MAINTAINERS: Add Peter Zijlstra as objtool co-maintainer
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
8b4777a4
AL
11 * Some of this is documented in Documentation/x86/entry_64.txt
12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
ca37e57b 58 bt $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
3386bc8a
AL
145 .pushsection .entry_trampoline, "ax"
146
147/*
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
153 *
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
157 */
158
159#define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
161
162/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
4fe2d8b1
DH
163#define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
3386bc8a
AL
165
166ENTRY(entry_SYSCALL_64_trampoline)
167 UNWIND_HINT_EMPTY
168 swapgs
169
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
172
8a09317b
DH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
175
3386bc8a
AL
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
178
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
185
186 /*
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
192 */
193 pushq %rdi
194 movq $entry_SYSCALL_64_stage2, %rdi
2641f08b 195 JMP_NOSPEC %rdi
3386bc8a
AL
196END(entry_SYSCALL_64_trampoline)
197
198 .popsection
199
200ENTRY(entry_SYSCALL_64_stage2)
201 UNWIND_HINT_EMPTY
202 popq %rdi
203 jmp entry_SYSCALL_64_after_hwframe
204END(entry_SYSCALL_64_stage2)
205
b2502b41 206ENTRY(entry_SYSCALL_64)
8c1f7558 207 UNWIND_HINT_EMPTY
9ed8e7d8
DV
208 /*
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
212 */
72fe4858 213
8a9949bc 214 swapgs
8a09317b
DH
215 /*
216 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
217 * is not required to switch CR3.
218 */
4d732138
IM
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
221
222 /* Construct struct pt_regs on stack */
4d732138
IM
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
8a9949bc 228GLOBAL(entry_SYSCALL_64_after_hwframe)
4d732138
IM
229 pushq %rax /* pt_regs->orig_ax */
230 pushq %rdi /* pt_regs->di */
231 pushq %rsi /* pt_regs->si */
232 pushq %rdx /* pt_regs->dx */
233 pushq %rcx /* pt_regs->cx */
234 pushq $-ENOSYS /* pt_regs->ax */
235 pushq %r8 /* pt_regs->r8 */
236 pushq %r9 /* pt_regs->r9 */
237 pushq %r10 /* pt_regs->r10 */
8e1eb3fa
DW
238 /*
239 * Clear extra registers that a speculation attack might
240 * otherwise want to exploit. Interleave XOR with PUSH
241 * for better uop scheduling:
242 */
243 xorq %r10, %r10 /* nospec r10 */
4d732138 244 pushq %r11 /* pt_regs->r11 */
8e1eb3fa 245 xorq %r11, %r11 /* nospec r11 */
d1f77320 246 pushq %rbx /* pt_regs->rbx */
8e1eb3fa 247 xorl %ebx, %ebx /* nospec rbx */
d1f77320 248 pushq %rbp /* pt_regs->rbp */
8e1eb3fa 249 xorl %ebp, %ebp /* nospec rbp */
d1f77320 250 pushq %r12 /* pt_regs->r12 */
8e1eb3fa 251 xorq %r12, %r12 /* nospec r12 */
d1f77320 252 pushq %r13 /* pt_regs->r13 */
8e1eb3fa 253 xorq %r13, %r13 /* nospec r13 */
d1f77320 254 pushq %r14 /* pt_regs->r14 */
8e1eb3fa 255 xorq %r14, %r14 /* nospec r14 */
d1f77320 256 pushq %r15 /* pt_regs->r15 */
8e1eb3fa 257 xorq %r15, %r15 /* nospec r15 */
d1f77320 258 UNWIND_HINT_REGS
4d732138 259
548c3050
AL
260 TRACE_IRQS_OFF
261
1e423bff 262 /* IRQs are off. */
29ea1b25 263 movq %rsp, %rdi
1e423bff
AL
264 call do_syscall_64 /* returns with IRQs disabled */
265
29ea1b25 266 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
267
268 /*
269 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
270 * a completely clean 64-bit userspace context. If we're not,
271 * go to the slow exit path.
fffbb5dc 272 */
4d732138
IM
273 movq RCX(%rsp), %rcx
274 movq RIP(%rsp), %r11
8a055d7f
AL
275
276 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
277 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
278
279 /*
280 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
281 * in kernel space. This essentially lets the user take over
17be0aec 282 * the kernel, since userspace controls RSP.
fffbb5dc 283 *
17be0aec 284 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 285 * to be updated to remain correct on both old and new CPUs.
361b4b58 286 *
cbe0317b
KS
287 * Change top bits to match most significant bit (47th or 56th bit
288 * depending on paging mode) in the address.
fffbb5dc 289 */
17be0aec
DV
290 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
291 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 292
17be0aec
DV
293 /* If this changed %rcx, it was not canonical */
294 cmpq %rcx, %r11
8a055d7f 295 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 296
4d732138 297 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 298 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 299
4d732138
IM
300 movq R11(%rsp), %r11
301 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 302 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
303
304 /*
3e035305
BP
305 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
306 * restore RF properly. If the slowpath sets it for whatever reason, we
307 * need to restore it correctly.
308 *
309 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
310 * trap from userspace immediately after SYSRET. This would cause an
311 * infinite loop whenever #DB happens with register state that satisfies
312 * the opportunistic SYSRET conditions. For example, single-stepping
313 * this user code:
fffbb5dc 314 *
4d732138 315 * movq $stuck_here, %rcx
fffbb5dc
DV
316 * pushfq
317 * popq %r11
318 * stuck_here:
319 *
320 * would never get past 'stuck_here'.
321 */
4d732138 322 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 323 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
324
325 /* nothing to check for RSP */
326
4d732138 327 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 328 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
329
330 /*
4d732138
IM
331 * We win! This label is here just for ease of understanding
332 * perf profiles. Nothing jumps here.
fffbb5dc
DV
333 */
334syscall_return_via_sysret:
17be0aec 335 /* rcx and r11 are already restored (see code above) */
8c1f7558 336 UNWIND_HINT_EMPTY
4fbb3910
AL
337 POP_EXTRA_REGS
338 popq %rsi /* skip r11 */
339 popq %r10
340 popq %r9
341 popq %r8
342 popq %rax
343 popq %rsi /* skip rcx */
344 popq %rdx
345 popq %rsi
3e3b9293
AL
346
347 /*
348 * Now all regs are restored except RSP and RDI.
349 * Save old stack pointer and switch to trampoline stack.
350 */
351 movq %rsp, %rdi
c482feef 352 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
353
354 pushq RSP-RDI(%rdi) /* RSP */
355 pushq (%rdi) /* RDI */
356
357 /*
358 * We are on the trampoline stack. All regs except RDI are live.
359 * We can do future final exit work right here.
