x86/entry: Add do_syscall_32(), a C function to do 32-bit syscalls
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
4d732138 106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
1da177e4 113 * rax system call number
b87cf63e
DV
114 * rcx return address
115 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 116 * rdi arg0
1da177e4 117 * rsi arg1
0bd7b798 118 * rdx arg2
b87cf63e 119 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
120 * r8 arg4
121 * r9 arg5
4d732138 122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 123 *
1da177e4
LT
124 * Only called from user space.
125 *
7fcb3bc3 126 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 129 */
1da177e4 130
b2502b41 131ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
132 /*
133 * Interrupts are off on entry.
134 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135 * it is too small to ever cause noticeable irq latency.
136 */
72fe4858
GOC
137 SWAPGS_UNSAFE_STACK
138 /*
139 * A hypervisor implementation might want to use a label
140 * after the swapgs, so that it can do the swapgs
141 * for the guest and jump here on syscall.
142 */
b2502b41 143GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 144
4d732138
IM
145 movq %rsp, PER_CPU_VAR(rsp_scratch)
146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
147
148 /* Construct struct pt_regs on stack */
4d732138
IM
149 pushq $__USER_DS /* pt_regs->ss */
150 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
33db1fd4 151 /*
9ed8e7d8
DV
152 * Re-enable interrupts.
153 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154 * must execute atomically in the face of possible interrupt-driven
155 * task preemption. We must enable interrupts only after we're done
156 * with using rsp_scratch:
33db1fd4
DV
157 */
158 ENABLE_INTERRUPTS(CLBR_NONE)
4d732138
IM
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173
174 testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175 jnz tracesys
b2502b41 176entry_SYSCALL_64_fastpath:
fca460f9 177#if __SYSCALL_MASK == ~0
4d732138 178 cmpq $__NR_syscall_max, %rax
fca460f9 179#else
4d732138
IM
180 andl $__SYSCALL_MASK, %eax
181 cmpl $__NR_syscall_max, %eax
fca460f9 182#endif
4d732138
IM
183 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
184 movq %r10, %rcx
185 call *sys_call_table(, %rax, 8)
186 movq %rax, RAX(%rsp)
146b2b09 1871:
1da177e4 188/*
146b2b09
DV
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
0bd7b798 191 */
10cd706d 192 LOCKDEP_SYS_EXIT
4416c5a6
DV
193 /*
194 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195 * it is too small to ever cause noticeable irq latency.
196 */
72fe4858 197 DISABLE_INTERRUPTS(CLBR_NONE)
b3494a4a
AL
198
199 /*
200 * We must check ti flags with interrupts (or at least preemption)
201 * off because we must *never* return to userspace without
202 * processing exit work that is enqueued if we're preempted here.
203 * In particular, returning to userspace with any of the one-shot
204 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205 * very bad.
206 */
4d732138
IM
207 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208 jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
b3494a4a 209
29722cd4 210 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138
IM
211 movq RIP(%rsp), %rcx
212 movq EFLAGS(%rsp), %r11
213 movq RSP(%rsp), %rsp
b87cf63e 214 /*
4d732138 215 * 64-bit SYSRET restores rip from rcx,
b87cf63e
DV
216 * rflags from r11 (but RF and VM bits are forced to 0),
217 * cs and ss are loaded from MSRs.
4416c5a6 218 * Restoration of rflags re-enables interrupts.
61f01dd9
AL
219 *
220 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221 * descriptor is not reinitialized. This means that we should
222 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223 * exit the kernel, and re-enter using an interrupt vector. (All
224 * interrupt entries on x86_64 set SS to NULL.) We prevent that
225 * from happening by reloading SS in __switch_to. (Actually
226 * detecting the failure in 64-bit userspace is tricky but can be
227 * done.)
b87cf63e 228 */
2be29982 229 USERGS_SYSRET64
1da177e4 230
29ea1b25
AL
231GLOBAL(int_ret_from_sys_call_irqs_off)
232 TRACE_IRQS_ON
233 ENABLE_INTERRUPTS(CLBR_NONE)
234 jmp int_ret_from_sys_call
235
7fcb3bc3 236 /* Do syscall entry tracing */
0bd7b798 237tracesys:
4d732138
IM
238 movq %rsp, %rdi
239 movl $AUDIT_ARCH_X86_64, %esi
240 call syscall_trace_enter_phase1
241 test %rax, %rax
242 jnz tracesys_phase2 /* if needed, run the slow path */
243 RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
244 movq ORIG_RAX(%rsp), %rax
245 jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
1dcf74f6
AL
246
247tracesys_phase2:
76f5df43 248 SAVE_EXTRA_REGS
4d732138
IM
249 movq %rsp, %rdi
250 movl $AUDIT_ARCH_X86_64, %esi
251 movq %rax, %rdx
252 call syscall_trace_enter_phase2
1dcf74f6 253
d4d67150 254 /*
e90e147c 255 * Reload registers from stack in case ptrace changed them.
1dcf74f6 256 * We don't reload %rax because syscall_trace_entry_phase2() returned
d4d67150
RM
257 * the value it wants us to use in the table lookup.
258 */
76f5df43
DV
259 RESTORE_C_REGS_EXCEPT_RAX
260 RESTORE_EXTRA_REGS
fca460f9 261#if __SYSCALL_MASK == ~0
4d732138 262 cmpq $__NR_syscall_max, %rax
fca460f9 263#else
4d732138
IM
264 andl $__SYSCALL_MASK, %eax
265 cmpl $__NR_syscall_max, %eax
fca460f9 266#endif
4d732138
IM
267 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
268 movq %r10, %rcx /* fixup for C */
269 call *sys_call_table(, %rax, 8)
270 movq %rax, RAX(%rsp)
a6de5a21 2711:
7fcb3bc3 272 /* Use IRET because user could have changed pt_regs->foo */
0bd7b798
AH
273
274/*
1da177e4 275 * Syscall return path ending with IRET.
7fcb3bc3 276 * Has correct iret frame.
bcddc015 277 */
bc8b2b92 278GLOBAL(int_ret_from_sys_call)
76f5df43 279 SAVE_EXTRA_REGS
29ea1b25
AL
280 movq %rsp, %rdi
281 call syscall_return_slowpath /* returns with IRQs disabled */
76f5df43 282 RESTORE_EXTRA_REGS
29ea1b25 283 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
284
285 /*
286 * Try to use SYSRET instead of IRET if we're returning to
287 * a completely clean 64-bit userspace context.
