License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
d36f9479 26#include "calling.h"
e2d5df93 27#include <asm/asm-offsets.h>
1da177e4
LT
28#include <asm/msr.h>
29#include <asm/unistd.h>
30#include <asm/thread_info.h>
31#include <asm/hw_irq.h>
0341c14d 32#include <asm/page_types.h>
2601e64d 33#include <asm/irqflags.h>
72fe4858 34#include <asm/paravirt.h>
9939ddaf 35#include <asm/percpu.h>
d7abc0fa 36#include <asm/asm.h>
63bcff2a 37#include <asm/smap.h>
3891a04a 38#include <asm/pgtable_types.h>
784d5699 39#include <asm/export.h>
8c1f7558 40#include <asm/frame.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
4d732138
IM
43.code64
44.section .entry.text, "ax"
16444a8a 45
72fe4858 46#ifdef CONFIG_PARAVIRT
2be29982 47ENTRY(native_usergs_sysret64)
8c1f7558 48 UNWIND_HINT_EMPTY
72fe4858
GOC
49 swapgs
50 sysretq
8c1f7558 51END(native_usergs_sysret64)
72fe4858
GOC
52#endif /* CONFIG_PARAVIRT */
53
f2db9382 54.macro TRACE_IRQS_IRETQ
2601e64d 55#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
56 bt $9, EFLAGS(%rsp) /* interrupts off? */
57 jnc 1f
2601e64d
IM
58 TRACE_IRQS_ON
591:
60#endif
61.endm
62
5963e317
SR
63/*
64 * When dynamic function tracer is enabled it will add a breakpoint
65 * to all locations that it is about to modify, sync CPUs, update
66 * all the code, sync CPUs, then remove the breakpoints. In this time
67 * if lockdep is enabled, it might jump back into the debug handler
68 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
69 *
70 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
71 * make sure the stack pointer does not get reset back to the top
72 * of the debug stack, and instead just reuses the current stack.
73 */
74#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
75
76.macro TRACE_IRQS_OFF_DEBUG
4d732138 77 call debug_stack_set_zero
5963e317 78 TRACE_IRQS_OFF
4d732138 79 call debug_stack_reset
5963e317
SR
80.endm
81
82.macro TRACE_IRQS_ON_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_ON
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
f2db9382 88.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
89 bt $9, EFLAGS(%rsp) /* interrupts off? */
90 jnc 1f
5963e317
SR
91 TRACE_IRQS_ON_DEBUG
921:
93.endm
94
95#else
4d732138
IM
96# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
97# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
98# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
99#endif
100
1da177e4 101/*
4d732138 102 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 103 *
fda57b22
AL
104 * This is the only entry point used for 64-bit system calls. The
105 * hardware interface is reasonably well designed and the register to
106 * argument mapping Linux uses fits well with the registers that are
107 * available when SYSCALL is used.
108 *
109 * SYSCALL instructions can be found inlined in libc implementations as
110 * well as some other programs and libraries. There are also a handful
111 * of SYSCALL instructions in the vDSO used, for example, as a
112 * clock_gettimeofday fallback.
113 *
4d732138 114 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
115 * then loads new ss, cs, and rip from previously programmed MSRs.
116 * rflags gets masked by a value from another MSR (so CLD and CLAC
117 * are not needed). SYSCALL does not save anything on the stack
118 * and does not change rsp.
119 *
120 * Registers on entry:
1da177e4 121 * rax system call number
b87cf63e
DV
122 * rcx return address
123 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 124 * rdi arg0
1da177e4 125 * rsi arg1
0bd7b798 126 * rdx arg2
b87cf63e 127 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
128 * r8 arg4
129 * r9 arg5
4d732138 130 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 131 *
1da177e4
LT
132 * Only called from user space.
133 *
7fcb3bc3 134 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
135 * it deals with uncanonical addresses better. SYSRET has trouble
136 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 137 */
1da177e4 138
b2502b41 139ENTRY(entry_SYSCALL_64)
8c1f7558 140 UNWIND_HINT_EMPTY
9ed8e7d8
DV
141 /*
142 * Interrupts are off on entry.
143 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
144 * it is too small to ever cause noticeable irq latency.
145 */
72fe4858 146
8a9949bc 147 swapgs
4d732138
IM
148 movq %rsp, PER_CPU_VAR(rsp_scratch)
149 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 150
1e423bff
AL
151 TRACE_IRQS_OFF
152
9ed8e7d8 153 /* Construct struct pt_regs on stack */
4d732138
IM
154 pushq $__USER_DS /* pt_regs->ss */
155 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
156 pushq %r11 /* pt_regs->flags */
157 pushq $__USER_CS /* pt_regs->cs */
158 pushq %rcx /* pt_regs->ip */
8a9949bc 159GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
160 pushq %rax /* pt_regs->orig_ax */
161 pushq %rdi /* pt_regs->di */
162 pushq %rsi /* pt_regs->si */
163 pushq %rdx /* pt_regs->dx */
164 pushq %rcx /* pt_regs->cx */
165 pushq $-ENOSYS /* pt_regs->ax */
166 pushq %r8 /* pt_regs->r8 */
167 pushq %r9 /* pt_regs->r9 */
168 pushq %r10 /* pt_regs->r10 */
169 pushq %r11 /* pt_regs->r11 */
170 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
8c1f7558 171 UNWIND_HINT_REGS extra=0
4d732138 172
1e423bff
AL
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
15f4eae7
AL
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
179 jnz entry_SYSCALL64_slow_path
180
b2502b41 181entry_SYSCALL_64_fastpath:
1e423bff
AL
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 189#if __SYSCALL_MASK == ~0
4d732138 190 cmpq $__NR_syscall_max, %rax
fca460f9 191#else
4d732138
IM
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
fca460f9 194#endif
4d732138
IM
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
302f5b26
AL
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
302f5b26 202 */
4d732138 203 call *sys_call_table(, %rax, 8)
302f5b26
AL
204.Lentry_SYSCALL_64_after_fastpath_call:
205
4d732138 206 movq %rax, RAX(%rsp)
146b2b09 2071:
b3494a4a
AL
208
209 /*
1e423bff
AL
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 213 */
2140a994 214 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 215 TRACE_IRQS_OFF
15f4eae7
AL
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 218 jnz 1f
b3494a4a 219
1e423bff
AL
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
224 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 225 movq RSP(%rsp), %rsp
8c1f7558 226 UNWIND_HINT_EMPTY
2be29982 227 USERGS_SYSRET64
1da177e4 228
1e423bff
AL
2291:
230 /*
231 * The fast path looked good when we started, but something changed
232 * along the way and we need to switch to the slow path. Calling
233 * raise(3) will trigger this, for example. IRQs are off.
