Merge tag 'pinctrl-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
784d5699 38#include <asm/export.h>
d7e7528b 39#include <linux/err.h>
1da177e4 40
4d732138
IM
41.code64
42.section .entry.text, "ax"
16444a8a 43
72fe4858 44#ifdef CONFIG_PARAVIRT
2be29982 45ENTRY(native_usergs_sysret64)
72fe4858
GOC
46 swapgs
47 sysretq
b3baaa13 48ENDPROC(native_usergs_sysret64)
72fe4858
GOC
49#endif /* CONFIG_PARAVIRT */
50
f2db9382 51.macro TRACE_IRQS_IRETQ
2601e64d 52#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
53 bt $9, EFLAGS(%rsp) /* interrupts off? */
54 jnc 1f
2601e64d
IM
55 TRACE_IRQS_ON
561:
57#endif
58.endm
59
5963e317
SR
60/*
61 * When dynamic function tracer is enabled it will add a breakpoint
62 * to all locations that it is about to modify, sync CPUs, update
63 * all the code, sync CPUs, then remove the breakpoints. In this time
64 * if lockdep is enabled, it might jump back into the debug handler
65 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
66 *
67 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
68 * make sure the stack pointer does not get reset back to the top
69 * of the debug stack, and instead just reuses the current stack.
70 */
71#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
72
73.macro TRACE_IRQS_OFF_DEBUG
4d732138 74 call debug_stack_set_zero
5963e317 75 TRACE_IRQS_OFF
4d732138 76 call debug_stack_reset
5963e317
SR
77.endm
78
79.macro TRACE_IRQS_ON_DEBUG
4d732138 80 call debug_stack_set_zero
5963e317 81 TRACE_IRQS_ON
4d732138 82 call debug_stack_reset
5963e317
SR
83.endm
84
f2db9382 85.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
86 bt $9, EFLAGS(%rsp) /* interrupts off? */
87 jnc 1f
5963e317
SR
88 TRACE_IRQS_ON_DEBUG
891:
90.endm
91
92#else
4d732138
IM
93# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
94# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
95# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
96#endif
97
1da177e4 98/*
4d732138 99 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 100 *
fda57b22
AL
101 * This is the only entry point used for 64-bit system calls. The
102 * hardware interface is reasonably well designed and the register to
103 * argument mapping Linux uses fits well with the registers that are
104 * available when SYSCALL is used.
105 *
106 * SYSCALL instructions can be found inlined in libc implementations as
107 * well as some other programs and libraries. There are also a handful
108 * of SYSCALL instructions in the vDSO used, for example, as a
109 * clock_gettimeofday fallback.
110 *
4d732138 111 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
112 * then loads new ss, cs, and rip from previously programmed MSRs.
113 * rflags gets masked by a value from another MSR (so CLD and CLAC
114 * are not needed). SYSCALL does not save anything on the stack
115 * and does not change rsp.
116 *
117 * Registers on entry:
1da177e4 118 * rax system call number
b87cf63e
DV
119 * rcx return address
120 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 121 * rdi arg0
1da177e4 122 * rsi arg1
0bd7b798 123 * rdx arg2
b87cf63e 124 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
125 * r8 arg4
126 * r9 arg5
4d732138 127 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 128 *
1da177e4
LT
129 * Only called from user space.
130 *
7fcb3bc3 131 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
132 * it deals with uncanonical addresses better. SYSRET has trouble
133 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 134 */
1da177e4 135
b2502b41 136ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
137 /*
138 * Interrupts are off on entry.
139 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
140 * it is too small to ever cause noticeable irq latency.
141 */
72fe4858
GOC
142 SWAPGS_UNSAFE_STACK
143 /*
144 * A hypervisor implementation might want to use a label
145 * after the swapgs, so that it can do the swapgs
146 * for the guest and jump here on syscall.
147 */
b2502b41 148GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 149
4d732138
IM
150 movq %rsp, PER_CPU_VAR(rsp_scratch)
151 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 152
1e423bff
AL
153 TRACE_IRQS_OFF
154
9ed8e7d8 155 /* Construct struct pt_regs on stack */
4d732138
IM
156 pushq $__USER_DS /* pt_regs->ss */
157 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
158 pushq %r11 /* pt_regs->flags */
159 pushq $__USER_CS /* pt_regs->cs */
160 pushq %rcx /* pt_regs->ip */
161 pushq %rax /* pt_regs->orig_ax */
162 pushq %rdi /* pt_regs->di */
163 pushq %rsi /* pt_regs->si */
164 pushq %rdx /* pt_regs->dx */
165 pushq %rcx /* pt_regs->cx */
166 pushq $-ENOSYS /* pt_regs->ax */
167 pushq %r8 /* pt_regs->r8 */
168 pushq %r9 /* pt_regs->r9 */
169 pushq %r10 /* pt_regs->r10 */
170 pushq %r11 /* pt_regs->r11 */
171 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
172
1e423bff
AL
173 /*
174 * If we need to do entry work or if we guess we'll need to do
175 * exit work, go straight to the slow path.
176 */
15f4eae7
AL
177 movq PER_CPU_VAR(current_task), %r11
178 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff
AL
179 jnz entry_SYSCALL64_slow_path
180
b2502b41 181entry_SYSCALL_64_fastpath:
1e423bff
AL
182 /*
183 * Easy case: enable interrupts and issue the syscall. If the syscall
184 * needs pt_regs, we'll call a stub that disables interrupts again
185 * and jumps to the slow path.
186 */
187 TRACE_IRQS_ON
188 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 189#if __SYSCALL_MASK == ~0
4d732138 190 cmpq $__NR_syscall_max, %rax
fca460f9 191#else
4d732138
IM
192 andl $__SYSCALL_MASK, %eax
193 cmpl $__NR_syscall_max, %eax
fca460f9 194#endif
4d732138
IM
195 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
196 movq %r10, %rcx
302f5b26
AL
197
198 /*
199 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
200 * It might end up jumping to the slow path. If it jumps, RAX
201 * and all argument registers are clobbered.
302f5b26 202 */
4d732138 203 call *sys_call_table(, %rax, 8)
302f5b26
AL
204.Lentry_SYSCALL_64_after_fastpath_call:
205
4d732138 206 movq %rax, RAX(%rsp)
146b2b09 2071:
b3494a4a
AL
208
209 /*
1e423bff
AL
210 * If we get here, then we know that pt_regs is clean for SYSRET64.