288 */
4d732138
IM
289 movq RCX(%rsp), %rcx
290 movq RIP(%rsp), %r11
291 cmpq %rcx, %r11 /* RCX == RIP */
292 jne opportunistic_sysret_failed
fffbb5dc
DV
293
294 /*
295 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296 * in kernel space. This essentially lets the user take over
17be0aec 297 * the kernel, since userspace controls RSP.
fffbb5dc 298 *
17be0aec 299 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
300 * to be updated to remain correct on both old and new CPUs.
301 */
302 .ifne __VIRTUAL_MASK_SHIFT - 47
303 .error "virtual address width changed -- SYSRET checks need update"
304 .endif
4d732138 305
17be0aec
DV
306 /* Change top 16 bits to be the sign-extension of 47th bit */
307 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 309
17be0aec
DV
310 /* If this changed %rcx, it was not canonical */
311 cmpq %rcx, %r11
312 jne opportunistic_sysret_failed
fffbb5dc 313
4d732138
IM
314 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
315 jne opportunistic_sysret_failed
fffbb5dc 316
4d732138
IM
317 movq R11(%rsp), %r11
318 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
319 jne opportunistic_sysret_failed
fffbb5dc
DV
320
321 /*
322 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
323 * restoring TF results in a trap from userspace immediately after
324 * SYSRET. This would cause an infinite loop whenever #DB happens
325 * with register state that satisfies the opportunistic SYSRET
326 * conditions. For example, single-stepping this user code:
327 *
4d732138 328 * movq $stuck_here, %rcx
fffbb5dc
DV
329 * pushfq
330 * popq %r11
331 * stuck_here:
332 *
333 * would never get past 'stuck_here'.
334 */
4d732138
IM
335 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336 jnz opportunistic_sysret_failed
fffbb5dc
DV
337
338 /* nothing to check for RSP */
339
4d732138
IM
340 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
341 jne opportunistic_sysret_failed
fffbb5dc
DV
342
343 /*
4d732138
IM
344 * We win! This label is here just for ease of understanding
345 * perf profiles. Nothing jumps here.
fffbb5dc
DV
346 */
347syscall_return_via_sysret:
17be0aec
DV
348 /* rcx and r11 are already restored (see code above) */
349 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 350 movq RSP(%rsp), %rsp
fffbb5dc 351 USERGS_SYSRET64
fffbb5dc
DV
352
353opportunistic_sysret_failed:
354 SWAPGS
355 jmp restore_c_regs_and_iret
b2502b41 356END(entry_SYSCALL_64)
0bd7b798 357
fffbb5dc 358
1d4b4b29
AV
359 .macro FORK_LIKE func
360ENTRY(stub_\func)
76f5df43 361 SAVE_EXTRA_REGS 8
4d732138 362 jmp sys_\func
1d4b4b29
AV
363END(stub_\func)
364 .endm
365
366 FORK_LIKE clone
367 FORK_LIKE fork
368 FORK_LIKE vfork
1da177e4 369
1da177e4 370ENTRY(stub_execve)
fc3e958a
DV
371 call sys_execve
372return_from_execve:
373 testl %eax, %eax
374 jz 1f
375 /* exec failed, can use fast SYSRET code path in this case */
376 ret
3771:
378 /* must use IRET code path (pt_regs->cs may have changed) */
379 addq $8, %rsp
380 ZERO_EXTRA_REGS
4d732138 381 movq %rax, RAX(%rsp)
fc3e958a 382 jmp int_ret_from_sys_call
4b787e0b 383END(stub_execve)
a37f34a3
DV
384/*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388 .align 8
389GLOBAL(stub_execveat)
fc3e958a
DV
390 call sys_execveat
391 jmp return_from_execve
27d6ec7a
DD
392END(stub_execveat)
393
8169aff6 394#if defined(CONFIG_X86_X32_ABI)
a37f34a3
DV
395 .align 8
396GLOBAL(stub_x32_execve)
05f1752d
DV
397 call compat_sys_execve
398 jmp return_from_execve
05f1752d 399END(stub_x32_execve)
a37f34a3
DV
400 .align 8
401GLOBAL(stub_x32_execveat)
0f90fb97
DV
402 call compat_sys_execveat
403 jmp return_from_execve
ac7f5dfb 404END(stub_x32_execveat)
0f90fb97
DV
405#endif
406
1da177e4
LT
407/*
408 * sigreturn is special because it needs to restore all registers on return.
409 * This cannot be done with SYSRET, so use the IRET return path instead.
0bd7b798 410 */
1da177e4 411ENTRY(stub_rt_sigreturn)
31f0119b
DV
412 /*
413 * SAVE_EXTRA_REGS result is not normally needed:
414 * sigreturn overwrites all pt_regs->GPREGS.
415 * But sigreturn can fail (!), and there is no easy way to detect that.
416 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
417 * we SAVE_EXTRA_REGS here.
418 */
419 SAVE_EXTRA_REGS 8
4d732138 420 call sys_rt_sigreturn
31f0119b
DV
421return_from_stub:
422 addq $8, %rsp
76f5df43 423 RESTORE_EXTRA_REGS
4d732138
IM
424 movq %rax, RAX(%rsp)
425 jmp int_ret_from_sys_call
4b787e0b 426END(stub_rt_sigreturn)
1da177e4 427
c5a37394 428#ifdef CONFIG_X86_X32_ABI
c5a37394 429ENTRY(stub_x32_rt_sigreturn)
31f0119b 430 SAVE_EXTRA_REGS 8
4d732138
IM
431 call sys32_x32_rt_sigreturn
432 jmp return_from_stub
c5a37394 433END(stub_x32_rt_sigreturn)
c5a37394
PA
434#endif
435
1eeb207f
DV
436/*
437 * A newly forked process directly context switches into this address.
438 *
439 * rdi: prev task we switched from
440 */
441ENTRY(ret_from_fork)
1eeb207f 442
4d732138 443 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 444
4d732138
IM
445 pushq $0x0002
446 popfq /* reset kernel eflags */
1eeb207f 447
4d732138 448 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 449
1eeb207f
DV
450 RESTORE_EXTRA_REGS
451
4d732138 452 testb $3, CS(%rsp) /* from kernel_thread? */
1eeb207f 453
1e3fbb8a
AL
454 /*
455 * By the time we get here, we have no idea whether our pt_regs,
456 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
138bd56a 457 * the slow path, or one of the 32-bit compat paths.