360 */
6fd166aa 361 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 362
4fbb3910 363 popq %rdi
3e3b9293 364 popq %rsp
fffbb5dc 365 USERGS_SYSRET64
b2502b41 366END(entry_SYSCALL_64)
0bd7b798 367
0100301b
BG
368/*
369 * %rdi: prev task
370 * %rsi: next task
371 */
372ENTRY(__switch_to_asm)
8c1f7558 373 UNWIND_HINT_FUNC
0100301b
BG
374 /*
375 * Save callee-saved registers
376 * This must match the order in inactive_task_frame
377 */
378 pushq %rbp
379 pushq %rbx
380 pushq %r12
381 pushq %r13
382 pushq %r14
383 pushq %r15
384
385 /* switch stack */
386 movq %rsp, TASK_threadsp(%rdi)
387 movq TASK_threadsp(%rsi), %rsp
388
389#ifdef CONFIG_CC_STACKPROTECTOR
390 movq TASK_stack_canary(%rsi), %rbx
391 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
392#endif
393
c995efd5
DW
394#ifdef CONFIG_RETPOLINE
395 /*
396 * When switching from a shallower to a deeper call stack
397 * the RSB may either underflow or use entries populated
398 * with userspace addresses. On CPUs where those concerns
399 * exist, overwrite the RSB with entries which capture
400 * speculative execution to prevent attack.
401 */
1dde7415
BP
402 /* Clobbers %rbx */
403 FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
404#endif
405
0100301b
BG
406 /* restore callee-saved registers */
407 popq %r15
408 popq %r14
409 popq %r13
410 popq %r12
411 popq %rbx
412 popq %rbp
413
414 jmp __switch_to
415END(__switch_to_asm)
416
1eeb207f
DV
417/*
418 * A newly forked process directly context switches into this address.
419 *
0100301b 420 * rax: prev task we switched from
616d2483
BG
421 * rbx: kernel thread func (NULL for user thread)
422 * r12: kernel thread arg
1eeb207f
DV
423 */
424ENTRY(ret_from_fork)
8c1f7558 425 UNWIND_HINT_EMPTY
0100301b 426 movq %rax, %rdi
ebd57499 427 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 428
ebd57499
JP
429 testq %rbx, %rbx /* from kernel_thread? */
430 jnz 1f /* kernel threads are uncommon */
24d978b7 431
616d2483 4322:
8c1f7558 433 UNWIND_HINT_REGS
ebd57499 434 movq %rsp, %rdi
24d978b7
AL
435 call syscall_return_slowpath /* returns with IRQs disabled */
436 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 437 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
438
4391:
440 /* kernel thread */
441 movq %r12, %rdi
2641f08b 442 CALL_NOSPEC %rbx
616d2483
BG
443 /*
444 * A kernel thread is allowed to return here after successfully
445 * calling do_execve(). Exit to userspace to complete the execve()
446 * syscall.
447 */
448 movq $0, RAX(%rsp)
449 jmp 2b
1eeb207f
DV
450END(ret_from_fork)
451
939b7871 452/*
3304c9c3
DV
453 * Build the entry stubs with some assembler magic.
454 * We pack 1 stub into every 8-byte block.
939b7871 455 */
3304c9c3 456 .align 8
939b7871 457ENTRY(irq_entries_start)
3304c9c3
DV
458 vector=FIRST_EXTERNAL_VECTOR
459 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 460 UNWIND_HINT_IRET_REGS
4d732138 461 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 462 jmp common_interrupt
3304c9c3 463 .align 8
8c1f7558 464 vector=vector+1
3304c9c3 465 .endr
939b7871
PA
466END(irq_entries_start)
467
1d3e53e8
AL
468.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
469#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
470 pushq %rax
471 SAVE_FLAGS(CLBR_RAX)
472 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
473 jz .Lokay_\@
474 ud2
475.Lokay_\@:
e17f8234 476 popq %rax
1d3e53e8
AL
477#endif
478.endm
479
480/*
481 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
482 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
483 * Requires kernel GSBASE.
484 *
485 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
486 */
8c1f7558 487.macro ENTER_IRQ_STACK regs=1 old_rsp
1d3e53e8
AL
488 DEBUG_ENTRY_ASSERT_IRQS_OFF
489 movq %rsp, \old_rsp
8c1f7558
JP
490
491 .if \regs
492 UNWIND_HINT_REGS base=\old_rsp
493 .endif
494
1d3e53e8 495 incl PER_CPU_VAR(irq_count)
29955909 496 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
497
498 /*
499 * Right now, if we just incremented irq_count to zero, we've
500 * claimed the IRQ stack but we haven't switched to it yet.
501 *
502 * If anything is added that can interrupt us here without using IST,
503 * it must be *extremely* careful to limit its stack usage. This
504 * could include kprobes and a hypothetical future IST-less #DB
505 * handler.
29955909
AL
506 *
507 * The OOPS unwinder relies on the word at the top of the IRQ
508 * stack linking back to the previous RSP for the entire time we're
509 * on the IRQ stack. For this to work reliably, we need to write
510 * it before we actually move ourselves to the IRQ stack.
511 */
512
513 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
514 movq PER_CPU_VAR(irq_stack_ptr), %rsp
515
516#ifdef CONFIG_DEBUG_ENTRY
517 /*
518 * If the first movq above becomes wrong due to IRQ stack layout
519 * changes, the only way we'll notice is if we try to unwind right
520 * here. Assert that we set up the stack right to catch this type
521 * of bug quickly.
1d3e53e8 522 */
29955909
AL
523 cmpq -8(%rsp), \old_rsp
524 je .Lirq_stack_okay\@
525 ud2
526 .Lirq_stack_okay\@:
527#endif
1d3e53e8 528
29955909 529.Lirq_stack_push_old_rsp_\@:
1d3e53e8 530 pushq \old_rsp
8c1f7558
JP
531
532 .if \regs
533 UNWIND_HINT_REGS indirect=1
534 .endif
1d3e53e8
AL
535.endm
536
537/*
538 * Undoes ENTER_IRQ_STACK.
539 */
8c1f7558 540.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
541 DEBUG_ENTRY_ASSERT_IRQS_OFF
542 /* We need to be off the IRQ stack before decrementing irq_count. */
543 popq %rsp
544
8c1f7558
JP
545 .if \regs
546 UNWIND_HINT_REGS
547 .endif
548
1d3e53e8
AL
549 /*
550 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
551 * the irq stack but we're not on it.
552 */
553
554 decl PER_CPU_VAR(irq_count)
555.endm
556
d99015b1 557/*
1da177e4
LT
558 * Interrupt entry/exit.
559 *
560 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
561 *
562 * Entry runs with interrupts off.
563 */
1da177e4 564
722024db 565/* 0(%rsp): ~(interrupt number) */
1da177e4 566 .macro interrupt func
f6f64681 567 cld
7f2590a1
AL
568
569 testb $3, CS-ORIG_RAX(%rsp)
570 jz 1f
571 SWAPGS
572 call switch_to_thread_stack
5731:
574
ff467594
AL
575 ALLOC_PT_GPREGS_ON_STACK
576 SAVE_C_REGS
577 SAVE_EXTRA_REGS
3ac6d8c7 578 CLEAR_REGS_NOSPEC
946c1911 579 ENCODE_FRAME_POINTER
76f5df43 580
ff467594 581 testb $3, CS(%rsp)
dde74f2e 582 jz 1f
02bc7768
AL
583
584 /*
7f2590a1
AL
585 * IRQ from user mode.
