x86/entry: Remove duplicated comment
[linux-2.6-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
291 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
292 * restoring TF results in a trap from userspace immediately after
293 * SYSRET. This would cause an infinite loop whenever #DB happens
294 * with register state that satisfies the opportunistic SYSRET
295 * conditions. For example, single-stepping this user code:
296 *
4d732138 297 * movq $stuck_here, %rcx
fffbb5dc
DV
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
4d732138
IM
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz opportunistic_sysret_failed
fffbb5dc
DV
306
307 /* nothing to check for RSP */
308
4d732138
IM
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne opportunistic_sysret_failed
fffbb5dc
DV
311
312 /*
4d732138
IM
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
fffbb5dc
DV
315 */
316syscall_return_via_sysret:
17be0aec
DV
317 /* rcx and r11 are already restored (see code above) */
318 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 319 movq RSP(%rsp), %rsp
fffbb5dc 320 USERGS_SYSRET64
fffbb5dc
DV
321
322opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
b2502b41 325END(entry_SYSCALL_64)
0bd7b798 326
302f5b26
AL
327ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
b7765086
AL
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
302f5b26
AL
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
b7765086 335 * IRQs are on.
302f5b26
AL
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
b7765086
AL
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_NONE)
345 TRACE_IRQS_OFF
302f5b26 346 popq %rax
b7765086 347 jmp entry_SYSCALL64_slow_path
302f5b26
AL
348
3491:
b3830e8d 350 jmp *%rax /* Called from C */
302f5b26
AL
351END(stub_ptregs_64)
352
353.macro ptregs_stub func
354ENTRY(ptregs_\func)
355 leaq \func(%rip), %rax
356 jmp stub_ptregs_64
357END(ptregs_\func)
358.endm
359
360/* Instantiate ptregs_stub for each ptregs-using syscall */
361#define __SYSCALL_64_QUAL_(sym)
362#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
363#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
364#include <asm/syscalls_64.h>
fffbb5dc 365
1eeb207f
DV
366/*
367 * A newly forked process directly context switches into this address.
368 *
369 * rdi: prev task we switched from
370 */
371ENTRY(ret_from_fork)
4d732138 372 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 373
4d732138 374 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 375
4d732138 376 testb $3, CS(%rsp) /* from kernel_thread? */
24d978b7 377 jnz 1f
1eeb207f 378
1e3fbb8a 379 /*
24d978b7
AL
380 * We came from kernel_thread. This code path is quite twisted, and
381 * someone should clean it up.
382 *
383 * copy_thread_tls stashes the function pointer in RBX and the
384 * parameter to be passed in RBP. The called function is permitted
385 * to call do_execve and thereby jump to user mode.
1e3fbb8a 386 */
24d978b7
AL
387 movq RBP(%rsp), %rdi
388 call *RBX(%rsp)
389 movl $0, RAX(%rsp)
1eeb207f 390
4d732138 391 /*
24d978b7
AL
392 * Fall through as though we're exiting a syscall. This makes a
393 * twisted sort of sense if we just called do_execve.
4d732138 394 */
24d978b7
AL
395
3961:
397 movq %rsp, %rdi
398 call syscall_return_slowpath /* returns with IRQs disabled */
399 TRACE_IRQS_ON /* user mode is traced as IRQS on */
400 SWAPGS
401 jmp restore_regs_and_iret
1eeb207f
DV
402END(ret_from_fork)
403
939b7871 404/*
3304c9c3
DV
405 * Build the entry stubs with some assembler magic.
406 * We pack 1 stub into every 8-byte block.
939b7871 407 */
3304c9c3 408 .align 8
939b7871 409ENTRY(irq_entries_start)
3304c9c3
DV
410 vector=FIRST_EXTERNAL_VECTOR
411 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 412 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
413 vector=vector+1
414 jmp common_interrupt
3304c9c3
DV
415 .align 8
416 .endr
939b7871
PA
417END(irq_entries_start)
418
d99015b1 419/*
1da177e4
LT
420 * Interrupt entry/exit.
421 *
422 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
423 *
424 * Entry runs with interrupts off.
425 */
1da177e4 426
722024db 427/* 0(%rsp): ~(interrupt number) */
1da177e4 428 .macro interrupt func
f6f64681 429 cld
ff467594
AL
430 ALLOC_PT_GPREGS_ON_STACK
431 SAVE_C_REGS
432 SAVE_EXTRA_REGS
76f5df43 433
ff467594 434 testb $3, CS(%rsp)
dde74f2e 435 jz 1f
02bc7768
AL
436
437 /*
438 * IRQ from user mode. Switch to kernel gsbase and inform context
439 * tracking that we're in kernel mode.
440 */
f6f64681 441 SWAPGS
f1075053
AL
442
443 /*
444 * We need to tell lockdep that IRQs are off. We can't do this until
445 * we fix gsbase, and we should do it before enter_from_user_mode
446 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
447 * the simplest way to handle it is to just call it twice if
448 * we enter from user mode. There's no reason to optimize this since
449 * TRACE_IRQS_OFF is a no-op if lockdep is off.