66ad4efa 458 * Use IRET code path to return, since it can safely handle
1e3fbb8a
AL
459 * all of the above.
460 */
66ad4efa 461 jnz int_ret_from_sys_call
1eeb207f 462
4d732138
IM
463 /*
464 * We came from kernel_thread
465 * nb: we depend on RESTORE_EXTRA_REGS above
466 */
467 movq %rbp, %rdi
468 call *%rbx
469 movl $0, RAX(%rsp)
1eeb207f 470 RESTORE_EXTRA_REGS
4d732138 471 jmp int_ret_from_sys_call
1eeb207f
DV
472END(ret_from_fork)
473
939b7871 474/*
3304c9c3
DV
475 * Build the entry stubs with some assembler magic.
476 * We pack 1 stub into every 8-byte block.
939b7871 477 */
3304c9c3 478 .align 8
939b7871 479ENTRY(irq_entries_start)
3304c9c3
DV
480 vector=FIRST_EXTERNAL_VECTOR
481 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 482 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
483 vector=vector+1
484 jmp common_interrupt
3304c9c3
DV
485 .align 8
486 .endr
939b7871
PA
487END(irq_entries_start)
488
d99015b1 489/*
1da177e4
LT
490 * Interrupt entry/exit.
491 *
492 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
493 *
494 * Entry runs with interrupts off.
495 */
1da177e4 496
722024db 497/* 0(%rsp): ~(interrupt number) */
1da177e4 498 .macro interrupt func
f6f64681 499 cld
ff467594
AL
500 ALLOC_PT_GPREGS_ON_STACK
501 SAVE_C_REGS
502 SAVE_EXTRA_REGS
76f5df43 503
ff467594 504 testb $3, CS(%rsp)
dde74f2e 505 jz 1f
02bc7768
AL
506
507 /*
508 * IRQ from user mode. Switch to kernel gsbase and inform context
509 * tracking that we're in kernel mode.
510 */
f6f64681 511 SWAPGS
02bc7768
AL
512#ifdef CONFIG_CONTEXT_TRACKING
513 call enter_from_user_mode
514#endif
515
76f5df43 5161:
f6f64681 517 /*
e90e147c 518 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
519 * irq_count is used to check if a CPU is already on an interrupt stack
520 * or not. While this is essentially redundant with preempt_count it is
521 * a little cheaper to use a separate counter in the PDA (short of
522 * moving irq_enter into assembly, which would be too much work)
523 */
a586f98e 524 movq %rsp, %rdi
4d732138
IM
525 incl PER_CPU_VAR(irq_count)
526 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 527 pushq %rdi
f6f64681
DV
528 /* We entered an interrupt context - irqs are off: */
529 TRACE_IRQS_OFF
530
a586f98e 531 call \func /* rdi points to pt_regs */
1da177e4
LT
532 .endm
533
722024db
AH
534 /*
535 * The interrupt stubs push (~vector+0x80) onto the stack and
536 * then jump to common_interrupt.
537 */
939b7871
PA
538 .p2align CONFIG_X86_L1_CACHE_SHIFT
539common_interrupt:
ee4eb87b 540 ASM_CLAC
4d732138 541 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 542 interrupt do_IRQ
34061f13 543 /* 0(%rsp): old RSP */
7effaa88 544ret_from_intr:
72fe4858 545 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 546 TRACE_IRQS_OFF
4d732138 547 decl PER_CPU_VAR(irq_count)
625dbc3b 548
a2bbe750 549 /* Restore saved previous stack */
ff467594 550 popq %rsp
625dbc3b 551
03335e95 552 testb $3, CS(%rsp)
dde74f2e 553 jz retint_kernel
4d732138 554
02bc7768 555 /* Interrupt came from user space */
02bc7768
AL
556GLOBAL(retint_user)
557 mov %rsp,%rdi
558 call prepare_exit_to_usermode
2601e64d 559 TRACE_IRQS_IRETQ
72fe4858 560 SWAPGS
ff467594 561 jmp restore_regs_and_iret
2601e64d 562
627276cb 563/* Returning to kernel space */
6ba71b76 564retint_kernel:
627276cb
DV
565#ifdef CONFIG_PREEMPT
566 /* Interrupts are off */
567 /* Check if we need preemption */
4d732138 568 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 569 jnc 1f
4d732138 5700: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 571 jnz 1f
627276cb 572 call preempt_schedule_irq
36acef25 573 jmp 0b
6ba71b76 5741:
627276cb 575#endif
2601e64d
IM
576 /*
577 * The iretq could re-enable interrupts:
578 */
579 TRACE_IRQS_IRETQ
fffbb5dc
DV
580
581/*
582 * At this label, code paths which return to kernel and to user,
583 * which come from interrupts/exception and from syscalls, merge.
584 */
ff467594
AL
585restore_regs_and_iret:
586 RESTORE_EXTRA_REGS
fffbb5dc 587restore_c_regs_and_iret:
76f5df43
DV
588 RESTORE_C_REGS
589 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
590 INTERRUPT_RETURN
591
592ENTRY(native_iret)
3891a04a
PA
593 /*
594 * Are we returning to a stack segment from the LDT? Note: in
595 * 64-bit mode SS:RSP on the exception stack is always valid.
596 */
34273f41 597#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
598 testb $4, (SS-RIP)(%rsp)
599 jnz native_irq_return_ldt
34273f41 600#endif
3891a04a 601
af726f21 602.global native_irq_return_iret
7209a75d 603native_irq_return_iret:
b645af2d
AL
604 /*
605 * This may fault. Non-paranoid faults on return to userspace are
606 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
607 * Double-faults due to espfix64 are handled in do_double_fault.
608 * Other faults here are fatal.
609 */
1da177e4 610 iretq
3701d863 611
34273f41 612#ifdef CONFIG_X86_ESPFIX64
7209a75d 613native_irq_return_ldt:
4d732138
IM
614 pushq %rax
615 pushq %rdi
3891a04a 616 SWAPGS
4d732138
IM
617 movq PER_CPU_VAR(espfix_waddr), %rdi
618 movq %rax, (0*8)(%rdi) /* RAX */
619 movq (2*8)(%rsp), %rax /* RIP */
620 movq %rax, (1*8)(%rdi)
621 movq (3*8)(%rsp), %rax /* CS */
622 movq %rax, (2*8)(%rdi)
623 movq (4*8)(%rsp), %rax /* RFLAGS */
624 movq %rax, (3*8)(%rdi)
625 movq (6*8)(%rsp), %rax /* SS */
626 movq %rax, (5*8)(%rdi)
627 movq (5*8)(%rsp), %rax /* RSP */
628 movq %rax, (4*8)(%rdi)
629 andl $0xffff0000, %eax
630 popq %rdi
631 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 632 SWAPGS
4d732138
IM
633 movq %rax, %rsp
634 popq %rax
635 jmp native_irq_return_iret
34273f41 636#endif
4b787e0b 637END(common_interrupt)
3891a04a 638
1da177e4
LT
639/*
640 * APIC interrupts.