211 * If we see that no exit work is required (which we are required
212 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 213 */
2140a994 214 DISABLE_INTERRUPTS(CLBR_ANY)
1e423bff 215 TRACE_IRQS_OFF
15f4eae7
AL
216 movq PER_CPU_VAR(current_task), %r11
217 testl $_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
1e423bff 218 jnz 1f
b3494a4a 219
1e423bff
AL
220 LOCKDEP_SYS_EXIT
221 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
222 movq RIP(%rsp), %rcx
223 movq EFLAGS(%rsp), %r11
224 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 225 movq RSP(%rsp), %rsp
2be29982 226 USERGS_SYSRET64
1da177e4 227
1e423bff
AL
2281:
229 /*
230 * The fast path looked good when we started, but something changed
231 * along the way and we need to switch to the slow path. Calling
232 * raise(3) will trigger this, for example. IRQs are off.
233 */
29ea1b25 234 TRACE_IRQS_ON
2140a994 235 ENABLE_INTERRUPTS(CLBR_ANY)
76f5df43 236 SAVE_EXTRA_REGS
4d732138 237 movq %rsp, %rdi
1e423bff
AL
238 call syscall_return_slowpath /* returns with IRQs disabled */
239 jmp return_from_SYSCALL_64
0bd7b798 240
1e423bff
AL
241entry_SYSCALL64_slow_path:
242 /* IRQs are off. */
76f5df43 243 SAVE_EXTRA_REGS
29ea1b25 244 movq %rsp, %rdi
1e423bff
AL
245 call do_syscall_64 /* returns with IRQs disabled */
246
247return_from_SYSCALL_64:
76f5df43 248 RESTORE_EXTRA_REGS
29ea1b25 249 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
250
251 /*
252 * Try to use SYSRET instead of IRET if we're returning to
253 * a completely clean 64-bit userspace context.
254 */
4d732138
IM
255 movq RCX(%rsp), %rcx
256 movq RIP(%rsp), %r11
257 cmpq %rcx, %r11 /* RCX == RIP */
258 jne opportunistic_sysret_failed
fffbb5dc
DV
259
260 /*
261 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
262 * in kernel space. This essentially lets the user take over
17be0aec 263 * the kernel, since userspace controls RSP.
fffbb5dc 264 *
17be0aec 265 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc 266 * to be updated to remain correct on both old and new CPUs.
361b4b58 267 *
cbe0317b
KS
268 * Change top bits to match most significant bit (47th or 56th bit
269 * depending on paging mode) in the address.
fffbb5dc 270 */
17be0aec
DV
271 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
272 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 273
17be0aec
DV
274 /* If this changed %rcx, it was not canonical */
275 cmpq %rcx, %r11
276 jne opportunistic_sysret_failed
fffbb5dc 277
4d732138
IM
278 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
279 jne opportunistic_sysret_failed
fffbb5dc 280
4d732138
IM
281 movq R11(%rsp), %r11
282 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
283 jne opportunistic_sysret_failed
fffbb5dc
DV
284
285 /*
3e035305
BP
286 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
287 * restore RF properly. If the slowpath sets it for whatever reason, we
288 * need to restore it correctly.
289 *
290 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
291 * trap from userspace immediately after SYSRET. This would cause an
292 * infinite loop whenever #DB happens with register state that satisfies
293 * the opportunistic SYSRET conditions. For example, single-stepping
294 * this user code:
fffbb5dc 295 *
4d732138 296 * movq $stuck_here, %rcx
fffbb5dc
DV
297 * pushfq
298 * popq %r11
299 * stuck_here:
300 *
301 * would never get past 'stuck_here'.
302 */
4d732138
IM
303 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304 jnz opportunistic_sysret_failed
fffbb5dc
DV
305
306 /* nothing to check for RSP */
307
4d732138
IM
308 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
309 jne opportunistic_sysret_failed
fffbb5dc
DV
310
311 /*
4d732138
IM
312 * We win! This label is here just for ease of understanding
313 * perf profiles. Nothing jumps here.
fffbb5dc
DV
314 */
315syscall_return_via_sysret:
17be0aec
DV
316 /* rcx and r11 are already restored (see code above) */
317 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 318 movq RSP(%rsp), %rsp
fffbb5dc 319 USERGS_SYSRET64
fffbb5dc
DV
320
321opportunistic_sysret_failed:
322 SWAPGS
323 jmp restore_c_regs_and_iret
b2502b41 324END(entry_SYSCALL_64)
0bd7b798 325
302f5b26
AL
326ENTRY(stub_ptregs_64)
327 /*
328 * Syscalls marked as needing ptregs land here.
b7765086
AL
329 * If we are on the fast path, we need to save the extra regs,
330 * which we achieve by trying again on the slow path. If we are on
331 * the slow path, the extra regs are already saved.
302f5b26
AL
332 *
333 * RAX stores a pointer to the C function implementing the syscall.
b7765086 334 * IRQs are on.
302f5b26
AL
335 */
336 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
337 jne 1f
338
b7765086
AL
339 /*
340 * Called from fast path -- disable IRQs again, pop return address
341 * and jump to slow path
342 */
2140a994 343 DISABLE_INTERRUPTS(CLBR_ANY)
b7765086 344 TRACE_IRQS_OFF
302f5b26 345 popq %rax
b7765086 346 jmp entry_SYSCALL64_slow_path
302f5b26
AL
347
3481:
b3830e8d 349 jmp *%rax /* Called from C */
302f5b26
AL
350END(stub_ptregs_64)
351
352.macro ptregs_stub func
353ENTRY(ptregs_\func)
354 leaq \func(%rip), %rax
355 jmp stub_ptregs_64
356END(ptregs_\func)
357.endm
358
359/* Instantiate ptregs_stub for each ptregs-using syscall */
360#define __SYSCALL_64_QUAL_(sym)
361#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
362#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
363#include <asm/syscalls_64.h>
fffbb5dc 364
0100301b
BG
365/*
366 * %rdi: prev task
367 * %rsi: next task
368 */
369ENTRY(__switch_to_asm)
370 /*
371 * Save callee-saved registers
372 * This must match the order in inactive_task_frame
373 */
374 pushq %rbp
375 pushq %rbx
376 pushq %r12
377 pushq %r13
378 pushq %r14
379 pushq %r15
380
381 /* switch stack */
382 movq %rsp, TASK_threadsp(%rdi)
383 movq TASK_threadsp(%rsi), %rsp
384
385#ifdef CONFIG_CC_STACKPROTECTOR
386 movq TASK_stack_canary(%rsi), %rbx
387 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
388#endif
389
390 /* restore callee-saved registers */
391 popq %r15
392 popq %r14
393 popq %r13
394 popq %r12
395 popq %rbx
396 popq %rbp
397
398 jmp __switch_to
399END(__switch_to_asm)
400
1eeb207f
DV
401/*
402 * A newly forked process directly context switches into this address.
