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
802#endif
803
24fd78a8 804#ifdef CONFIG_X86_MCE_AMD
4d732138 805apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
806#endif
807
33e5ff63 808#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 809apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 810#endif
1812924b 811
322648d1 812#ifdef CONFIG_SMP
4d732138
IM
813apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
814apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
815apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 816#endif
1da177e4 817
4d732138
IM
818apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
819apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 820
e360adbe 821#ifdef CONFIG_IRQ_WORK
4d732138 822apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
823#endif
824
1da177e4
LT
825/*
826 * Exception entry points.
0bd7b798 827 */
9b476688 828#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
829
830.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 831ENTRY(\sym)
98990a33 832 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 833
577ed45e
AL
834 /* Sanity check */
835 .if \shift_ist != -1 && \paranoid == 0
836 .error "using shift_ist requires paranoid=1"
837 .endif
838
ee4eb87b 839 ASM_CLAC
cb5dd2c5 840
82c62fa0 841 .if \has_error_code == 0
4d732138 842 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
843 .endif
844
76f5df43 845 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
846
847 .if \paranoid
48e08d0f 848 .if \paranoid == 1
4d732138
IM
849 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
850 jnz 1f
48e08d0f 851 .endif
4d732138 852 call paranoid_entry
cb5dd2c5 853 .else
4d732138 854 call error_entry
cb5dd2c5 855 .endif
8c1f7558 856 UNWIND_HINT_REGS
ebfc453e 857 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 858
cb5dd2c5 859 .if \paranoid
577ed45e 860 .if \shift_ist != -1
4d732138 861 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 862 .else
b8b1d08b 863 TRACE_IRQS_OFF
cb5dd2c5 864 .endif
577ed45e 865 .endif
cb5dd2c5 866
4d732138 867 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
868
869 .if \has_error_code
4d732138
IM
870 movq ORIG_RAX(%rsp), %rsi /* get error code */
871 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 872 .else
4d732138 873 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
874 .endif
875
577ed45e 876 .if \shift_ist != -1
4d732138 877 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
878 .endif
879
4d732138 880 call \do_sym
cb5dd2c5 881
577ed45e 882 .if \shift_ist != -1
4d732138 883 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
884 .endif
885
ebfc453e 886 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 887 .if \paranoid
4d732138 888 jmp paranoid_exit
cb5dd2c5 889 .else
4d732138 890 jmp error_exit
cb5dd2c5
AL
891 .endif
892
48e08d0f 893 .if \paranoid == 1
48e08d0f
AL
894 /*
895 * Paranoid entry from userspace. Switch stacks and treat it
896 * as a normal entry. This means that paranoid handlers
897 * run in real process context if user_mode(regs).
898 */
8991:
4d732138 900 call error_entry
48e08d0f 901
48e08d0f 902
4d732138
IM
903 movq %rsp, %rdi /* pt_regs pointer */
904 call sync_regs
905 movq %rax, %rsp /* switch stack */
48e08d0f 906
4d732138 907 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
908
909 .if \has_error_code
4d732138
IM
910 movq ORIG_RAX(%rsp), %rsi /* get error code */
911 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 912 .else
4d732138 913 xorl %esi, %esi /* no error code */
48e08d0f
AL
914 .endif
915
4d732138 916 call \do_sym
48e08d0f 917
4d732138 918 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 919 .endif
ddeb8f21 920END(\sym)
322648d1 921.endm
b8b1d08b 922
4d732138
IM
923idtentry divide_error do_divide_error has_error_code=0
924idtentry overflow do_overflow has_error_code=0
925idtentry bounds do_bounds has_error_code=0
926idtentry invalid_op do_invalid_op has_error_code=0
927idtentry device_not_available do_device_not_available has_error_code=0
928idtentry double_fault do_double_fault has_error_code=1 paranoid=2
929idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
930idtentry invalid_TSS do_invalid_TSS has_error_code=1
931idtentry segment_not_present do_segment_not_present has_error_code=1
932idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
933idtentry coprocessor_error do_coprocessor_error has_error_code=0
934idtentry alignment_check do_alignment_check has_error_code=1
935idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
936
937
938 /*
939 * Reload gs selector with exception handling
940 * edi: new selector
941 */
9f9d489a 942ENTRY(native_load_gs_index)
8c1f7558 943 FRAME_BEGIN
131484c8 944 pushfq
b8aa287f 945 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 946 SWAPGS
42c748bb 947.Lgs_change:
4d732138 948 movl %edi, %gs
96e5d28a 9492: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 950 SWAPGS
131484c8 951 popfq
8c1f7558 952 FRAME_END
9f1e87ea 953 ret
8c1f7558 954ENDPROC(native_load_gs_index)
784d5699 955EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 956
42c748bb 957 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 958 .section .fixup, "ax"
1da177e4 959 /* running with kernelgs */
0bd7b798 960bad_gs:
4d732138 961 SWAPGS /* switch back to user gs */
b038c842
AL
962.macro ZAP_GS
963 /* This can't be a string because the preprocessor needs to see it. */
964 movl $__USER_DS, %eax
965 movl %eax, %gs
966.endm
967 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
968 xorl %eax, %eax
969 movl %eax, %gs
970 jmp 2b
9f1e87ea 971 .previous
0bd7b798 972
2699500b 973/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 974ENTRY(do_softirq_own_stack)
4d732138
IM
975 pushq %rbp
976 mov %rsp, %rbp
8c1f7558 977 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 978 call __do_softirq
8c1f7558 979 LEAVE_IRQ_STACK regs=0
2699500b 980 leaveq
ed6b676c 981 ret
8c1f7558 982ENDPROC(do_softirq_own_stack)
75154f40 983
3d75e1b8 984#ifdef CONFIG_XEN
5878d5d6 985idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
986
987/*
9f1e87ea
CG
988 * A note on the "critical region" in our callback handler.
989 * We want to avoid stacking callback handlers due to events occurring
990 * during handling of the last event. To do this, we keep events disabled
991 * until we've done all processing. HOWEVER, we must enable events before
992 * popping the stack frame (can't be done atomically) and so it would still
993 * be possible to get enough handler activations to overflow the stack.
994 * Although unlikely, bugs of that kind are hard to track down, so we'd
995 * like to avoid the possibility.
996 * So, on entry to the handler we detect whether we interrupted an
997 * existing activation in its critical region -- if so, we pop the current
998 * activation and restart the handler using the previous one.
999 */
4d732138
IM
1000ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1001
9f1e87ea
CG
1002/*
1003 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1004 * see the correct pointer to the pt_regs
1005 */
8c1f7558 1006 UNWIND_HINT_FUNC
4d732138 1007 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1008 UNWIND_HINT_REGS
1d3e53e8
AL
1009
1010 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1011 call xen_evtchn_do_upcall
1d3e53e8
AL
1012 LEAVE_IRQ_STACK
1013
fdfd811d 1014#ifndef CONFIG_PREEMPT
4d732138 1015 call xen_maybe_preempt_hcall
fdfd811d 1016#endif
4d732138 1017 jmp error_exit
371c394a 1018END(xen_do_hypervisor_callback)
3d75e1b8
JF
1019
1020/*
9f1e87ea
CG
1021 * Hypervisor uses this for application faults while it executes.
1022 * We get here for two reasons:
1023 * 1. Fault while reloading DS, ES, FS or GS
1024 * 2. Fault while executing IRET
1025 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1026 * registers that could be reloaded and zeroed the others.
1027 * Category 2 we fix up by killing the current process. We cannot use the
1028 * normal Linux return path in this case because if we use the IRET hypercall
1029 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1030 * We distinguish between categories by comparing each saved segment register
1031 * with its current contents: any discrepancy means we in category 1.