0bd7b798 641 */
cf910e83 642.macro apicinterrupt3 num sym do_sym
322648d1 643ENTRY(\sym)
ee4eb87b 644 ASM_CLAC
4d732138 645 pushq $~(\num)
39e95433 646.Lcommon_\sym:
322648d1 647 interrupt \do_sym
4d732138 648 jmp ret_from_intr
322648d1
AH
649END(\sym)
650.endm
1da177e4 651
cf910e83
SA
652#ifdef CONFIG_TRACING
653#define trace(sym) trace_##sym
654#define smp_trace(sym) smp_trace_##sym
655
656.macro trace_apicinterrupt num sym
657apicinterrupt3 \num trace(\sym) smp_trace(\sym)
658.endm
659#else
660.macro trace_apicinterrupt num sym do_sym
661.endm
662#endif
663
664.macro apicinterrupt num sym do_sym
665apicinterrupt3 \num \sym \do_sym
666trace_apicinterrupt \num \sym
667.endm
668
322648d1 669#ifdef CONFIG_SMP
4d732138
IM
670apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
671apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 672#endif
1da177e4 673
03b48632 674#ifdef CONFIG_X86_UV
4d732138 675apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 676#endif
4d732138
IM
677
678apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
679apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 680
d78f2664 681#ifdef CONFIG_HAVE_KVM
4d732138
IM
682apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
683apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
684#endif
685
33e5ff63 686#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 687apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
688#endif
689
24fd78a8 690#ifdef CONFIG_X86_MCE_AMD
4d732138 691apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
692#endif
693
33e5ff63 694#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 695apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 696#endif
1812924b 697
322648d1 698#ifdef CONFIG_SMP
4d732138
IM
699apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
700apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
701apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 702#endif
1da177e4 703
4d732138
IM
704apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
705apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 706
e360adbe 707#ifdef CONFIG_IRQ_WORK
4d732138 708apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
709#endif
710
1da177e4
LT
711/*
712 * Exception entry points.
0bd7b798 713 */
9b476688 714#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
715
716.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 717ENTRY(\sym)
577ed45e
AL
718 /* Sanity check */
719 .if \shift_ist != -1 && \paranoid == 0
720 .error "using shift_ist requires paranoid=1"
721 .endif
722
ee4eb87b 723 ASM_CLAC
b8b1d08b 724 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
725
726 .ifeq \has_error_code
4d732138 727 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
728 .endif
729
76f5df43 730 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
731
732 .if \paranoid
48e08d0f 733 .if \paranoid == 1
4d732138
IM
734 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
735 jnz 1f
48e08d0f 736 .endif
4d732138 737 call paranoid_entry
cb5dd2c5 738 .else
4d732138 739 call error_entry
cb5dd2c5 740 .endif
ebfc453e 741 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 742
cb5dd2c5 743 .if \paranoid
577ed45e 744 .if \shift_ist != -1
4d732138 745 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 746 .else
b8b1d08b 747 TRACE_IRQS_OFF
cb5dd2c5 748 .endif
577ed45e 749 .endif
cb5dd2c5 750
4d732138 751 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
752
753 .if \has_error_code
4d732138
IM
754 movq ORIG_RAX(%rsp), %rsi /* get error code */
755 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 756 .else
4d732138 757 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
758 .endif
759
577ed45e 760 .if \shift_ist != -1
4d732138 761 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
762 .endif
763
4d732138 764 call \do_sym
cb5dd2c5 765
577ed45e 766 .if \shift_ist != -1
4d732138 767 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
768 .endif
769
ebfc453e 770 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 771 .if \paranoid
4d732138 772 jmp paranoid_exit
cb5dd2c5 773 .else
4d732138 774 jmp error_exit
cb5dd2c5
AL
775 .endif
776
48e08d0f 777 .if \paranoid == 1
48e08d0f
AL
778 /*
779 * Paranoid entry from userspace. Switch stacks and treat it
780 * as a normal entry. This means that paranoid handlers
781 * run in real process context if user_mode(regs).
782 */
7831:
4d732138 784 call error_entry
48e08d0f 785
48e08d0f 786
4d732138
IM
787 movq %rsp, %rdi /* pt_regs pointer */
788 call sync_regs
789 movq %rax, %rsp /* switch stack */
48e08d0f 790
4d732138 791 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
792
793 .if \has_error_code
4d732138
IM
794 movq ORIG_RAX(%rsp), %rsi /* get error code */
795 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 796 .else
4d732138 797 xorl %esi, %esi /* no error code */
48e08d0f
AL
798 .endif
799
4d732138 800 call \do_sym
48e08d0f 801
4d732138 802 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 803 .endif
ddeb8f21 804END(\sym)
322648d1 805.endm
b8b1d08b 806
25c74b10 807#ifdef CONFIG_TRACING
cb5dd2c5
AL
808.macro trace_idtentry sym do_sym has_error_code:req
809idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
810idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
811.endm
812#else
cb5dd2c5
AL
813.macro trace_idtentry sym do_sym has_error_code:req
814idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
815.endm
816#endif
817
4d732138
IM
818idtentry divide_error do_divide_error has_error_code=0
819idtentry overflow do_overflow has_error_code=0
820idtentry bounds do_bounds has_error_code=0
821idtentry invalid_op do_invalid_op has_error_code=0
822idtentry device_not_available do_device_not_available has_error_code=0
823idtentry double_fault do_double_fault has_error_code=1 paranoid=2
824idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
825idtentry invalid_TSS do_invalid_TSS has_error_code=1
826idtentry segment_not_present do_segment_not_present has_error_code=1
827idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
828idtentry coprocessor_error do_coprocessor_error has_error_code=0
829idtentry alignment_check do_alignment_check has_error_code=1
830idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
831
832
833 /*
834 * Reload gs selector with exception handling
835 * edi: new selector
836 */
9f9d489a 837ENTRY(native_load_gs_index)
131484c8 838 pushfq
b8aa287f 839 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 840 SWAPGS
0bd7b798 841gs_change:
4d732138
IM
842 movl %edi, %gs
8432: mfence /* workaround */
72fe4858 844 SWAPGS
131484c8 845 popfq
9f1e87ea 846 ret
6efdcfaf 847END(native_load_gs_index)
0bd7b798 848
4d732138
IM
849 _ASM_EXTABLE(gs_change, bad_gs)
850 .section .fixup, "ax"
1da177e4 851 /* running with kernelgs */
0bd7b798 852bad_gs:
4d732138
IM
853 SWAPGS /* switch back to user gs */
854 xorl %eax, %eax
855 movl %eax, %gs
856 jmp 2b
9f1e87ea 857 .previous
0bd7b798 858
2699500b 859/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 860ENTRY(do_softirq_own_stack)
4d732138
IM
861 pushq %rbp
862 mov %rsp, %rbp
863 incl PER_CPU_VAR(irq_count)
864 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
865 push %rbp /* frame pointer backlink */
866 call __do_softirq
2699500b 867 leaveq
4d732138 868 decl PER_CPU_VAR(irq_count)
ed6b676c 869 ret
7d65f4a6 870END(do_softirq_own_stack)
75154f40 871
3d75e1b8 872#ifdef CONFIG_XEN
cb5dd2c5 873idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
874
875/*
9f1e87ea
CG
876 * A note on the "critical region" in our callback handler.