403 *
0100301b 404 * rax: prev task we switched from
616d2483
BG
405 * rbx: kernel thread func (NULL for user thread)
406 * r12: kernel thread arg
1eeb207f
DV
407 */
408ENTRY(ret_from_fork)
0100301b 409 movq %rax, %rdi
ebd57499 410 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 411
ebd57499
JP
412 testq %rbx, %rbx /* from kernel_thread? */
413 jnz 1f /* kernel threads are uncommon */
24d978b7 414
616d2483 4152:
ebd57499 416 movq %rsp, %rdi
24d978b7
AL
417 call syscall_return_slowpath /* returns with IRQs disabled */
418 TRACE_IRQS_ON /* user mode is traced as IRQS on */
419 SWAPGS
420 jmp restore_regs_and_iret
616d2483
BG
421
4221:
423 /* kernel thread */
424 movq %r12, %rdi
425 call *%rbx
426 /*
427 * A kernel thread is allowed to return here after successfully
428 * calling do_execve(). Exit to userspace to complete the execve()
429 * syscall.
430 */
431 movq $0, RAX(%rsp)
432 jmp 2b
1eeb207f
DV
433END(ret_from_fork)
434
939b7871 435/*
3304c9c3
DV
436 * Build the entry stubs with some assembler magic.
437 * We pack 1 stub into every 8-byte block.
939b7871 438 */
3304c9c3 439 .align 8
939b7871 440ENTRY(irq_entries_start)
3304c9c3
DV
441 vector=FIRST_EXTERNAL_VECTOR
442 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 443 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
444 vector=vector+1
445 jmp common_interrupt
3304c9c3
DV
446 .align 8
447 .endr
939b7871
PA
448END(irq_entries_start)
449
d99015b1 450/*
1da177e4
LT
451 * Interrupt entry/exit.
452 *
453 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
454 *
455 * Entry runs with interrupts off.
456 */
1da177e4 457
722024db 458/* 0(%rsp): ~(interrupt number) */
1da177e4 459 .macro interrupt func
f6f64681 460 cld
ff467594
AL
461 ALLOC_PT_GPREGS_ON_STACK
462 SAVE_C_REGS
463 SAVE_EXTRA_REGS
946c1911 464 ENCODE_FRAME_POINTER
76f5df43 465
ff467594 466 testb $3, CS(%rsp)
dde74f2e 467 jz 1f
02bc7768
AL
468
469 /*
470 * IRQ from user mode. Switch to kernel gsbase and inform context
471 * tracking that we're in kernel mode.
472 */
f6f64681 473 SWAPGS
f1075053
AL
474
475 /*
476 * We need to tell lockdep that IRQs are off. We can't do this until
477 * we fix gsbase, and we should do it before enter_from_user_mode
478 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
479 * the simplest way to handle it is to just call it twice if
480 * we enter from user mode. There's no reason to optimize this since
481 * TRACE_IRQS_OFF is a no-op if lockdep is off.
482 */
483 TRACE_IRQS_OFF
484
478dc89c 485 CALL_enter_from_user_mode
02bc7768 486
76f5df43 4871:
f6f64681 488 /*
e90e147c 489 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
490 * irq_count is used to check if a CPU is already on an interrupt stack
491 * or not. While this is essentially redundant with preempt_count it is
492 * a little cheaper to use a separate counter in the PDA (short of
493 * moving irq_enter into assembly, which would be too much work)
494 */
a586f98e 495 movq %rsp, %rdi
4d732138
IM
496 incl PER_CPU_VAR(irq_count)
497 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 498 pushq %rdi
f6f64681
DV
499 /* We entered an interrupt context - irqs are off: */
500 TRACE_IRQS_OFF
501
a586f98e 502 call \func /* rdi points to pt_regs */
1da177e4
LT
503 .endm
504
722024db
AH
505 /*
506 * The interrupt stubs push (~vector+0x80) onto the stack and
507 * then jump to common_interrupt.
508 */
939b7871
PA
509 .p2align CONFIG_X86_L1_CACHE_SHIFT
510common_interrupt:
ee4eb87b 511 ASM_CLAC
4d732138 512 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 513 interrupt do_IRQ
34061f13 514 /* 0(%rsp): old RSP */
7effaa88 515ret_from_intr:
2140a994 516 DISABLE_INTERRUPTS(CLBR_ANY)
2601e64d 517 TRACE_IRQS_OFF
4d732138 518 decl PER_CPU_VAR(irq_count)
625dbc3b 519
a2bbe750 520 /* Restore saved previous stack */
ff467594 521 popq %rsp
625dbc3b 522
03335e95 523 testb $3, CS(%rsp)
dde74f2e 524 jz retint_kernel
4d732138 525
02bc7768 526 /* Interrupt came from user space */
02bc7768
AL
527GLOBAL(retint_user)
528 mov %rsp,%rdi
529 call prepare_exit_to_usermode
2601e64d 530 TRACE_IRQS_IRETQ
72fe4858 531 SWAPGS
ff467594 532 jmp restore_regs_and_iret
2601e64d 533
627276cb 534/* Returning to kernel space */
6ba71b76 535retint_kernel:
627276cb
DV
536#ifdef CONFIG_PREEMPT
537 /* Interrupts are off */
538 /* Check if we need preemption */
4d732138 539 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 540 jnc 1f
4d732138 5410: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 542 jnz 1f
627276cb 543 call preempt_schedule_irq
36acef25 544 jmp 0b
6ba71b76 5451:
627276cb 546#endif
2601e64d
IM
547 /*
548 * The iretq could re-enable interrupts:
549 */
550 TRACE_IRQS_IRETQ
fffbb5dc
DV
551
552/*
553 * At this label, code paths which return to kernel and to user,
554 * which come from interrupts/exception and from syscalls, merge.
555 */
ee08c6bd 556GLOBAL(restore_regs_and_iret)
ff467594 557 RESTORE_EXTRA_REGS
fffbb5dc 558restore_c_regs_and_iret:
76f5df43
DV
559 RESTORE_C_REGS
560 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
561 INTERRUPT_RETURN
562
563ENTRY(native_iret)
3891a04a
PA
564 /*
565 * Are we returning to a stack segment from the LDT? Note: in
566 * 64-bit mode SS:RSP on the exception stack is always valid.
567 */
34273f41 568#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
569 testb $4, (SS-RIP)(%rsp)
570 jnz native_irq_return_ldt
34273f41 571#endif
3891a04a 572
af726f21 573.global native_irq_return_iret
7209a75d 574native_irq_return_iret:
b645af2d
AL
575 /*
576 * This may fault. Non-paranoid faults on return to userspace are
577 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
578 * Double-faults due to espfix64 are handled in do_double_fault.