234 */
29ea1b25 235 TRACE_IRQS_ON
2140a994 236 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 237 SAVE_EXTRA_REGS
4d732138 238 movq %rsp, %rdi
1e423bff
AL
239 call syscall_return_slowpath /* returns with IRQs disabled */
240 jmp return_from_SYSCALL_64
0bd7b798 241
1e423bff
AL
242entry_SYSCALL64_slow_path:
243 /* IRQs are off. */
76f5df43 244 SAVE_EXTRA_REGS
29ea1b25 245 movq %rsp, %rdi
1e423bff
AL
246 call do_syscall_64 /* returns with IRQs disabled */
247
248return_from_SYSCALL_64:
76f5df43 249 RESTORE_EXTRA_REGS
29ea1b25 250 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
251
252 /*
253 * Try to use SYSRET instead of IRET if we're returning to
254 * a completely clean 64-bit userspace context.
255 */
4d732138
IM
256 movq RCX(%rsp), %rcx
257 movq RIP(%rsp), %r11
258 cmpq %rcx, %r11 /* RCX == RIP */
259 jne opportunistic_sysret_failed
fffbb5dc
DV
260
261 /*
262 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
263 * in kernel space. This essentially lets the user take over
17be0aec 264 * the kernel, since userspace controls RSP.
fffbb5dc 265 *
17be0aec 266 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 267 * to be updated to remain correct on both old and new CPUs.
361b4b58 268 *
cbe0317b
KS
269 * Change top bits to match most significant bit (47th or 56th bit
270 * depending on paging mode) in the address.
fffbb5dc 271 */
17be0aec
DV
272 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 274
17be0aec
DV
275 /* If this changed %rcx, it was not canonical */
276 cmpq %rcx, %r11
277 jne opportunistic_sysret_failed
fffbb5dc 278
4d732138
IM
279 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
280 jne opportunistic_sysret_failed
fffbb5dc 281
4d732138
IM
282 movq R11(%rsp), %r11
283 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
284 jne opportunistic_sysret_failed
fffbb5dc
DV
285
286 /*
3e035305
BP
287 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
288 * restore RF properly. If the slowpath sets it for whatever reason, we
289 * need to restore it correctly.
290 *
291 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
292 * trap from userspace immediately after SYSRET. This would cause an
293 * infinite loop whenever #DB happens with register state that satisfies
294 * the opportunistic SYSRET conditions. For example, single-stepping
295 * this user code:
fffbb5dc 296 *
4d732138 297 * movq $stuck_here, %rcx
fffbb5dc
DV
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
4d732138
IM
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz opportunistic_sysret_failed
fffbb5dc
DV
306
307 /* nothing to check for RSP */
308
4d732138
IM
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne opportunistic_sysret_failed
fffbb5dc
DV
311
312 /*
4d732138
IM
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
fffbb5dc
DV
315 */
316syscall_return_via_sysret:
17be0aec
DV
317 /* rcx and r11 are already restored (see code above) */
318 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 319 movq RSP(%rsp), %rsp
8c1f7558 320 UNWIND_HINT_EMPTY
fffbb5dc 321 USERGS_SYSRET64
fffbb5dc
DV
322
323opportunistic_sysret_failed:
324 SWAPGS
325 jmp restore_c_regs_and_iret
b2502b41 326END(entry_SYSCALL_64)
0bd7b798 327
302f5b26
AL
328ENTRY(stub_ptregs_64)
329 /*
330 * Syscalls marked as needing ptregs land here.
b7765086
AL
331 * If we are on the fast path, we need to save the extra regs,
332 * which we achieve by trying again on the slow path. If we are on
333 * the slow path, the extra regs are already saved.
302f5b26
AL
334 *
335 * RAX stores a pointer to the C function implementing the syscall.
b7765086 336 * IRQs are on.
302f5b26
AL
337 */
338 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
339 jne 1f
340
b7765086
AL
341 /*
342 * Called from fast path -- disable IRQs again, pop return address
343 * and jump to slow path
344 */
2140a994 345 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 346 TRACE_IRQS_OFF
302f5b26 347 popq %rax
8c1f7558 348 UNWIND_HINT_REGS extra=0
b7765086 349 jmp entry_SYSCALL64_slow_path
302f5b26
AL
350
3511:
b3830e8d 352 jmp *%rax /* Called from C */
302f5b26
AL
353END(stub_ptregs_64)
354
355.macro ptregs_stub func
356ENTRY(ptregs_\func)
8c1f7558 357 UNWIND_HINT_FUNC
302f5b26
AL
358 leaq \func(%rip), %rax
359 jmp stub_ptregs_64
360END(ptregs_\func)
361.endm
362
363/* Instantiate ptregs_stub for each ptregs-using syscall */
364#define __SYSCALL_64_QUAL_(sym)
365#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
366#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
367#include <asm/syscalls_64.h>
fffbb5dc 368
0100301b
BG
369/*
370 * %rdi: prev task
371 * %rsi: next task
372 */
373ENTRY(__switch_to_asm)
8c1f7558 374 UNWIND_HINT_FUNC
0100301b
BG
375 /*
376 * Save callee-saved registers
377 * This must match the order in inactive_task_frame
378 */
379 pushq %rbp
380 pushq %rbx
381 pushq %r12
382 pushq %r13
383 pushq %r14
384 pushq %r15
385
386 /* switch stack */
387 movq %rsp, TASK_threadsp(%rdi)
388 movq TASK_threadsp(%rsi), %rsp
389
390#ifdef CONFIG_CC_STACKPROTECTOR
391 movq TASK_stack_canary(%rsi), %rbx
392 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
393#endif
394
395 /* restore callee-saved registers */
396 popq %r15
397 popq %r14
398 popq %r13
399 popq %r12
400 popq %rbx
401 popq %rbp
402
403 jmp __switch_to
404END(__switch_to_asm)
405
1eeb207f
DV
406/*
407 * A newly forked process directly context switches into this address.
408 *
0100301b 409 * rax: prev task we switched from
616d2483
BG
410 * rbx: kernel thread func (NULL for user thread)
411 * r12: kernel thread arg
1eeb207f
DV
412 */
413ENTRY(ret_from_fork)
8c1f7558 414 UNWIND_HINT_EMPTY
0100301b 415 movq %rax, %rdi
ebd57499 416 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 417
ebd57499
JP
418 testq %rbx, %rbx /* from kernel_thread? */
419 jnz 1f /* kernel threads are uncommon */
24d978b7 420
616d2483 4212:
8c1f7558 422 UNWIND_HINT_REGS
ebd57499 423 movq %rsp, %rdi
24d978b7
AL
424 call syscall_return_slowpath /* returns with IRQs disabled */
425 TRACE_IRQS_ON /* user mode is traced as IRQS on */
426 SWAPGS
427 jmp restore_regs_and_iret
616d2483
BG
428
4291:
430 /* kernel thread */
431 movq %r12, %rdi
432 call *%rbx
433 /*
434 * A kernel thread is allowed to return here after successfully
435 * calling do_execve(). Exit to userspace to complete the execve()
436 * syscall.
437 */
438 movq $0, RAX(%rsp)
439 jmp 2b
1eeb207f
DV
440END(ret_from_fork)
441
939b7871 442/*
3304c9c3
DV
443 * Build the entry stubs with some assembler magic.
444 * We pack 1 stub into every 8-byte block.
