kprobes: Use CONFIG_PREEMPTION
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 8 *
1da177e4
LT
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
cb1aaebe 11 * Some of this is documented in Documentation/x86/entry_64.rst
8b4777a4 12 *
0bd7b798 13 * A note on terminology:
4d732138
IM
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
2e91a17b
AK
16 *
17 * Some macro usage:
4d732138
IM
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
1da177e4 21 */
1da177e4
LT
22#include <linux/linkage.h>
23#include <asm/segment.h>
1da177e4
LT
24#include <asm/cache.h>
25#include <asm/errno.h>
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
8c1f7558 39#include <asm/frame.h>
2641f08b 40#include <asm/nospec-branch.h>
d7e7528b 41#include <linux/err.h>
1da177e4 42
6fd166aa
PZ
43#include "calling.h"
44
4d732138
IM
45.code64
46.section .entry.text, "ax"
16444a8a 47
72fe4858 48#ifdef CONFIG_PARAVIRT
2be29982 49ENTRY(native_usergs_sysret64)
8c1f7558 50 UNWIND_HINT_EMPTY
72fe4858
GOC
51 swapgs
52 sysretq
8c1f7558 53END(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
ca37e57b 56.macro TRACE_IRQS_FLAGS flags:req
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
a368d7fd 58 btl $9, \flags /* interrupts off? */
4d732138 59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
ca37e57b
AL
65.macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67.endm
68
5963e317
SR
69/*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82.macro TRACE_IRQS_OFF_DEBUG
4d732138 83 call debug_stack_set_zero
5963e317 84 TRACE_IRQS_OFF
4d732138 85 call debug_stack_reset
5963e317
SR
86.endm
87
88.macro TRACE_IRQS_ON_DEBUG
4d732138 89 call debug_stack_set_zero
5963e317 90 TRACE_IRQS_ON
4d732138 91 call debug_stack_reset
5963e317
SR
92.endm
93
f2db9382 94.macro TRACE_IRQS_IRETQ_DEBUG
6709812f 95 btl $9, EFLAGS(%rsp) /* interrupts off? */
4d732138 96 jnc 1f
5963e317
SR
97 TRACE_IRQS_ON_DEBUG
981:
99.endm
100
101#else
4d732138
IM
102# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
105#endif
106
1da177e4 107/*
4d732138 108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 109 *
fda57b22
AL
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
4d732138 120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
1da177e4 127 * rax system call number
b87cf63e
DV
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 130 * rdi arg0
1da177e4 131 * rsi arg1
0bd7b798 132 * rdx arg2
b87cf63e 133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
134 * r8 arg4
135 * r9 arg5
4d732138 136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 137 *
1da177e4
LT
138 * Only called from user space.
139 *
7fcb3bc3 140 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 143 */
1da177e4 144
b2502b41 145ENTRY(entry_SYSCALL_64)
8c1f7558 146 UNWIND_HINT_EMPTY
9ed8e7d8
DV
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
72fe4858 152
8a9949bc 153 swapgs
bf904d27 154 /* tss.sp2 is scratch space. */
98f05b51 155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
bf904d27 156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
4d732138 157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
158
159 /* Construct struct pt_regs on stack */
98f05b51
AL
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
8a9949bc 165GLOBAL(entry_SYSCALL_64_after_hwframe)
98f05b51 166 pushq %rax /* pt_regs->orig_ax */
30907fd1
DB
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
4d732138 169
548c3050
AL
170 TRACE_IRQS_OFF
171
1e423bff 172 /* IRQs are off. */
dfe64506
LT
173 movq %rax, %rdi
174 movq %rsp, %rsi
1e423bff
AL
175 call do_syscall_64 /* returns with IRQs disabled */
176
29ea1b25 177 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
8a055d7f
AL
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
fffbb5dc 183 */
4d732138
IM
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
8a055d7f
AL
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
17be0aec 193 * the kernel, since userspace controls RSP.
fffbb5dc 194 *
17be0aec 195 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 196 * to be updated to remain correct on both old and new CPUs.
361b4b58 197 *
cbe0317b
KS
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
fffbb5dc 200 */
09e61a77 201#ifdef CONFIG_X86_5LEVEL
39b95522
KS
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
09e61a77 204#else
17be0aec
DV
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
09e61a77 207#endif
4d732138 208
17be0aec
DV
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
8a055d7f 211 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 212
4d732138 213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
8a055d7f 214 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc 215
4d732138
IM
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
8a055d7f 218 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
219
220 /*
3e035305
BP
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
fffbb5dc 230 *
4d732138 231 * movq $stuck_here, %rcx
fffbb5dc
DV
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
4d732138 238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
8a055d7f 239 jnz swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
240
241 /* nothing to check for RSP */
242
4d732138 243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
8a055d7f 244 jne swapgs_restore_regs_and_return_to_usermode
fffbb5dc
DV
245
246 /*
4d732138
IM
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
fffbb5dc
DV
249 */
250syscall_return_via_sysret:
17be0aec 251 /* rcx and r11 are already restored (see code above) */
8c1f7558 252 UNWIND_HINT_EMPTY
502af0d7 253 POP_REGS pop_rdi=0 skip_r11rcx=1
3e3b9293
AL
254
255 /*
256 * Now all regs are restored except RSP and RDI.
257 * Save old stack pointer and switch to trampoline stack.
258 */
259 movq %rsp, %rdi
c482feef 260 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
afaef01c
AP
269 STACKLEAK_ERASE_NOCLOBBER
270
6fd166aa 271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
3e3b9293 272
4fbb3910 273 popq %rdi
3e3b9293 274 popq %rsp
fffbb5dc 275 USERGS_SYSRET64
b2502b41 276END(entry_SYSCALL_64)
0bd7b798 277
0100301b
BG
278/*
279 * %rdi: prev task
280 * %rsi: next task
281 */
282ENTRY(__switch_to_asm)
8c1f7558 283 UNWIND_HINT_FUNC
0100301b
BG
284 /*
285 * Save callee-saved registers
286 * This must match the order in inactive_task_frame
287 */
288 pushq %rbp
289 pushq %rbx
290 pushq %r12
291 pushq %r13
292 pushq %r14
293 pushq %r15
294
295 /* switch stack */
296 movq %rsp, TASK_threadsp(%rdi)
297 movq TASK_threadsp(%rsi), %rsp
298
050e9baa 299#ifdef CONFIG_STACKPROTECTOR
0100301b 300 movq TASK_stack_canary(%rsi), %rbx
e6401c13 301 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
0100301b
BG
302#endif
303
c995efd5
DW
304#ifdef CONFIG_RETPOLINE
305 /*
306 * When switching from a shallower to a deeper call stack
307 * the RSB may either underflow or use entries populated
308 * with userspace addresses. On CPUs where those concerns
309 * exist, overwrite the RSB with entries which capture
310 * speculative execution to prevent attack.
311 */
d1c99108 312 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
c995efd5
DW
313#endif
314
0100301b
BG
315 /* restore callee-saved registers */
316 popq %r15
317 popq %r14
318 popq %r13
319 popq %r12
320 popq %rbx
321 popq %rbp
322
323 jmp __switch_to
324END(__switch_to_asm)
325
1eeb207f
DV
326/*
327 * A newly forked process directly context switches into this address.
328 *
0100301b 329 * rax: prev task we switched from
616d2483
BG
330 * rbx: kernel thread func (NULL for user thread)
331 * r12: kernel thread arg
1eeb207f
DV
332 */
333ENTRY(ret_from_fork)
8c1f7558 334 UNWIND_HINT_EMPTY
0100301b 335 movq %rax, %rdi
ebd57499 336 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 337
ebd57499
JP
338 testq %rbx, %rbx /* from kernel_thread? */
339 jnz 1f /* kernel threads are uncommon */
24d978b7 340
616d2483 3412:
8c1f7558 342 UNWIND_HINT_REGS
ebd57499 343 movq %rsp, %rdi
24d978b7
AL
344 call syscall_return_slowpath /* returns with IRQs disabled */
345 TRACE_IRQS_ON /* user mode is traced as IRQS on */
8a055d7f 346 jmp swapgs_restore_regs_and_return_to_usermode
616d2483
BG
347
3481:
349 /* kernel thread */
d31a5802 350 UNWIND_HINT_EMPTY
616d2483 351 movq %r12, %rdi
2641f08b 352 CALL_NOSPEC %rbx
616d2483
BG
353 /*
354 * A kernel thread is allowed to return here after successfully
355 * calling do_execve(). Exit to userspace to complete the execve()
356 * syscall.