579 * Other faults here are fatal.
580 */
1da177e4 581 iretq
3701d863 582
34273f41 583#ifdef CONFIG_X86_ESPFIX64
7209a75d 584native_irq_return_ldt:
85063fac
AL
585 /*
586 * We are running with user GSBASE. All GPRs contain their user
587 * values. We have a percpu ESPFIX stack that is eight slots
588 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
589 * of the ESPFIX stack.
590 *
591 * We clobber RAX and RDI in this code. We stash RDI on the
592 * normal stack and RAX on the ESPFIX stack.
593 *
594 * The ESPFIX stack layout we set up looks like this:
595 *
596 * --- top of ESPFIX stack ---
597 * SS
598 * RSP
599 * RFLAGS
600 * CS
601 * RIP <-- RSP points here when we're done
602 * RAX <-- espfix_waddr points here
603 * --- bottom of ESPFIX stack ---
604 */
605
606 pushq %rdi /* Stash user RDI */
3891a04a 607 SWAPGS
4d732138 608 movq PER_CPU_VAR(espfix_waddr), %rdi
85063fac
AL
609 movq %rax, (0*8)(%rdi) /* user RAX */
610 movq (1*8)(%rsp), %rax /* user RIP */
4d732138 611 movq %rax, (1*8)(%rdi)
85063fac 612 movq (2*8)(%rsp), %rax /* user CS */
4d732138 613 movq %rax, (2*8)(%rdi)
85063fac 614 movq (3*8)(%rsp), %rax /* user RFLAGS */
4d732138 615 movq %rax, (3*8)(%rdi)
85063fac 616 movq (5*8)(%rsp), %rax /* user SS */
4d732138 617 movq %rax, (5*8)(%rdi)
85063fac 618 movq (4*8)(%rsp), %rax /* user RSP */
4d732138 619 movq %rax, (4*8)(%rdi)
85063fac
AL
620 /* Now RAX == RSP. */
621
622 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
623 popq %rdi /* Restore user RDI */
624
625 /*
626 * espfix_stack[31:16] == 0. The page tables are set up such that
627 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
628 * espfix_waddr for any X. That is, there are 65536 RO aliases of
629 * the same page. Set up RSP so that RSP[31:16] contains the
630 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
631 * still points to an RO alias of the ESPFIX stack.
632 */
4d732138 633 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 634 SWAPGS
4d732138 635 movq %rax, %rsp
85063fac
AL
636
637 /*
638 * At this point, we cannot write to the stack any more, but we can
639 * still read.
640 */
641 popq %rax /* Restore user RAX */
642
643 /*
644 * RSP now points to an ordinary IRET frame, except that the page
645 * is read-only and RSP[31:16] are preloaded with the userspace
646 * values. We can now IRET back to userspace.
647 */
4d732138 648 jmp native_irq_return_iret
34273f41 649#endif
4b787e0b 650END(common_interrupt)
3891a04a 651
1da177e4
LT
652/*
653 * APIC interrupts.
0bd7b798 654 */
cf910e83 655.macro apicinterrupt3 num sym do_sym
322648d1 656ENTRY(\sym)
ee4eb87b 657 ASM_CLAC
4d732138 658 pushq $~(\num)
39e95433 659.Lcommon_\sym:
322648d1 660 interrupt \do_sym
4d732138 661 jmp ret_from_intr
322648d1
AH
662END(\sym)
663.endm
1da177e4 664
cf910e83
SA
665#ifdef CONFIG_TRACING
666#define trace(sym) trace_##sym
667#define smp_trace(sym) smp_trace_##sym
668
669.macro trace_apicinterrupt num sym
670apicinterrupt3 \num trace(\sym) smp_trace(\sym)
671.endm
672#else
673.macro trace_apicinterrupt num sym do_sym
674.endm
675#endif
676
469f0023
AP
677/* Make sure APIC interrupt handlers end up in the irqentry section: */
678#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
679# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
680# define POP_SECTION_IRQENTRY .popsection
681#else
682# define PUSH_SECTION_IRQENTRY
683# define POP_SECTION_IRQENTRY
684#endif
685
cf910e83 686.macro apicinterrupt num sym do_sym
469f0023 687PUSH_SECTION_IRQENTRY
cf910e83
SA
688apicinterrupt3 \num \sym \do_sym
689trace_apicinterrupt \num \sym
469f0023 690POP_SECTION_IRQENTRY
cf910e83
SA
691.endm
692
322648d1 693#ifdef CONFIG_SMP
4d732138
IM
694apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
695apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 696#endif
1da177e4 697
03b48632 698#ifdef CONFIG_X86_UV
4d732138 699apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 700#endif
4d732138
IM
701
702apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
703apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 704
d78f2664 705#ifdef CONFIG_HAVE_KVM
4d732138
IM
706apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
707apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
210f84b0 708apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
d78f2664
YZ
709#endif
710
33e5ff63 711#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 712apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
713#endif
714
24fd78a8 715#ifdef CONFIG_X86_MCE_AMD
4d732138 716apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
717#endif
718
33e5ff63 719#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 720apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 721#endif
1812924b 722
322648d1 723#ifdef CONFIG_SMP
4d732138
IM
724apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
725apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
726apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 727#endif
1da177e4 728
4d732138
IM
729apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
730apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 731
e360adbe 732#ifdef CONFIG_IRQ_WORK
4d732138 733apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
734#endif
735
1da177e4
LT
736/*
737 * Exception entry points.
0bd7b798 738 */
9b476688 739#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
740
741.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 742ENTRY(\sym)
577ed45e
AL
743 /* Sanity check */
744 .if \shift_ist != -1 && \paranoid == 0
745 .error "using shift_ist requires paranoid=1"
746 .endif
747
ee4eb87b 748 ASM_CLAC
b8b1d08b 749 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
750
751 .ifeq \has_error_code
4d732138 752 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
753 .endif
754
76f5df43 755 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
756
757 .if \paranoid
48e08d0f 758 .if \paranoid == 1
4d732138
IM
759 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
760 jnz 1f
48e08d0f 761 .endif
4d732138 762 call paranoid_entry
cb5dd2c5 763 .else
4d732138 764 call error_entry
cb5dd2c5 765 .endif
ebfc453e 766 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 767
cb5dd2c5 768 .if \paranoid
577ed45e 769 .if \shift_ist != -1
4d732138 770 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 771 .else
b8b1d08b 772 TRACE_IRQS_OFF
cb5dd2c5 773 .endif
577ed45e 774 .endif
cb5dd2c5 775
4d732138 776 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
777
778 .if \has_error_code
4d732138
IM
779 movq ORIG_RAX(%rsp), %rsi /* get error code */
780 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 781 .else
4d732138 782 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
783 .endif
784
577ed45e 785 .if \shift_ist != -1
4d732138 786 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
787 .endif
788
4d732138 789 call \do_sym
cb5dd2c5 790
577ed45e 791 .if \shift_ist != -1
4d732138 792 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
793 .endif
794
ebfc453e 795 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 796 .if \paranoid
4d732138 797 jmp paranoid_exit
cb5dd2c5 798 .else
4d732138 799 jmp error_exit
cb5dd2c5
AL
800 .endif
801
48e08d0f 802 .if \paranoid == 1
48e08d0f
AL
803 /*
804 * Paranoid entry from userspace. Switch stacks and treat it
805 * as a normal entry. This means that paranoid handlers
806 * run in real process context if user_mode(regs).