939b7871 445 */
3304c9c3 446 .align 8
939b7871 447ENTRY(irq_entries_start)
3304c9c3
DV
448 vector=FIRST_EXTERNAL_VECTOR
449 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 450 UNWIND_HINT_IRET_REGS
4d732138 451 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 452 jmp common_interrupt
3304c9c3 453 .align 8
8c1f7558 454 vector=vector+1
3304c9c3 455 .endr
939b7871
PA
456END(irq_entries_start)
457
1d3e53e8
AL
458.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
459#ifdef CONFIG_DEBUG_ENTRY
460 pushfq
461 testl $X86_EFLAGS_IF, (%rsp)
462 jz .Lokay_\@
463 ud2
464.Lokay_\@:
465 addq $8, %rsp
466#endif
467.endm
468
469/*
470 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
471 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
472 * Requires kernel GSBASE.
473 *
474 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
475 */
8c1f7558 476.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
477 DEBUG_ENTRY_ASSERT_IRQS_OFF
478 movq %rsp, \old_rsp
8c1f7558
JP
479
480 .if \regs
481 UNWIND_HINT_REGS base=\old_rsp
482 .endif
483
1d3e53e8 484 incl PER_CPU_VAR(irq_count)
29955909 485 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
486
487 /*
488 * Right now, if we just incremented irq_count to zero, we've
489 * claimed the IRQ stack but we haven't switched to it yet.
490 *
491 * If anything is added that can interrupt us here without using IST,
492 * it must be *extremely* careful to limit its stack usage. This
493 * could include kprobes and a hypothetical future IST-less #DB
494 * handler.
29955909
AL
495 *
496 * The OOPS unwinder relies on the word at the top of the IRQ
497 * stack linking back to the previous RSP for the entire time we're
498 * on the IRQ stack. For this to work reliably, we need to write
499 * it before we actually move ourselves to the IRQ stack.
500 */
501
502 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
503 movq PER_CPU_VAR(irq_stack_ptr), %rsp
504
505#ifdef CONFIG_DEBUG_ENTRY
506 /*
507 * If the first movq above becomes wrong due to IRQ stack layout
508 * changes, the only way we'll notice is if we try to unwind right
509 * here. Assert that we set up the stack right to catch this type
510 * of bug quickly.
1d3e53e8 511 */
29955909
AL
512 cmpq -8(%rsp), \old_rsp
513 je .Lirq_stack_okay\@
514 ud2
515 .Lirq_stack_okay\@:
516#endif
1d3e53e8 517
29955909 518.Lirq_stack_push_old_rsp_\@:
1d3e53e8 519 pushq \old_rsp
8c1f7558
JP
520
521 .if \regs
522 UNWIND_HINT_REGS indirect=1
523 .endif
1d3e53e8
AL
524.endm
525
526/*
527 * Undoes ENTER_IRQ_STACK.
528 */
8c1f7558 529.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
530 DEBUG_ENTRY_ASSERT_IRQS_OFF
531 /* We need to be off the IRQ stack before decrementing irq_count. */
532 popq %rsp
533
8c1f7558
JP
534 .if \regs
535 UNWIND_HINT_REGS
536 .endif
537
1d3e53e8
AL
538 /*
539 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
540 * the irq stack but we're not on it.
541 */
542
543 decl PER_CPU_VAR(irq_count)
544.endm
545
d99015b1 546/*
1da177e4
LT
547 * Interrupt entry/exit.
548 *
549 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
550 *
551 * Entry runs with interrupts off.
552 */
1da177e4 553
722024db 554/* 0(%rsp): ~(interrupt number) */
1da177e4 555 .macro interrupt func
f6f64681 556 cld
ff467594
AL
557 ALLOC_PT_GPREGS_ON_STACK
558 SAVE_C_REGS
559 SAVE_EXTRA_REGS
946c1911 560 ENCODE_FRAME_POINTER
76f5df43 561
ff467594 562 testb $3, CS(%rsp)
dde74f2e 563 jz 1f
02bc7768
AL
564
565 /*
566 * IRQ from user mode. Switch to kernel gsbase and inform context
567 * tracking that we're in kernel mode.
568 */
f6f64681 569 SWAPGS
f1075053
AL
570
571 /*
572 * We need to tell lockdep that IRQs are off. We can't do this until
573 * we fix gsbase, and we should do it before enter_from_user_mode
574 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
575 * the simplest way to handle it is to just call it twice if
576 * we enter from user mode. There's no reason to optimize this since
577 * TRACE_IRQS_OFF is a no-op if lockdep is off.
578 */
579 TRACE_IRQS_OFF
580
478dc89c 581 CALL_enter_from_user_mode
02bc7768 582
76f5df43 5831:
1d3e53e8 584 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
585 /* We entered an interrupt context - irqs are off: */
586 TRACE_IRQS_OFF
587
a586f98e 588 call \func /* rdi points to pt_regs */
1da177e4
LT
589 .endm
590
722024db
AH
591 /*
592 * The interrupt stubs push (~vector+0x80) onto the stack and
593 * then jump to common_interrupt.
594 */
939b7871
PA
595 .p2align CONFIG_X86_L1_CACHE_SHIFT
596common_interrupt:
ee4eb87b 597 ASM_CLAC
4d732138 598 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 599 interrupt do_IRQ
34061f13 600 /* 0(%rsp): old RSP */
7effaa88 601ret_from_intr:
2140a994 602 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 603 TRACE_IRQS_OFF
625dbc3b 604
1d3e53e8 605 LEAVE_IRQ_STACK
625dbc3b 606
03335e95 607 testb $3, CS(%rsp)
dde74f2e 608 jz retint_kernel
4d732138 609
02bc7768 610 /* Interrupt came from user space */
02bc7768
AL
611GLOBAL(retint_user)
612 mov %rsp,%rdi
613 call prepare_exit_to_usermode
2601e64d 614 TRACE_IRQS_IRETQ
72fe4858 615 SWAPGS
ff467594 616 jmp restore_regs_and_iret
2601e64d 617
627276cb 618/* Returning to kernel space */
6ba71b76 619retint_kernel:
627276cb
DV
620#ifdef CONFIG_PREEMPT
621 /* Interrupts are off */
622 /* Check if we need preemption */
4d732138 623 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 624 jnc 1f
4d732138 6250: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 626 jnz 1f
627276cb 627 call preempt_schedule_irq
36acef25 628 jmp 0b
6ba71b76 6291:
627276cb 630#endif
2601e64d
IM
631 /*
632 * The iretq could re-enable interrupts:
633 */
634 TRACE_IRQS_IRETQ
fffbb5dc
DV
635
636/*
637 * At this label, code paths which return to kernel and to user,
638 * which come from interrupts/exception and from syscalls, merge.
639 */
ee08c6bd 640GLOBAL(restore_regs_and_iret)
ff467594 641 RESTORE_EXTRA_REGS
fffbb5dc 642restore_c_regs_and_iret:
76f5df43
DV
643 RESTORE_C_REGS
644 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
645 INTERRUPT_RETURN
646
647ENTRY(native_iret)
8c1f7558 648 UNWIND_HINT_IRET_REGS
3891a04a
PA
649 /*
650 * Are we returning to a stack segment from the LDT? Note: in
651 * 64-bit mode SS:RSP on the exception stack is always valid.