1032 */
3d75e1b8 1033ENTRY(xen_failsafe_callback)
8c1f7558 1034 UNWIND_HINT_EMPTY
4d732138
IM
1035 movl %ds, %ecx
1036 cmpw %cx, 0x10(%rsp)
1037 jne 1f
1038 movl %es, %ecx
1039 cmpw %cx, 0x18(%rsp)
1040 jne 1f
1041 movl %fs, %ecx
1042 cmpw %cx, 0x20(%rsp)
1043 jne 1f
1044 movl %gs, %ecx
1045 cmpw %cx, 0x28(%rsp)
1046 jne 1f
3d75e1b8 1047 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1048 movq (%rsp), %rcx
1049 movq 8(%rsp), %r11
1050 addq $0x30, %rsp
1051 pushq $0 /* RIP */
8c1f7558 1052 UNWIND_HINT_IRET_REGS offset=8
4d732138 1053 jmp general_protection
3d75e1b8 10541: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1055 movq (%rsp), %rcx
1056 movq 8(%rsp), %r11
1057 addq $0x30, %rsp
8c1f7558 1058 UNWIND_HINT_IRET_REGS
4d732138 1059 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1060 ALLOC_PT_GPREGS_ON_STACK
1061 SAVE_C_REGS
1062 SAVE_EXTRA_REGS
946c1911 1063 ENCODE_FRAME_POINTER
4d732138 1064 jmp error_exit
3d75e1b8
JF
1065END(xen_failsafe_callback)
1066
cf910e83 1067apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1068 xen_hvm_callback_vector xen_evtchn_do_upcall
1069
3d75e1b8 1070#endif /* CONFIG_XEN */
ddeb8f21 1071
bc2b0331 1072#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1073apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1074 hyperv_callback_vector hyperv_vector_handler
1075#endif /* CONFIG_HYPERV */
1076
4d732138
IM
1077idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1078idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1079idtentry stack_segment do_stack_segment has_error_code=1
1080
6cac5a92 1081#ifdef CONFIG_XEN
43e41110 1082idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1083idtentry xendebug do_debug has_error_code=0
1084idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1085#endif
4d732138
IM
1086
1087idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1088idtentry page_fault do_page_fault has_error_code=1
4d732138 1089
631bc487 1090#ifdef CONFIG_KVM_GUEST
4d732138 1091idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1092#endif
4d732138 1093
ddeb8f21 1094#ifdef CONFIG_X86_MCE
4d732138 1095idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1096#endif
1097
ebfc453e
DV
1098/*
1099 * Save all registers in pt_regs, and switch gs if needed.
1100 * Use slow, but surefire "are we in kernel?" check.
1101 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1102 */
1103ENTRY(paranoid_entry)
8c1f7558 1104 UNWIND_HINT_FUNC
1eeb207f
DV
1105 cld
1106 SAVE_C_REGS 8
1107 SAVE_EXTRA_REGS 8
946c1911 1108 ENCODE_FRAME_POINTER 8
4d732138
IM
1109 movl $1, %ebx
1110 movl $MSR_GS_BASE, %ecx
1eeb207f 1111 rdmsr
4d732138
IM
1112 testl %edx, %edx
1113 js 1f /* negative -> in kernel */
1eeb207f 1114 SWAPGS
4d732138 1115 xorl %ebx, %ebx
1eeb207f 11161: ret
ebfc453e 1117END(paranoid_entry)
ddeb8f21 1118
ebfc453e
DV
1119/*
1120 * "Paranoid" exit path from exception stack. This is invoked
1121 * only on return from non-NMI IST interrupts that came
1122 * from kernel space.
1123 *
1124 * We may be returning to very strange contexts (e.g. very early
1125 * in syscall entry), so checking for preemption here would
1126 * be complicated. Fortunately, we there's no good reason
1127 * to try to handle preemption here.