450 */
451 TRACE_IRQS_OFF
452
478dc89c 453 CALL_enter_from_user_mode
02bc7768 454
76f5df43 4551:
f6f64681 456 /*
e90e147c 457 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
458 * irq_count is used to check if a CPU is already on an interrupt stack
459 * or not. While this is essentially redundant with preempt_count it is
460 * a little cheaper to use a separate counter in the PDA (short of
461 * moving irq_enter into assembly, which would be too much work)
462 */
a586f98e 463 movq %rsp, %rdi
4d732138
IM
464 incl PER_CPU_VAR(irq_count)
465 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 466 pushq %rdi
f6f64681
DV
467 /* We entered an interrupt context - irqs are off: */
468 TRACE_IRQS_OFF
469
a586f98e 470 call \func /* rdi points to pt_regs */
1da177e4
LT
471 .endm
472
722024db
AH
473 /*
474 * The interrupt stubs push (~vector+0x80) onto the stack and
475 * then jump to common_interrupt.
476 */
939b7871
PA
477 .p2align CONFIG_X86_L1_CACHE_SHIFT
478common_interrupt:
ee4eb87b 479 ASM_CLAC
4d732138 480 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 481 interrupt do_IRQ
34061f13 482 /* 0(%rsp): old RSP */
7effaa88 483ret_from_intr:
72fe4858 484 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 485 TRACE_IRQS_OFF
4d732138 486 decl PER_CPU_VAR(irq_count)
625dbc3b 487
a2bbe750 488 /* Restore saved previous stack */
ff467594 489 popq %rsp
625dbc3b 490
03335e95 491 testb $3, CS(%rsp)
dde74f2e 492 jz retint_kernel
4d732138 493
02bc7768 494 /* Interrupt came from user space */
02bc7768
AL
495GLOBAL(retint_user)
496 mov %rsp,%rdi
497 call prepare_exit_to_usermode
2601e64d 498 TRACE_IRQS_IRETQ
72fe4858 499 SWAPGS
ff467594 500 jmp restore_regs_and_iret
2601e64d 501
627276cb 502/* Returning to kernel space */
6ba71b76 503retint_kernel:
627276cb
DV
504#ifdef CONFIG_PREEMPT
505 /* Interrupts are off */
506 /* Check if we need preemption */
4d732138 507 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 508 jnc 1f
4d732138 5090: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 510 jnz 1f
627276cb 511 call preempt_schedule_irq
36acef25 512 jmp 0b
6ba71b76 5131:
627276cb 514#endif
2601e64d
IM
515 /*
516 * The iretq could re-enable interrupts:
517 */
518 TRACE_IRQS_IRETQ
fffbb5dc
DV
519
520/*
521 * At this label, code paths which return to kernel and to user,
522 * which come from interrupts/exception and from syscalls, merge.
523 */
ee08c6bd 524GLOBAL(restore_regs_and_iret)
ff467594 525 RESTORE_EXTRA_REGS
fffbb5dc 526restore_c_regs_and_iret:
76f5df43
DV
527 RESTORE_C_REGS
528 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
529 INTERRUPT_RETURN
530
531ENTRY(native_iret)
3891a04a
PA
532 /*
533 * Are we returning to a stack segment from the LDT? Note: in
534 * 64-bit mode SS:RSP on the exception stack is always valid.
535 */
34273f41 536#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
537 testb $4, (SS-RIP)(%rsp)
538 jnz native_irq_return_ldt
34273f41 539#endif
3891a04a 540
af726f21 541.global native_irq_return_iret
7209a75d 542native_irq_return_iret:
b645af2d
AL
543 /*
544 * This may fault. Non-paranoid faults on return to userspace are
545 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
546 * Double-faults due to espfix64 are handled in do_double_fault.
547 * Other faults here are fatal.
548 */
1da177e4 549 iretq
3701d863 550
34273f41 551#ifdef CONFIG_X86_ESPFIX64
7209a75d 552native_irq_return_ldt:
4d732138
IM
553 pushq %rax
554 pushq %rdi
3891a04a 555 SWAPGS
4d732138
IM
556 movq PER_CPU_VAR(espfix_waddr), %rdi
557 movq %rax, (0*8)(%rdi) /* RAX */
558 movq (2*8)(%rsp), %rax /* RIP */
559 movq %rax, (1*8)(%rdi)
560 movq (3*8)(%rsp), %rax /* CS */
561 movq %rax, (2*8)(%rdi)
562 movq (4*8)(%rsp), %rax /* RFLAGS */
563 movq %rax, (3*8)(%rdi)
564 movq (6*8)(%rsp), %rax /* SS */
565 movq %rax, (5*8)(%rdi)
566 movq (5*8)(%rsp), %rax /* RSP */
567 movq %rax, (4*8)(%rdi)
568 andl $0xffff0000, %eax
569 popq %rdi
570 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 571 SWAPGS
4d732138
IM
572 movq %rax, %rsp
573 popq %rax
574 jmp native_irq_return_iret
34273f41 575#endif
4b787e0b 576END(common_interrupt)
3891a04a 577
1da177e4
LT
578/*
579 * APIC interrupts.