586 *
f1075053
AL
587 * We need to tell lockdep that IRQs are off. We can't do this until
588 * we fix gsbase, and we should do it before enter_from_user_mode
589 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
590 * the simplest way to handle it is to just call it twice if
591 * we enter from user mode. There's no reason to optimize this since
592 * TRACE_IRQS_OFF is a no-op if lockdep is off.
593 */
594 TRACE_IRQS_OFF
595
478dc89c 596 CALL_enter_from_user_mode
02bc7768 597
76f5df43 5981:
1d3e53e8 599 ENTER_IRQ_STACK old_rsp=%rdi
f6f64681
DV
600 /* We entered an interrupt context - irqs are off: */
601 TRACE_IRQS_OFF
602
a586f98e 603 call \func /* rdi points to pt_regs */
1da177e4
LT
604 .endm
605
722024db
AH
606 /*
607 * The interrupt stubs push (~vector+0x80) onto the stack and
608 * then jump to common_interrupt.
609 */
939b7871
PA
610 .p2align CONFIG_X86_L1_CACHE_SHIFT
611common_interrupt:
ee4eb87b 612 ASM_CLAC
4d732138 613 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 614 interrupt do_IRQ
34061f13 615 /* 0(%rsp): old RSP */
7effaa88 616ret_from_intr:
2140a994 617 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 618 TRACE_IRQS_OFF
625dbc3b 619
1d3e53e8 620 LEAVE_IRQ_STACK
625dbc3b 621
03335e95 622 testb $3, CS(%rsp)
dde74f2e 623 jz retint_kernel
4d732138 624
02bc7768 625 /* Interrupt came from user space */
02bc7768
AL
626GLOBAL(retint_user)
627 mov %rsp,%rdi
628 call prepare_exit_to_usermode
2601e64d 629 TRACE_IRQS_IRETQ
26c4ef9c 630
8a055d7f 631GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
632#ifdef CONFIG_DEBUG_ENTRY
633 /* Assert that pt_regs indicates user mode. */
1e4c4f61 634 testb $3, CS(%rsp)
26c4ef9c
AL
635 jnz 1f
636 ud2
6371:
638#endif
e872045b 639 POP_EXTRA_REGS
3e3b9293
AL
640 popq %r11
641 popq %r10
642 popq %r9
643 popq %r8
644 popq %rax
645 popq %rcx
646 popq %rdx
647 popq %rsi
648
649 /*
650 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
651 * Save old stack pointer and switch to trampoline stack.
652 */
653 movq %rsp, %rdi
c482feef 654 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
655
656 /* Copy the IRET frame to the trampoline stack. */
657 pushq 6*8(%rdi) /* SS */
658 pushq 5*8(%rdi) /* RSP */
659 pushq 4*8(%rdi) /* EFLAGS */
660 pushq 3*8(%rdi) /* CS */
661 pushq 2*8(%rdi) /* RIP */
662
663 /* Push user RDI on the trampoline stack. */
664 pushq (%rdi)
665
666 /*
667 * We are on the trampoline stack. All regs except RDI are live.
668 * We can do future final exit work right here.
669 */
670
6fd166aa 671 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 672
3e3b9293
AL
673 /* Restore RDI. */
674 popq %rdi
675 SWAPGS
26c4ef9c
AL
676 INTERRUPT_RETURN
677
2601e64d 678
627276cb 679/* Returning to kernel space */
6ba71b76 680retint_kernel:
627276cb
DV
681#ifdef CONFIG_PREEMPT
682 /* Interrupts are off */
683 /* Check if we need preemption */
4d732138 684 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 685 jnc 1f
4d732138 6860: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 687 jnz 1f
627276cb 688 call preempt_schedule_irq
36acef25 689 jmp 0b
6ba71b76 6901:
627276cb 691#endif
2601e64d
IM
692 /*
693 * The iretq could re-enable interrupts:
694 */
695 TRACE_IRQS_IRETQ
fffbb5dc 696
26c4ef9c
AL
697GLOBAL(restore_regs_and_return_to_kernel)
698#ifdef CONFIG_DEBUG_ENTRY
699 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 700 testb $3, CS(%rsp)
26c4ef9c
AL
701 jz 1f
702 ud2
7031:
704#endif
e872045b
AL
705 POP_EXTRA_REGS
706 POP_C_REGS
707 addq $8, %rsp /* skip regs->orig_ax */
7209a75d
AL
708 INTERRUPT_RETURN
709
710ENTRY(native_iret)
8c1f7558 711 UNWIND_HINT_IRET_REGS
3891a04a
PA
712 /*
713 * Are we returning to a stack segment from the LDT? Note: in
714 * 64-bit mode SS:RSP on the exception stack is always valid.
715 */
34273f41 716#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
717 testb $4, (SS-RIP)(%rsp)
718 jnz native_irq_return_ldt
34273f41 719#endif
3891a04a 720
af726f21 721.global native_irq_return_iret
7209a75d 722native_irq_return_iret:
b645af2d
AL
723 /*
724 * This may fault. Non-paranoid faults on return to userspace are
725 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
726 * Double-faults due to espfix64 are handled in do_double_fault.
727 * Other faults here are fatal.
728 */
1da177e4 729 iretq
3701d863 730
34273f41 731#ifdef CONFIG_X86_ESPFIX64
7209a75d 732native_irq_return_ldt:
85063fac
AL
733 /*
734 * We are running with user GSBASE. All GPRs contain their user
735 * values. We have a percpu ESPFIX stack that is eight slots
736 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
737 * of the ESPFIX stack.
738 *
739 * We clobber RAX and RDI in this code. We stash RDI on the
740 * normal stack and RAX on the ESPFIX stack.
741 *
742 * The ESPFIX stack layout we set up looks like this:
743 *
744 * --- top of ESPFIX stack ---
745 * SS
746 * RSP
747 * RFLAGS
748 * CS
749 * RIP <-- RSP points here when we're done
750 * RAX <-- espfix_waddr points here
751 * --- bottom of ESPFIX stack ---
752 */
753
754 pushq %rdi /* Stash user RDI */
8a09317b
DH
755 SWAPGS /* to kernel GS */
756 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
757
4d732138 758 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
759 movq %rax, (0*8)(%rdi) /* user RAX */
760 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 761 movq %rax, (1*8)(%rdi)
85063fac 762 movq (2*8)(%rsp), %rax /* user CS */
4d732138 763 movq %rax, (2*8)(%rdi)
85063fac 764 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 765 movq %rax, (3*8)(%rdi)
85063fac 766 movq (5*8)(%rsp), %rax /* user SS */
4d732138 767 movq %rax, (5*8)(%rdi)
85063fac 768 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 769 movq %rax, (4*8)(%rdi)
85063fac
AL
770 /* Now RAX == RSP. */
771
772 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
773
774 /*
775 * espfix_stack[31:16] == 0. The page tables are set up such that
776 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
777 * espfix_waddr for any X. That is, there are 65536 RO aliases of
778 * the same page. Set up RSP so that RSP[31:16] contains the
779 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
780 * still points to an RO alias of the ESPFIX stack.