652 */
34273f41 653#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
654 testb $4, (SS-RIP)(%rsp)
655 jnz native_irq_return_ldt
34273f41 656#endif
3891a04a 657
af726f21 658.global native_irq_return_iret
7209a75d 659native_irq_return_iret:
b645af2d
AL
660 /*
661 * This may fault. Non-paranoid faults on return to userspace are
662 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
663 * Double-faults due to espfix64 are handled in do_double_fault.
664 * Other faults here are fatal.
665 */
1da177e4 666 iretq
3701d863 667
34273f41 668#ifdef CONFIG_X86_ESPFIX64
7209a75d 669native_irq_return_ldt:
85063fac
AL
670 /*
671 * We are running with user GSBASE. All GPRs contain their user
672 * values. We have a percpu ESPFIX stack that is eight slots
673 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
674 * of the ESPFIX stack.
675 *
676 * We clobber RAX and RDI in this code. We stash RDI on the
677 * normal stack and RAX on the ESPFIX stack.
678 *
679 * The ESPFIX stack layout we set up looks like this:
680 *
681 * --- top of ESPFIX stack ---
682 * SS
683 * RSP
684 * RFLAGS
685 * CS
686 * RIP <-- RSP points here when we're done
687 * RAX <-- espfix_waddr points here
688 * --- bottom of ESPFIX stack ---
689 */
690
691 pushq %rdi /* Stash user RDI */
3891a04a 692 SWAPGS
4d732138 693 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
694 movq %rax, (0*8)(%rdi) /* user RAX */
695 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 696 movq %rax, (1*8)(%rdi)
85063fac 697 movq (2*8)(%rsp), %rax /* user CS */
4d732138 698 movq %rax, (2*8)(%rdi)
85063fac 699 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 700 movq %rax, (3*8)(%rdi)
85063fac 701 movq (5*8)(%rsp), %rax /* user SS */
4d732138 702 movq %rax, (5*8)(%rdi)
85063fac 703 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 704 movq %rax, (4*8)(%rdi)
85063fac
AL
705 /* Now RAX == RSP. */
706
707 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
708 popq %rdi /* Restore user RDI */
709
710 /*
711 * espfix_stack[31:16] == 0. The page tables are set up such that
712 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
713 * espfix_waddr for any X. That is, there are 65536 RO aliases of
714 * the same page. Set up RSP so that RSP[31:16] contains the
715 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
716 * still points to an RO alias of the ESPFIX stack.
717 */
4d732138 718 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 719 SWAPGS
4d732138 720 movq %rax, %rsp
8c1f7558 721 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
722
723 /*
724 * At this point, we cannot write to the stack any more, but we can
725 * still read.
726 */
727 popq %rax /* Restore user RAX */
728
729 /*
730 * RSP now points to an ordinary IRET frame, except that the page
731 * is read-only and RSP[31:16] are preloaded with the userspace
732 * values. We can now IRET back to userspace.
733 */
4d732138 734 jmp native_irq_return_iret
34273f41 735#endif
4b787e0b 736END(common_interrupt)
3891a04a 737
1da177e4
LT
738/*
739 * APIC interrupts.
0bd7b798 740 */
cf910e83 741.macro apicinterrupt3 num sym do_sym
322648d1 742ENTRY(\sym)
8c1f7558 743 UNWIND_HINT_IRET_REGS
ee4eb87b 744 ASM_CLAC
4d732138 745 pushq $~(\num)
39e95433 746.Lcommon_\sym:
322648d1 747 interrupt \do_sym
4d732138 748 jmp ret_from_intr
322648d1
AH
749END(\sym)
750.endm
1da177e4 751
469f0023 752/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
753#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
754#define POP_SECTION_IRQENTRY .popsection
469f0023 755
cf910e83 756.macro apicinterrupt num sym do_sym
469f0023 757PUSH_SECTION_IRQENTRY
cf910e83 758apicinterrupt3 \num \sym \do_sym
469f0023 759POP_SECTION_IRQENTRY
cf910e83
SA
760.endm
761
322648d1 762#ifdef CONFIG_SMP
4d732138
IM
763apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
764apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 765#endif
1da177e4 766
03b48632 767#ifdef CONFIG_X86_UV
4d732138 768apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 769#endif
4d732138
IM
770
771apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
772apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 773
d78f2664 774#ifdef CONFIG_HAVE_KVM
4d732138
IM
775apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
776apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 777apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
778#endif
779
33e5ff63 780#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 781apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
782#endif
783
24fd78a8 784#ifdef CONFIG_X86_MCE_AMD
4d732138 785apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
786#endif
787
33e5ff63 788#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 789apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 790#endif
1812924b 791
322648d1 792#ifdef CONFIG_SMP
4d732138
IM
793apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
794apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
795apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 796#endif
1da177e4 797
4d732138
IM
798apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
799apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 800
e360adbe 801#ifdef CONFIG_IRQ_WORK
4d732138 802apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
803#endif
804
1da177e4
LT
805/*
806 * Exception entry points.
0bd7b798 807 */
9b476688 808#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
809
810.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 811ENTRY(\sym)
8c1f7558
JP
812 UNWIND_HINT_IRET_REGS offset=8
813
577ed45e
AL
814 /* Sanity check */
815 .if \shift_ist != -1 && \paranoid == 0
816 .error "using shift_ist requires paranoid=1"
817 .endif
818
ee4eb87b 819 ASM_CLAC
cb5dd2c5
AL
820
821 .ifeq \has_error_code
4d732138 822 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
823 .endif
824
76f5df43 825 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
826
827 .if \paranoid
48e08d0f 828 .if \paranoid == 1
4d732138
IM
829 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
830 jnz 1f
48e08d0f 831 .endif
4d732138 832 call paranoid_entry
cb5dd2c5 833 .else
4d732138 834 call error_entry
cb5dd2c5 835 .endif
8c1f7558 836 UNWIND_HINT_REGS
ebfc453e 837 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 838
cb5dd2c5 839 .if \paranoid
577ed45e 840 .if \shift_ist != -1
4d732138 841 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 842 .else
b8b1d08b 843 TRACE_IRQS_OFF
cb5dd2c5 844 .endif
577ed45e 845 .endif
cb5dd2c5 846
4d732138 847 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
848
849 .if \has_error_code
4d732138
IM
850 movq ORIG_RAX(%rsp), %rsi /* get error code */
851 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 852 .else
4d732138 853 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
854 .endif
855
577ed45e 856 .if \shift_ist != -1
4d732138 857 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
858 .endif
859
4d732138 860 call \do_sym
cb5dd2c5 861
577ed45e 862 .if \shift_ist != -1
4d732138 863 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
864 .endif
865
ebfc453e 866 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 867 .if \paranoid
4d732138 868 jmp paranoid_exit
cb5dd2c5 869 .else
4d732138 870 jmp error_exit
cb5dd2c5
AL
871 .endif
872
48e08d0f 873 .if \paranoid == 1
48e08d0f
AL
874 /*
875 * Paranoid entry from userspace. Switch stacks and treat it
876 * as a normal entry. This means that paranoid handlers
877 * run in real process context if user_mode(regs).