0bd7b798 580 */
cf910e83 581.macro apicinterrupt3 num sym do_sym
322648d1 582ENTRY(\sym)
ee4eb87b 583 ASM_CLAC
4d732138 584 pushq $~(\num)
39e95433 585.Lcommon_\sym:
322648d1 586 interrupt \do_sym
4d732138 587 jmp ret_from_intr
322648d1
AH
588END(\sym)
589.endm
1da177e4 590
cf910e83
SA
591#ifdef CONFIG_TRACING
592#define trace(sym) trace_##sym
593#define smp_trace(sym) smp_trace_##sym
594
595.macro trace_apicinterrupt num sym
596apicinterrupt3 \num trace(\sym) smp_trace(\sym)
597.endm
598#else
599.macro trace_apicinterrupt num sym do_sym
600.endm
601#endif
602
603.macro apicinterrupt num sym do_sym
604apicinterrupt3 \num \sym \do_sym
605trace_apicinterrupt \num \sym
606.endm
607
322648d1 608#ifdef CONFIG_SMP
4d732138
IM
609apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
610apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 611#endif
1da177e4 612
03b48632 613#ifdef CONFIG_X86_UV
4d732138 614apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 615#endif
4d732138
IM
616
617apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
618apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 619
d78f2664 620#ifdef CONFIG_HAVE_KVM
4d732138
IM
621apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
622apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
623#endif
624
33e5ff63 625#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 626apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
627#endif
628
24fd78a8 629#ifdef CONFIG_X86_MCE_AMD
4d732138 630apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
631#endif
632
33e5ff63 633#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 634apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 635#endif
1812924b 636
322648d1 637#ifdef CONFIG_SMP
4d732138
IM
638apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
639apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
640apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 641#endif
1da177e4 642
4d732138
IM
643apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
644apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 645
e360adbe 646#ifdef CONFIG_IRQ_WORK
4d732138 647apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
648#endif
649
1da177e4
LT
650/*
651 * Exception entry points.
0bd7b798 652 */
9b476688 653#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
654
655.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 656ENTRY(\sym)
577ed45e
AL
657 /* Sanity check */
658 .if \shift_ist != -1 && \paranoid == 0
659 .error "using shift_ist requires paranoid=1"
660 .endif
661
ee4eb87b 662 ASM_CLAC
b8b1d08b 663 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
664
665 .ifeq \has_error_code
4d732138 666 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
667 .endif
668
76f5df43 669 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
670
671 .if \paranoid
48e08d0f 672 .if \paranoid == 1
4d732138
IM
673 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
674 jnz 1f
48e08d0f 675 .endif
4d732138 676 call paranoid_entry
cb5dd2c5 677 .else
4d732138 678 call error_entry
cb5dd2c5 679 .endif
ebfc453e 680 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 681
cb5dd2c5 682 .if \paranoid
577ed45e 683 .if \shift_ist != -1
4d732138 684 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 685 .else
b8b1d08b 686 TRACE_IRQS_OFF
cb5dd2c5 687 .endif
577ed45e 688 .endif
cb5dd2c5 689
4d732138 690 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
691
692 .if \has_error_code
4d732138
IM
693 movq ORIG_RAX(%rsp), %rsi /* get error code */
694 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 695 .else
4d732138 696 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
697 .endif
698
577ed45e 699 .if \shift_ist != -1
4d732138 700 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
701 .endif
702
4d732138 703 call \do_sym
cb5dd2c5 704
577ed45e 705 .if \shift_ist != -1
4d732138 706 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
707 .endif
708
ebfc453e 709 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 710 .if \paranoid
4d732138 711 jmp paranoid_exit
cb5dd2c5 712 .else
4d732138 713 jmp error_exit
cb5dd2c5
AL
714 .endif
715
48e08d0f 716 .if \paranoid == 1
48e08d0f
AL
717 /*
718 * Paranoid entry from userspace. Switch stacks and treat it
719 * as a normal entry. This means that paranoid handlers
720 * run in real process context if user_mode(regs).
721 */
7221:
4d732138 723 call error_entry
48e08d0f 724
48e08d0f 725
4d732138
IM
726 movq %rsp, %rdi /* pt_regs pointer */
727 call sync_regs
728 movq %rax, %rsp /* switch stack */
48e08d0f 729
4d732138 730 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
731
732 .if \has_error_code
4d732138
IM
733 movq ORIG_RAX(%rsp), %rsi /* get error code */
734 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 735 .else
4d732138 736 xorl %esi, %esi /* no error code */
48e08d0f
AL
737 .endif
738
4d732138 739 call \do_sym
48e08d0f 740
4d732138 741 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 742 .endif
ddeb8f21 743END(\sym)
322648d1 744.endm
b8b1d08b 745
25c74b10 746#ifdef CONFIG_TRACING
cb5dd2c5
AL
747.macro trace_idtentry sym do_sym has_error_code:req
748idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
749idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
750.endm
751#else
cb5dd2c5
AL
752.macro trace_idtentry sym do_sym has_error_code:req
753idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
754.endm
755#endif
756
4d732138
IM
757idtentry divide_error do_divide_error has_error_code=0
758idtentry overflow do_overflow has_error_code=0
759idtentry bounds do_bounds has_error_code=0
760idtentry invalid_op do_invalid_op has_error_code=0
761idtentry device_not_available do_device_not_available has_error_code=0
762idtentry double_fault do_double_fault has_error_code=1 paranoid=2
763idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
764idtentry invalid_TSS do_invalid_TSS has_error_code=1
765idtentry segment_not_present do_segment_not_present has_error_code=1
766idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
767idtentry coprocessor_error do_coprocessor_error has_error_code=0
768idtentry alignment_check do_alignment_check has_error_code=1
769idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
770
771
772 /*
773 * Reload gs selector with exception handling
774 * edi: new selector
775 */
9f9d489a 776ENTRY(native_load_gs_index)
131484c8 777 pushfq
b8aa287f 778 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 779 SWAPGS
42c748bb 780.Lgs_change:
4d732138 781 movl %edi, %gs
96e5d28a 7822: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 783 SWAPGS
131484c8 784 popfq
9f1e87ea 785 ret
6efdcfaf 786END(native_load_gs_index)
0bd7b798 787
42c748bb 788 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 789 .section .fixup, "ax"
1da177e4 790 /* running with kernelgs */
0bd7b798 791bad_gs:
4d732138 792 SWAPGS /* switch back to user gs */
b038c842
AL
793.macro ZAP_GS
794 /* This can't be a string because the preprocessor needs to see it. */
795 movl $__USER_DS, %eax
796 movl %eax, %gs
797.endm
798 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
799 xorl %eax, %eax
800 movl %eax, %gs
801 jmp 2b
9f1e87ea 802 .previous
0bd7b798 803
2699500b 804/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 805ENTRY(do_softirq_own_stack)
4d732138
IM
806 pushq %rbp
807 mov %rsp, %rbp
808 incl PER_CPU_VAR(irq_count)
809 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
810 push %rbp /* frame pointer backlink */
811 call __do_softirq
2699500b 812 leaveq
4d732138 813 decl PER_CPU_VAR(irq_count)
ed6b676c 814 ret
7d65f4a6 815END(do_softirq_own_stack)
75154f40 816
3d75e1b8 817#ifdef CONFIG_XEN
cb5dd2c5 818idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
819
820/*
9f1e87ea
CG
821 * A note on the "critical region" in our callback handler.
822 * We want to avoid stacking callback handlers due to events occurring
823 * during handling of the last event. To do this, we keep events disabled
824 * until we've done all processing. HOWEVER, we must enable events before
825 * popping the stack frame (can't be done atomically) and so it would still
826 * be possible to get enough handler activations to overflow the stack.
827 * Although unlikely, bugs of that kind are hard to track down, so we'd
828 * like to avoid the possibility.
829 * So, on entry to the handler we detect whether we interrupted an
830 * existing activation in its critical region -- if so, we pop the current
831 * activation and restart the handler using the previous one.
832 */
4d732138
IM
833ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
834
9f1e87ea
CG
835/*
836 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
837 * see the correct pointer to the pt_regs
838 */
4d732138
IM
839 movq %rdi, %rsp /* we don't return, adjust the stack frame */
84011: incl PER_CPU_VAR(irq_count)
841 movq %rsp, %rbp
842 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
843 pushq %rbp /* frame pointer backlink */
844 call xen_evtchn_do_upcall
845 popq %rsp
846 decl PER_CPU_VAR(irq_count)
fdfd811d 847#ifndef CONFIG_PREEMPT
4d732138 848 call xen_maybe_preempt_hcall
fdfd811d 849#endif
4d732138 850 jmp error_exit
371c394a 851END(xen_do_hypervisor_callback)
3d75e1b8
JF
852
853/*
9f1e87ea
CG
854 * Hypervisor uses this for application faults while it executes.
855 * We get here for two reasons:
856 * 1. Fault while reloading DS, ES, FS or GS
857 * 2. Fault while executing IRET
858 * Category 1 we do not need to fix up as Xen has already reloaded all segment
859 * registers that could be reloaded and zeroed the others.
860 * Category 2 we fix up by killing the current process. We cannot use the
861 * normal Linux return path in this case because if we use the IRET hypercall
862 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
863 * We distinguish between categories by comparing each saved segment register
864 * with its current contents: any discrepancy means we in category 1.
865 */
3d75e1b8 866ENTRY(xen_failsafe_callback)
4d732138
IM
867 movl %ds, %ecx
868 cmpw %cx, 0x10(%rsp)
869 jne 1f
870 movl %es, %ecx
871 cmpw %cx, 0x18(%rsp)
872 jne 1f
873 movl %fs, %ecx
874 cmpw %cx, 0x20(%rsp)
875 jne 1f
876 movl %gs, %ecx
877 cmpw %cx, 0x28(%rsp)
878 jne 1f
3d75e1b8 879 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
880 movq (%rsp), %rcx
881 movq 8(%rsp), %r11
882 addq $0x30, %rsp
883 pushq $0 /* RIP */
884 pushq %r11
885 pushq %rcx
886 jmp general_protection
3d75e1b8 8871: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
888 movq (%rsp), %rcx
889 movq 8(%rsp), %r11
890 addq $0x30, %rsp
891 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
892 ALLOC_PT_GPREGS_ON_STACK
893 SAVE_C_REGS
894 SAVE_EXTRA_REGS
4d732138 895 jmp error_exit
3d75e1b8
JF
896END(xen_failsafe_callback)
897
cf910e83 898apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
899 xen_hvm_callback_vector xen_evtchn_do_upcall
900
3d75e1b8 901#endif /* CONFIG_XEN */
ddeb8f21 902
bc2b0331 903#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 904apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
905 hyperv_callback_vector hyperv_vector_handler
906#endif /* CONFIG_HYPERV */
907
4d732138
IM
908idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
909idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
910idtentry stack_segment do_stack_segment has_error_code=1
911
6cac5a92 912#ifdef CONFIG_XEN
4d732138
IM
913idtentry xen_debug do_debug has_error_code=0
914idtentry xen_int3 do_int3 has_error_code=0
915idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 916#endif
4d732138
IM
917
918idtentry general_protection do_general_protection has_error_code=1
919trace_idtentry page_fault do_page_fault has_error_code=1
920
631bc487 921#ifdef CONFIG_KVM_GUEST
4d732138 922idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 923#endif
4d732138 924
ddeb8f21 925#ifdef CONFIG_X86_MCE
4d732138 926idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
927#endif
928
ebfc453e
DV
929/*
930 * Save all registers in pt_regs, and switch gs if needed.