357 */
358 movq $0, RAX(%rsp)
359 jmp 2b
1eeb207f
DV
360END(ret_from_fork)
361
939b7871 362/*
3304c9c3
DV
363 * Build the entry stubs with some assembler magic.
364 * We pack 1 stub into every 8-byte block.
939b7871 365 */
3304c9c3 366 .align 8
939b7871 367ENTRY(irq_entries_start)
3304c9c3
DV
368 vector=FIRST_EXTERNAL_VECTOR
369 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
8c1f7558 370 UNWIND_HINT_IRET_REGS
4d732138 371 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3 372 jmp common_interrupt
3304c9c3 373 .align 8
8c1f7558 374 vector=vector+1
3304c9c3 375 .endr
939b7871
PA
376END(irq_entries_start)
377
f8a8fe61
TG
378 .align 8
379ENTRY(spurious_entries_start)
380 vector=FIRST_SYSTEM_VECTOR
381 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
382 UNWIND_HINT_IRET_REGS
383 pushq $(~vector+0x80) /* Note: always in signed byte range */
384 jmp common_spurious
385 .align 8
386 vector=vector+1
387 .endr
388END(spurious_entries_start)
389
1d3e53e8
AL
390.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
391#ifdef CONFIG_DEBUG_ENTRY
e17f8234
BO
392 pushq %rax
393 SAVE_FLAGS(CLBR_RAX)
394 testl $X86_EFLAGS_IF, %eax
1d3e53e8
AL
395 jz .Lokay_\@
396 ud2
397.Lokay_\@:
e17f8234 398 popq %rax
1d3e53e8
AL
399#endif
400.endm
401
402/*
403 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
404 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
405 * Requires kernel GSBASE.
406 *
407 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
408 */
2ba64741 409.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
1d3e53e8 410 DEBUG_ENTRY_ASSERT_IRQS_OFF
2ba64741
DB
411
412 .if \save_ret
413 /*
414 * If save_ret is set, the original stack contains one additional
415 * entry -- the return address. Therefore, move the address one
416 * entry below %rsp to \old_rsp.
417 */
418 leaq 8(%rsp), \old_rsp
419 .else
1d3e53e8 420 movq %rsp, \old_rsp
2ba64741 421 .endif
8c1f7558
JP
422
423 .if \regs
424 UNWIND_HINT_REGS base=\old_rsp
425 .endif
426
1d3e53e8 427 incl PER_CPU_VAR(irq_count)
29955909 428 jnz .Lirq_stack_push_old_rsp_\@
1d3e53e8
AL
429
430 /*
431 * Right now, if we just incremented irq_count to zero, we've
432 * claimed the IRQ stack but we haven't switched to it yet.
433 *
434 * If anything is added that can interrupt us here without using IST,
435 * it must be *extremely* careful to limit its stack usage. This
436 * could include kprobes and a hypothetical future IST-less #DB
437 * handler.
29955909
AL
438 *
439 * The OOPS unwinder relies on the word at the top of the IRQ
440 * stack linking back to the previous RSP for the entire time we're
441 * on the IRQ stack. For this to work reliably, we need to write
442 * it before we actually move ourselves to the IRQ stack.
443 */
444
e6401c13 445 movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
758a2e31 446 movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
29955909
AL
447
448#ifdef CONFIG_DEBUG_ENTRY
449 /*
450 * If the first movq above becomes wrong due to IRQ stack layout
451 * changes, the only way we'll notice is if we try to unwind right
452 * here. Assert that we set up the stack right to catch this type
453 * of bug quickly.
1d3e53e8 454 */
29955909
AL
455 cmpq -8(%rsp), \old_rsp
456 je .Lirq_stack_okay\@
457 ud2
458 .Lirq_stack_okay\@:
459#endif
1d3e53e8 460
29955909 461.Lirq_stack_push_old_rsp_\@:
1d3e53e8 462 pushq \old_rsp
8c1f7558
JP
463
464 .if \regs
465 UNWIND_HINT_REGS indirect=1
466 .endif
2ba64741
DB
467
468 .if \save_ret
469 /*
470 * Push the return address to the stack. This return address can
471 * be found at the "real" original RSP, which was offset by 8 at
472 * the beginning of this macro.
473 */
474 pushq -8(\old_rsp)
475 .endif
1d3e53e8
AL
476.endm
477
478/*
479 * Undoes ENTER_IRQ_STACK.
480 */
8c1f7558 481.macro LEAVE_IRQ_STACK regs=1
1d3e53e8
AL
482 DEBUG_ENTRY_ASSERT_IRQS_OFF
483 /* We need to be off the IRQ stack before decrementing irq_count. */
484 popq %rsp
485
8c1f7558
JP
486 .if \regs
487 UNWIND_HINT_REGS
488 .endif
489
1d3e53e8
AL
490 /*
491 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
492 * the irq stack but we're not on it.
493 */
494
495 decl PER_CPU_VAR(irq_count)
496.endm
497
d99015b1 498/*
f3d415ea 499 * Interrupt entry helper function.
d99015b1 500 *
f3d415ea
DB
501 * Entry runs with interrupts off. Stack layout at entry:
502 * +----------------------------------------------------+
503 * | regs->ss |
504 * | regs->rsp |
505 * | regs->eflags |
506 * | regs->cs |
507 * | regs->ip |
508 * +----------------------------------------------------+
509 * | regs->orig_ax = ~(interrupt number) |
510 * +----------------------------------------------------+
511 * | return address |
512 * +----------------------------------------------------+
d99015b1 513 */
f3d415ea
DB
514ENTRY(interrupt_entry)
515 UNWIND_HINT_FUNC
516 ASM_CLAC
f6f64681 517 cld
7f2590a1 518
f3d415ea 519 testb $3, CS-ORIG_RAX+8(%rsp)
7f2590a1
AL
520 jz 1f
521 SWAPGS
f3d415ea
DB
522
523 /*
524 * Switch to the thread stack. The IRET frame and orig_ax are
525 * on the stack, as well as the return address. RDI..R12 are
526 * not (yet) on the stack and space has not (yet) been
527 * allocated for them.
528 */
90a6acc4 529 pushq %rdi
f3d415ea 530
90a6acc4
DB
531 /* Need to switch before accessing the thread stack. */
532 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
533 movq %rsp, %rdi
534 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
f3d415ea
DB
535
536 /*
537 * We have RDI, return address, and orig_ax on the stack on
538 * top of the IRET frame. That means offset=24
539 */
540 UNWIND_HINT_IRET_REGS base=%rdi offset=24
90a6acc4
DB
541
542 pushq 7*8(%rdi) /* regs->ss */
543 pushq 6*8(%rdi) /* regs->rsp */
544 pushq 5*8(%rdi) /* regs->eflags */
545 pushq 4*8(%rdi) /* regs->cs */
546 pushq 3*8(%rdi) /* regs->ip */
547 pushq 2*8(%rdi) /* regs->orig_ax */
548 pushq 8(%rdi) /* return address */
549 UNWIND_HINT_FUNC
550
551 movq (%rdi), %rdi
7f2590a1
AL
5521:
553
0e34d226
DB
554 PUSH_AND_CLEAR_REGS save_ret=1
555 ENCODE_FRAME_POINTER 8
76f5df43 556
2ba64741 557 testb $3, CS+8(%rsp)
dde74f2e 558 jz 1f
02bc7768
AL
559
560 /*
7f2590a1
AL
561 * IRQ from user mode.