878 */
8791:
4d732138 880 call error_entry
48e08d0f 881
48e08d0f 882
4d732138
IM
883 movq %rsp, %rdi /* pt_regs pointer */
884 call sync_regs
885 movq %rax, %rsp /* switch stack */
48e08d0f 886
4d732138 887 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
888
889 .if \has_error_code
4d732138
IM
890 movq ORIG_RAX(%rsp), %rsi /* get error code */
891 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 892 .else
4d732138 893 xorl %esi, %esi /* no error code */
48e08d0f
AL
894 .endif
895
4d732138 896 call \do_sym
48e08d0f 897
4d732138 898 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 899 .endif
ddeb8f21 900END(\sym)
322648d1 901.endm
b8b1d08b 902
4d732138
IM
903idtentry divide_error do_divide_error has_error_code=0
904idtentry overflow do_overflow has_error_code=0
905idtentry bounds do_bounds has_error_code=0
906idtentry invalid_op do_invalid_op has_error_code=0
907idtentry device_not_available do_device_not_available has_error_code=0
908idtentry double_fault do_double_fault has_error_code=1 paranoid=2
909idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
910idtentry invalid_TSS do_invalid_TSS has_error_code=1
911idtentry segment_not_present do_segment_not_present has_error_code=1
912idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
913idtentry coprocessor_error do_coprocessor_error has_error_code=0
914idtentry alignment_check do_alignment_check has_error_code=1
915idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
916
917
918 /*
919 * Reload gs selector with exception handling
920 * edi: new selector
921 */
9f9d489a 922ENTRY(native_load_gs_index)
8c1f7558 923 FRAME_BEGIN
131484c8 924 pushfq
b8aa287f 925 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 926 SWAPGS
42c748bb 927.Lgs_change:
4d732138 928 movl %edi, %gs
96e5d28a 9292: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 930 SWAPGS
131484c8 931 popfq
8c1f7558 932 FRAME_END
9f1e87ea 933 ret
8c1f7558 934ENDPROC(native_load_gs_index)
784d5699 935EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 936
42c748bb 937 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 938 .section .fixup, "ax"
1da177e4 939 /* running with kernelgs */
0bd7b798 940bad_gs:
4d732138 941 SWAPGS /* switch back to user gs */
b038c842
AL
942.macro ZAP_GS
943 /* This can't be a string because the preprocessor needs to see it. */
944 movl $__USER_DS, %eax
945 movl %eax, %gs
946.endm
947 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
948 xorl %eax, %eax
949 movl %eax, %gs
950 jmp 2b
9f1e87ea 951 .previous
0bd7b798 952
2699500b 953/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 954ENTRY(do_softirq_own_stack)
4d732138
IM
955 pushq %rbp
956 mov %rsp, %rbp
8c1f7558 957 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 958 call __do_softirq
8c1f7558 959 LEAVE_IRQ_STACK regs=0
2699500b 960 leaveq
ed6b676c 961 ret
8c1f7558 962ENDPROC(do_softirq_own_stack)
75154f40 963
3d75e1b8 964#ifdef CONFIG_XEN
5878d5d6 965idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
966
967/*
9f1e87ea
CG
968 * A note on the "critical region" in our callback handler.
969 * We want to avoid stacking callback handlers due to events occurring
970 * during handling of the last event. To do this, we keep events disabled
971 * until we've done all processing. HOWEVER, we must enable events before
972 * popping the stack frame (can't be done atomically) and so it would still
973 * be possible to get enough handler activations to overflow the stack.
974 * Although unlikely, bugs of that kind are hard to track down, so we'd
975 * like to avoid the possibility.
976 * So, on entry to the handler we detect whether we interrupted an
977 * existing activation in its critical region -- if so, we pop the current
978 * activation and restart the handler using the previous one.
979 */
4d732138
IM
980ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
981
9f1e87ea
CG
982/*
983 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
984 * see the correct pointer to the pt_regs
985 */
8c1f7558 986 UNWIND_HINT_FUNC
4d732138 987 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 988 UNWIND_HINT_REGS
1d3e53e8
AL
989
990 ENTER_IRQ_STACK old_rsp=%r10
4d732138 991 call xen_evtchn_do_upcall
1d3e53e8
AL
992 LEAVE_IRQ_STACK
993
fdfd811d 994#ifndef CONFIG_PREEMPT
4d732138 995 call xen_maybe_preempt_hcall
fdfd811d 996#endif
4d732138 997 jmp error_exit
371c394a 998END(xen_do_hypervisor_callback)
3d75e1b8
JF
999
1000/*
9f1e87ea
CG
1001 * Hypervisor uses this for application faults while it executes.
1002 * We get here for two reasons:
1003 * 1. Fault while reloading DS, ES, FS or GS
1004 * 2. Fault while executing IRET
1005 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1006 * registers that could be reloaded and zeroed the others.
1007 * Category 2 we fix up by killing the current process. We cannot use the
1008 * normal Linux return path in this case because if we use the IRET hypercall
1009 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1010 * We distinguish between categories by comparing each saved segment register
1011 * with its current contents: any discrepancy means we in category 1.
1012 */
3d75e1b8 1013ENTRY(xen_failsafe_callback)
8c1f7558 1014 UNWIND_HINT_EMPTY
4d732138
IM
1015 movl %ds, %ecx
1016 cmpw %cx, 0x10(%rsp)
1017 jne 1f
1018 movl %es, %ecx
1019 cmpw %cx, 0x18(%rsp)
1020 jne 1f
1021 movl %fs, %ecx
1022 cmpw %cx, 0x20(%rsp)
1023 jne 1f
1024 movl %gs, %ecx
1025 cmpw %cx, 0x28(%rsp)
1026 jne 1f
3d75e1b8 1027 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1028 movq (%rsp), %rcx
1029 movq 8(%rsp), %r11
1030 addq $0x30, %rsp
1031 pushq $0 /* RIP */
8c1f7558 1032 UNWIND_HINT_IRET_REGS offset=8
4d732138 1033 jmp general_protection
3d75e1b8 10341: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1035 movq (%rsp), %rcx
1036 movq 8(%rsp), %r11
1037 addq $0x30, %rsp
8c1f7558 1038 UNWIND_HINT_IRET_REGS
4d732138 1039 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1040 ALLOC_PT_GPREGS_ON_STACK
1041 SAVE_C_REGS
1042 SAVE_EXTRA_REGS
946c1911 1043 ENCODE_FRAME_POINTER
4d732138 1044 jmp error_exit
3d75e1b8
JF
1045END(xen_failsafe_callback)
1046
cf910e83 1047apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1048 xen_hvm_callback_vector xen_evtchn_do_upcall
1049
3d75e1b8 1050#endif /* CONFIG_XEN */
ddeb8f21 1051
bc2b0331 1052#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1053apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1054 hyperv_callback_vector hyperv_vector_handler
1055#endif /* CONFIG_HYPERV */
1056
4d732138
IM
1057idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1058idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1059idtentry stack_segment do_stack_segment has_error_code=1
1060
6cac5a92 1061#ifdef CONFIG_XEN
5878d5d6
JG
1062idtentry xendebug do_debug has_error_code=0
1063idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1064#endif
4d732138
IM
1065
1066idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1067idtentry page_fault do_page_fault has_error_code=1
4d732138 1068
631bc487 1069#ifdef CONFIG_KVM_GUEST
4d732138 1070idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1071#endif
4d732138 1072
ddeb8f21 1073#ifdef CONFIG_X86_MCE
4d732138 1074idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1075#endif
1076
ebfc453e
DV
1077/*
1078 * Save all registers in pt_regs, and switch gs if needed.