877 * We want to avoid stacking callback handlers due to events occurring
878 * during handling of the last event. To do this, we keep events disabled
879 * until we've done all processing. HOWEVER, we must enable events before
880 * popping the stack frame (can't be done atomically) and so it would still
881 * be possible to get enough handler activations to overflow the stack.
882 * Although unlikely, bugs of that kind are hard to track down, so we'd
883 * like to avoid the possibility.
884 * So, on entry to the handler we detect whether we interrupted an
885 * existing activation in its critical region -- if so, we pop the current
886 * activation and restart the handler using the previous one.
887 */
4d732138
IM
888ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
889
9f1e87ea
CG
890/*
891 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
892 * see the correct pointer to the pt_regs
893 */
4d732138
IM
894 movq %rdi, %rsp /* we don't return, adjust the stack frame */
89511: incl PER_CPU_VAR(irq_count)
896 movq %rsp, %rbp
897 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
898 pushq %rbp /* frame pointer backlink */
899 call xen_evtchn_do_upcall
900 popq %rsp
901 decl PER_CPU_VAR(irq_count)
fdfd811d 902#ifndef CONFIG_PREEMPT
4d732138 903 call xen_maybe_preempt_hcall
fdfd811d 904#endif
4d732138 905 jmp error_exit
371c394a 906END(xen_do_hypervisor_callback)
3d75e1b8
JF
907
908/*
9f1e87ea
CG
909 * Hypervisor uses this for application faults while it executes.
910 * We get here for two reasons:
911 * 1. Fault while reloading DS, ES, FS or GS
912 * 2. Fault while executing IRET
913 * Category 1 we do not need to fix up as Xen has already reloaded all segment
914 * registers that could be reloaded and zeroed the others.
915 * Category 2 we fix up by killing the current process. We cannot use the
916 * normal Linux return path in this case because if we use the IRET hypercall
917 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
918 * We distinguish between categories by comparing each saved segment register
919 * with its current contents: any discrepancy means we in category 1.
920 */
3d75e1b8 921ENTRY(xen_failsafe_callback)
4d732138
IM
922 movl %ds, %ecx
923 cmpw %cx, 0x10(%rsp)
924 jne 1f
925 movl %es, %ecx
926 cmpw %cx, 0x18(%rsp)
927 jne 1f
928 movl %fs, %ecx
929 cmpw %cx, 0x20(%rsp)
930 jne 1f
931 movl %gs, %ecx
932 cmpw %cx, 0x28(%rsp)
933 jne 1f
3d75e1b8 934 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
935 movq (%rsp), %rcx
936 movq 8(%rsp), %r11
937 addq $0x30, %rsp
938 pushq $0 /* RIP */
939 pushq %r11
940 pushq %rcx
941 jmp general_protection
3d75e1b8 9421: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
943 movq (%rsp), %rcx
944 movq 8(%rsp), %r11
945 addq $0x30, %rsp
946 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
947 ALLOC_PT_GPREGS_ON_STACK
948 SAVE_C_REGS
949 SAVE_EXTRA_REGS
4d732138 950 jmp error_exit
3d75e1b8
JF
951END(xen_failsafe_callback)
952
cf910e83 953apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
954 xen_hvm_callback_vector xen_evtchn_do_upcall
955
3d75e1b8 956#endif /* CONFIG_XEN */
ddeb8f21 957
bc2b0331 958#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 959apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
960 hyperv_callback_vector hyperv_vector_handler
961#endif /* CONFIG_HYPERV */
962
4d732138
IM
963idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
964idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
965idtentry stack_segment do_stack_segment has_error_code=1
966
6cac5a92 967#ifdef CONFIG_XEN
4d732138
IM
968idtentry xen_debug do_debug has_error_code=0
969idtentry xen_int3 do_int3 has_error_code=0
970idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 971#endif
4d732138
IM
972
973idtentry general_protection do_general_protection has_error_code=1
974trace_idtentry page_fault do_page_fault has_error_code=1
975
631bc487 976#ifdef CONFIG_KVM_GUEST
4d732138 977idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 978#endif
4d732138 979
ddeb8f21 980#ifdef CONFIG_X86_MCE
4d732138 981idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
982#endif
983
ebfc453e
DV
984/*
985 * Save all registers in pt_regs, and switch gs if needed.
986 * Use slow, but surefire "are we in kernel?" check.
987 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
988 */
989ENTRY(paranoid_entry)
1eeb207f
DV
990 cld
991 SAVE_C_REGS 8
992 SAVE_EXTRA_REGS 8
4d732138
IM
993 movl $1, %ebx
994 movl $MSR_GS_BASE, %ecx
1eeb207f 995 rdmsr
4d732138
IM
996 testl %edx, %edx
997 js 1f /* negative -> in kernel */
1eeb207f 998 SWAPGS
4d732138 999 xorl %ebx, %ebx
1eeb207f 10001: ret
ebfc453e 1001END(paranoid_entry)
ddeb8f21 1002
ebfc453e
DV
1003/*
1004 * "Paranoid" exit path from exception stack. This is invoked
1005 * only on return from non-NMI IST interrupts that came
1006 * from kernel space.