562 *
f1075053
AL
563 * We need to tell lockdep that IRQs are off. We can't do this until
564 * we fix gsbase, and we should do it before enter_from_user_mode
f3d415ea 565 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
f1075053
AL
566 * the simplest way to handle it is to just call it twice if
567 * we enter from user mode. There's no reason to optimize this since
568 * TRACE_IRQS_OFF is a no-op if lockdep is off.
569 */
570 TRACE_IRQS_OFF
571
478dc89c 572 CALL_enter_from_user_mode
02bc7768 573
76f5df43 5741:
2ba64741 575 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
f6f64681
DV
576 /* We entered an interrupt context - irqs are off: */
577 TRACE_IRQS_OFF
578
2ba64741
DB
579 ret
580END(interrupt_entry)
a50480cb 581_ASM_NOKPROBE(interrupt_entry)
2ba64741 582
f3d415ea
DB
583
584/* Interrupt entry/exit. */
1da177e4 585
f8a8fe61
TG
586/*
587 * The interrupt stubs push (~vector+0x80) onto the stack and
588 * then jump to common_spurious/interrupt.
589 */
590common_spurious:
591 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
592 call interrupt_entry
593 UNWIND_HINT_REGS indirect=1
594 call smp_spurious_interrupt /* rdi points to pt_regs */
595 jmp ret_from_intr
596END(common_spurious)
597_ASM_NOKPROBE(common_spurious)
598
599/* common_interrupt is a hotpath. Align it */
939b7871
PA
600 .p2align CONFIG_X86_L1_CACHE_SHIFT
601common_interrupt:
4d732138 602 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
3aa99fc3
DB
603 call interrupt_entry
604 UNWIND_HINT_REGS indirect=1
605 call do_IRQ /* rdi points to pt_regs */
34061f13 606 /* 0(%rsp): old RSP */
7effaa88 607ret_from_intr:
2140a994 608 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 609 TRACE_IRQS_OFF
625dbc3b 610
1d3e53e8 611 LEAVE_IRQ_STACK
625dbc3b 612
03335e95 613 testb $3, CS(%rsp)
dde74f2e 614 jz retint_kernel
4d732138 615
02bc7768 616 /* Interrupt came from user space */
02bc7768
AL
617GLOBAL(retint_user)
618 mov %rsp,%rdi
619 call prepare_exit_to_usermode
2601e64d 620 TRACE_IRQS_IRETQ
26c4ef9c 621
8a055d7f 622GLOBAL(swapgs_restore_regs_and_return_to_usermode)
26c4ef9c
AL
623#ifdef CONFIG_DEBUG_ENTRY
624 /* Assert that pt_regs indicates user mode. */
1e4c4f61 625 testb $3, CS(%rsp)
26c4ef9c
AL
626 jnz 1f
627 ud2
6281:
629#endif
502af0d7 630 POP_REGS pop_rdi=0
3e3b9293
AL
631
632 /*
633 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
634 * Save old stack pointer and switch to trampoline stack.
635 */
636 movq %rsp, %rdi
c482feef 637 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
3e3b9293
AL
638
639 /* Copy the IRET frame to the trampoline stack. */
640 pushq 6*8(%rdi) /* SS */
641 pushq 5*8(%rdi) /* RSP */
642 pushq 4*8(%rdi) /* EFLAGS */
643 pushq 3*8(%rdi) /* CS */
644 pushq 2*8(%rdi) /* RIP */
645
646 /* Push user RDI on the trampoline stack. */
647 pushq (%rdi)
648
649 /*
650 * We are on the trampoline stack. All regs except RDI are live.
651 * We can do future final exit work right here.
652 */
afaef01c 653 STACKLEAK_ERASE_NOCLOBBER
3e3b9293 654
6fd166aa 655 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b 656
3e3b9293
AL
657 /* Restore RDI. */
658 popq %rdi
659 SWAPGS
26c4ef9c
AL
660 INTERRUPT_RETURN
661
2601e64d 662
627276cb 663/* Returning to kernel space */
6ba71b76 664retint_kernel:
627276cb
DV
665#ifdef CONFIG_PREEMPT
666 /* Interrupts are off */
667 /* Check if we need preemption */
6709812f 668 btl $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 669 jnc 1f
b5b447b6 670 cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 671 jnz 1f
627276cb 672 call preempt_schedule_irq
6ba71b76 6731:
627276cb 674#endif
2601e64d
IM
675 /*
676 * The iretq could re-enable interrupts:
677 */
678 TRACE_IRQS_IRETQ
fffbb5dc 679
26c4ef9c
AL
680GLOBAL(restore_regs_and_return_to_kernel)
681#ifdef CONFIG_DEBUG_ENTRY
682 /* Assert that pt_regs indicates kernel mode. */
1e4c4f61 683 testb $3, CS(%rsp)
26c4ef9c
AL
684 jz 1f
685 ud2
6861:
687#endif
502af0d7 688 POP_REGS
e872045b 689 addq $8, %rsp /* skip regs->orig_ax */
10bcc80e
MD
690 /*
691 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
692 * when returning from IPI handler.
693 */
7209a75d
AL
694 INTERRUPT_RETURN
695
696ENTRY(native_iret)
8c1f7558 697 UNWIND_HINT_IRET_REGS
3891a04a
PA
698 /*
699 * Are we returning to a stack segment from the LDT? Note: in
700 * 64-bit mode SS:RSP on the exception stack is always valid.
701 */
34273f41 702#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
703 testb $4, (SS-RIP)(%rsp)
704 jnz native_irq_return_ldt
34273f41 705#endif
3891a04a 706
af726f21 707.global native_irq_return_iret
7209a75d 708native_irq_return_iret:
b645af2d
AL
709 /*
710 * This may fault. Non-paranoid faults on return to userspace are
711 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
712 * Double-faults due to espfix64 are handled in do_double_fault.
713 * Other faults here are fatal.
714 */
1da177e4 715 iretq
3701d863 716
34273f41 717#ifdef CONFIG_X86_ESPFIX64
7209a75d 718native_irq_return_ldt:
85063fac
AL
719 /*
720 * We are running with user GSBASE. All GPRs contain their user
721 * values. We have a percpu ESPFIX stack that is eight slots
722 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
723 * of the ESPFIX stack.
724 *
725 * We clobber RAX and RDI in this code. We stash RDI on the
726 * normal stack and RAX on the ESPFIX stack.
727 *
728 * The ESPFIX stack layout we set up looks like this:
729 *
730 * --- top of ESPFIX stack ---
731 * SS
732 * RSP
733 * RFLAGS
734 * CS
735 * RIP <-- RSP points here when we're done
736 * RAX <-- espfix_waddr points here
737 * --- bottom of ESPFIX stack ---
738 */
739
740 pushq %rdi /* Stash user RDI */
8a09317b
DH
741 SWAPGS /* to kernel GS */
742 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
743
4d732138 744 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
745 movq %rax, (0*8)(%rdi) /* user RAX */
746 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 747 movq %rax, (1*8)(%rdi)
85063fac 748 movq (2*8)(%rsp), %rax /* user CS */
4d732138 749 movq %rax, (2*8)(%rdi)
85063fac 750 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 751 movq %rax, (3*8)(%rdi)
85063fac 752 movq (5*8)(%rsp), %rax /* user SS */
4d732138 753 movq %rax, (5*8)(%rdi)
85063fac 754 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 755 movq %rax, (4*8)(%rdi)
85063fac
AL
756 /* Now RAX == RSP. */
757
758 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
85063fac
AL
759
760 /*
761 * espfix_stack[31:16] == 0. The page tables are set up such that
762 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
763 * espfix_waddr for any X. That is, there are 65536 RO aliases of
764 * the same page. Set up RSP so that RSP[31:16] contains the
765 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
766 * still points to an RO alias of the ESPFIX stack.