931 * Use slow, but surefire "are we in kernel?" check.
932 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
933 */
934ENTRY(paranoid_entry)
1eeb207f
DV
935 cld
936 SAVE_C_REGS 8
937 SAVE_EXTRA_REGS 8
4d732138
IM
938 movl $1, %ebx
939 movl $MSR_GS_BASE, %ecx
1eeb207f 940 rdmsr
4d732138
IM
941 testl %edx, %edx
942 js 1f /* negative -> in kernel */
1eeb207f 943 SWAPGS
4d732138 944 xorl %ebx, %ebx
1eeb207f 9451: ret
ebfc453e 946END(paranoid_entry)
ddeb8f21 947
ebfc453e
DV
948/*
949 * "Paranoid" exit path from exception stack. This is invoked
950 * only on return from non-NMI IST interrupts that came
951 * from kernel space.
952 *
953 * We may be returning to very strange contexts (e.g. very early
954 * in syscall entry), so checking for preemption here would
955 * be complicated. Fortunately, we there's no good reason
956 * to try to handle preemption here.
4d732138
IM
957 *
958 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 959 */
ddeb8f21 960ENTRY(paranoid_exit)
ddeb8f21 961 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 962 TRACE_IRQS_OFF_DEBUG
4d732138
IM
963 testl %ebx, %ebx /* swapgs needed? */
964 jnz paranoid_exit_no_swapgs
f2db9382 965 TRACE_IRQS_IRETQ
ddeb8f21 966 SWAPGS_UNSAFE_STACK
4d732138 967 jmp paranoid_exit_restore
0d550836 968paranoid_exit_no_swapgs:
f2db9382 969 TRACE_IRQS_IRETQ_DEBUG
0d550836 970paranoid_exit_restore:
76f5df43
DV
971 RESTORE_EXTRA_REGS
972 RESTORE_C_REGS
973 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 974 INTERRUPT_RETURN
ddeb8f21
AH
975END(paranoid_exit)
976
977/*
ebfc453e 978 * Save all registers in pt_regs, and switch gs if needed.
539f5113 979 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
980 */
981ENTRY(error_entry)
ddeb8f21 982 cld
76f5df43
DV
983 SAVE_C_REGS 8
984 SAVE_EXTRA_REGS 8
4d732138 985 xorl %ebx, %ebx
03335e95 986 testb $3, CS+8(%rsp)
cb6f64ed 987 jz .Lerror_kernelspace
539f5113 988
cb6f64ed
AL
989.Lerror_entry_from_usermode_swapgs:
990 /*
991 * We entered from user mode or we're pretending to have entered
992 * from user mode due to an IRET fault.
993 */
ddeb8f21 994 SWAPGS
539f5113 995
cb6f64ed 996.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
997 /*
998 * We need to tell lockdep that IRQs are off. We can't do this until
999 * we fix gsbase, and we should do it before enter_from_user_mode
1000 * (which can take locks).
1001 */
1002 TRACE_IRQS_OFF
478dc89c 1003 CALL_enter_from_user_mode
f1075053 1004 ret
02bc7768 1005
cb6f64ed 1006.Lerror_entry_done:
ddeb8f21
AH
1007 TRACE_IRQS_OFF
1008 ret
ddeb8f21 1009
ebfc453e
DV
1010 /*
1011 * There are two places in the kernel that can potentially fault with
1012 * usergs. Handle them here. B stepping K8s sometimes report a
1013 * truncated RIP for IRET exceptions returning to compat mode. Check
1014 * for these here too.
1015 */
cb6f64ed 1016.Lerror_kernelspace:
4d732138
IM
1017 incl %ebx
1018 leaq native_irq_return_iret(%rip), %rcx
1019 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1020 je .Lerror_bad_iret
4d732138
IM
1021 movl %ecx, %eax /* zero extend */
1022 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1023 je .Lbstep_iret
42c748bb 1024 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1025 jne .Lerror_entry_done
539f5113
AL
1026
1027 /*
42c748bb 1028 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1029 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1030 * .Lgs_change's error handler with kernel gsbase.
539f5113 1031 */
cb6f64ed 1032 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1033
cb6f64ed 1034.Lbstep_iret:
ae24ffe5 1035 /* Fix truncated RIP */
4d732138 1036 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1037 /* fall through */
1038
cb6f64ed 1039.Lerror_bad_iret:
539f5113
AL
1040 /*
1041 * We came from an IRET to user mode, so we have user gsbase.