4d732138
IM
1128 *
1129 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1130 */
ddeb8f21 1131ENTRY(paranoid_exit)
8c1f7558 1132 UNWIND_HINT_REGS
2140a994 1133 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1134 TRACE_IRQS_OFF_DEBUG
4d732138 1135 testl %ebx, %ebx /* swapgs needed? */
e5317832 1136 jnz .Lparanoid_exit_no_swapgs
f2db9382 1137 TRACE_IRQS_IRETQ
ddeb8f21 1138 SWAPGS_UNSAFE_STACK
e5317832
AL
1139 jmp .Lparanoid_exit_restore
1140.Lparanoid_exit_no_swapgs:
f2db9382 1141 TRACE_IRQS_IRETQ_DEBUG
e5317832
AL
1142.Lparanoid_exit_restore:
1143 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1144END(paranoid_exit)
1145
1146/*
ebfc453e 1147 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1148 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1149 */
1150ENTRY(error_entry)
8c1f7558 1151 UNWIND_HINT_FUNC
ddeb8f21 1152 cld
76f5df43
DV
1153 SAVE_C_REGS 8
1154 SAVE_EXTRA_REGS 8
946c1911 1155 ENCODE_FRAME_POINTER 8
4d732138 1156 xorl %ebx, %ebx
03335e95 1157 testb $3, CS+8(%rsp)
cb6f64ed 1158 jz .Lerror_kernelspace
539f5113 1159
cb6f64ed
AL
1160 /*
1161 * We entered from user mode or we're pretending to have entered
1162 * from user mode due to an IRET fault.
1163 */
ddeb8f21 1164 SWAPGS
539f5113 1165
cb6f64ed 1166.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1167 /*
1168 * We need to tell lockdep that IRQs are off. We can't do this until
1169 * we fix gsbase, and we should do it before enter_from_user_mode
1170 * (which can take locks).
1171 */
1172 TRACE_IRQS_OFF
478dc89c 1173 CALL_enter_from_user_mode
f1075053 1174 ret
02bc7768 1175
cb6f64ed 1176.Lerror_entry_done:
ddeb8f21
AH
1177 TRACE_IRQS_OFF
1178 ret
ddeb8f21 1179
ebfc453e
DV
1180 /*
1181 * There are two places in the kernel that can potentially fault with
1182 * usergs. Handle them here. B stepping K8s sometimes report a
1183 * truncated RIP for IRET exceptions returning to compat mode. Check
1184 * for these here too.
1185 */
cb6f64ed 1186.Lerror_kernelspace:
4d732138
IM
1187 incl %ebx
1188 leaq native_irq_return_iret(%rip), %rcx
1189 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1190 je .Lerror_bad_iret
4d732138
IM
1191 movl %ecx, %eax /* zero extend */
1192 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1193 je .Lbstep_iret
42c748bb 1194 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1195 jne .Lerror_entry_done
539f5113
AL
1196
1197 /*
42c748bb 1198 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1199 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1200 * .Lgs_change's error handler with kernel gsbase.
539f5113 1201 */
2fa5f04f
WL
1202 SWAPGS
1203 jmp .Lerror_entry_done
ae24ffe5 1204
cb6f64ed 1205.Lbstep_iret:
ae24ffe5 1206 /* Fix truncated RIP */
4d732138 1207 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1208 /* fall through */
1209
cb6f64ed 1210.Lerror_bad_iret:
539f5113
AL
1211 /*
1212 * We came from an IRET to user mode, so we have user gsbase.
1213 * Switch to kernel gsbase:
1214 */
b645af2d 1215 SWAPGS
539f5113
AL
1216
1217 /*
1218 * Pretend that the exception came from user mode: set up pt_regs
1219 * as if we faulted immediately after IRET and clear EBX so that
1220 * error_exit knows that we will be returning to user mode.