781 */
4d732138 782 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 783
6fd166aa 784 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
785 SWAPGS /* to user GS */
786 popq %rdi /* Restore user RDI */
787
4d732138 788 movq %rax, %rsp
8c1f7558 789 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
790
791 /*
792 * At this point, we cannot write to the stack any more, but we can
793 * still read.
794 */
795 popq %rax /* Restore user RAX */
796
797 /*
798 * RSP now points to an ordinary IRET frame, except that the page
799 * is read-only and RSP[31:16] are preloaded with the userspace
800 * values. We can now IRET back to userspace.
801 */
4d732138 802 jmp native_irq_return_iret
34273f41 803#endif
4b787e0b 804END(common_interrupt)
3891a04a 805
1da177e4
LT
806/*
807 * APIC interrupts.
0bd7b798 808 */
cf910e83 809.macro apicinterrupt3 num sym do_sym
322648d1 810ENTRY(\sym)
8c1f7558 811 UNWIND_HINT_IRET_REGS
ee4eb87b 812 ASM_CLAC
4d732138 813 pushq $~(\num)
39e95433 814.Lcommon_\sym:
322648d1 815 interrupt \do_sym
4d732138 816 jmp ret_from_intr
322648d1
AH
817END(\sym)
818.endm
1da177e4 819
469f0023 820/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
821#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
822#define POP_SECTION_IRQENTRY .popsection
469f0023 823
cf910e83 824.macro apicinterrupt num sym do_sym
469f0023 825PUSH_SECTION_IRQENTRY
cf910e83 826apicinterrupt3 \num \sym \do_sym
469f0023 827POP_SECTION_IRQENTRY
cf910e83
SA
828.endm
829
322648d1 830#ifdef CONFIG_SMP
4d732138
IM
831apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
832apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 833#endif
1da177e4 834
03b48632 835#ifdef CONFIG_X86_UV
4d732138 836apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 837#endif
4d732138
IM
838
839apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
840apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 841
d78f2664 842#ifdef CONFIG_HAVE_KVM
4d732138
IM
843apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
844apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 845apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
846#endif
847
33e5ff63 848#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 849apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
850#endif
851
24fd78a8 852#ifdef CONFIG_X86_MCE_AMD
4d732138 853apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
854#endif
855
33e5ff63 856#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 857apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 858#endif
1812924b 859
322648d1 860#ifdef CONFIG_SMP
4d732138
IM
861apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
862apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
863apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 864#endif
1da177e4 865
4d732138
IM
866apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
867apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 868
e360adbe 869#ifdef CONFIG_IRQ_WORK
4d732138 870apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
871#endif
872
1da177e4
LT
873/*
874 * Exception entry points.
0bd7b798 875 */
c482feef 876#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
577ed45e 877
7f2590a1
AL
878/*
879 * Switch to the thread stack. This is called with the IRET frame and
880 * orig_ax on the stack. (That is, RDI..R12 are not on the stack and
881 * space has not been allocated for them.)
882 */
883ENTRY(switch_to_thread_stack)
884 UNWIND_HINT_FUNC
885
886 pushq %rdi
8a09317b
DH
887 /* Need to switch before accessing the thread stack. */
888 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
7f2590a1
AL
889 movq %rsp, %rdi
890 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
891 UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI
892
893 pushq 7*8(%rdi) /* regs->ss */
894 pushq 6*8(%rdi) /* regs->rsp */
895 pushq 5*8(%rdi) /* regs->eflags */
896 pushq 4*8(%rdi) /* regs->cs */
897 pushq 3*8(%rdi) /* regs->ip */
898 pushq 2*8(%rdi) /* regs->orig_ax */
899 pushq 8(%rdi) /* return address */
900 UNWIND_HINT_FUNC
901
902 movq (%rdi), %rdi
903 ret
904END(switch_to_thread_stack)
905
577ed45e 906.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 907ENTRY(\sym)
98990a33 908 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 909
577ed45e
AL
910 /* Sanity check */
911 .if \shift_ist != -1 && \paranoid == 0
912 .error "using shift_ist requires paranoid=1"
913 .endif
914
ee4eb87b 915 ASM_CLAC
cb5dd2c5 916
82c62fa0 917 .if \has_error_code == 0
4d732138 918 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
919 .endif
920
76f5df43 921 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5 922
7f2590a1 923 .if \paranoid < 2
4d732138 924 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 925 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 926 .endif
7f2590a1
AL
927
928 .if \paranoid
4d732138 929 call paranoid_entry
cb5dd2c5 930 .else
4d732138 931 call error_entry
cb5dd2c5 932 .endif
8c1f7558 933 UNWIND_HINT_REGS
ebfc453e 934 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 935
cb5dd2c5 936 .if \paranoid
577ed45e 937 .if \shift_ist != -1
4d732138 938 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 939 .else
b8b1d08b 940 TRACE_IRQS_OFF
cb5dd2c5 941 .endif
577ed45e 942 .endif
cb5dd2c5 943
4d732138 944 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
945
946 .if \has_error_code
4d732138
IM
947 movq ORIG_RAX(%rsp), %rsi /* get error code */
948 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 949 .else
4d732138 950 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
951 .endif
952
577ed45e 953 .if \shift_ist != -1
4d732138 954 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
955 .endif
956
4d732138 957 call \do_sym
cb5dd2c5 958
577ed45e 959 .if \shift_ist != -1
4d732138 960 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
961 .endif
962
ebfc453e 963 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 964 .if \paranoid
4d732138 965 jmp paranoid_exit
cb5dd2c5 966 .else
4d732138 967 jmp error_exit
cb5dd2c5
AL
968 .endif
969
7f2590a1 970 .if \paranoid < 2
48e08d0f 971 /*
7f2590a1 972 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
973 * as a normal entry. This means that paranoid handlers
974 * run in real process context if user_mode(regs).