767 */
4d732138 768 orq PER_CPU_VAR(espfix_stack), %rax
8a09317b 769
6fd166aa 770 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
8a09317b
DH
771 SWAPGS /* to user GS */
772 popq %rdi /* Restore user RDI */
773
4d732138 774 movq %rax, %rsp
8c1f7558 775 UNWIND_HINT_IRET_REGS offset=8
85063fac
AL
776
777 /*
778 * At this point, we cannot write to the stack any more, but we can
779 * still read.
780 */
781 popq %rax /* Restore user RAX */
782
783 /*
784 * RSP now points to an ordinary IRET frame, except that the page
785 * is read-only and RSP[31:16] are preloaded with the userspace
786 * values. We can now IRET back to userspace.
787 */
4d732138 788 jmp native_irq_return_iret
34273f41 789#endif
4b787e0b 790END(common_interrupt)
a50480cb 791_ASM_NOKPROBE(common_interrupt)
3891a04a 792
1da177e4
LT
793/*
794 * APIC interrupts.
0bd7b798 795 */
cf910e83 796.macro apicinterrupt3 num sym do_sym
322648d1 797ENTRY(\sym)
8c1f7558 798 UNWIND_HINT_IRET_REGS
4d732138 799 pushq $~(\num)
39e95433 800.Lcommon_\sym:
3aa99fc3
DB
801 call interrupt_entry
802 UNWIND_HINT_REGS indirect=1
803 call \do_sym /* rdi points to pt_regs */
4d732138 804 jmp ret_from_intr
322648d1 805END(\sym)
a50480cb 806_ASM_NOKPROBE(\sym)
322648d1 807.endm
1da177e4 808
469f0023 809/* Make sure APIC interrupt handlers end up in the irqentry section: */
229a7186
MH
810#define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
811#define POP_SECTION_IRQENTRY .popsection
469f0023 812
cf910e83 813.macro apicinterrupt num sym do_sym
469f0023 814PUSH_SECTION_IRQENTRY
cf910e83 815apicinterrupt3 \num \sym \do_sym
469f0023 816POP_SECTION_IRQENTRY
cf910e83
SA
817.endm
818
322648d1 819#ifdef CONFIG_SMP
4d732138
IM
820apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
821apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 822#endif
1da177e4 823
03b48632 824#ifdef CONFIG_X86_UV
4d732138 825apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 826#endif
4d732138
IM
827
828apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
829apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 830
d78f2664 831#ifdef CONFIG_HAVE_KVM
4d732138
IM
832apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
833apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 834apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
835#endif
836
33e5ff63 837#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 838apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
839#endif
840
24fd78a8 841#ifdef CONFIG_X86_MCE_AMD
4d732138 842apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
843#endif
844
33e5ff63 845#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 846apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 847#endif
1812924b 848
322648d1 849#ifdef CONFIG_SMP
4d732138
IM
850apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
851apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
852apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 853#endif
1da177e4 854
4d732138
IM
855apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
856apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 857
e360adbe 858#ifdef CONFIG_IRQ_WORK
4d732138 859apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
860#endif
861
1da177e4
LT
862/*
863 * Exception entry points.
0bd7b798 864 */
8f34c5b5 865#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
577ed45e 866
a0d14b89 867.macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
2fd37912
PZ
868
869 .if \paranoid
870 call paranoid_entry
871 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
872 .else
873 call error_entry
874 .endif
875 UNWIND_HINT_REGS
876
a0d14b89 877 .if \read_cr2
6879298b
TG
878 /*
879 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
880 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
881 * GET_CR2_INTO can clobber RAX.
882 */
883 GET_CR2_INTO(%r12);
a0d14b89
PZ
884 .endif
885
2fd37912
PZ
886 .if \shift_ist != -1
887 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
888 .else
889 TRACE_IRQS_OFF
890 .endif
a0d14b89
PZ
891
892 .if \paranoid == 0
893 testb $3, CS(%rsp)
894 jz .Lfrom_kernel_no_context_tracking_\@
895 CALL_enter_from_user_mode
896.Lfrom_kernel_no_context_tracking_\@:
2fd37912
PZ
897 .endif
898
899 movq %rsp, %rdi /* pt_regs pointer */
900
901 .if \has_error_code
902 movq ORIG_RAX(%rsp), %rsi /* get error code */
903 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
904 .else
905 xorl %esi, %esi /* no error code */
906 .endif
907
908 .if \shift_ist != -1
909 subq $\ist_offset, CPU_TSS_IST(\shift_ist)
910 .endif
911
6879298b
TG
912 .if \read_cr2
913 movq %r12, %rdx /* Move CR2 into 3rd argument */
914 .endif
915
2fd37912
PZ
916 call \do_sym
917
918 .if \shift_ist != -1
919 addq $\ist_offset, CPU_TSS_IST(\shift_ist)
920 .endif
921
922 .if \paranoid
923 /* this procedure expect "no swapgs" flag in ebx */
924 jmp paranoid_exit
925 .else
926 jmp error_exit
927 .endif
928
929.endm
930
bd7b1f7c
AL
931/**
932 * idtentry - Generate an IDT entry stub
933 * @sym: Name of the generated entry point
4234653e
PZ
934 * @do_sym: C function to be called
935 * @has_error_code: True if this IDT vector has an error code on the stack
936 * @paranoid: non-zero means that this vector may be invoked from
bd7b1f7c
AL
937 * kernel mode with user GSBASE and/or user CR3.
938 * 2 is special -- see below.
939 * @shift_ist: Set to an IST index if entries from kernel mode should
4234653e 940 * decrement the IST stack so that nested entries get a
bd7b1f7c 941 * fresh stack. (This is for #DB, which has a nasty habit
4234653e
PZ
942 * of recursing.)
943 * @create_gap: create a 6-word stack gap when coming from kernel mode.
a0d14b89 944 * @read_cr2: load CR2 into the 3rd argument; done before calling any C code
bd7b1f7c
AL
945 *
946 * idtentry generates an IDT stub that sets up a usable kernel context,
947 * creates struct pt_regs, and calls @do_sym. The stub has the following
948 * special behaviors:
949 *
950 * On an entry from user mode, the stub switches from the trampoline or
951 * IST stack to the normal thread stack. On an exit to user mode, the
952 * normal exit-to-usermode path is invoked.
953 *
954 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
955 * whereas we omit the preemption check if @paranoid != 0. This is purely
956 * because the implementation is simpler this way. The kernel only needs
957 * to check for asynchronous kernel preemption when IRQ handlers return.
958 *
959 * If @paranoid == 0, then the stub will handle IRET faults by pretending
960 * that the fault came from user mode. It will handle gs_change faults by
961 * pretending that the fault happened with kernel GSBASE. Since this handling
962 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
963 * @paranoid == 0. This special handling will do the wrong thing for
964 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
965 *
966 * @paranoid == 2 is special: the stub will never switch stacks. This is for
967 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
968 */
a0d14b89 969.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
322648d1 970ENTRY(\sym)
98990a33 971 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
8c1f7558 972
577ed45e 973 /* Sanity check */
4234653e 974 .if \shift_ist != -1 && \paranoid != 1
577ed45e
AL
975 .error "using shift_ist requires paranoid=1"
976 .endif
977
4234653e
PZ
978 .if \create_gap && \paranoid
979 .error "using create_gap requires paranoid=0"
980 .endif
981
ee4eb87b 982 ASM_CLAC
cb5dd2c5 983
82c62fa0 984 .if \has_error_code == 0
4d732138 985 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
986 .endif
987
071ccc96 988 .if \paranoid == 1
9e809d15 989 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
7f2590a1 990 jnz .Lfrom_usermode_switch_stack_\@
48e08d0f 991 .endif
7f2590a1 992
2700fefd
JP
993 .if \create_gap == 1
994 /*
995 * If coming from kernel space, create a 6-word gap to allow the
996 * int3 handler to emulate a call instruction.