1221 */
4d732138
IM
1222 mov %rsp, %rdi
1223 call fixup_bad_iret
1224 mov %rax, %rsp
539f5113 1225 decl %ebx
cb6f64ed 1226 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1227END(error_entry)
1228
1229
539f5113 1230/*
75ca5b22 1231 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1232 * 1: already in kernel mode, don't need SWAPGS
1233 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1234 */
ddeb8f21 1235ENTRY(error_exit)
8c1f7558 1236 UNWIND_HINT_REGS
2140a994 1237 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1238 TRACE_IRQS_OFF
2140a994 1239 testl %ebx, %ebx
4d732138
IM
1240 jnz retint_kernel
1241 jmp retint_user
ddeb8f21
AH
1242END(error_exit)
1243
929bacec
AL
1244/*
1245 * Runs on exception stack. Xen PV does not go through this path at all,
1246 * so we can use real assembly here.
1247 */
ddeb8f21 1248ENTRY(nmi)
8c1f7558 1249 UNWIND_HINT_IRET_REGS
929bacec 1250
3f3c8b8c
SR
1251 /*
1252 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1253 * the iretq it performs will take us out of NMI context.
1254 * This means that we can have nested NMIs where the next
1255 * NMI is using the top of the stack of the previous NMI. We
1256 * can't let it execute because the nested NMI will corrupt the
1257 * stack of the previous NMI. NMI handlers are not re-entrant
1258 * anyway.
1259 *
1260 * To handle this case we do the following:
1261 * Check the a special location on the stack that contains
1262 * a variable that is set when NMIs are executing.
1263 * The interrupted task's stack is also checked to see if it
1264 * is an NMI stack.
1265 * If the variable is not set and the stack is not the NMI
1266 * stack then:
1267 * o Set the special variable on the stack
0b22930e
AL
1268 * o Copy the interrupt frame into an "outermost" location on the
1269 * stack
1270 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1271 * o Continue processing the NMI
1272 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1273 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1274 * o return back to the first NMI
1275 *
1276 * Now on exit of the first NMI, we first clear the stack variable
1277 * The NMI stack will tell any nested NMIs at that point that it is
1278 * nested. Then we pop the stack normally with iret, and if there was
1279 * a nested NMI that updated the copy interrupt stack frame, a
1280 * jump will be made to the repeat_nmi code that will handle the second
1281 * NMI.
9b6e6a83
AL
1282 *
1283 * However, espfix prevents us from directly returning to userspace
1284 * with a single IRET instruction. Similarly, IRET to user mode
1285 * can fault. We therefore handle NMIs from user space like
1286 * other IST entries.
3f3c8b8c
SR
1287 */
1288
e93c1730
AL
1289 ASM_CLAC
1290
146b2b09 1291 /* Use %rdx as our temp variable throughout */
4d732138 1292 pushq %rdx
3f3c8b8c 1293
9b6e6a83
AL
1294 testb $3, CS-RIP+8(%rsp)
1295 jz .Lnmi_from_kernel
1296
1297 /*
1298 * NMI from user mode. We need to run on the thread stack, but we
1299 * can't go through the normal entry paths: NMIs are masked, and
1300 * we don't want to enable interrupts, because then we'll end
1301 * up in an awkward situation in which IRQs are on but NMIs
1302 * are off.
83c133cf
AL
1303 *
1304 * We also must not push anything to the stack before switching
1305 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1306 */
1307
929bacec 1308 swapgs
9b6e6a83
AL
1309 cld
1310 movq %rsp, %rdx
1311 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1312 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1313 pushq 5*8(%rdx) /* pt_regs->ss */
1314 pushq 4*8(%rdx) /* pt_regs->rsp */
1315 pushq 3*8(%rdx) /* pt_regs->flags */
1316 pushq 2*8(%rdx) /* pt_regs->cs */
1317 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1318 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1319 pushq $-1 /* pt_regs->orig_ax */
1320 pushq %rdi /* pt_regs->di */
1321 pushq %rsi /* pt_regs->si */
1322 pushq (%rdx) /* pt_regs->dx */
1323 pushq %rcx /* pt_regs->cx */
1324 pushq %rax /* pt_regs->ax */
1325 pushq %r8 /* pt_regs->r8 */
1326 pushq %r9 /* pt_regs->r9 */
1327 pushq %r10 /* pt_regs->r10 */
1328 pushq %r11 /* pt_regs->r11 */
1329 pushq %rbx /* pt_regs->rbx */
1330 pushq %rbp /* pt_regs->rbp */
1331 pushq %r12 /* pt_regs->r12 */
1332 pushq %r13 /* pt_regs->r13 */
1333 pushq %r14 /* pt_regs->r14 */
1334 pushq %r15 /* pt_regs->r15 */
8c1f7558 1335 UNWIND_HINT_REGS
946c1911 1336 ENCODE_FRAME_POINTER
9b6e6a83
AL
1337
1338 /*
1339 * At this point we no longer need to worry about stack damage
1340 * due to nesting -- we're on the normal thread stack and we're
1341 * done with the NMI stack.