1007 *
1008 * We may be returning to very strange contexts (e.g. very early
1009 * in syscall entry), so checking for preemption here would
1010 * be complicated. Fortunately, we there's no good reason
1011 * to try to handle preemption here.
4d732138
IM
1012 *
1013 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1014 */
ddeb8f21 1015ENTRY(paranoid_exit)
ddeb8f21 1016 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 1017 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1018 testl %ebx, %ebx /* swapgs needed? */
1019 jnz paranoid_exit_no_swapgs
f2db9382 1020 TRACE_IRQS_IRETQ
ddeb8f21 1021 SWAPGS_UNSAFE_STACK
4d732138 1022 jmp paranoid_exit_restore
0d550836 1023paranoid_exit_no_swapgs:
f2db9382 1024 TRACE_IRQS_IRETQ_DEBUG
0d550836 1025paranoid_exit_restore:
76f5df43
DV
1026 RESTORE_EXTRA_REGS
1027 RESTORE_C_REGS
1028 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1029 INTERRUPT_RETURN
ddeb8f21
AH
1030END(paranoid_exit)
1031
1032/*
ebfc453e 1033 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1034 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1035 */
1036ENTRY(error_entry)
ddeb8f21 1037 cld
76f5df43
DV
1038 SAVE_C_REGS 8
1039 SAVE_EXTRA_REGS 8
4d732138 1040 xorl %ebx, %ebx
03335e95 1041 testb $3, CS+8(%rsp)
cb6f64ed 1042 jz .Lerror_kernelspace
539f5113 1043
cb6f64ed
AL
1044.Lerror_entry_from_usermode_swapgs:
1045 /*
1046 * We entered from user mode or we're pretending to have entered
1047 * from user mode due to an IRET fault.
1048 */
ddeb8f21 1049 SWAPGS
539f5113 1050
cb6f64ed 1051.Lerror_entry_from_usermode_after_swapgs:
02bc7768
AL
1052#ifdef CONFIG_CONTEXT_TRACKING
1053 call enter_from_user_mode
1054#endif
1055
cb6f64ed 1056.Lerror_entry_done:
02bc7768 1057
ddeb8f21
AH
1058 TRACE_IRQS_OFF
1059 ret
ddeb8f21 1060
ebfc453e
DV
1061 /*
1062 * There are two places in the kernel that can potentially fault with
1063 * usergs. Handle them here. B stepping K8s sometimes report a
1064 * truncated RIP for IRET exceptions returning to compat mode. Check
1065 * for these here too.
1066 */
cb6f64ed 1067.Lerror_kernelspace:
4d732138
IM
1068 incl %ebx
1069 leaq native_irq_return_iret(%rip), %rcx
1070 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1071 je .Lerror_bad_iret
4d732138
IM
1072 movl %ecx, %eax /* zero extend */
1073 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1074 je .Lbstep_iret
4d732138 1075 cmpq $gs_change, RIP+8(%rsp)
cb6f64ed 1076 jne .Lerror_entry_done
539f5113
AL
1077
1078 /*
1079 * hack: gs_change can fail with user gsbase. If this happens, fix up
1080 * gsbase and proceed. We'll fix up the exception and land in
1081 * gs_change's error handler with kernel gsbase.
1082 */
cb6f64ed 1083 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1084
cb6f64ed 1085.Lbstep_iret:
ae24ffe5 1086 /* Fix truncated RIP */
4d732138 1087 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1088 /* fall through */
1089
cb6f64ed 1090.Lerror_bad_iret:
539f5113
AL
1091 /*
1092 * We came from an IRET to user mode, so we have user gsbase.
1093 * Switch to kernel gsbase:
1094 */
b645af2d 1095 SWAPGS
539f5113
AL
1096
1097 /*
1098 * Pretend that the exception came from user mode: set up pt_regs
1099 * as if we faulted immediately after IRET and clear EBX so that
1100 * error_exit knows that we will be returning to user mode.
1101 */
4d732138
IM
1102 mov %rsp, %rdi
1103 call fixup_bad_iret
1104 mov %rax, %rsp
539f5113 1105 decl %ebx
cb6f64ed 1106 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1107END(error_entry)
1108
1109
539f5113
AL
1110/*
1111 * On entry, EBS is a "return to kernel mode" flag:
1112 * 1: already in kernel mode, don't need SWAPGS
1113 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1114 */
ddeb8f21 1115ENTRY(error_exit)
4d732138 1116 movl %ebx, %eax
ddeb8f21
AH
1117 DISABLE_INTERRUPTS(CLBR_NONE)
1118 TRACE_IRQS_OFF
4d732138
IM
1119 testl %eax, %eax
1120 jnz retint_kernel
1121 jmp retint_user
ddeb8f21
AH
1122END(error_exit)
1123
0784b364 1124/* Runs on exception stack */
ddeb8f21 1125ENTRY(nmi)
fc57a7c6
AL
1126 /*
1127 * Fix up the exception frame if we're on Xen.
1128 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1129 * one value to the stack on native, so it may clobber the rdx
1130 * scratch slot, but it won't clobber any of the important
1131 * slots past it.
1132 *
1133 * Xen is a different story, because the Xen frame itself overlaps
1134 * the "NMI executing" variable.
1135 */
ddeb8f21 1136 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1137
3f3c8b8c
SR
1138 /*
1139 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1140 * the iretq it performs will take us out of NMI context.
1141 * This means that we can have nested NMIs where the next
1142 * NMI is using the top of the stack of the previous NMI. We
1143 * can't let it execute because the nested NMI will corrupt the
1144 * stack of the previous NMI. NMI handlers are not re-entrant
1145 * anyway.
1146 *
1147 * To handle this case we do the following:
1148 * Check the a special location on the stack that contains
1149 * a variable that is set when NMIs are executing.
1150 * The interrupted task's stack is also checked to see if it
1151 * is an NMI stack.
1152 * If the variable is not set and the stack is not the NMI
1153 * stack then:
1154 * o Set the special variable on the stack
0b22930e
AL
1155 * o Copy the interrupt frame into an "outermost" location on the
1156 * stack
1157 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1158 * o Continue processing the NMI
1159 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1160 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1161 * o return back to the first NMI
1162 *
1163 * Now on exit of the first NMI, we first clear the stack variable
1164 * The NMI stack will tell any nested NMIs at that point that it is
1165 * nested. Then we pop the stack normally with iret, and if there was
1166 * a nested NMI that updated the copy interrupt stack frame, a
1167 * jump will be made to the repeat_nmi code that will handle the second
1168 * NMI.