1042 * Switch to kernel gsbase:
1043 */
b645af2d 1044 SWAPGS
539f5113
AL
1045
1046 /*
1047 * Pretend that the exception came from user mode: set up pt_regs
1048 * as if we faulted immediately after IRET and clear EBX so that
1049 * error_exit knows that we will be returning to user mode.
1050 */
4d732138
IM
1051 mov %rsp, %rdi
1052 call fixup_bad_iret
1053 mov %rax, %rsp
539f5113 1054 decl %ebx
cb6f64ed 1055 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1056END(error_entry)
1057
1058
539f5113
AL
1059/*
1060 * On entry, EBS is a "return to kernel mode" flag:
1061 * 1: already in kernel mode, don't need SWAPGS
1062 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1063 */
ddeb8f21 1064ENTRY(error_exit)
4d732138 1065 movl %ebx, %eax
ddeb8f21
AH
1066 DISABLE_INTERRUPTS(CLBR_NONE)
1067 TRACE_IRQS_OFF
4d732138
IM
1068 testl %eax, %eax
1069 jnz retint_kernel
1070 jmp retint_user
ddeb8f21
AH
1071END(error_exit)
1072
0784b364 1073/* Runs on exception stack */
ddeb8f21 1074ENTRY(nmi)
fc57a7c6
AL
1075 /*
1076 * Fix up the exception frame if we're on Xen.
1077 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1078 * one value to the stack on native, so it may clobber the rdx
1079 * scratch slot, but it won't clobber any of the important
1080 * slots past it.
1081 *
1082 * Xen is a different story, because the Xen frame itself overlaps
1083 * the "NMI executing" variable.
1084 */
ddeb8f21 1085 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1086
3f3c8b8c
SR
1087 /*
1088 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1089 * the iretq it performs will take us out of NMI context.
1090 * This means that we can have nested NMIs where the next
1091 * NMI is using the top of the stack of the previous NMI. We
1092 * can't let it execute because the nested NMI will corrupt the
1093 * stack of the previous NMI. NMI handlers are not re-entrant
1094 * anyway.
1095 *
1096 * To handle this case we do the following:
1097 * Check the a special location on the stack that contains
1098 * a variable that is set when NMIs are executing.
1099 * The interrupted task's stack is also checked to see if it
1100 * is an NMI stack.
1101 * If the variable is not set and the stack is not the NMI
1102 * stack then:
1103 * o Set the special variable on the stack
0b22930e
AL
1104 * o Copy the interrupt frame into an "outermost" location on the
1105 * stack
1106 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1107 * o Continue processing the NMI
1108 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1109 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1110 * o return back to the first NMI
1111 *
1112 * Now on exit of the first NMI, we first clear the stack variable
1113 * The NMI stack will tell any nested NMIs at that point that it is
1114 * nested. Then we pop the stack normally with iret, and if there was
1115 * a nested NMI that updated the copy interrupt stack frame, a
1116 * jump will be made to the repeat_nmi code that will handle the second
1117 * NMI.
9b6e6a83
AL
1118 *
1119 * However, espfix prevents us from directly returning to userspace
1120 * with a single IRET instruction. Similarly, IRET to user mode
1121 * can fault. We therefore handle NMIs from user space like
1122 * other IST entries.
3f3c8b8c
SR
1123 */
1124
146b2b09 1125 /* Use %rdx as our temp variable throughout */
4d732138 1126 pushq %rdx
3f3c8b8c 1127
9b6e6a83
AL
1128 testb $3, CS-RIP+8(%rsp)
1129 jz .Lnmi_from_kernel
1130
1131 /*
1132 * NMI from user mode. We need to run on the thread stack, but we
1133 * can't go through the normal entry paths: NMIs are masked, and
1134 * we don't want to enable interrupts, because then we'll end
1135 * up in an awkward situation in which IRQs are on but NMIs
1136 * are off.
83c133cf
AL
1137 *
1138 * We also must not push anything to the stack before switching
1139 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1140 */
1141
83c133cf 1142 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1143 cld
1144 movq %rsp, %rdx
1145 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1146 pushq 5*8(%rdx) /* pt_regs->ss */
1147 pushq 4*8(%rdx) /* pt_regs->rsp */
1148 pushq 3*8(%rdx) /* pt_regs->flags */
1149 pushq 2*8(%rdx) /* pt_regs->cs */
1150 pushq 1*8(%rdx) /* pt_regs->rip */
1151 pushq $-1 /* pt_regs->orig_ax */
1152 pushq %rdi /* pt_regs->di */
1153 pushq %rsi /* pt_regs->si */
1154 pushq (%rdx) /* pt_regs->dx */
1155 pushq %rcx /* pt_regs->cx */
1156 pushq %rax /* pt_regs->ax */
1157 pushq %r8 /* pt_regs->r8 */
1158 pushq %r9 /* pt_regs->r9 */
1159 pushq %r10 /* pt_regs->r10 */
1160 pushq %r11 /* pt_regs->r11 */
1161 pushq %rbx /* pt_regs->rbx */
1162 pushq %rbp /* pt_regs->rbp */
1163 pushq %r12 /* pt_regs->r12 */
1164 pushq %r13 /* pt_regs->r13 */
1165 pushq %r14 /* pt_regs->r14 */
1166 pushq %r15 /* pt_regs->r15 */
1167
1168 /*
1169 * At this point we no longer need to worry about stack damage
1170 * due to nesting -- we're on the normal thread stack and we're
1171 * done with the NMI stack.