1342 */
1343
1344 movq %rsp, %rdi
1345 movq $-1, %rsi
1346 call do_nmi
1347
45d5a168 1348 /*
9b6e6a83 1349 * Return back to user mode. We must *not* do the normal exit
946c1911 1350 * work, because we don't want to enable interrupts.
45d5a168 1351 */
8a055d7f 1352 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1353
9b6e6a83 1354.Lnmi_from_kernel:
3f3c8b8c 1355 /*
0b22930e
AL
1356 * Here's what our stack frame will look like:
1357 * +---------------------------------------------------------+
1358 * | original SS |
1359 * | original Return RSP |
1360 * | original RFLAGS |
1361 * | original CS |
1362 * | original RIP |
1363 * +---------------------------------------------------------+
1364 * | temp storage for rdx |
1365 * +---------------------------------------------------------+
1366 * | "NMI executing" variable |
1367 * +---------------------------------------------------------+
1368 * | iret SS } Copied from "outermost" frame |
1369 * | iret Return RSP } on each loop iteration; overwritten |
1370 * | iret RFLAGS } by a nested NMI to force another |
1371 * | iret CS } iteration if needed. |
1372 * | iret RIP } |
1373 * +---------------------------------------------------------+
1374 * | outermost SS } initialized in first_nmi; |
1375 * | outermost Return RSP } will not be changed before |
1376 * | outermost RFLAGS } NMI processing is done. |
1377 * | outermost CS } Copied to "iret" frame on each |
1378 * | outermost RIP } iteration. |
1379 * +---------------------------------------------------------+
1380 * | pt_regs |
1381 * +---------------------------------------------------------+
1382 *
1383 * The "original" frame is used by hardware. Before re-enabling
1384 * NMIs, we need to be done with it, and we need to leave enough
1385 * space for the asm code here.
1386 *
1387 * We return by executing IRET while RSP points to the "iret" frame.
1388 * That will either return for real or it will loop back into NMI
1389 * processing.
1390 *
1391 * The "outermost" frame is copied to the "iret" frame on each
1392 * iteration of the loop, so each iteration starts with the "iret"
1393 * frame pointing to the final return target.
1394 */
1395
45d5a168 1396 /*
0b22930e
AL
1397 * Determine whether we're a nested NMI.
1398 *
a27507ca
AL
1399 * If we interrupted kernel code between repeat_nmi and
1400 * end_repeat_nmi, then we are a nested NMI. We must not
1401 * modify the "iret" frame because it's being written by
1402 * the outer NMI. That's okay; the outer NMI handler is
1403 * about to about to call do_nmi anyway, so we can just
1404 * resume the outer NMI.
45d5a168 1405 */
a27507ca
AL
1406
1407 movq $repeat_nmi, %rdx
1408 cmpq 8(%rsp), %rdx
1409 ja 1f
1410 movq $end_repeat_nmi, %rdx
1411 cmpq 8(%rsp), %rdx
1412 ja nested_nmi_out
14131:
45d5a168 1414
3f3c8b8c 1415 /*
a27507ca 1416 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1417 * This will not detect if we interrupted an outer NMI just
1418 * before IRET.