9b6e6a83
AL
1169 *
1170 * However, espfix prevents us from directly returning to userspace
1171 * with a single IRET instruction. Similarly, IRET to user mode
1172 * can fault. We therefore handle NMIs from user space like
1173 * other IST entries.
3f3c8b8c
SR
1174 */
1175
146b2b09 1176 /* Use %rdx as our temp variable throughout */
4d732138 1177 pushq %rdx
3f3c8b8c 1178
9b6e6a83
AL
1179 testb $3, CS-RIP+8(%rsp)
1180 jz .Lnmi_from_kernel
1181
1182 /*
1183 * NMI from user mode. We need to run on the thread stack, but we
1184 * can't go through the normal entry paths: NMIs are masked, and
1185 * we don't want to enable interrupts, because then we'll end
1186 * up in an awkward situation in which IRQs are on but NMIs
1187 * are off.
83c133cf
AL
1188 *
1189 * We also must not push anything to the stack before switching
1190 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1191 */
1192
83c133cf 1193 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1194 cld
1195 movq %rsp, %rdx
1196 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1197 pushq 5*8(%rdx) /* pt_regs->ss */
1198 pushq 4*8(%rdx) /* pt_regs->rsp */
1199 pushq 3*8(%rdx) /* pt_regs->flags */
1200 pushq 2*8(%rdx) /* pt_regs->cs */
1201 pushq 1*8(%rdx) /* pt_regs->rip */
1202 pushq $-1 /* pt_regs->orig_ax */
1203 pushq %rdi /* pt_regs->di */
1204 pushq %rsi /* pt_regs->si */
1205 pushq (%rdx) /* pt_regs->dx */
1206 pushq %rcx /* pt_regs->cx */
1207 pushq %rax /* pt_regs->ax */
1208 pushq %r8 /* pt_regs->r8 */
1209 pushq %r9 /* pt_regs->r9 */
1210 pushq %r10 /* pt_regs->r10 */
1211 pushq %r11 /* pt_regs->r11 */
1212 pushq %rbx /* pt_regs->rbx */
1213 pushq %rbp /* pt_regs->rbp */
1214 pushq %r12 /* pt_regs->r12 */
1215 pushq %r13 /* pt_regs->r13 */
1216 pushq %r14 /* pt_regs->r14 */
1217 pushq %r15 /* pt_regs->r15 */
1218
1219 /*
1220 * At this point we no longer need to worry about stack damage
1221 * due to nesting -- we're on the normal thread stack and we're
1222 * done with the NMI stack.
1223 */
1224
1225 movq %rsp, %rdi
1226 movq $-1, %rsi
1227 call do_nmi
1228
45d5a168 1229 /*
9b6e6a83
AL
1230 * Return back to user mode. We must *not* do the normal exit
1231 * work, because we don't want to enable interrupts. Fortunately,
1232 * do_nmi doesn't modify pt_regs.
45d5a168 1233 */
9b6e6a83
AL
1234 SWAPGS
1235 jmp restore_c_regs_and_iret
45d5a168 1236
9b6e6a83 1237.Lnmi_from_kernel:
3f3c8b8c 1238 /*
0b22930e
AL
1239 * Here's what our stack frame will look like:
1240 * +---------------------------------------------------------+
1241 * | original SS |
1242 * | original Return RSP |
1243 * | original RFLAGS |
1244 * | original CS |
1245 * | original RIP |
1246 * +---------------------------------------------------------+
1247 * | temp storage for rdx |
1248 * +---------------------------------------------------------+
1249 * | "NMI executing" variable |
1250 * +---------------------------------------------------------+
1251 * | iret SS } Copied from "outermost" frame |
1252 * | iret Return RSP } on each loop iteration; overwritten |
1253 * | iret RFLAGS } by a nested NMI to force another |
1254 * | iret CS } iteration if needed. |
1255 * | iret RIP } |
1256 * +---------------------------------------------------------+
1257 * | outermost SS } initialized in first_nmi; |
1258 * | outermost Return RSP } will not be changed before |
1259 * | outermost RFLAGS } NMI processing is done. |
1260 * | outermost CS } Copied to "iret" frame on each |
1261 * | outermost RIP } iteration. |
1262 * +---------------------------------------------------------+
1263 * | pt_regs |
1264 * +---------------------------------------------------------+
1265 *
1266 * The "original" frame is used by hardware. Before re-enabling
1267 * NMIs, we need to be done with it, and we need to leave enough
1268 * space for the asm code here.
1269 *
1270 * We return by executing IRET while RSP points to the "iret" frame.
1271 * That will either return for real or it will loop back into NMI
1272 * processing.
1273 *
1274 * The "outermost" frame is copied to the "iret" frame on each
1275 * iteration of the loop, so each iteration starts with the "iret"
1276 * frame pointing to the final return target.
1277 */
1278
45d5a168 1279 /*
0b22930e
AL
1280 * Determine whether we're a nested NMI.
1281 *
a27507ca
AL
1282 * If we interrupted kernel code between repeat_nmi and
1283 * end_repeat_nmi, then we are a nested NMI. We must not
1284 * modify the "iret" frame because it's being written by
1285 * the outer NMI. That's okay; the outer NMI handler is
1286 * about to about to call do_nmi anyway, so we can just
1287 * resume the outer NMI.
45d5a168 1288 */
a27507ca
AL
1289
1290 movq $repeat_nmi, %rdx
1291 cmpq 8(%rsp), %rdx
1292 ja 1f
1293 movq $end_repeat_nmi, %rdx
1294 cmpq 8(%rsp), %rdx
1295 ja nested_nmi_out
12961:
45d5a168 1297
3f3c8b8c 1298 /*
a27507ca 1299 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1300 * This will not detect if we interrupted an outer NMI just
1301 * before IRET.
3f3c8b8c 1302 */
4d732138
IM
1303 cmpl $1, -8(%rsp)
1304 je nested_nmi
3f3c8b8c
SR
1305
1306 /*
0b22930e
AL
1307 * Now test if the previous stack was an NMI stack. This covers
1308 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1309 * "NMI executing" but before IRET. We need to be careful, though:
1310 * there is one case in which RSP could point to the NMI stack
1311 * despite there being no NMI active: naughty userspace controls
1312 * RSP at the very beginning of the SYSCALL targets. We can
1313 * pull a fast one on naughty userspace, though: we program
1314 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1315 * if it controls the kernel's RSP. We set DF before we clear
1316 * "NMI executing".