1079 * Use slow, but surefire "are we in kernel?" check.
1080 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1081 */
1082ENTRY(paranoid_entry)
8c1f7558 1083 UNWIND_HINT_FUNC
1eeb207f
DV
1084 cld
1085 SAVE_C_REGS 8
1086 SAVE_EXTRA_REGS 8
946c1911 1087 ENCODE_FRAME_POINTER 8
4d732138
IM
1088 movl $1, %ebx
1089 movl $MSR_GS_BASE, %ecx
1eeb207f 1090 rdmsr
4d732138
IM
1091 testl %edx, %edx
1092 js 1f /* negative -> in kernel */
1eeb207f 1093 SWAPGS
4d732138 1094 xorl %ebx, %ebx
1eeb207f 10951: ret
ebfc453e 1096END(paranoid_entry)
ddeb8f21 1097
ebfc453e
DV
1098/*
1099 * "Paranoid" exit path from exception stack. This is invoked
1100 * only on return from non-NMI IST interrupts that came
1101 * from kernel space.
1102 *
1103 * We may be returning to very strange contexts (e.g. very early
1104 * in syscall entry), so checking for preemption here would
1105 * be complicated. Fortunately, we there's no good reason
1106 * to try to handle preemption here.
4d732138
IM
1107 *
1108 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1109 */
ddeb8f21 1110ENTRY(paranoid_exit)
8c1f7558 1111 UNWIND_HINT_REGS
2140a994 1112 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1113 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1114 testl %ebx, %ebx /* swapgs needed? */
1115 jnz paranoid_exit_no_swapgs
f2db9382 1116 TRACE_IRQS_IRETQ
ddeb8f21 1117 SWAPGS_UNSAFE_STACK
4d732138 1118 jmp paranoid_exit_restore
0d550836 1119paranoid_exit_no_swapgs:
f2db9382 1120 TRACE_IRQS_IRETQ_DEBUG
0d550836 1121paranoid_exit_restore:
76f5df43
DV
1122 RESTORE_EXTRA_REGS
1123 RESTORE_C_REGS
1124 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1125 INTERRUPT_RETURN
ddeb8f21
AH
1126END(paranoid_exit)
1127
1128/*
ebfc453e 1129 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1130 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1131 */
1132ENTRY(error_entry)
8c1f7558 1133 UNWIND_HINT_FUNC
ddeb8f21 1134 cld
76f5df43
DV
1135 SAVE_C_REGS 8
1136 SAVE_EXTRA_REGS 8
946c1911 1137 ENCODE_FRAME_POINTER 8
4d732138 1138 xorl %ebx, %ebx
03335e95 1139 testb $3, CS+8(%rsp)
cb6f64ed 1140 jz .Lerror_kernelspace
539f5113 1141
cb6f64ed
AL
1142 /*
1143 * We entered from user mode or we're pretending to have entered
1144 * from user mode due to an IRET fault.
1145 */
ddeb8f21 1146 SWAPGS
539f5113 1147
cb6f64ed 1148.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1149 /*
1150 * We need to tell lockdep that IRQs are off. We can't do this until
1151 * we fix gsbase, and we should do it before enter_from_user_mode
1152 * (which can take locks).
1153 */
1154 TRACE_IRQS_OFF
478dc89c 1155 CALL_enter_from_user_mode
f1075053 1156 ret
02bc7768 1157
cb6f64ed 1158.Lerror_entry_done:
ddeb8f21
AH
1159 TRACE_IRQS_OFF
1160 ret
ddeb8f21 1161
ebfc453e
DV
1162 /*
1163 * There are two places in the kernel that can potentially fault with
1164 * usergs. Handle them here. B stepping K8s sometimes report a
1165 * truncated RIP for IRET exceptions returning to compat mode. Check
1166 * for these here too.
1167 */
cb6f64ed 1168.Lerror_kernelspace:
4d732138
IM
1169 incl %ebx
1170 leaq native_irq_return_iret(%rip), %rcx
1171 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1172 je .Lerror_bad_iret
4d732138
IM
1173 movl %ecx, %eax /* zero extend */
1174 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1175 je .Lbstep_iret
42c748bb 1176 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1177 jne .Lerror_entry_done
539f5113
AL
1178
1179 /*
42c748bb 1180 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1181 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1182 * .Lgs_change's error handler with kernel gsbase.
539f5113 1183 */
2fa5f04f
WL
1184 SWAPGS
1185 jmp .Lerror_entry_done
ae24ffe5 1186
cb6f64ed 1187.Lbstep_iret:
ae24ffe5 1188 /* Fix truncated RIP */
4d732138 1189 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1190 /* fall through */
1191
cb6f64ed 1192.Lerror_bad_iret:
539f5113
AL
1193 /*
1194 * We came from an IRET to user mode, so we have user gsbase.
1195 * Switch to kernel gsbase:
1196 */
b645af2d 1197 SWAPGS
539f5113
AL
1198
1199 /*
1200 * Pretend that the exception came from user mode: set up pt_regs
1201 * as if we faulted immediately after IRET and clear EBX so that
1202 * error_exit knows that we will be returning to user mode.
1203 */
4d732138
IM
1204 mov %rsp, %rdi
1205 call fixup_bad_iret
1206 mov %rax, %rsp
539f5113 1207 decl %ebx
cb6f64ed 1208 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1209END(error_entry)
1210
1211
539f5113 1212/*
75ca5b22 1213 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1214 * 1: already in kernel mode, don't need SWAPGS
1215 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1216 */
ddeb8f21 1217ENTRY(error_exit)
8c1f7558 1218 UNWIND_HINT_REGS
2140a994 1219 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1220 TRACE_IRQS_OFF
2140a994 1221 testl %ebx, %ebx
4d732138
IM
1222 jnz retint_kernel
1223 jmp retint_user
ddeb8f21
AH
1224END(error_exit)
1225
0784b364 1226/* Runs on exception stack */
5878d5d6 1227/* XXX: broken on Xen PV */
ddeb8f21 1228ENTRY(nmi)
8c1f7558 1229 UNWIND_HINT_IRET_REGS
3f3c8b8c
SR
1230 /*
1231 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1232 * the iretq it performs will take us out of NMI context.
1233 * This means that we can have nested NMIs where the next
1234 * NMI is using the top of the stack of the previous NMI. We
1235 * can't let it execute because the nested NMI will corrupt the
1236 * stack of the previous NMI. NMI handlers are not re-entrant
1237 * anyway.
1238 *
1239 * To handle this case we do the following:
1240 * Check the a special location on the stack that contains
1241 * a variable that is set when NMIs are executing.
1242 * The interrupted task's stack is also checked to see if it
1243 * is an NMI stack.