3f3c8b8c 1419 */
4d732138
IM
1420 cmpl $1, -8(%rsp)
1421 je nested_nmi
3f3c8b8c
SR
1422
1423 /*
0b22930e
AL
1424 * Now test if the previous stack was an NMI stack. This covers
1425 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1426 * "NMI executing" but before IRET. We need to be careful, though:
1427 * there is one case in which RSP could point to the NMI stack
1428 * despite there being no NMI active: naughty userspace controls
1429 * RSP at the very beginning of the SYSCALL targets. We can
1430 * pull a fast one on naughty userspace, though: we program
1431 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1432 * if it controls the kernel's RSP. We set DF before we clear
1433 * "NMI executing".
3f3c8b8c 1434 */
0784b364
DV
1435 lea 6*8(%rsp), %rdx
1436 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1437 cmpq %rdx, 4*8(%rsp)
1438 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1439 ja first_nmi
4d732138 1440
0784b364
DV
1441 subq $EXCEPTION_STKSZ, %rdx
1442 cmpq %rdx, 4*8(%rsp)
1443 /* If it is below the NMI stack, it is a normal NMI */
1444 jb first_nmi
810bc075
AL
1445
1446 /* Ah, it is within the NMI stack. */
1447
1448 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1449 jz first_nmi /* RSP was user controlled. */
1450
1451 /* This is a nested NMI. */
0784b364 1452
3f3c8b8c
SR
1453nested_nmi:
1454 /*
0b22930e
AL
1455 * Modify the "iret" frame to point to repeat_nmi, forcing another
1456 * iteration of NMI handling.
3f3c8b8c 1457 */
23a781e9 1458 subq $8, %rsp
4d732138
IM
1459 leaq -10*8(%rsp), %rdx
1460 pushq $__KERNEL_DS
1461 pushq %rdx
131484c8 1462 pushfq
4d732138
IM
1463 pushq $__KERNEL_CS
1464 pushq $repeat_nmi
3f3c8b8c
SR
1465
1466 /* Put stack back */
4d732138 1467 addq $(6*8), %rsp
3f3c8b8c
SR
1468
1469nested_nmi_out:
4d732138 1470 popq %rdx
3f3c8b8c 1471
0b22930e 1472 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1473 iretq
3f3c8b8c
SR
1474
1475first_nmi:
0b22930e 1476 /* Restore rdx. */
4d732138 1477 movq (%rsp), %rdx
62610913 1478
36f1a77b
AL
1479 /* Make room for "NMI executing". */
1480 pushq $0
3f3c8b8c 1481
0b22930e 1482 /* Leave room for the "iret" frame */
4d732138 1483 subq $(5*8), %rsp
28696f43 1484
0b22930e 1485 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1486 .rept 5
4d732138 1487 pushq 11*8(%rsp)
3f3c8b8c 1488 .endr
8c1f7558 1489 UNWIND_HINT_IRET_REGS
62610913 1490
79fb4ad6
SR
1491 /* Everything up to here is safe from nested NMIs */
1492
a97439aa
AL
1493#ifdef CONFIG_DEBUG_ENTRY
1494 /*
1495 * For ease of testing, unmask NMIs right away. Disabled by
1496 * default because IRET is very expensive.
1497 */
1498 pushq $0 /* SS */
1499 pushq %rsp /* RSP (minus 8 because of the previous push) */
1500 addq $8, (%rsp) /* Fix up RSP */
1501 pushfq /* RFLAGS */
1502 pushq $__KERNEL_CS /* CS */
1503 pushq $1f /* RIP */
929bacec 1504 iretq /* continues at repeat_nmi below */
8c1f7558 1505 UNWIND_HINT_IRET_REGS
a97439aa
AL
15061:
1507#endif
1508
0b22930e 1509repeat_nmi:
62610913
JB
1510 /*
1511 * If there was a nested NMI, the first NMI's iret will return
1512 * here. But NMIs are still enabled and we can take another
1513 * nested NMI. The nested NMI checks the interrupted RIP to see
1514 * if it is between repeat_nmi and end_repeat_nmi, and if so
1515 * it will just return, as we are about to repeat an NMI anyway.