1172 */
1173
1174 movq %rsp, %rdi
1175 movq $-1, %rsi
1176 call do_nmi
1177
45d5a168 1178 /*
9b6e6a83
AL
1179 * Return back to user mode. We must *not* do the normal exit
1180 * work, because we don't want to enable interrupts. Fortunately,
1181 * do_nmi doesn't modify pt_regs.
45d5a168 1182 */
9b6e6a83
AL
1183 SWAPGS
1184 jmp restore_c_regs_and_iret
45d5a168 1185
9b6e6a83 1186.Lnmi_from_kernel:
3f3c8b8c 1187 /*
0b22930e
AL
1188 * Here's what our stack frame will look like:
1189 * +---------------------------------------------------------+
1190 * | original SS |
1191 * | original Return RSP |
1192 * | original RFLAGS |
1193 * | original CS |
1194 * | original RIP |
1195 * +---------------------------------------------------------+
1196 * | temp storage for rdx |
1197 * +---------------------------------------------------------+
1198 * | "NMI executing" variable |
1199 * +---------------------------------------------------------+
1200 * | iret SS } Copied from "outermost" frame |
1201 * | iret Return RSP } on each loop iteration; overwritten |
1202 * | iret RFLAGS } by a nested NMI to force another |
1203 * | iret CS } iteration if needed. |
1204 * | iret RIP } |
1205 * +---------------------------------------------------------+
1206 * | outermost SS } initialized in first_nmi; |
1207 * | outermost Return RSP } will not be changed before |
1208 * | outermost RFLAGS } NMI processing is done. |
1209 * | outermost CS } Copied to "iret" frame on each |
1210 * | outermost RIP } iteration. |
1211 * +---------------------------------------------------------+
1212 * | pt_regs |
1213 * +---------------------------------------------------------+
1214 *
1215 * The "original" frame is used by hardware. Before re-enabling
1216 * NMIs, we need to be done with it, and we need to leave enough
1217 * space for the asm code here.
1218 *
1219 * We return by executing IRET while RSP points to the "iret" frame.
1220 * That will either return for real or it will loop back into NMI
1221 * processing.
1222 *
1223 * The "outermost" frame is copied to the "iret" frame on each
1224 * iteration of the loop, so each iteration starts with the "iret"
1225 * frame pointing to the final return target.
1226 */
1227
45d5a168 1228 /*
0b22930e
AL
1229 * Determine whether we're a nested NMI.
1230 *
a27507ca
AL
1231 * If we interrupted kernel code between repeat_nmi and
1232 * end_repeat_nmi, then we are a nested NMI. We must not
1233 * modify the "iret" frame because it's being written by
1234 * the outer NMI. That's okay; the outer NMI handler is
1235 * about to about to call do_nmi anyway, so we can just
1236 * resume the outer NMI.
45d5a168 1237 */
a27507ca
AL
1238
1239 movq $repeat_nmi, %rdx
1240 cmpq 8(%rsp), %rdx
1241 ja 1f
1242 movq $end_repeat_nmi, %rdx
1243 cmpq 8(%rsp), %rdx
1244 ja nested_nmi_out
12451:
45d5a168 1246
3f3c8b8c 1247 /*
a27507ca 1248 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1249 * This will not detect if we interrupted an outer NMI just
1250 * before IRET.
3f3c8b8c 1251 */
4d732138
IM
1252 cmpl $1, -8(%rsp)
1253 je nested_nmi
3f3c8b8c
SR
1254
1255 /*
0b22930e
AL
1256 * Now test if the previous stack was an NMI stack. This covers
1257 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1258 * "NMI executing" but before IRET. We need to be careful, though:
1259 * there is one case in which RSP could point to the NMI stack
1260 * despite there being no NMI active: naughty userspace controls
1261 * RSP at the very beginning of the SYSCALL targets. We can
1262 * pull a fast one on naughty userspace, though: we program
1263 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1264 * if it controls the kernel's RSP. We set DF before we clear
1265 * "NMI executing".
3f3c8b8c 1266 */
0784b364
DV
1267 lea 6*8(%rsp), %rdx
1268 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1269 cmpq %rdx, 4*8(%rsp)
1270 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1271 ja first_nmi
4d732138 1272
0784b364
DV
1273 subq $EXCEPTION_STKSZ, %rdx
1274 cmpq %rdx, 4*8(%rsp)
1275 /* If it is below the NMI stack, it is a normal NMI */
1276 jb first_nmi
810bc075
AL
1277
1278 /* Ah, it is within the NMI stack. */
1279
1280 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1281 jz first_nmi /* RSP was user controlled. */
1282
1283 /* This is a nested NMI. */
0784b364 1284
3f3c8b8c
SR
1285nested_nmi:
1286 /*
0b22930e
AL
1287 * Modify the "iret" frame to point to repeat_nmi, forcing another
1288 * iteration of NMI handling.