975 */
7f2590a1 976.Lfrom_usermode_switch_stack_\@:
4d732138 977 call error_entry
48e08d0f 978
4d732138 979 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
980
981 .if \has_error_code
4d732138
IM
982 movq ORIG_RAX(%rsp), %rsi /* get error code */
983 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 984 .else
4d732138 985 xorl %esi, %esi /* no error code */
48e08d0f
AL
986 .endif
987
4d732138 988 call \do_sym
48e08d0f 989
4d732138 990 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 991 .endif
ddeb8f21 992END(\sym)
322648d1 993.endm
b8b1d08b 994
4d732138
IM
995idtentry divide_error do_divide_error has_error_code=0
996idtentry overflow do_overflow has_error_code=0
997idtentry bounds do_bounds has_error_code=0
998idtentry invalid_op do_invalid_op has_error_code=0
999idtentry device_not_available do_device_not_available has_error_code=0
1000idtentry double_fault do_double_fault has_error_code=1 paranoid=2
1001idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1002idtentry invalid_TSS do_invalid_TSS has_error_code=1
1003idtentry segment_not_present do_segment_not_present has_error_code=1
1004idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1005idtentry coprocessor_error do_coprocessor_error has_error_code=0
1006idtentry alignment_check do_alignment_check has_error_code=1
1007idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1008
1009
1010 /*
1011 * Reload gs selector with exception handling
1012 * edi: new selector
1013 */
9f9d489a 1014ENTRY(native_load_gs_index)
8c1f7558 1015 FRAME_BEGIN
131484c8 1016 pushfq
b8aa287f 1017 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1018 TRACE_IRQS_OFF
9f1e87ea 1019 SWAPGS
42c748bb 1020.Lgs_change:
4d732138 1021 movl %edi, %gs
96e5d28a 10222: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1023 SWAPGS
ca37e57b 1024 TRACE_IRQS_FLAGS (%rsp)
131484c8 1025 popfq
8c1f7558 1026 FRAME_END
9f1e87ea 1027 ret
8c1f7558 1028ENDPROC(native_load_gs_index)
784d5699 1029EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1030
42c748bb 1031 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1032 .section .fixup, "ax"
1da177e4 1033 /* running with kernelgs */
0bd7b798 1034bad_gs:
4d732138 1035 SWAPGS /* switch back to user gs */
b038c842
AL
1036.macro ZAP_GS
1037 /* This can't be a string because the preprocessor needs to see it. */
1038 movl $__USER_DS, %eax
1039 movl %eax, %gs
1040.endm
1041 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1042 xorl %eax, %eax
1043 movl %eax, %gs
1044 jmp 2b
9f1e87ea 1045 .previous
0bd7b798 1046
2699500b 1047/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1048ENTRY(do_softirq_own_stack)
4d732138
IM
1049 pushq %rbp
1050 mov %rsp, %rbp
8c1f7558 1051 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1052 call __do_softirq
8c1f7558 1053 LEAVE_IRQ_STACK regs=0
2699500b 1054 leaveq
ed6b676c 1055 ret
8c1f7558 1056ENDPROC(do_softirq_own_stack)
75154f40 1057
3d75e1b8 1058#ifdef CONFIG_XEN
5878d5d6 1059idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1060
1061/*
9f1e87ea
CG
1062 * A note on the "critical region" in our callback handler.
1063 * We want to avoid stacking callback handlers due to events occurring
1064 * during handling of the last event. To do this, we keep events disabled
1065 * until we've done all processing. HOWEVER, we must enable events before
1066 * popping the stack frame (can't be done atomically) and so it would still
1067 * be possible to get enough handler activations to overflow the stack.
1068 * Although unlikely, bugs of that kind are hard to track down, so we'd
1069 * like to avoid the possibility.
1070 * So, on entry to the handler we detect whether we interrupted an
1071 * existing activation in its critical region -- if so, we pop the current
1072 * activation and restart the handler using the previous one.
1073 */
4d732138
IM
1074ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1075
9f1e87ea
CG
1076/*
1077 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1078 * see the correct pointer to the pt_regs
1079 */
8c1f7558 1080 UNWIND_HINT_FUNC
4d732138 1081 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1082 UNWIND_HINT_REGS
1d3e53e8
AL
1083
1084 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1085 call xen_evtchn_do_upcall
1d3e53e8
AL
1086 LEAVE_IRQ_STACK
1087
fdfd811d 1088#ifndef CONFIG_PREEMPT
4d732138 1089 call xen_maybe_preempt_hcall
fdfd811d 1090#endif
4d732138 1091 jmp error_exit
371c394a 1092END(xen_do_hypervisor_callback)
3d75e1b8
JF
1093
1094/*
9f1e87ea
CG
1095 * Hypervisor uses this for application faults while it executes.
1096 * We get here for two reasons:
1097 * 1. Fault while reloading DS, ES, FS or GS
1098 * 2. Fault while executing IRET
1099 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1100 * registers that could be reloaded and zeroed the others.
1101 * Category 2 we fix up by killing the current process. We cannot use the
1102 * normal Linux return path in this case because if we use the IRET hypercall
1103 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1104 * We distinguish between categories by comparing each saved segment register
1105 * with its current contents: any discrepancy means we in category 1.
1106 */
3d75e1b8 1107ENTRY(xen_failsafe_callback)
8c1f7558 1108 UNWIND_HINT_EMPTY
4d732138
IM
1109 movl %ds, %ecx
1110 cmpw %cx, 0x10(%rsp)
1111 jne 1f
1112 movl %es, %ecx
1113 cmpw %cx, 0x18(%rsp)
1114 jne 1f
1115 movl %fs, %ecx
1116 cmpw %cx, 0x20(%rsp)
1117 jne 1f
1118 movl %gs, %ecx
1119 cmpw %cx, 0x28(%rsp)
1120 jne 1f
3d75e1b8 1121 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1122 movq (%rsp), %rcx
1123 movq 8(%rsp), %r11
1124 addq $0x30, %rsp
1125 pushq $0 /* RIP */
8c1f7558 1126 UNWIND_HINT_IRET_REGS offset=8
4d732138 1127 jmp general_protection
3d75e1b8 11281: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1129 movq (%rsp), %rcx
1130 movq 8(%rsp), %r11
1131 addq $0x30, %rsp
8c1f7558 1132 UNWIND_HINT_IRET_REGS
4d732138 1133 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
1134 ALLOC_PT_GPREGS_ON_STACK
1135 SAVE_C_REGS
1136 SAVE_EXTRA_REGS
3ac6d8c7 1137 CLEAR_REGS_NOSPEC
946c1911 1138 ENCODE_FRAME_POINTER
4d732138 1139 jmp error_exit
3d75e1b8
JF
1140END(xen_failsafe_callback)
1141
cf910e83 1142apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
1143 xen_hvm_callback_vector xen_evtchn_do_upcall
1144
3d75e1b8 1145#endif /* CONFIG_XEN */
ddeb8f21 1146
bc2b0331 1147#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1148apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
1149 hyperv_callback_vector hyperv_vector_handler
1150#endif /* CONFIG_HYPERV */
1151
4d732138
IM
1152idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1153idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1154idtentry stack_segment do_stack_segment has_error_code=1
1155
6cac5a92 1156#ifdef CONFIG_XEN
43e41110 1157idtentry xennmi do_nmi has_error_code=0
5878d5d6
JG
1158idtentry xendebug do_debug has_error_code=0
1159idtentry xenint3 do_int3 has_error_code=0
6cac5a92 1160#endif
4d732138
IM
1161
1162idtentry general_protection do_general_protection has_error_code=1
11a7ffb0 1163idtentry page_fault do_page_fault has_error_code=1
4d732138 1164
631bc487 1165#ifdef CONFIG_KVM_GUEST
4d732138 1166idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1167#endif
4d732138 1168
ddeb8f21 1169#ifdef CONFIG_X86_MCE
6f41c34d 1170idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1171#endif
1172
ebfc453e
DV
1173/*
1174 * Save all registers in pt_regs, and switch gs if needed.
1175 * Use slow, but surefire "are we in kernel?" check.