1244 * If the variable is not set and the stack is not the NMI
1245 * stack then:
1246 * o Set the special variable on the stack
0b22930e
AL
1247 * o Copy the interrupt frame into an "outermost" location on the
1248 * stack
1249 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1250 * o Continue processing the NMI
1251 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1252 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1253 * o return back to the first NMI
1254 *
1255 * Now on exit of the first NMI, we first clear the stack variable
1256 * The NMI stack will tell any nested NMIs at that point that it is
1257 * nested. Then we pop the stack normally with iret, and if there was
1258 * a nested NMI that updated the copy interrupt stack frame, a
1259 * jump will be made to the repeat_nmi code that will handle the second
1260 * NMI.
9b6e6a83
AL
1261 *
1262 * However, espfix prevents us from directly returning to userspace
1263 * with a single IRET instruction. Similarly, IRET to user mode
1264 * can fault. We therefore handle NMIs from user space like
1265 * other IST entries.
3f3c8b8c
SR
1266 */
1267
e93c1730
AL
1268 ASM_CLAC
1269
146b2b09 1270 /* Use %rdx as our temp variable throughout */
4d732138 1271 pushq %rdx
3f3c8b8c 1272
9b6e6a83
AL
1273 testb $3, CS-RIP+8(%rsp)
1274 jz .Lnmi_from_kernel
1275
1276 /*
1277 * NMI from user mode. We need to run on the thread stack, but we
1278 * can't go through the normal entry paths: NMIs are masked, and
1279 * we don't want to enable interrupts, because then we'll end
1280 * up in an awkward situation in which IRQs are on but NMIs
1281 * are off.
83c133cf
AL
1282 *
1283 * We also must not push anything to the stack before switching
1284 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1285 */
1286
83c133cf 1287 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1288 cld
1289 movq %rsp, %rdx
1290 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1291 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1292 pushq 5*8(%rdx) /* pt_regs->ss */
1293 pushq 4*8(%rdx) /* pt_regs->rsp */
1294 pushq 3*8(%rdx) /* pt_regs->flags */
1295 pushq 2*8(%rdx) /* pt_regs->cs */
1296 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1297 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1298 pushq $-1 /* pt_regs->orig_ax */
1299 pushq %rdi /* pt_regs->di */
1300 pushq %rsi /* pt_regs->si */
1301 pushq (%rdx) /* pt_regs->dx */
1302 pushq %rcx /* pt_regs->cx */
1303 pushq %rax /* pt_regs->ax */
1304 pushq %r8 /* pt_regs->r8 */
1305 pushq %r9 /* pt_regs->r9 */
1306 pushq %r10 /* pt_regs->r10 */
1307 pushq %r11 /* pt_regs->r11 */
1308 pushq %rbx /* pt_regs->rbx */
1309 pushq %rbp /* pt_regs->rbp */
1310 pushq %r12 /* pt_regs->r12 */
1311 pushq %r13 /* pt_regs->r13 */
1312 pushq %r14 /* pt_regs->r14 */
1313 pushq %r15 /* pt_regs->r15 */
8c1f7558 1314 UNWIND_HINT_REGS
946c1911 1315 ENCODE_FRAME_POINTER
9b6e6a83
AL
1316
1317 /*
1318 * At this point we no longer need to worry about stack damage
1319 * due to nesting -- we're on the normal thread stack and we're
1320 * done with the NMI stack.
1321 */
1322
1323 movq %rsp, %rdi
1324 movq $-1, %rsi
1325 call do_nmi
1326
45d5a168 1327 /*
9b6e6a83 1328 * Return back to user mode. We must *not* do the normal exit
946c1911 1329 * work, because we don't want to enable interrupts.
45d5a168 1330 */
9b6e6a83 1331 SWAPGS
946c1911 1332 jmp restore_regs_and_iret
45d5a168 1333
9b6e6a83 1334.Lnmi_from_kernel:
3f3c8b8c 1335 /*
0b22930e
AL
1336 * Here's what our stack frame will look like:
1337 * +---------------------------------------------------------+
1338 * | original SS |
1339 * | original Return RSP |
1340 * | original RFLAGS |
1341 * | original CS |
1342 * | original RIP |
1343 * +---------------------------------------------------------+
1344 * | temp storage for rdx |
1345 * +---------------------------------------------------------+
1346 * | "NMI executing" variable |
1347 * +---------------------------------------------------------+
1348 * | iret SS } Copied from "outermost" frame |
1349 * | iret Return RSP } on each loop iteration; overwritten |
1350 * | iret RFLAGS } by a nested NMI to force another |
1351 * | iret CS } iteration if needed. |
1352 * | iret RIP } |
1353 * +---------------------------------------------------------+
1354 * | outermost SS } initialized in first_nmi; |
1355 * | outermost Return RSP } will not be changed before |
1356 * | outermost RFLAGS } NMI processing is done. |
1357 * | outermost CS } Copied to "iret" frame on each |
1358 * | outermost RIP } iteration. |
1359 * +---------------------------------------------------------+
1360 * | pt_regs |
1361 * +---------------------------------------------------------+
1362 *
1363 * The "original" frame is used by hardware. Before re-enabling
1364 * NMIs, we need to be done with it, and we need to leave enough
1365 * space for the asm code here.
1366 *
1367 * We return by executing IRET while RSP points to the "iret" frame.
1368 * That will either return for real or it will loop back into NMI
1369 * processing.
1370 *
1371 * The "outermost" frame is copied to the "iret" frame on each
1372 * iteration of the loop, so each iteration starts with the "iret"
1373 * frame pointing to the final return target.
1374 */
1375
45d5a168 1376 /*
0b22930e
AL
1377 * Determine whether we're a nested NMI.
1378 *
a27507ca
AL
1379 * If we interrupted kernel code between repeat_nmi and
1380 * end_repeat_nmi, then we are a nested NMI. We must not
1381 * modify the "iret" frame because it's being written by
1382 * the outer NMI. That's okay; the outer NMI handler is
1383 * about to about to call do_nmi anyway, so we can just
1384 * resume the outer NMI.
45d5a168 1385 */
a27507ca
AL
1386
1387 movq $repeat_nmi, %rdx
1388 cmpq 8(%rsp), %rdx
1389 ja 1f
1390 movq $end_repeat_nmi, %rdx
1391 cmpq 8(%rsp), %rdx
1392 ja nested_nmi_out
13931:
45d5a168 1394
3f3c8b8c 1395 /*
a27507ca 1396 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1397 * This will not detect if we interrupted an outer NMI just
1398 * before IRET.
3f3c8b8c 1399 */
4d732138
IM
1400 cmpl $1, -8(%rsp)
1401 je nested_nmi
3f3c8b8c
SR
1402
1403 /*
0b22930e
AL
1404 * Now test if the previous stack was an NMI stack. This covers
1405 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1406 * "NMI executing" but before IRET. We need to be careful, though:
1407 * there is one case in which RSP could point to the NMI stack
1408 * despite there being no NMI active: naughty userspace controls
1409 * RSP at the very beginning of the SYSCALL targets. We can
1410 * pull a fast one on naughty userspace, though: we program
1411 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1412 * if it controls the kernel's RSP. We set DF before we clear
1413 * "NMI executing".