997 */
998 testb $3, CS-ORIG_RAX(%rsp)
999 jnz .Lfrom_usermode_no_gap_\@
1000 .rept 6
1001 pushq 5*8(%rsp)
1002 .endr
1003 UNWIND_HINT_IRET_REGS offset=8
1004.Lfrom_usermode_no_gap_\@:
1005 .endif
1006
a0d14b89 1007 idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
cb5dd2c5 1008
071ccc96 1009 .if \paranoid == 1
48e08d0f 1010 /*
7f2590a1 1011 * Entry from userspace. Switch stacks and treat it
48e08d0f
AL
1012 * as a normal entry. This means that paranoid handlers
1013 * run in real process context if user_mode(regs).
1014 */
7f2590a1 1015.Lfrom_usermode_switch_stack_\@:
a0d14b89 1016 idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
48e08d0f
AL
1017 .endif
1018
a50480cb 1019_ASM_NOKPROBE(\sym)
ddeb8f21 1020END(\sym)
322648d1 1021.endm
b8b1d08b 1022
4d732138
IM
1023idtentry divide_error do_divide_error has_error_code=0
1024idtentry overflow do_overflow has_error_code=0
1025idtentry bounds do_bounds has_error_code=0
1026idtentry invalid_op do_invalid_op has_error_code=0
1027idtentry device_not_available do_device_not_available has_error_code=0
a0d14b89 1028idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
4d732138
IM
1029idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1030idtentry invalid_TSS do_invalid_TSS has_error_code=1
1031idtentry segment_not_present do_segment_not_present has_error_code=1
1032idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1033idtentry coprocessor_error do_coprocessor_error has_error_code=0
1034idtentry alignment_check do_alignment_check has_error_code=1
1035idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1036
1037
1038 /*
1039 * Reload gs selector with exception handling
1040 * edi: new selector
1041 */
9f9d489a 1042ENTRY(native_load_gs_index)
8c1f7558 1043 FRAME_BEGIN
131484c8 1044 pushfq
b8aa287f 1045 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
ca37e57b 1046 TRACE_IRQS_OFF
9f1e87ea 1047 SWAPGS
42c748bb 1048.Lgs_change:
4d732138 1049 movl %edi, %gs
96e5d28a 10502: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 1051 SWAPGS
ca37e57b 1052 TRACE_IRQS_FLAGS (%rsp)
131484c8 1053 popfq
8c1f7558 1054 FRAME_END
9f1e87ea 1055 ret
8c1f7558 1056ENDPROC(native_load_gs_index)
784d5699 1057EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 1058
42c748bb 1059 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 1060 .section .fixup, "ax"
1da177e4 1061 /* running with kernelgs */
0bd7b798 1062bad_gs:
4d732138 1063 SWAPGS /* switch back to user gs */
b038c842
AL
1064.macro ZAP_GS
1065 /* This can't be a string because the preprocessor needs to see it. */
1066 movl $__USER_DS, %eax
1067 movl %eax, %gs
1068.endm
1069 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
1070 xorl %eax, %eax
1071 movl %eax, %gs
1072 jmp 2b
9f1e87ea 1073 .previous
0bd7b798 1074
2699500b 1075/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 1076ENTRY(do_softirq_own_stack)
4d732138
IM
1077 pushq %rbp
1078 mov %rsp, %rbp
8c1f7558 1079 ENTER_IRQ_STACK regs=0 old_rsp=%r11
4d732138 1080 call __do_softirq
8c1f7558 1081 LEAVE_IRQ_STACK regs=0
2699500b 1082 leaveq
ed6b676c 1083 ret
8c1f7558 1084ENDPROC(do_softirq_own_stack)
75154f40 1085
28c11b0f 1086#ifdef CONFIG_XEN_PV
5878d5d6 1087idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
1088
1089/*
9f1e87ea
CG
1090 * A note on the "critical region" in our callback handler.
1091 * We want to avoid stacking callback handlers due to events occurring
1092 * during handling of the last event. To do this, we keep events disabled
1093 * until we've done all processing. HOWEVER, we must enable events before
1094 * popping the stack frame (can't be done atomically) and so it would still
1095 * be possible to get enough handler activations to overflow the stack.
1096 * Although unlikely, bugs of that kind are hard to track down, so we'd
1097 * like to avoid the possibility.
1098 * So, on entry to the handler we detect whether we interrupted an
1099 * existing activation in its critical region -- if so, we pop the current
1100 * activation and restart the handler using the previous one.
1101 */
4d732138
IM
1102ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1103
9f1e87ea
CG
1104/*
1105 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1106 * see the correct pointer to the pt_regs
1107 */
8c1f7558 1108 UNWIND_HINT_FUNC
4d732138 1109 movq %rdi, %rsp /* we don't return, adjust the stack frame */
8c1f7558 1110 UNWIND_HINT_REGS
1d3e53e8
AL
1111
1112 ENTER_IRQ_STACK old_rsp=%r10
4d732138 1113 call xen_evtchn_do_upcall
1d3e53e8
AL
1114 LEAVE_IRQ_STACK
1115
fdfd811d 1116#ifndef CONFIG_PREEMPT
4d732138 1117 call xen_maybe_preempt_hcall
fdfd811d 1118#endif
4d732138 1119 jmp error_exit
371c394a 1120END(xen_do_hypervisor_callback)
3d75e1b8
JF
1121
1122/*
9f1e87ea
CG
1123 * Hypervisor uses this for application faults while it executes.
1124 * We get here for two reasons:
1125 * 1. Fault while reloading DS, ES, FS or GS
1126 * 2. Fault while executing IRET
1127 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1128 * registers that could be reloaded and zeroed the others.
1129 * Category 2 we fix up by killing the current process. We cannot use the
1130 * normal Linux return path in this case because if we use the IRET hypercall
1131 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1132 * We distinguish between categories by comparing each saved segment register
1133 * with its current contents: any discrepancy means we in category 1.
1134 */
3d75e1b8 1135ENTRY(xen_failsafe_callback)
8c1f7558 1136 UNWIND_HINT_EMPTY
4d732138
IM
1137 movl %ds, %ecx
1138 cmpw %cx, 0x10(%rsp)
1139 jne 1f
1140 movl %es, %ecx
1141 cmpw %cx, 0x18(%rsp)
1142 jne 1f
1143 movl %fs, %ecx
1144 cmpw %cx, 0x20(%rsp)
1145 jne 1f
1146 movl %gs, %ecx
1147 cmpw %cx, 0x28(%rsp)
1148 jne 1f
3d75e1b8 1149 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
1150 movq (%rsp), %rcx
1151 movq 8(%rsp), %r11
1152 addq $0x30, %rsp
1153 pushq $0 /* RIP */
8c1f7558 1154 UNWIND_HINT_IRET_REGS offset=8
4d732138 1155 jmp general_protection
3d75e1b8 11561: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
1157 movq (%rsp), %rcx
1158 movq 8(%rsp), %r11
1159 addq $0x30, %rsp
8c1f7558 1160 UNWIND_HINT_IRET_REGS
4d732138 1161 pushq $-1 /* orig_ax = -1 => not a system call */
3f01daec 1162 PUSH_AND_CLEAR_REGS
946c1911 1163 ENCODE_FRAME_POINTER
4d732138 1164 jmp error_exit
3d75e1b8 1165END(xen_failsafe_callback)
28c11b0f 1166#endif /* CONFIG_XEN_PV */
3d75e1b8 1167
28c11b0f 1168#ifdef CONFIG_XEN_PVHVM
cf910e83 1169apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07 1170 xen_hvm_callback_vector xen_evtchn_do_upcall
28c11b0f 1171#endif
38e20b07 1172
ddeb8f21 1173
bc2b0331 1174#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 1175apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331 1176 hyperv_callback_vector hyperv_vector_handler
93286261
VK
1177
1178apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1179 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
248e742a
MK
1180
1181apicinterrupt3 HYPERV_STIMER0_VECTOR \
1182 hv_stimer0_callback_vector hv_stimer0_vector_handler
bc2b0331
S
1183#endif /* CONFIG_HYPERV */
1184
498ad393
ZY
1185#if IS_ENABLED(CONFIG_ACRN_GUEST)
1186apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1187 acrn_hv_callback_vector acrn_hv_vector_handler
1188#endif
1189
2a594d4c 1190idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
2700fefd 1191idtentry int3 do_int3 has_error_code=0 create_gap=1
4d732138
IM
1192idtentry stack_segment do_stack_segment has_error_code=1
1193
28c11b0f 1194#ifdef CONFIG_XEN_PV
43e41110 1195idtentry xennmi do_nmi has_error_code=0
5878d5d6 1196idtentry xendebug do_debug has_error_code=0
6cac5a92 1197#endif
4d732138
IM
1198
1199idtentry general_protection do_general_protection has_error_code=1
a0d14b89 1200idtentry page_fault do_page_fault has_error_code=1 read_cr2=1
4d732138 1201
631bc487 1202#ifdef CONFIG_KVM_GUEST
a0d14b89 1203idtentry async_page_fault do_async_page_fault has_error_code=1 read_cr2=1
631bc487 1204#endif
4d732138 1205
ddeb8f21 1206#ifdef CONFIG_X86_MCE
6f41c34d 1207idtentry machine_check do_mce has_error_code=0 paranoid=1
ddeb8f21
AH
1208#endif
1209
ebfc453e 1210/*
9e809d15 1211 * Save all registers in pt_regs, and switch gs if needed.