3f3c8b8c 1289 */
23a781e9 1290 subq $8, %rsp
4d732138
IM
1291 leaq -10*8(%rsp), %rdx
1292 pushq $__KERNEL_DS
1293 pushq %rdx
131484c8 1294 pushfq
4d732138
IM
1295 pushq $__KERNEL_CS
1296 pushq $repeat_nmi
3f3c8b8c
SR
1297
1298 /* Put stack back */
4d732138 1299 addq $(6*8), %rsp
3f3c8b8c
SR
1300
1301nested_nmi_out:
4d732138 1302 popq %rdx
3f3c8b8c 1303
0b22930e 1304 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1305 INTERRUPT_RETURN
1306
1307first_nmi:
0b22930e 1308 /* Restore rdx. */
4d732138 1309 movq (%rsp), %rdx
62610913 1310
36f1a77b
AL
1311 /* Make room for "NMI executing". */
1312 pushq $0
3f3c8b8c 1313
0b22930e 1314 /* Leave room for the "iret" frame */
4d732138 1315 subq $(5*8), %rsp
28696f43 1316
0b22930e 1317 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1318 .rept 5
4d732138 1319 pushq 11*8(%rsp)
3f3c8b8c 1320 .endr
62610913 1321
79fb4ad6
SR
1322 /* Everything up to here is safe from nested NMIs */
1323
a97439aa
AL
1324#ifdef CONFIG_DEBUG_ENTRY
1325 /*
1326 * For ease of testing, unmask NMIs right away. Disabled by
1327 * default because IRET is very expensive.
1328 */
1329 pushq $0 /* SS */
1330 pushq %rsp /* RSP (minus 8 because of the previous push) */
1331 addq $8, (%rsp) /* Fix up RSP */
1332 pushfq /* RFLAGS */
1333 pushq $__KERNEL_CS /* CS */
1334 pushq $1f /* RIP */
1335 INTERRUPT_RETURN /* continues at repeat_nmi below */
13361:
1337#endif
1338
0b22930e 1339repeat_nmi:
62610913
JB
1340 /*
1341 * If there was a nested NMI, the first NMI's iret will return
1342 * here. But NMIs are still enabled and we can take another
1343 * nested NMI. The nested NMI checks the interrupted RIP to see
1344 * if it is between repeat_nmi and end_repeat_nmi, and if so
1345 * it will just return, as we are about to repeat an NMI anyway.
1346 * This makes it safe to copy to the stack frame that a nested
1347 * NMI will update.
0b22930e
AL
1348 *
1349 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1350 * we're repeating an NMI, gsbase has the same value that it had on
1351 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1352 * gsbase if needed before we call do_nmi. "NMI executing"
1353 * is zero.
62610913 1354 */
36f1a77b 1355 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1356
62610913 1357 /*
0b22930e
AL
1358 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1359 * here must not modify the "iret" frame while we're writing to
1360 * it or it will end up containing garbage.
62610913 1361 */
4d732138 1362 addq $(10*8), %rsp
3f3c8b8c 1363 .rept 5
4d732138 1364 pushq -6*8(%rsp)
3f3c8b8c 1365 .endr
4d732138 1366 subq $(5*8), %rsp
62610913 1367end_repeat_nmi:
3f3c8b8c
SR
1368
1369 /*
0b22930e
AL
1370 * Everything below this point can be preempted by a nested NMI.
1371 * If this happens, then the inner NMI will change the "iret"
1372 * frame to point back to repeat_nmi.
3f3c8b8c 1373 */
4d732138 1374 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1375 ALLOC_PT_GPREGS_ON_STACK
1376
1fd466ef 1377 /*
ebfc453e 1378 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1379 * as we should not be calling schedule in NMI context.
1380 * Even with normal interrupts enabled. An NMI should not be
1381 * setting NEED_RESCHED or anything that normal interrupts and
1382 * exceptions might do.
1383 */
4d732138 1384 call paranoid_entry
7fbb98c5 1385
ddeb8f21 1386 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1387 movq %rsp, %rdi
1388 movq $-1, %rsi
1389 call do_nmi
7fbb98c5 1390
4d732138
IM
1391 testl %ebx, %ebx /* swapgs needed? */
1392 jnz nmi_restore
ddeb8f21
AH
1393nmi_swapgs:
1394 SWAPGS_UNSAFE_STACK
1395nmi_restore:
76f5df43
DV
1396 RESTORE_EXTRA_REGS
1397 RESTORE_C_REGS
0b22930e
AL
1398
1399 /* Point RSP at the "iret" frame. */
76f5df43 1400 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1401
810bc075
AL
1402 /*
1403 * Clear "NMI executing". Set DF first so that we can easily
1404 * distinguish the remaining code between here and IRET from
1405 * the SYSCALL entry and exit paths. On a native kernel, we
1406 * could just inspect RIP, but, on paravirt kernels,
1407 * INTERRUPT_RETURN can translate into a jump into a
1408 * hypercall page.
1409 */
1410 std
1411 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1412
1413 /*
1414 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1415 * stack in a single instruction. We are returning to kernel
1416 * mode, so this cannot result in a fault.
1417 */
5ca6f70f 1418 INTERRUPT_RETURN
ddeb8f21
AH
1419END(nmi)
1420
1421ENTRY(ignore_sysret)
4d732138 1422 mov $-ENOSYS, %eax
ddeb8f21 1423 sysret
ddeb8f21 1424END(ignore_sysret)
2deb4be2
AL
1425
1426ENTRY(rewind_stack_do_exit)
1427 /* Prevent any naive code from trying to unwind to our caller. */
1428 xorl %ebp, %ebp
1429
1430 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1431 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1432
1433 call do_exit
14341: jmp 1b
1435END(rewind_stack_do_exit)