807 */
8081:
4d732138 809 call error_entry
48e08d0f 810
48e08d0f 811
4d732138
IM
812 movq %rsp, %rdi /* pt_regs pointer */
813 call sync_regs
814 movq %rax, %rsp /* switch stack */
48e08d0f 815
4d732138 816 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
817
818 .if \has_error_code
4d732138
IM
819 movq ORIG_RAX(%rsp), %rsi /* get error code */
820 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 821 .else
4d732138 822 xorl %esi, %esi /* no error code */
48e08d0f
AL
823 .endif
824
4d732138 825 call \do_sym
48e08d0f 826
4d732138 827 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 828 .endif
ddeb8f21 829END(\sym)
322648d1 830.endm
b8b1d08b 831
25c74b10 832#ifdef CONFIG_TRACING
cb5dd2c5
AL
833.macro trace_idtentry sym do_sym has_error_code:req
834idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
835idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
836.endm
837#else
cb5dd2c5
AL
838.macro trace_idtentry sym do_sym has_error_code:req
839idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
840.endm
841#endif
842
4d732138
IM
843idtentry divide_error do_divide_error has_error_code=0
844idtentry overflow do_overflow has_error_code=0
845idtentry bounds do_bounds has_error_code=0
846idtentry invalid_op do_invalid_op has_error_code=0
847idtentry device_not_available do_device_not_available has_error_code=0
848idtentry double_fault do_double_fault has_error_code=1 paranoid=2
849idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
850idtentry invalid_TSS do_invalid_TSS has_error_code=1
851idtentry segment_not_present do_segment_not_present has_error_code=1
852idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
853idtentry coprocessor_error do_coprocessor_error has_error_code=0
854idtentry alignment_check do_alignment_check has_error_code=1
855idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
856
857
858 /*
859 * Reload gs selector with exception handling
860 * edi: new selector
861 */
9f9d489a 862ENTRY(native_load_gs_index)
131484c8 863 pushfq
b8aa287f 864 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 865 SWAPGS
42c748bb 866.Lgs_change:
4d732138 867 movl %edi, %gs
96e5d28a 8682: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 869 SWAPGS
131484c8 870 popfq
9f1e87ea 871 ret
6efdcfaf 872END(native_load_gs_index)
784d5699 873EXPORT_SYMBOL(native_load_gs_index)
0bd7b798 874
42c748bb 875 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 876 .section .fixup, "ax"
1da177e4 877 /* running with kernelgs */
0bd7b798 878bad_gs:
4d732138 879 SWAPGS /* switch back to user gs */
b038c842
AL
880.macro ZAP_GS
881 /* This can't be a string because the preprocessor needs to see it. */
882 movl $__USER_DS, %eax
883 movl %eax, %gs
884.endm
885 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
886 xorl %eax, %eax
887 movl %eax, %gs
888 jmp 2b
9f1e87ea 889 .previous
0bd7b798 890
2699500b 891/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 892ENTRY(do_softirq_own_stack)
4d732138
IM
893 pushq %rbp
894 mov %rsp, %rbp
895 incl PER_CPU_VAR(irq_count)
896 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
897 push %rbp /* frame pointer backlink */
898 call __do_softirq
2699500b 899 leaveq
4d732138 900 decl PER_CPU_VAR(irq_count)
ed6b676c 901 ret
7d65f4a6 902END(do_softirq_own_stack)
75154f40 903
3d75e1b8 904#ifdef CONFIG_XEN
cb5dd2c5 905idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
906
907/*
9f1e87ea
CG
908 * A note on the "critical region" in our callback handler.
909 * We want to avoid stacking callback handlers due to events occurring
910 * during handling of the last event. To do this, we keep events disabled
911 * until we've done all processing. HOWEVER, we must enable events before
912 * popping the stack frame (can't be done atomically) and so it would still
913 * be possible to get enough handler activations to overflow the stack.
914 * Although unlikely, bugs of that kind are hard to track down, so we'd
915 * like to avoid the possibility.
916 * So, on entry to the handler we detect whether we interrupted an
917 * existing activation in its critical region -- if so, we pop the current
918 * activation and restart the handler using the previous one.
919 */
4d732138
IM
920ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
921
9f1e87ea
CG
922/*
923 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
924 * see the correct pointer to the pt_regs
925 */
4d732138
IM
926 movq %rdi, %rsp /* we don't return, adjust the stack frame */
92711: incl PER_CPU_VAR(irq_count)
928 movq %rsp, %rbp
929 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
930 pushq %rbp /* frame pointer backlink */
931 call xen_evtchn_do_upcall
932 popq %rsp
933 decl PER_CPU_VAR(irq_count)
fdfd811d 934#ifndef CONFIG_PREEMPT
4d732138 935 call xen_maybe_preempt_hcall
fdfd811d 936#endif
4d732138 937 jmp error_exit
371c394a 938END(xen_do_hypervisor_callback)
3d75e1b8
JF
939
940/*
9f1e87ea
CG
941 * Hypervisor uses this for application faults while it executes.
942 * We get here for two reasons:
943 * 1. Fault while reloading DS, ES, FS or GS
944 * 2. Fault while executing IRET
945 * Category 1 we do not need to fix up as Xen has already reloaded all segment
946 * registers that could be reloaded and zeroed the others.
947 * Category 2 we fix up by killing the current process. We cannot use the
948 * normal Linux return path in this case because if we use the IRET hypercall
949 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
950 * We distinguish between categories by comparing each saved segment register
951 * with its current contents: any discrepancy means we in category 1.