1176 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1177 */
1178ENTRY(paranoid_entry)
8c1f7558 1179 UNWIND_HINT_FUNC
1eeb207f
DV
1180 cld
1181 SAVE_C_REGS 8
1182 SAVE_EXTRA_REGS 8
3ac6d8c7 1183 CLEAR_REGS_NOSPEC
946c1911 1184 ENCODE_FRAME_POINTER 8
4d732138
IM
1185 movl $1, %ebx
1186 movl $MSR_GS_BASE, %ecx
1eeb207f 1187 rdmsr
4d732138
IM
1188 testl %edx, %edx
1189 js 1f /* negative -> in kernel */
1eeb207f 1190 SWAPGS
4d732138 1191 xorl %ebx, %ebx
8a09317b
DH
1192
11931:
1194 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1195
1196 ret
ebfc453e 1197END(paranoid_entry)
ddeb8f21 1198
ebfc453e
DV
1199/*
1200 * "Paranoid" exit path from exception stack. This is invoked
1201 * only on return from non-NMI IST interrupts that came
1202 * from kernel space.
1203 *
1204 * We may be returning to very strange contexts (e.g. very early
1205 * in syscall entry), so checking for preemption here would
1206 * be complicated. Fortunately, we there's no good reason
1207 * to try to handle preemption here.
4d732138
IM
1208 *
1209 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1210 */
ddeb8f21 1211ENTRY(paranoid_exit)
8c1f7558 1212 UNWIND_HINT_REGS
2140a994 1213 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1214 TRACE_IRQS_OFF_DEBUG
4d732138 1215 testl %ebx, %ebx /* swapgs needed? */
e5317832 1216 jnz .Lparanoid_exit_no_swapgs
f2db9382 1217 TRACE_IRQS_IRETQ
21e94459 1218 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1219 SWAPGS_UNSAFE_STACK
e5317832
AL
1220 jmp .Lparanoid_exit_restore
1221.Lparanoid_exit_no_swapgs:
f2db9382 1222 TRACE_IRQS_IRETQ_DEBUG
e5317832
AL
1223.Lparanoid_exit_restore:
1224 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1225END(paranoid_exit)
1226
1227/*
ebfc453e 1228 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1229 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1230 */
1231ENTRY(error_entry)
8c1f7558 1232 UNWIND_HINT_FUNC
ddeb8f21 1233 cld
76f5df43
DV
1234 SAVE_C_REGS 8
1235 SAVE_EXTRA_REGS 8
3ac6d8c7 1236 CLEAR_REGS_NOSPEC
946c1911 1237 ENCODE_FRAME_POINTER 8
03335e95 1238 testb $3, CS+8(%rsp)
cb6f64ed 1239 jz .Lerror_kernelspace
539f5113 1240
cb6f64ed
AL
1241 /*
1242 * We entered from user mode or we're pretending to have entered
1243 * from user mode due to an IRET fault.
1244 */
ddeb8f21 1245 SWAPGS
8a09317b
DH
1246 /* We have user CR3. Change to kernel CR3. */
1247 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1248
cb6f64ed 1249.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1250 /* Put us onto the real thread stack. */
1251 popq %r12 /* save return addr in %12 */
1252 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1253 call sync_regs
1254 movq %rax, %rsp /* switch stack */
1255 ENCODE_FRAME_POINTER
1256 pushq %r12
1257
f1075053
AL
1258 /*
1259 * We need to tell lockdep that IRQs are off. We can't do this until
1260 * we fix gsbase, and we should do it before enter_from_user_mode
1261 * (which can take locks).
1262 */
1263 TRACE_IRQS_OFF
478dc89c 1264 CALL_enter_from_user_mode
f1075053 1265 ret
02bc7768 1266
cb6f64ed 1267.Lerror_entry_done:
ddeb8f21
AH
1268 TRACE_IRQS_OFF
1269 ret
ddeb8f21 1270
ebfc453e
DV
1271 /*
1272 * There are two places in the kernel that can potentially fault with
1273 * usergs. Handle them here. B stepping K8s sometimes report a
1274 * truncated RIP for IRET exceptions returning to compat mode. Check
1275 * for these here too.
1276 */
cb6f64ed 1277.Lerror_kernelspace:
4d732138
IM
1278 incl %ebx
1279 leaq native_irq_return_iret(%rip), %rcx
1280 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1281 je .Lerror_bad_iret
4d732138
IM
1282 movl %ecx, %eax /* zero extend */
1283 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1284 je .Lbstep_iret
42c748bb 1285 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1286 jne .Lerror_entry_done
539f5113
AL
1287
1288 /*
42c748bb 1289 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1290 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1291 * .Lgs_change's error handler with kernel gsbase.
539f5113 1292 */
2fa5f04f 1293 SWAPGS
8a09317b 1294 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1295 jmp .Lerror_entry_done
ae24ffe5 1296
cb6f64ed 1297.Lbstep_iret:
ae24ffe5 1298 /* Fix truncated RIP */
4d732138 1299 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1300 /* fall through */
1301
cb6f64ed 1302.Lerror_bad_iret:
539f5113 1303 /*
8a09317b
DH
1304 * We came from an IRET to user mode, so we have user
1305 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1306 */
b645af2d 1307 SWAPGS
8a09317b 1308 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1309
1310 /*
1311 * Pretend that the exception came from user mode: set up pt_regs
1312 * as if we faulted immediately after IRET and clear EBX so that
1313 * error_exit knows that we will be returning to user mode.
1314 */
4d732138
IM
1315 mov %rsp, %rdi
1316 call fixup_bad_iret
1317 mov %rax, %rsp
539f5113 1318 decl %ebx
cb6f64ed 1319 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1320END(error_entry)
1321
1322
539f5113 1323/*
75ca5b22 1324 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1325 * 1: already in kernel mode, don't need SWAPGS
1326 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1327 */
ddeb8f21 1328ENTRY(error_exit)
8c1f7558 1329 UNWIND_HINT_REGS
2140a994 1330 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1331 TRACE_IRQS_OFF
2140a994 1332 testl %ebx, %ebx
4d732138
IM
1333 jnz retint_kernel
1334 jmp retint_user
ddeb8f21
AH
1335END(error_exit)
1336
929bacec
AL
1337/*
1338 * Runs on exception stack. Xen PV does not go through this path at all,
1339 * so we can use real assembly here.
8a09317b
DH
1340 *
1341 * Registers:
1342 * %r14: Used to save/restore the CR3 of the interrupted context
1343 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1344 */
ddeb8f21 1345ENTRY(nmi)
8c1f7558 1346 UNWIND_HINT_IRET_REGS
929bacec 1347
3f3c8b8c
SR
1348 /*
1349 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1350 * the iretq it performs will take us out of NMI context.
1351 * This means that we can have nested NMIs where the next
1352 * NMI is using the top of the stack of the previous NMI. We
1353 * can't let it execute because the nested NMI will corrupt the
1354 * stack of the previous NMI. NMI handlers are not re-entrant
1355 * anyway.
1356 *
1357 * To handle this case we do the following:
1358 * Check the a special location on the stack that contains
1359 * a variable that is set when NMIs are executing.
1360 * The interrupted task's stack is also checked to see if it
1361 * is an NMI stack.
1362 * If the variable is not set and the stack is not the NMI
1363 * stack then:
1364 * o Set the special variable on the stack
0b22930e
AL
1365 * o Copy the interrupt frame into an "outermost" location on the
1366 * stack
1367 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1368 * o Continue processing the NMI
1369 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1370 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1371 * o return back to the first NMI
1372 *
1373 * Now on exit of the first NMI, we first clear the stack variable
1374 * The NMI stack will tell any nested NMIs at that point that it is
1375 * nested. Then we pop the stack normally with iret, and if there was
1376 * a nested NMI that updated the copy interrupt stack frame, a
1377 * jump will be made to the repeat_nmi code that will handle the second
1378 * NMI.