ebfc453e
DV
1212 * Use slow, but surefire "are we in kernel?" check.
1213 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1214 */
1215ENTRY(paranoid_entry)
8c1f7558 1216 UNWIND_HINT_FUNC
1eeb207f 1217 cld
9e809d15
DB
1218 PUSH_AND_CLEAR_REGS save_ret=1
1219 ENCODE_FRAME_POINTER 8
4d732138
IM
1220 movl $1, %ebx
1221 movl $MSR_GS_BASE, %ecx
1eeb207f 1222 rdmsr
4d732138
IM
1223 testl %edx, %edx
1224 js 1f /* negative -> in kernel */
1eeb207f 1225 SWAPGS
4d732138 1226 xorl %ebx, %ebx
8a09317b
DH
1227
12281:
16561f27
DH
1229 /*
1230 * Always stash CR3 in %r14. This value will be restored,
ae852495
AL
1231 * verbatim, at exit. Needed if paranoid_entry interrupted
1232 * another entry that already switched to the user CR3 value
1233 * but has not yet returned to userspace.
16561f27
DH
1234 *
1235 * This is also why CS (stashed in the "iret frame" by the
1236 * hardware at entry) can not be used: this may be a return
ae852495 1237 * to kernel code, but with a user CR3 value.
16561f27 1238 */
8a09317b
DH
1239 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1240
1241 ret
ebfc453e 1242END(paranoid_entry)
ddeb8f21 1243
ebfc453e
DV
1244/*
1245 * "Paranoid" exit path from exception stack. This is invoked
1246 * only on return from non-NMI IST interrupts that came
1247 * from kernel space.
1248 *
1249 * We may be returning to very strange contexts (e.g. very early
1250 * in syscall entry), so checking for preemption here would
1251 * be complicated. Fortunately, we there's no good reason
1252 * to try to handle preemption here.
4d732138
IM
1253 *
1254 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1255 */
ddeb8f21 1256ENTRY(paranoid_exit)
8c1f7558 1257 UNWIND_HINT_REGS
2140a994 1258 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1259 TRACE_IRQS_OFF_DEBUG
4d732138 1260 testl %ebx, %ebx /* swapgs needed? */
e5317832 1261 jnz .Lparanoid_exit_no_swapgs
f2db9382 1262 TRACE_IRQS_IRETQ
16561f27 1263 /* Always restore stashed CR3 value (see paranoid_entry) */
21e94459 1264 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
ddeb8f21 1265 SWAPGS_UNSAFE_STACK
e5317832
AL
1266 jmp .Lparanoid_exit_restore
1267.Lparanoid_exit_no_swapgs:
f2db9382 1268 TRACE_IRQS_IRETQ_DEBUG
16561f27 1269 /* Always restore stashed CR3 value (see paranoid_entry) */
e4865757 1270 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
e5317832
AL
1271.Lparanoid_exit_restore:
1272 jmp restore_regs_and_return_to_kernel
ddeb8f21
AH
1273END(paranoid_exit)
1274
1275/*
9e809d15 1276 * Save all registers in pt_regs, and switch GS if needed.
ddeb8f21
AH
1277 */
1278ENTRY(error_entry)
9e809d15 1279 UNWIND_HINT_FUNC
ddeb8f21 1280 cld
9e809d15
DB
1281 PUSH_AND_CLEAR_REGS save_ret=1
1282 ENCODE_FRAME_POINTER 8
03335e95 1283 testb $3, CS+8(%rsp)
cb6f64ed 1284 jz .Lerror_kernelspace
539f5113 1285
cb6f64ed
AL
1286 /*
1287 * We entered from user mode or we're pretending to have entered
1288 * from user mode due to an IRET fault.
1289 */
ddeb8f21 1290 SWAPGS
8a09317b
DH
1291 /* We have user CR3. Change to kernel CR3. */
1292 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113 1293
cb6f64ed 1294.Lerror_entry_from_usermode_after_swapgs:
7f2590a1
AL
1295 /* Put us onto the real thread stack. */
1296 popq %r12 /* save return addr in %12 */
1297 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1298 call sync_regs
1299 movq %rax, %rsp /* switch stack */
1300 ENCODE_FRAME_POINTER
1301 pushq %r12
f1075053 1302 ret
02bc7768 1303
cb6f64ed 1304.Lerror_entry_done:
ddeb8f21 1305 ret
ddeb8f21 1306
ebfc453e
DV
1307 /*
1308 * There are two places in the kernel that can potentially fault with
1309 * usergs. Handle them here. B stepping K8s sometimes report a
1310 * truncated RIP for IRET exceptions returning to compat mode. Check
1311 * for these here too.
1312 */
cb6f64ed 1313.Lerror_kernelspace:
4d732138
IM
1314 leaq native_irq_return_iret(%rip), %rcx
1315 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1316 je .Lerror_bad_iret
4d732138
IM
1317 movl %ecx, %eax /* zero extend */
1318 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1319 je .Lbstep_iret
42c748bb 1320 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1321 jne .Lerror_entry_done
539f5113
AL
1322
1323 /*
42c748bb 1324 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1325 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1326 * .Lgs_change's error handler with kernel gsbase.
539f5113 1327 */
2fa5f04f 1328 SWAPGS
8a09317b 1329 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
2fa5f04f 1330 jmp .Lerror_entry_done
ae24ffe5 1331
cb6f64ed 1332.Lbstep_iret:
ae24ffe5 1333 /* Fix truncated RIP */
4d732138 1334 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1335 /* fall through */
1336
cb6f64ed 1337.Lerror_bad_iret:
539f5113 1338 /*
8a09317b
DH
1339 * We came from an IRET to user mode, so we have user
1340 * gsbase and CR3. Switch to kernel gsbase and CR3:
539f5113 1341 */
b645af2d 1342 SWAPGS
8a09317b 1343 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
539f5113
AL
1344
1345 /*
1346 * Pretend that the exception came from user mode: set up pt_regs
b3681dd5 1347 * as if we faulted immediately after IRET.