952 */
3d75e1b8 953ENTRY(xen_failsafe_callback)
4d732138
IM
954 movl %ds, %ecx
955 cmpw %cx, 0x10(%rsp)
956 jne 1f
957 movl %es, %ecx
958 cmpw %cx, 0x18(%rsp)
959 jne 1f
960 movl %fs, %ecx
961 cmpw %cx, 0x20(%rsp)
962 jne 1f
963 movl %gs, %ecx
964 cmpw %cx, 0x28(%rsp)
965 jne 1f
3d75e1b8 966 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
967 movq (%rsp), %rcx
968 movq 8(%rsp), %r11
969 addq $0x30, %rsp
970 pushq $0 /* RIP */
971 pushq %r11
972 pushq %rcx
973 jmp general_protection
3d75e1b8 9741: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
975 movq (%rsp), %rcx
976 movq 8(%rsp), %r11
977 addq $0x30, %rsp
978 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
979 ALLOC_PT_GPREGS_ON_STACK
980 SAVE_C_REGS
981 SAVE_EXTRA_REGS
946c1911 982 ENCODE_FRAME_POINTER
4d732138 983 jmp error_exit
3d75e1b8
JF
984END(xen_failsafe_callback)
985
cf910e83 986apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
987 xen_hvm_callback_vector xen_evtchn_do_upcall
988
3d75e1b8 989#endif /* CONFIG_XEN */
ddeb8f21 990
bc2b0331 991#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 992apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
993 hyperv_callback_vector hyperv_vector_handler
994#endif /* CONFIG_HYPERV */
995
4d732138
IM
996idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
997idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
998idtentry stack_segment do_stack_segment has_error_code=1
999
6cac5a92 1000#ifdef CONFIG_XEN
4d732138
IM
1001idtentry xen_debug do_debug has_error_code=0
1002idtentry xen_int3 do_int3 has_error_code=0
1003idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 1004#endif
4d732138
IM
1005
1006idtentry general_protection do_general_protection has_error_code=1
1007trace_idtentry page_fault do_page_fault has_error_code=1
1008
631bc487 1009#ifdef CONFIG_KVM_GUEST
4d732138 1010idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 1011#endif
4d732138 1012
ddeb8f21 1013#ifdef CONFIG_X86_MCE
4d732138 1014idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
1015#endif
1016
ebfc453e
DV
1017/*
1018 * Save all registers in pt_regs, and switch gs if needed.
1019 * Use slow, but surefire "are we in kernel?" check.
1020 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1021 */
1022ENTRY(paranoid_entry)
1eeb207f
DV
1023 cld
1024 SAVE_C_REGS 8
1025 SAVE_EXTRA_REGS 8
946c1911 1026 ENCODE_FRAME_POINTER 8
4d732138
IM
1027 movl $1, %ebx
1028 movl $MSR_GS_BASE, %ecx
1eeb207f 1029 rdmsr
4d732138
IM
1030 testl %edx, %edx
1031 js 1f /* negative -> in kernel */
1eeb207f 1032 SWAPGS
4d732138 1033 xorl %ebx, %ebx
1eeb207f 10341: ret
ebfc453e 1035END(paranoid_entry)
ddeb8f21 1036
ebfc453e
DV
1037/*
1038 * "Paranoid" exit path from exception stack. This is invoked
1039 * only on return from non-NMI IST interrupts that came
1040 * from kernel space.
1041 *
1042 * We may be returning to very strange contexts (e.g. very early
1043 * in syscall entry), so checking for preemption here would
1044 * be complicated. Fortunately, we there's no good reason
1045 * to try to handle preemption here.
4d732138
IM
1046 *
1047 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1048 */
ddeb8f21 1049ENTRY(paranoid_exit)
2140a994 1050 DISABLE_INTERRUPTS(CLBR_ANY)
5963e317 1051 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1052 testl %ebx, %ebx /* swapgs needed? */
1053 jnz paranoid_exit_no_swapgs
f2db9382 1054 TRACE_IRQS_IRETQ
ddeb8f21 1055 SWAPGS_UNSAFE_STACK
4d732138 1056 jmp paranoid_exit_restore
0d550836 1057paranoid_exit_no_swapgs:
f2db9382 1058 TRACE_IRQS_IRETQ_DEBUG
0d550836 1059paranoid_exit_restore:
76f5df43
DV
1060 RESTORE_EXTRA_REGS
1061 RESTORE_C_REGS
1062 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1063 INTERRUPT_RETURN
ddeb8f21
AH
1064END(paranoid_exit)
1065
1066/*
ebfc453e 1067 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1068 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1069 */
1070ENTRY(error_entry)
ddeb8f21 1071 cld
76f5df43
DV
1072 SAVE_C_REGS 8
1073 SAVE_EXTRA_REGS 8
946c1911 1074 ENCODE_FRAME_POINTER 8
4d732138 1075 xorl %ebx, %ebx
03335e95 1076 testb $3, CS+8(%rsp)
cb6f64ed 1077 jz .Lerror_kernelspace
539f5113 1078
cb6f64ed
AL
1079 /*
1080 * We entered from user mode or we're pretending to have entered
1081 * from user mode due to an IRET fault.
1082 */
ddeb8f21 1083 SWAPGS
539f5113 1084
cb6f64ed 1085.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1086 /*
1087 * We need to tell lockdep that IRQs are off. We can't do this until
1088 * we fix gsbase, and we should do it before enter_from_user_mode
1089 * (which can take locks).
1090 */
1091 TRACE_IRQS_OFF
478dc89c 1092 CALL_enter_from_user_mode
f1075053 1093 ret
02bc7768 1094
cb6f64ed 1095.Lerror_entry_done:
ddeb8f21
AH
1096 TRACE_IRQS_OFF
1097 ret
ddeb8f21 1098
ebfc453e
DV
1099 /*
1100 * There are two places in the kernel that can potentially fault with
1101 * usergs. Handle them here. B stepping K8s sometimes report a
1102 * truncated RIP for IRET exceptions returning to compat mode. Check
1103 * for these here too.
1104 */
cb6f64ed 1105.Lerror_kernelspace:
4d732138
IM
1106 incl %ebx
1107 leaq native_irq_return_iret(%rip), %rcx
1108 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1109 je .Lerror_bad_iret
4d732138
IM
1110 movl %ecx, %eax /* zero extend */
1111 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1112 je .Lbstep_iret
42c748bb 1113 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1114 jne .Lerror_entry_done
539f5113
AL
1115
1116 /*
42c748bb 1117 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1118 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1119 * .Lgs_change's error handler with kernel gsbase.
539f5113 1120 */
2fa5f04f
WL
1121 SWAPGS
1122 jmp .Lerror_entry_done
ae24ffe5 1123
cb6f64ed 1124.Lbstep_iret:
ae24ffe5 1125 /* Fix truncated RIP */
4d732138 1126 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1127 /* fall through */
1128
cb6f64ed 1129.Lerror_bad_iret:
539f5113
AL
1130 /*
1131 * We came from an IRET to user mode, so we have user gsbase.