9b6e6a83
AL
1379 *
1380 * However, espfix prevents us from directly returning to userspace
1381 * with a single IRET instruction. Similarly, IRET to user mode
1382 * can fault. We therefore handle NMIs from user space like
1383 * other IST entries.
3f3c8b8c
SR
1384 */
1385
e93c1730
AL
1386 ASM_CLAC
1387
146b2b09 1388 /* Use %rdx as our temp variable throughout */
4d732138 1389 pushq %rdx
3f3c8b8c 1390
9b6e6a83
AL
1391 testb $3, CS-RIP+8(%rsp)
1392 jz .Lnmi_from_kernel
1393
1394 /*
1395 * NMI from user mode. We need to run on the thread stack, but we
1396 * can't go through the normal entry paths: NMIs are masked, and
1397 * we don't want to enable interrupts, because then we'll end
1398 * up in an awkward situation in which IRQs are on but NMIs
1399 * are off.
83c133cf
AL
1400 *
1401 * We also must not push anything to the stack before switching
1402 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1403 */
1404
929bacec 1405 swapgs
9b6e6a83 1406 cld
8a09317b 1407 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1408 movq %rsp, %rdx
1409 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1410 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1411 pushq 5*8(%rdx) /* pt_regs->ss */
1412 pushq 4*8(%rdx) /* pt_regs->rsp */
1413 pushq 3*8(%rdx) /* pt_regs->flags */
1414 pushq 2*8(%rdx) /* pt_regs->cs */
1415 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1416 UNWIND_HINT_IRET_REGS
9b6e6a83
AL
1417 pushq $-1 /* pt_regs->orig_ax */
1418 pushq %rdi /* pt_regs->di */
1419 pushq %rsi /* pt_regs->si */
1420 pushq (%rdx) /* pt_regs->dx */
1421 pushq %rcx /* pt_regs->cx */
1422 pushq %rax /* pt_regs->ax */
1423 pushq %r8 /* pt_regs->r8 */
1424 pushq %r9 /* pt_regs->r9 */
1425 pushq %r10 /* pt_regs->r10 */
1426 pushq %r11 /* pt_regs->r11 */
1427 pushq %rbx /* pt_regs->rbx */
1428 pushq %rbp /* pt_regs->rbp */
1429 pushq %r12 /* pt_regs->r12 */
1430 pushq %r13 /* pt_regs->r13 */
1431 pushq %r14 /* pt_regs->r14 */
1432 pushq %r15 /* pt_regs->r15 */
8c1f7558 1433 UNWIND_HINT_REGS
3ac6d8c7 1434 CLEAR_REGS_NOSPEC
946c1911 1435 ENCODE_FRAME_POINTER
9b6e6a83
AL
1436
1437 /*
1438 * At this point we no longer need to worry about stack damage
1439 * due to nesting -- we're on the normal thread stack and we're
1440 * done with the NMI stack.
1441 */
1442
1443 movq %rsp, %rdi
1444 movq $-1, %rsi
1445 call do_nmi
1446
45d5a168 1447 /*
9b6e6a83 1448 * Return back to user mode. We must *not* do the normal exit
946c1911 1449 * work, because we don't want to enable interrupts.
45d5a168 1450 */
8a055d7f 1451 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1452
9b6e6a83 1453.Lnmi_from_kernel:
3f3c8b8c 1454 /*
0b22930e
AL
1455 * Here's what our stack frame will look like:
1456 * +---------------------------------------------------------+
1457 * | original SS |
1458 * | original Return RSP |
1459 * | original RFLAGS |
1460 * | original CS |
1461 * | original RIP |
1462 * +---------------------------------------------------------+
1463 * | temp storage for rdx |
1464 * +---------------------------------------------------------+
1465 * | "NMI executing" variable |
1466 * +---------------------------------------------------------+
1467 * | iret SS } Copied from "outermost" frame |
1468 * | iret Return RSP } on each loop iteration; overwritten |
1469 * | iret RFLAGS } by a nested NMI to force another |
1470 * | iret CS } iteration if needed. |
1471 * | iret RIP } |
1472 * +---------------------------------------------------------+
1473 * | outermost SS } initialized in first_nmi; |
1474 * | outermost Return RSP } will not be changed before |
1475 * | outermost RFLAGS } NMI processing is done. |
1476 * | outermost CS } Copied to "iret" frame on each |
1477 * | outermost RIP } iteration. |
1478 * +---------------------------------------------------------+
1479 * | pt_regs |
1480 * +---------------------------------------------------------+
1481 *
1482 * The "original" frame is used by hardware. Before re-enabling
1483 * NMIs, we need to be done with it, and we need to leave enough
1484 * space for the asm code here.
1485 *
1486 * We return by executing IRET while RSP points to the "iret" frame.
1487 * That will either return for real or it will loop back into NMI
1488 * processing.
1489 *
1490 * The "outermost" frame is copied to the "iret" frame on each
1491 * iteration of the loop, so each iteration starts with the "iret"
1492 * frame pointing to the final return target.
1493 */
1494
45d5a168 1495 /*
0b22930e
AL
1496 * Determine whether we're a nested NMI.
1497 *
a27507ca
AL
1498 * If we interrupted kernel code between repeat_nmi and
1499 * end_repeat_nmi, then we are a nested NMI. We must not
1500 * modify the "iret" frame because it's being written by
1501 * the outer NMI. That's okay; the outer NMI handler is
1502 * about to about to call do_nmi anyway, so we can just
1503 * resume the outer NMI.
45d5a168 1504 */
a27507ca
AL
1505
1506 movq $repeat_nmi, %rdx
1507 cmpq 8(%rsp), %rdx
1508 ja 1f
1509 movq $end_repeat_nmi, %rdx
1510 cmpq 8(%rsp), %rdx
1511 ja nested_nmi_out
15121:
45d5a168 1513
3f3c8b8c 1514 /*
a27507ca 1515 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1516 * This will not detect if we interrupted an outer NMI just
1517 * before IRET.
3f3c8b8c 1518 */
4d732138
IM
1519 cmpl $1, -8(%rsp)
1520 je nested_nmi
3f3c8b8c
SR
1521
1522 /*
0b22930e
AL
1523 * Now test if the previous stack was an NMI stack. This covers
1524 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1525 * "NMI executing" but before IRET. We need to be careful, though:
1526 * there is one case in which RSP could point to the NMI stack
1527 * despite there being no NMI active: naughty userspace controls
1528 * RSP at the very beginning of the SYSCALL targets. We can
1529 * pull a fast one on naughty userspace, though: we program
1530 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1531 * if it controls the kernel's RSP. We set DF before we clear
1532 * "NMI executing".