3f3c8b8c 1414 */
0784b364
DV
1415 lea 6*8(%rsp), %rdx
1416 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1417 cmpq %rdx, 4*8(%rsp)
1418 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1419 ja first_nmi
4d732138 1420
0784b364
DV
1421 subq $EXCEPTION_STKSZ, %rdx
1422 cmpq %rdx, 4*8(%rsp)
1423 /* If it is below the NMI stack, it is a normal NMI */
1424 jb first_nmi
810bc075
AL
1425
1426 /* Ah, it is within the NMI stack. */
1427
1428 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1429 jz first_nmi /* RSP was user controlled. */
1430
1431 /* This is a nested NMI. */
0784b364 1432
3f3c8b8c
SR
1433nested_nmi:
1434 /*
0b22930e
AL
1435 * Modify the "iret" frame to point to repeat_nmi, forcing another
1436 * iteration of NMI handling.
3f3c8b8c 1437 */
23a781e9 1438 subq $8, %rsp
4d732138
IM
1439 leaq -10*8(%rsp), %rdx
1440 pushq $__KERNEL_DS
1441 pushq %rdx
131484c8 1442 pushfq
4d732138
IM
1443 pushq $__KERNEL_CS
1444 pushq $repeat_nmi
3f3c8b8c
SR
1445
1446 /* Put stack back */
4d732138 1447 addq $(6*8), %rsp
3f3c8b8c
SR
1448
1449nested_nmi_out:
4d732138 1450 popq %rdx
3f3c8b8c 1451
0b22930e 1452 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1453 INTERRUPT_RETURN
1454
1455first_nmi:
0b22930e 1456 /* Restore rdx. */
4d732138 1457 movq (%rsp), %rdx
62610913 1458
36f1a77b
AL
1459 /* Make room for "NMI executing". */
1460 pushq $0
3f3c8b8c 1461
0b22930e 1462 /* Leave room for the "iret" frame */
4d732138 1463 subq $(5*8), %rsp
28696f43 1464
0b22930e 1465 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1466 .rept 5
4d732138 1467 pushq 11*8(%rsp)
3f3c8b8c 1468 .endr
8c1f7558 1469 UNWIND_HINT_IRET_REGS
62610913 1470
79fb4ad6
SR
1471 /* Everything up to here is safe from nested NMIs */
1472
a97439aa
AL
1473#ifdef CONFIG_DEBUG_ENTRY
1474 /*
1475 * For ease of testing, unmask NMIs right away. Disabled by
1476 * default because IRET is very expensive.
1477 */
1478 pushq $0 /* SS */
1479 pushq %rsp /* RSP (minus 8 because of the previous push) */
1480 addq $8, (%rsp) /* Fix up RSP */
1481 pushfq /* RFLAGS */
1482 pushq $__KERNEL_CS /* CS */
1483 pushq $1f /* RIP */
1484 INTERRUPT_RETURN /* continues at repeat_nmi below */
8c1f7558 1485 UNWIND_HINT_IRET_REGS
a97439aa
AL
14861:
1487#endif
1488
0b22930e 1489repeat_nmi:
62610913
JB
1490 /*
1491 * If there was a nested NMI, the first NMI's iret will return
1492 * here. But NMIs are still enabled and we can take another
1493 * nested NMI. The nested NMI checks the interrupted RIP to see
1494 * if it is between repeat_nmi and end_repeat_nmi, and if so
1495 * it will just return, as we are about to repeat an NMI anyway.
1496 * This makes it safe to copy to the stack frame that a nested
1497 * NMI will update.
0b22930e
AL
1498 *
1499 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1500 * we're repeating an NMI, gsbase has the same value that it had on
1501 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1502 * gsbase if needed before we call do_nmi. "NMI executing"
1503 * is zero.
62610913 1504 */
36f1a77b 1505 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1506
62610913 1507 /*
0b22930e
AL
1508 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1509 * here must not modify the "iret" frame while we're writing to
1510 * it or it will end up containing garbage.
62610913 1511 */
4d732138 1512 addq $(10*8), %rsp
3f3c8b8c 1513 .rept 5
4d732138 1514 pushq -6*8(%rsp)
3f3c8b8c 1515 .endr
4d732138 1516 subq $(5*8), %rsp
62610913 1517end_repeat_nmi:
3f3c8b8c
SR
1518
1519 /*
0b22930e
AL
1520 * Everything below this point can be preempted by a nested NMI.
1521 * If this happens, then the inner NMI will change the "iret"
1522 * frame to point back to repeat_nmi.
3f3c8b8c 1523 */
4d732138 1524 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1525 ALLOC_PT_GPREGS_ON_STACK
1526
1fd466ef 1527 /*
ebfc453e 1528 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1529 * as we should not be calling schedule in NMI context.
1530 * Even with normal interrupts enabled. An NMI should not be
1531 * setting NEED_RESCHED or anything that normal interrupts and
1532 * exceptions might do.
1533 */
4d732138 1534 call paranoid_entry
8c1f7558 1535 UNWIND_HINT_REGS
7fbb98c5 1536
ddeb8f21 1537 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1538 movq %rsp, %rdi
1539 movq $-1, %rsi
1540 call do_nmi
7fbb98c5 1541
4d732138
IM
1542 testl %ebx, %ebx /* swapgs needed? */
1543 jnz nmi_restore
ddeb8f21
AH
1544nmi_swapgs:
1545 SWAPGS_UNSAFE_STACK
1546nmi_restore:
76f5df43
DV
1547 RESTORE_EXTRA_REGS
1548 RESTORE_C_REGS
0b22930e
AL
1549
1550 /* Point RSP at the "iret" frame. */
76f5df43 1551 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1552
810bc075
AL
1553 /*
1554 * Clear "NMI executing". Set DF first so that we can easily
1555 * distinguish the remaining code between here and IRET from
1556 * the SYSCALL entry and exit paths. On a native kernel, we
1557 * could just inspect RIP, but, on paravirt kernels,
1558 * INTERRUPT_RETURN can translate into a jump into a
1559 * hypercall page.
1560 */
1561 std
1562 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1563
1564 /*
1565 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1566 * stack in a single instruction. We are returning to kernel
1567 * mode, so this cannot result in a fault.
1568 */
5ca6f70f 1569 INTERRUPT_RETURN
ddeb8f21
AH
1570END(nmi)
1571
1572ENTRY(ignore_sysret)
8c1f7558 1573 UNWIND_HINT_EMPTY
4d732138 1574 mov $-ENOSYS, %eax
ddeb8f21 1575 sysret
ddeb8f21 1576END(ignore_sysret)
2deb4be2
AL
1577
1578ENTRY(rewind_stack_do_exit)
8c1f7558 1579 UNWIND_HINT_FUNC
2deb4be2
AL
1580 /* Prevent any naive code from trying to unwind to our caller. */
1581 xorl %ebp, %ebp
1582
1583 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1584 leaq -PTREGS_SIZE(%rax), %rsp
1585 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1586
1587 call do_exit
2deb4be2 1588END(rewind_stack_do_exit)