539f5113 1348 */
4d732138
IM
1349 mov %rsp, %rdi
1350 call fixup_bad_iret
1351 mov %rax, %rsp
cb6f64ed 1352 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1353END(error_entry)
1354
ddeb8f21 1355ENTRY(error_exit)
8c1f7558 1356 UNWIND_HINT_REGS
2140a994 1357 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1358 TRACE_IRQS_OFF
b3681dd5
AL
1359 testb $3, CS(%rsp)
1360 jz retint_kernel
4d732138 1361 jmp retint_user
ddeb8f21
AH
1362END(error_exit)
1363
929bacec
AL
1364/*
1365 * Runs on exception stack. Xen PV does not go through this path at all,
1366 * so we can use real assembly here.
8a09317b
DH
1367 *
1368 * Registers:
1369 * %r14: Used to save/restore the CR3 of the interrupted context
1370 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
929bacec 1371 */
ddeb8f21 1372ENTRY(nmi)
8c1f7558 1373 UNWIND_HINT_IRET_REGS
929bacec 1374
3f3c8b8c
SR
1375 /*
1376 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1377 * the iretq it performs will take us out of NMI context.
1378 * This means that we can have nested NMIs where the next
1379 * NMI is using the top of the stack of the previous NMI. We
1380 * can't let it execute because the nested NMI will corrupt the
1381 * stack of the previous NMI. NMI handlers are not re-entrant
1382 * anyway.
1383 *
1384 * To handle this case we do the following:
1385 * Check the a special location on the stack that contains
1386 * a variable that is set when NMIs are executing.
1387 * The interrupted task's stack is also checked to see if it
1388 * is an NMI stack.
1389 * If the variable is not set and the stack is not the NMI
1390 * stack then:
1391 * o Set the special variable on the stack
0b22930e
AL
1392 * o Copy the interrupt frame into an "outermost" location on the
1393 * stack
1394 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1395 * o Continue processing the NMI
1396 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1397 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1398 * o return back to the first NMI
1399 *
1400 * Now on exit of the first NMI, we first clear the stack variable
1401 * The NMI stack will tell any nested NMIs at that point that it is
1402 * nested. Then we pop the stack normally with iret, and if there was
1403 * a nested NMI that updated the copy interrupt stack frame, a
1404 * jump will be made to the repeat_nmi code that will handle the second
1405 * NMI.
9b6e6a83
AL
1406 *
1407 * However, espfix prevents us from directly returning to userspace
1408 * with a single IRET instruction. Similarly, IRET to user mode
1409 * can fault. We therefore handle NMIs from user space like
1410 * other IST entries.
3f3c8b8c
SR
1411 */
1412
e93c1730
AL
1413 ASM_CLAC
1414
146b2b09 1415 /* Use %rdx as our temp variable throughout */
4d732138 1416 pushq %rdx
3f3c8b8c 1417
9b6e6a83
AL
1418 testb $3, CS-RIP+8(%rsp)
1419 jz .Lnmi_from_kernel
1420
1421 /*
1422 * NMI from user mode. We need to run on the thread stack, but we
1423 * can't go through the normal entry paths: NMIs are masked, and
1424 * we don't want to enable interrupts, because then we'll end
1425 * up in an awkward situation in which IRQs are on but NMIs
1426 * are off.
83c133cf
AL
1427 *
1428 * We also must not push anything to the stack before switching
1429 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1430 */
1431
929bacec 1432 swapgs
9b6e6a83 1433 cld
8a09317b 1434 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
9b6e6a83
AL
1435 movq %rsp, %rdx
1436 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
8c1f7558 1437 UNWIND_HINT_IRET_REGS base=%rdx offset=8
9b6e6a83
AL
1438 pushq 5*8(%rdx) /* pt_regs->ss */
1439 pushq 4*8(%rdx) /* pt_regs->rsp */
1440 pushq 3*8(%rdx) /* pt_regs->flags */
1441 pushq 2*8(%rdx) /* pt_regs->cs */
1442 pushq 1*8(%rdx) /* pt_regs->rip */
8c1f7558 1443 UNWIND_HINT_IRET_REGS
9b6e6a83 1444 pushq $-1 /* pt_regs->orig_ax */
30907fd1 1445 PUSH_AND_CLEAR_REGS rdx=(%rdx)
946c1911 1446 ENCODE_FRAME_POINTER
9b6e6a83
AL
1447
1448 /*
1449 * At this point we no longer need to worry about stack damage
1450 * due to nesting -- we're on the normal thread stack and we're
1451 * done with the NMI stack.
1452 */
1453
1454 movq %rsp, %rdi
1455 movq $-1, %rsi
1456 call do_nmi
1457
45d5a168 1458 /*
9b6e6a83 1459 * Return back to user mode. We must *not* do the normal exit
946c1911 1460 * work, because we don't want to enable interrupts.
45d5a168 1461 */
8a055d7f 1462 jmp swapgs_restore_regs_and_return_to_usermode
45d5a168 1463
9b6e6a83 1464.Lnmi_from_kernel:
3f3c8b8c 1465 /*
0b22930e
AL
1466 * Here's what our stack frame will look like:
1467 * +---------------------------------------------------------+
1468 * | original SS |
1469 * | original Return RSP |
1470 * | original RFLAGS |
1471 * | original CS |
1472 * | original RIP |
1473 * +---------------------------------------------------------+
1474 * | temp storage for rdx |
1475 * +---------------------------------------------------------+
1476 * | "NMI executing" variable |
1477 * +---------------------------------------------------------+
1478 * | iret SS } Copied from "outermost" frame |
1479 * | iret Return RSP } on each loop iteration; overwritten |
1480 * | iret RFLAGS } by a nested NMI to force another |
1481 * | iret CS } iteration if needed. |
1482 * | iret RIP } |
1483 * +---------------------------------------------------------+
1484 * | outermost SS } initialized in first_nmi; |
1485 * | outermost Return RSP } will not be changed before |
1486 * | outermost RFLAGS } NMI processing is done. |
1487 * | outermost CS } Copied to "iret" frame on each |
1488 * | outermost RIP } iteration. |
1489 * +---------------------------------------------------------+
1490 * | pt_regs |
1491 * +---------------------------------------------------------+
1492 *
1493 * The "original" frame is used by hardware. Before re-enabling
1494 * NMIs, we need to be done with it, and we need to leave enough
1495 * space for the asm code here.
1496 *
1497 * We return by executing IRET while RSP points to the "iret" frame.
1498 * That will either return for real or it will loop back into NMI
1499 * processing.
1500 *
1501 * The "outermost" frame is copied to the "iret" frame on each
1502 * iteration of the loop, so each iteration starts with the "iret"
1503 * frame pointing to the final return target.
1504 */
1505
45d5a168 1506 /*
0b22930e
AL
1507 * Determine whether we're a nested NMI.
1508 *
a27507ca
AL
1509 * If we interrupted kernel code between repeat_nmi and
1510 * end_repeat_nmi, then we are a nested NMI. We must not
1511 * modify the "iret" frame because it's being written by
1512 * the outer NMI. That's okay; the outer NMI handler is
1513 * about to about to call do_nmi anyway, so we can just
1514 * resume the outer NMI.
45d5a168 1515 */
a27507ca
AL
1516
1517 movq $repeat_nmi, %rdx
1518 cmpq 8(%rsp), %rdx
1519 ja 1f
1520 movq $end_repeat_nmi, %rdx
1521 cmpq 8(%rsp), %rdx
1522 ja nested_nmi_out
15231:
45d5a168 1524
3f3c8b8c 1525 /*
a27507ca 1526 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1527 * This will not detect if we interrupted an outer NMI just
1528 * before IRET.
3f3c8b8c 1529 */
4d732138
IM
1530 cmpl $1, -8(%rsp)
1531 je nested_nmi
3f3c8b8c
SR
1532
1533 /*
0b22930e
AL
1534 * Now test if the previous stack was an NMI stack. This covers
1535 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1536 * "NMI executing" but before IRET. We need to be careful, though:
1537 * there is one case in which RSP could point to the NMI stack
1538 * despite there being no NMI active: naughty userspace controls
1539 * RSP at the very beginning of the SYSCALL targets. We can
1540 * pull a fast one on naughty userspace, though: we program
1541 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1542 * if it controls the kernel's RSP. We set DF before we clear
1543 * "NMI executing".