3f3c8b8c 1533 */
0784b364
DV
1534 lea 6*8(%rsp), %rdx
1535 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1536 cmpq %rdx, 4*8(%rsp)
1537 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1538 ja first_nmi
4d732138 1539
0784b364
DV
1540 subq $EXCEPTION_STKSZ, %rdx
1541 cmpq %rdx, 4*8(%rsp)
1542 /* If it is below the NMI stack, it is a normal NMI */
1543 jb first_nmi
810bc075
AL
1544
1545 /* Ah, it is within the NMI stack. */
1546
1547 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1548 jz first_nmi /* RSP was user controlled. */
1549
1550 /* This is a nested NMI. */
0784b364 1551
3f3c8b8c
SR
1552nested_nmi:
1553 /*
0b22930e
AL
1554 * Modify the "iret" frame to point to repeat_nmi, forcing another
1555 * iteration of NMI handling.
3f3c8b8c 1556 */
23a781e9 1557 subq $8, %rsp
4d732138
IM
1558 leaq -10*8(%rsp), %rdx
1559 pushq $__KERNEL_DS
1560 pushq %rdx
131484c8 1561 pushfq
4d732138
IM
1562 pushq $__KERNEL_CS
1563 pushq $repeat_nmi
3f3c8b8c
SR
1564
1565 /* Put stack back */
4d732138 1566 addq $(6*8), %rsp
3f3c8b8c
SR
1567
1568nested_nmi_out:
4d732138 1569 popq %rdx
3f3c8b8c 1570
0b22930e 1571 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1572 iretq
3f3c8b8c
SR
1573
1574first_nmi:
0b22930e 1575 /* Restore rdx. */
4d732138 1576 movq (%rsp), %rdx
62610913 1577
36f1a77b
AL
1578 /* Make room for "NMI executing". */
1579 pushq $0
3f3c8b8c 1580
0b22930e 1581 /* Leave room for the "iret" frame */
4d732138 1582 subq $(5*8), %rsp
28696f43 1583
0b22930e 1584 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1585 .rept 5
4d732138 1586 pushq 11*8(%rsp)
3f3c8b8c 1587 .endr
8c1f7558 1588 UNWIND_HINT_IRET_REGS
62610913 1589
79fb4ad6
SR
1590 /* Everything up to here is safe from nested NMIs */
1591
a97439aa
AL
1592#ifdef CONFIG_DEBUG_ENTRY
1593 /*
1594 * For ease of testing, unmask NMIs right away. Disabled by
1595 * default because IRET is very expensive.
1596 */
1597 pushq $0 /* SS */
1598 pushq %rsp /* RSP (minus 8 because of the previous push) */
1599 addq $8, (%rsp) /* Fix up RSP */
1600 pushfq /* RFLAGS */
1601 pushq $__KERNEL_CS /* CS */
1602 pushq $1f /* RIP */
929bacec 1603 iretq /* continues at repeat_nmi below */
8c1f7558 1604 UNWIND_HINT_IRET_REGS
a97439aa
AL
16051:
1606#endif
1607
0b22930e 1608repeat_nmi:
62610913
JB
1609 /*
1610 * If there was a nested NMI, the first NMI's iret will return
1611 * here. But NMIs are still enabled and we can take another
1612 * nested NMI. The nested NMI checks the interrupted RIP to see
1613 * if it is between repeat_nmi and end_repeat_nmi, and if so
1614 * it will just return, as we are about to repeat an NMI anyway.
1615 * This makes it safe to copy to the stack frame that a nested
1616 * NMI will update.
0b22930e
AL
1617 *
1618 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1619 * we're repeating an NMI, gsbase has the same value that it had on
1620 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1621 * gsbase if needed before we call do_nmi. "NMI executing"
1622 * is zero.
62610913 1623 */
36f1a77b 1624 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1625
62610913 1626 /*
0b22930e
AL
1627 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1628 * here must not modify the "iret" frame while we're writing to
1629 * it or it will end up containing garbage.
62610913 1630 */
4d732138 1631 addq $(10*8), %rsp
3f3c8b8c 1632 .rept 5
4d732138 1633 pushq -6*8(%rsp)
3f3c8b8c 1634 .endr
4d732138 1635 subq $(5*8), %rsp
62610913 1636end_repeat_nmi:
3f3c8b8c
SR
1637
1638 /*
0b22930e
AL
1639 * Everything below this point can be preempted by a nested NMI.
1640 * If this happens, then the inner NMI will change the "iret"
1641 * frame to point back to repeat_nmi.
3f3c8b8c 1642 */
4d732138 1643 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1644 ALLOC_PT_GPREGS_ON_STACK
1645
1fd466ef 1646 /*
ebfc453e 1647 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1648 * as we should not be calling schedule in NMI context.
1649 * Even with normal interrupts enabled. An NMI should not be
1650 * setting NEED_RESCHED or anything that normal interrupts and
1651 * exceptions might do.
1652 */
4d732138 1653 call paranoid_entry
8c1f7558 1654 UNWIND_HINT_REGS
7fbb98c5 1655
ddeb8f21 1656 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1657 movq %rsp, %rdi
1658 movq $-1, %rsi
1659 call do_nmi
7fbb98c5 1660
21e94459 1661 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1662
4d732138
IM
1663 testl %ebx, %ebx /* swapgs needed? */
1664 jnz nmi_restore
ddeb8f21
AH
1665nmi_swapgs:
1666 SWAPGS_UNSAFE_STACK
1667nmi_restore:
471ee483
AL
1668 POP_EXTRA_REGS
1669 POP_C_REGS
0b22930e 1670
471ee483
AL
1671 /*
1672 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1673 * at the "iret" frame.
1674 */
1675 addq $6*8, %rsp
28696f43 1676
810bc075
AL
1677 /*
1678 * Clear "NMI executing". Set DF first so that we can easily
1679 * distinguish the remaining code between here and IRET from
929bacec
AL
1680 * the SYSCALL entry and exit paths.
1681 *
1682 * We arguably should just inspect RIP instead, but I (Andy) wrote
1683 * this code when I had the misapprehension that Xen PV supported
1684 * NMIs, and Xen PV would break that approach.
810bc075
AL
1685 */
1686 std
1687 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1688
1689 /*
929bacec
AL
1690 * iretq reads the "iret" frame and exits the NMI stack in a
1691 * single instruction. We are returning to kernel mode, so this
1692 * cannot result in a fault. Similarly, we don't need to worry
1693 * about espfix64 on the way back to kernel mode.
0b22930e 1694 */
929bacec 1695 iretq
ddeb8f21
AH
1696END(nmi)
1697
1698ENTRY(ignore_sysret)
8c1f7558 1699 UNWIND_HINT_EMPTY
4d732138 1700 mov $-ENOSYS, %eax
ddeb8f21 1701 sysret
ddeb8f21 1702END(ignore_sysret)
2deb4be2
AL
1703
1704ENTRY(rewind_stack_do_exit)
8c1f7558 1705 UNWIND_HINT_FUNC
2deb4be2
AL
1706 /* Prevent any naive code from trying to unwind to our caller. */
1707 xorl %ebp, %ebp
1708
1709 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1710 leaq -PTREGS_SIZE(%rax), %rsp
1711 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1712
1713 call do_exit
2deb4be2 1714END(rewind_stack_do_exit)