3f3c8b8c 1317 */
0784b364
DV
1318 lea 6*8(%rsp), %rdx
1319 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1320 cmpq %rdx, 4*8(%rsp)
1321 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1322 ja first_nmi
4d732138 1323
0784b364
DV
1324 subq $EXCEPTION_STKSZ, %rdx
1325 cmpq %rdx, 4*8(%rsp)
1326 /* If it is below the NMI stack, it is a normal NMI */
1327 jb first_nmi
810bc075
AL
1328
1329 /* Ah, it is within the NMI stack. */
1330
1331 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1332 jz first_nmi /* RSP was user controlled. */
1333
1334 /* This is a nested NMI. */
0784b364 1335
3f3c8b8c
SR
1336nested_nmi:
1337 /*
0b22930e
AL
1338 * Modify the "iret" frame to point to repeat_nmi, forcing another
1339 * iteration of NMI handling.
3f3c8b8c 1340 */
23a781e9 1341 subq $8, %rsp
4d732138
IM
1342 leaq -10*8(%rsp), %rdx
1343 pushq $__KERNEL_DS
1344 pushq %rdx
131484c8 1345 pushfq
4d732138
IM
1346 pushq $__KERNEL_CS
1347 pushq $repeat_nmi
3f3c8b8c
SR
1348
1349 /* Put stack back */
4d732138 1350 addq $(6*8), %rsp
3f3c8b8c
SR
1351
1352nested_nmi_out:
4d732138 1353 popq %rdx
3f3c8b8c 1354
0b22930e 1355 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1356 INTERRUPT_RETURN
1357
1358first_nmi:
0b22930e 1359 /* Restore rdx. */
4d732138 1360 movq (%rsp), %rdx
62610913 1361
36f1a77b
AL
1362 /* Make room for "NMI executing". */
1363 pushq $0
3f3c8b8c 1364
0b22930e 1365 /* Leave room for the "iret" frame */
4d732138 1366 subq $(5*8), %rsp
28696f43 1367
0b22930e 1368 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1369 .rept 5
4d732138 1370 pushq 11*8(%rsp)
3f3c8b8c 1371 .endr
62610913 1372
79fb4ad6
SR
1373 /* Everything up to here is safe from nested NMIs */
1374
a97439aa
AL
1375#ifdef CONFIG_DEBUG_ENTRY
1376 /*
1377 * For ease of testing, unmask NMIs right away. Disabled by
1378 * default because IRET is very expensive.
1379 */
1380 pushq $0 /* SS */
1381 pushq %rsp /* RSP (minus 8 because of the previous push) */
1382 addq $8, (%rsp) /* Fix up RSP */
1383 pushfq /* RFLAGS */
1384 pushq $__KERNEL_CS /* CS */
1385 pushq $1f /* RIP */
1386 INTERRUPT_RETURN /* continues at repeat_nmi below */
13871:
1388#endif
1389
0b22930e 1390repeat_nmi:
62610913
JB
1391 /*
1392 * If there was a nested NMI, the first NMI's iret will return
1393 * here. But NMIs are still enabled and we can take another
1394 * nested NMI. The nested NMI checks the interrupted RIP to see
1395 * if it is between repeat_nmi and end_repeat_nmi, and if so
1396 * it will just return, as we are about to repeat an NMI anyway.
1397 * This makes it safe to copy to the stack frame that a nested
1398 * NMI will update.
0b22930e
AL
1399 *
1400 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1401 * we're repeating an NMI, gsbase has the same value that it had on
1402 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1403 * gsbase if needed before we call do_nmi. "NMI executing"
1404 * is zero.
62610913 1405 */
36f1a77b 1406 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1407
62610913 1408 /*
0b22930e
AL
1409 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1410 * here must not modify the "iret" frame while we're writing to
1411 * it or it will end up containing garbage.
62610913 1412 */
4d732138 1413 addq $(10*8), %rsp
3f3c8b8c 1414 .rept 5
4d732138 1415 pushq -6*8(%rsp)
3f3c8b8c 1416 .endr
4d732138 1417 subq $(5*8), %rsp
62610913 1418end_repeat_nmi:
3f3c8b8c
SR
1419
1420 /*
0b22930e
AL
1421 * Everything below this point can be preempted by a nested NMI.
1422 * If this happens, then the inner NMI will change the "iret"
1423 * frame to point back to repeat_nmi.
3f3c8b8c 1424 */
4d732138 1425 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1426 ALLOC_PT_GPREGS_ON_STACK
1427
1fd466ef 1428 /*
ebfc453e 1429 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1430 * as we should not be calling schedule in NMI context.
1431 * Even with normal interrupts enabled. An NMI should not be
1432 * setting NEED_RESCHED or anything that normal interrupts and
1433 * exceptions might do.
1434 */
4d732138 1435 call paranoid_entry
7fbb98c5 1436
ddeb8f21 1437 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1438 movq %rsp, %rdi
1439 movq $-1, %rsi
1440 call do_nmi
7fbb98c5 1441
4d732138
IM
1442 testl %ebx, %ebx /* swapgs needed? */
1443 jnz nmi_restore
ddeb8f21
AH
1444nmi_swapgs:
1445 SWAPGS_UNSAFE_STACK
1446nmi_restore:
76f5df43
DV
1447 RESTORE_EXTRA_REGS
1448 RESTORE_C_REGS
0b22930e
AL
1449
1450 /* Point RSP at the "iret" frame. */
76f5df43 1451 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1452
810bc075
AL
1453 /*
1454 * Clear "NMI executing". Set DF first so that we can easily
1455 * distinguish the remaining code between here and IRET from
1456 * the SYSCALL entry and exit paths. On a native kernel, we
1457 * could just inspect RIP, but, on paravirt kernels,
1458 * INTERRUPT_RETURN can translate into a jump into a
1459 * hypercall page.
1460 */
1461 std
1462 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1463
1464 /*
1465 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1466 * stack in a single instruction. We are returning to kernel
1467 * mode, so this cannot result in a fault.
1468 */
5ca6f70f 1469 INTERRUPT_RETURN
ddeb8f21
AH
1470END(nmi)
1471
1472ENTRY(ignore_sysret)
4d732138 1473 mov $-ENOSYS, %eax
ddeb8f21 1474 sysret
ddeb8f21 1475END(ignore_sysret)