1132 * Switch to kernel gsbase:
1133 */
b645af2d 1134 SWAPGS
539f5113
AL
1135
1136 /*
1137 * Pretend that the exception came from user mode: set up pt_regs
1138 * as if we faulted immediately after IRET and clear EBX so that
1139 * error_exit knows that we will be returning to user mode.
1140 */
4d732138
IM
1141 mov %rsp, %rdi
1142 call fixup_bad_iret
1143 mov %rax, %rsp
539f5113 1144 decl %ebx
cb6f64ed 1145 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1146END(error_entry)
1147
1148
539f5113 1149/*
75ca5b22 1150 * On entry, EBX is a "return to kernel mode" flag:
539f5113
AL
1151 * 1: already in kernel mode, don't need SWAPGS
1152 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1153 */
ddeb8f21 1154ENTRY(error_exit)
2140a994 1155 DISABLE_INTERRUPTS(CLBR_ANY)
ddeb8f21 1156 TRACE_IRQS_OFF
2140a994 1157 testl %ebx, %ebx
4d732138
IM
1158 jnz retint_kernel
1159 jmp retint_user
ddeb8f21
AH
1160END(error_exit)
1161
0784b364 1162/* Runs on exception stack */
ddeb8f21 1163ENTRY(nmi)
fc57a7c6
AL
1164 /*
1165 * Fix up the exception frame if we're on Xen.
1166 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1167 * one value to the stack on native, so it may clobber the rdx
1168 * scratch slot, but it won't clobber any of the important
1169 * slots past it.
1170 *
1171 * Xen is a different story, because the Xen frame itself overlaps
1172 * the "NMI executing" variable.
1173 */
ddeb8f21 1174 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1175
3f3c8b8c
SR
1176 /*
1177 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1178 * the iretq it performs will take us out of NMI context.
1179 * This means that we can have nested NMIs where the next
1180 * NMI is using the top of the stack of the previous NMI. We
1181 * can't let it execute because the nested NMI will corrupt the
1182 * stack of the previous NMI. NMI handlers are not re-entrant
1183 * anyway.
1184 *
1185 * To handle this case we do the following:
1186 * Check the a special location on the stack that contains
1187 * a variable that is set when NMIs are executing.
1188 * The interrupted task's stack is also checked to see if it
1189 * is an NMI stack.
1190 * If the variable is not set and the stack is not the NMI
1191 * stack then:
1192 * o Set the special variable on the stack
0b22930e
AL
1193 * o Copy the interrupt frame into an "outermost" location on the
1194 * stack
1195 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1196 * o Continue processing the NMI
1197 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1198 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1199 * o return back to the first NMI
1200 *
1201 * Now on exit of the first NMI, we first clear the stack variable
1202 * The NMI stack will tell any nested NMIs at that point that it is
1203 * nested. Then we pop the stack normally with iret, and if there was
1204 * a nested NMI that updated the copy interrupt stack frame, a
1205 * jump will be made to the repeat_nmi code that will handle the second
1206 * NMI.
9b6e6a83
AL
1207 *
1208 * However, espfix prevents us from directly returning to userspace
1209 * with a single IRET instruction. Similarly, IRET to user mode
1210 * can fault. We therefore handle NMIs from user space like
1211 * other IST entries.
3f3c8b8c
SR
1212 */
1213
146b2b09 1214 /* Use %rdx as our temp variable throughout */
4d732138 1215 pushq %rdx
3f3c8b8c 1216
9b6e6a83
AL
1217 testb $3, CS-RIP+8(%rsp)
1218 jz .Lnmi_from_kernel
1219
1220 /*
1221 * NMI from user mode. We need to run on the thread stack, but we
1222 * can't go through the normal entry paths: NMIs are masked, and
1223 * we don't want to enable interrupts, because then we'll end
1224 * up in an awkward situation in which IRQs are on but NMIs
1225 * are off.
83c133cf
AL
1226 *
1227 * We also must not push anything to the stack before switching
1228 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1229 */
1230
83c133cf 1231 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1232 cld
1233 movq %rsp, %rdx
1234 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1235 pushq 5*8(%rdx) /* pt_regs->ss */
1236 pushq 4*8(%rdx) /* pt_regs->rsp */
1237 pushq 3*8(%rdx) /* pt_regs->flags */
1238 pushq 2*8(%rdx) /* pt_regs->cs */
1239 pushq 1*8(%rdx) /* pt_regs->rip */
1240 pushq $-1 /* pt_regs->orig_ax */
1241 pushq %rdi /* pt_regs->di */
1242 pushq %rsi /* pt_regs->si */
1243 pushq (%rdx) /* pt_regs->dx */
1244 pushq %rcx /* pt_regs->cx */
1245 pushq %rax /* pt_regs->ax */
1246 pushq %r8 /* pt_regs->r8 */
1247 pushq %r9 /* pt_regs->r9 */
1248 pushq %r10 /* pt_regs->r10 */
1249 pushq %r11 /* pt_regs->r11 */
1250 pushq %rbx /* pt_regs->rbx */
1251 pushq %rbp /* pt_regs->rbp */
1252 pushq %r12 /* pt_regs->r12 */
1253 pushq %r13 /* pt_regs->r13 */
1254 pushq %r14 /* pt_regs->r14 */
1255 pushq %r15 /* pt_regs->r15 */
946c1911 1256 ENCODE_FRAME_POINTER
9b6e6a83
AL
1257
1258 /*
1259 * At this point we no longer need to worry about stack damage
1260 * due to nesting -- we're on the normal thread stack and we're
1261 * done with the NMI stack.
1262 */
1263
1264 movq %rsp, %rdi
1265 movq $-1, %rsi
1266 call do_nmi
1267
45d5a168 1268 /*
9b6e6a83 1269 * Return back to user mode. We must *not* do the normal exit
946c1911 1270 * work, because we don't want to enable interrupts.