3f3c8b8c 1544 */
0784b364
DV
1545 lea 6*8(%rsp), %rdx
1546 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1547 cmpq %rdx, 4*8(%rsp)
1548 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1549 ja first_nmi
4d732138 1550
0784b364
DV
1551 subq $EXCEPTION_STKSZ, %rdx
1552 cmpq %rdx, 4*8(%rsp)
1553 /* If it is below the NMI stack, it is a normal NMI */
1554 jb first_nmi
810bc075
AL
1555
1556 /* Ah, it is within the NMI stack. */
1557
1558 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1559 jz first_nmi /* RSP was user controlled. */
1560
1561 /* This is a nested NMI. */
0784b364 1562
3f3c8b8c
SR
1563nested_nmi:
1564 /*
0b22930e
AL
1565 * Modify the "iret" frame to point to repeat_nmi, forcing another
1566 * iteration of NMI handling.
3f3c8b8c 1567 */
23a781e9 1568 subq $8, %rsp
4d732138
IM
1569 leaq -10*8(%rsp), %rdx
1570 pushq $__KERNEL_DS
1571 pushq %rdx
131484c8 1572 pushfq
4d732138
IM
1573 pushq $__KERNEL_CS
1574 pushq $repeat_nmi
3f3c8b8c
SR
1575
1576 /* Put stack back */
4d732138 1577 addq $(6*8), %rsp
3f3c8b8c
SR
1578
1579nested_nmi_out:
4d732138 1580 popq %rdx
3f3c8b8c 1581
0b22930e 1582 /* We are returning to kernel mode, so this cannot result in a fault. */
929bacec 1583 iretq
3f3c8b8c
SR
1584
1585first_nmi:
0b22930e 1586 /* Restore rdx. */
4d732138 1587 movq (%rsp), %rdx
62610913 1588
36f1a77b
AL
1589 /* Make room for "NMI executing". */
1590 pushq $0
3f3c8b8c 1591
0b22930e 1592 /* Leave room for the "iret" frame */
4d732138 1593 subq $(5*8), %rsp
28696f43 1594
0b22930e 1595 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1596 .rept 5
4d732138 1597 pushq 11*8(%rsp)
3f3c8b8c 1598 .endr
8c1f7558 1599 UNWIND_HINT_IRET_REGS
62610913 1600
79fb4ad6
SR
1601 /* Everything up to here is safe from nested NMIs */
1602
a97439aa
AL
1603#ifdef CONFIG_DEBUG_ENTRY
1604 /*
1605 * For ease of testing, unmask NMIs right away. Disabled by
1606 * default because IRET is very expensive.
1607 */
1608 pushq $0 /* SS */
1609 pushq %rsp /* RSP (minus 8 because of the previous push) */
1610 addq $8, (%rsp) /* Fix up RSP */
1611 pushfq /* RFLAGS */
1612 pushq $__KERNEL_CS /* CS */
1613 pushq $1f /* RIP */
929bacec 1614 iretq /* continues at repeat_nmi below */
8c1f7558 1615 UNWIND_HINT_IRET_REGS
a97439aa
AL
16161:
1617#endif
1618
0b22930e 1619repeat_nmi:
62610913
JB
1620 /*
1621 * If there was a nested NMI, the first NMI's iret will return
1622 * here. But NMIs are still enabled and we can take another
1623 * nested NMI. The nested NMI checks the interrupted RIP to see
1624 * if it is between repeat_nmi and end_repeat_nmi, and if so
1625 * it will just return, as we are about to repeat an NMI anyway.
1626 * This makes it safe to copy to the stack frame that a nested
1627 * NMI will update.
0b22930e
AL
1628 *
1629 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1630 * we're repeating an NMI, gsbase has the same value that it had on
1631 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1632 * gsbase if needed before we call do_nmi. "NMI executing"
1633 * is zero.
62610913 1634 */
36f1a77b 1635 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1636
62610913 1637 /*
0b22930e
AL
1638 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1639 * here must not modify the "iret" frame while we're writing to
1640 * it or it will end up containing garbage.
62610913 1641 */
4d732138 1642 addq $(10*8), %rsp
3f3c8b8c 1643 .rept 5
4d732138 1644 pushq -6*8(%rsp)
3f3c8b8c 1645 .endr
4d732138 1646 subq $(5*8), %rsp
62610913 1647end_repeat_nmi:
3f3c8b8c
SR
1648
1649 /*
0b22930e
AL
1650 * Everything below this point can be preempted by a nested NMI.
1651 * If this happens, then the inner NMI will change the "iret"
1652 * frame to point back to repeat_nmi.
3f3c8b8c 1653 */
4d732138 1654 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43 1655
1fd466ef 1656 /*
ebfc453e 1657 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1658 * as we should not be calling schedule in NMI context.
1659 * Even with normal interrupts enabled. An NMI should not be
1660 * setting NEED_RESCHED or anything that normal interrupts and
1661 * exceptions might do.
1662 */
4d732138 1663 call paranoid_entry
8c1f7558 1664 UNWIND_HINT_REGS
7fbb98c5 1665
ddeb8f21 1666 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1667 movq %rsp, %rdi
1668 movq $-1, %rsi
1669 call do_nmi
7fbb98c5 1670
16561f27 1671 /* Always restore stashed CR3 value (see paranoid_entry) */
21e94459 1672 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
8a09317b 1673
4d732138
IM
1674 testl %ebx, %ebx /* swapgs needed? */
1675 jnz nmi_restore
ddeb8f21
AH
1676nmi_swapgs:
1677 SWAPGS_UNSAFE_STACK
1678nmi_restore:
502af0d7 1679 POP_REGS
0b22930e 1680
471ee483
AL
1681 /*
1682 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1683 * at the "iret" frame.
1684 */
1685 addq $6*8, %rsp
28696f43 1686
810bc075
AL
1687 /*
1688 * Clear "NMI executing". Set DF first so that we can easily
1689 * distinguish the remaining code between here and IRET from
929bacec
AL
1690 * the SYSCALL entry and exit paths.
1691 *
1692 * We arguably should just inspect RIP instead, but I (Andy) wrote
1693 * this code when I had the misapprehension that Xen PV supported
1694 * NMIs, and Xen PV would break that approach.
810bc075
AL
1695 */
1696 std
1697 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1698
1699 /*
929bacec
AL
1700 * iretq reads the "iret" frame and exits the NMI stack in a
1701 * single instruction. We are returning to kernel mode, so this
1702 * cannot result in a fault. Similarly, we don't need to worry
1703 * about espfix64 on the way back to kernel mode.
0b22930e 1704 */
929bacec 1705 iretq
ddeb8f21
AH
1706END(nmi)
1707
dffb3f9d
AL
1708#ifndef CONFIG_IA32_EMULATION
1709/*
1710 * This handles SYSCALL from 32-bit code. There is no way to program
1711 * MSRs to fully disable 32-bit SYSCALL.
1712 */
ddeb8f21 1713ENTRY(ignore_sysret)
8c1f7558 1714 UNWIND_HINT_EMPTY
4d732138 1715 mov $-ENOSYS, %eax
ddeb8f21 1716 sysret
ddeb8f21 1717END(ignore_sysret)
dffb3f9d 1718#endif
2deb4be2
AL
1719
1720ENTRY(rewind_stack_do_exit)
8c1f7558 1721 UNWIND_HINT_FUNC
2deb4be2
AL
1722 /* Prevent any naive code from trying to unwind to our caller. */
1723 xorl %ebp, %ebp
1724
1725 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
8c1f7558
JP
1726 leaq -PTREGS_SIZE(%rax), %rsp
1727 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
2deb4be2
AL
1728
1729 call do_exit
2deb4be2 1730END(rewind_stack_do_exit)