1516 * This makes it safe to copy to the stack frame that a nested
1517 * NMI will update.
0b22930e
AL
1518 *
1519 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1520 * we're repeating an NMI, gsbase has the same value that it had on
1521 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1522 * gsbase if needed before we call do_nmi. "NMI executing"
1523 * is zero.
62610913 1524 */
36f1a77b 1525 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1526
62610913 1527 /*
0b22930e
AL
1528 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1529 * here must not modify the "iret" frame while we're writing to
1530 * it or it will end up containing garbage.
62610913 1531 */
4d732138 1532 addq $(10*8), %rsp
3f3c8b8c 1533 .rept 5
4d732138 1534 pushq -6*8(%rsp)
3f3c8b8c 1535 .endr
4d732138 1536 subq $(5*8), %rsp
62610913 1537end_repeat_nmi:
3f3c8b8c
SR
1538
1539 /*
0b22930e
AL
1540 * Everything below this point can be preempted by a nested NMI.
1541 * If this happens, then the inner NMI will change the "iret"
1542 * frame to point back to repeat_nmi.
3f3c8b8c 1543 */
4d732138 1544 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1545 ALLOC_PT_GPREGS_ON_STACK
1546
1fd466ef 1547 /*
ebfc453e 1548 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1549 * as we should not be calling schedule in NMI context.
1550 * Even with normal interrupts enabled. An NMI should not be
1551 * setting NEED_RESCHED or anything that normal interrupts and
1552 * exceptions might do.
1553 */
4d732138 1554 call paranoid_entry
8c1f7558 1555 UNWIND_HINT_REGS
7fbb98c5 1556
ddeb8f21 1557 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1558 movq %rsp, %rdi
1559 movq $-1, %rsi
1560 call do_nmi
7fbb98c5 1561
4d732138
IM
1562 testl %ebx, %ebx /* swapgs needed? */
1563 jnz nmi_restore
ddeb8f21
AH
1564nmi_swapgs:
1565 SWAPGS_UNSAFE_STACK
1566nmi_restore:
471ee483
AL
1567 POP_EXTRA_REGS
1568 POP_C_REGS
0b22930e 1569
471ee483
AL
1570 /*
1571 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1572 * at the "iret" frame.
1573 */
1574 addq $6*8, %rsp
28696f43 1575
810bc075
AL
1576 /*
1577 * Clear "NMI executing". Set DF first so that we can easily
1578 * distinguish the remaining code between here and IRET from
929bacec
AL
1579 * the SYSCALL entry and exit paths.
1580 *
1581 * We arguably should just inspect RIP instead, but I (Andy) wrote
1582 * this code when I had the misapprehension that Xen PV supported
1583 * NMIs, and Xen PV would break that approach.
810bc075
AL
1584 */
1585 std
1586 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1587
1588 /*
929bacec
AL
1589 * iretq reads the "iret" frame and exits the NMI stack in a
1590 * single instruction. We are returning to kernel mode, so this
1591 * cannot result in a fault. Similarly, we don't need to worry
1592 * about espfix64 on the way back to kernel mode.
0b22930e 1593 */
929bacec 1594 iretq
ddeb8f21
AH
1595END(nmi)
1596
1597ENTRY(ignore_sysret)
8c1f7558 1598 UNWIND_HINT_EMPTY
4d732138 1599 mov $-ENOSYS, %eax
ddeb8f21 1600 sysret
ddeb8f21 1601END(ignore_sysret)
2deb4be2
AL
1602
1603ENTRY(rewind_stack_do_exit)
8c1f7558 1604 UNWIND_HINT_FUNC
2deb4be2
AL
1605 /* Prevent any naive code from trying to unwind to our caller. */
1606 xorl %ebp, %ebp
1607
1608 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1609 leaq -PTREGS_SIZE(%rax), %rsp
1610 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1611
1612 call do_exit
2deb4be2 1613END(rewind_stack_do_exit)