45d5a168 1271 */
9b6e6a83 1272 SWAPGS
946c1911 1273 jmp restore_regs_and_iret
45d5a168 1274
9b6e6a83 1275.Lnmi_from_kernel:
3f3c8b8c 1276 /*
0b22930e
AL
1277 * Here's what our stack frame will look like:
1278 * +---------------------------------------------------------+
1279 * | original SS |
1280 * | original Return RSP |
1281 * | original RFLAGS |
1282 * | original CS |
1283 * | original RIP |
1284 * +---------------------------------------------------------+
1285 * | temp storage for rdx |
1286 * +---------------------------------------------------------+
1287 * | "NMI executing" variable |
1288 * +---------------------------------------------------------+
1289 * | iret SS } Copied from "outermost" frame |
1290 * | iret Return RSP } on each loop iteration; overwritten |
1291 * | iret RFLAGS } by a nested NMI to force another |
1292 * | iret CS } iteration if needed. |
1293 * | iret RIP } |
1294 * +---------------------------------------------------------+
1295 * | outermost SS } initialized in first_nmi; |
1296 * | outermost Return RSP } will not be changed before |
1297 * | outermost RFLAGS } NMI processing is done. |
1298 * | outermost CS } Copied to "iret" frame on each |
1299 * | outermost RIP } iteration. |
1300 * +---------------------------------------------------------+
1301 * | pt_regs |
1302 * +---------------------------------------------------------+
1303 *
1304 * The "original" frame is used by hardware. Before re-enabling
1305 * NMIs, we need to be done with it, and we need to leave enough
1306 * space for the asm code here.
1307 *
1308 * We return by executing IRET while RSP points to the "iret" frame.
1309 * That will either return for real or it will loop back into NMI
1310 * processing.
1311 *
1312 * The "outermost" frame is copied to the "iret" frame on each
1313 * iteration of the loop, so each iteration starts with the "iret"
1314 * frame pointing to the final return target.
1315 */
1316
45d5a168 1317 /*
0b22930e
AL
1318 * Determine whether we're a nested NMI.
1319 *
a27507ca
AL
1320 * If we interrupted kernel code between repeat_nmi and
1321 * end_repeat_nmi, then we are a nested NMI. We must not
1322 * modify the "iret" frame because it's being written by
1323 * the outer NMI. That's okay; the outer NMI handler is
1324 * about to about to call do_nmi anyway, so we can just
1325 * resume the outer NMI.
45d5a168 1326 */
a27507ca
AL
1327
1328 movq $repeat_nmi, %rdx
1329 cmpq 8(%rsp), %rdx
1330 ja 1f
1331 movq $end_repeat_nmi, %rdx
1332 cmpq 8(%rsp), %rdx
1333 ja nested_nmi_out
13341:
45d5a168 1335
3f3c8b8c 1336 /*
a27507ca 1337 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1338 * This will not detect if we interrupted an outer NMI just
1339 * before IRET.
3f3c8b8c 1340 */
4d732138
IM
1341 cmpl $1, -8(%rsp)
1342 je nested_nmi
3f3c8b8c
SR
1343
1344 /*
0b22930e
AL
1345 * Now test if the previous stack was an NMI stack. This covers
1346 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1347 * "NMI executing" but before IRET. We need to be careful, though:
1348 * there is one case in which RSP could point to the NMI stack
1349 * despite there being no NMI active: naughty userspace controls
1350 * RSP at the very beginning of the SYSCALL targets. We can
1351 * pull a fast one on naughty userspace, though: we program
1352 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1353 * if it controls the kernel's RSP. We set DF before we clear
1354 * "NMI executing".
3f3c8b8c 1355 */
0784b364
DV
1356 lea 6*8(%rsp), %rdx
1357 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1358 cmpq %rdx, 4*8(%rsp)
1359 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1360 ja first_nmi
4d732138 1361
0784b364
DV
1362 subq $EXCEPTION_STKSZ, %rdx
1363 cmpq %rdx, 4*8(%rsp)
1364 /* If it is below the NMI stack, it is a normal NMI */
1365 jb first_nmi
810bc075
AL
1366
1367 /* Ah, it is within the NMI stack. */
1368
1369 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1370 jz first_nmi /* RSP was user controlled. */
1371
1372 /* This is a nested NMI. */
0784b364 1373
3f3c8b8c
SR
1374nested_nmi:
1375 /*
0b22930e
AL
1376 * Modify the "iret" frame to point to repeat_nmi, forcing another
1377 * iteration of NMI handling.
3f3c8b8c 1378 */
23a781e9 1379 subq $8, %rsp
4d732138
IM
1380 leaq -10*8(%rsp), %rdx
1381 pushq $__KERNEL_DS
1382 pushq %rdx
131484c8 1383 pushfq
4d732138
IM
1384 pushq $__KERNEL_CS
1385 pushq $repeat_nmi
3f3c8b8c
SR
1386
1387 /* Put stack back */
4d732138 1388 addq $(6*8), %rsp
3f3c8b8c
SR
1389
1390nested_nmi_out:
4d732138 1391 popq %rdx
3f3c8b8c 1392
0b22930e 1393 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1394 INTERRUPT_RETURN
1395
1396first_nmi:
0b22930e 1397 /* Restore rdx. */
4d732138 1398 movq (%rsp), %rdx
62610913 1399
36f1a77b
AL
1400 /* Make room for "NMI executing". */
1401 pushq $0
3f3c8b8c 1402
0b22930e 1403 /* Leave room for the "iret" frame */
4d732138 1404 subq $(5*8), %rsp
28696f43 1405
0b22930e 1406 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1407 .rept 5
4d732138 1408 pushq 11*8(%rsp)
3f3c8b8c 1409 .endr
62610913 1410
79fb4ad6
SR
1411 /* Everything up to here is safe from nested NMIs */
1412
a97439aa
AL
1413#ifdef CONFIG_DEBUG_ENTRY
1414 /*
1415 * For ease of testing, unmask NMIs right away. Disabled by
1416 * default because IRET is very expensive.
1417 */
1418 pushq $0 /* SS */
1419 pushq %rsp /* RSP (minus 8 because of the previous push) */
1420 addq $8, (%rsp) /* Fix up RSP */
1421 pushfq /* RFLAGS */
1422 pushq $__KERNEL_CS /* CS */
1423 pushq $1f /* RIP */
1424 INTERRUPT_RETURN /* continues at repeat_nmi below */
14251:
1426#endif
1427
0b22930e 1428repeat_nmi:
62610913
JB
1429 /*
1430 * If there was a nested NMI, the first NMI's iret will return
1431 * here. But NMIs are still enabled and we can take another
1432 * nested NMI. The nested NMI checks the interrupted RIP to see
1433 * if it is between repeat_nmi and end_repeat_nmi, and if so
1434 * it will just return, as we are about to repeat an NMI anyway.
1435 * This makes it safe to copy to the stack frame that a nested
1436 * NMI will update.
0b22930e
AL
1437 *
1438 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1439 * we're repeating an NMI, gsbase has the same value that it had on
1440 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1441 * gsbase if needed before we call do_nmi. "NMI executing"
1442 * is zero.
62610913 1443 */
36f1a77b 1444 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1445
62610913 1446 /*
0b22930e
AL
1447 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1448 * here must not modify the "iret" frame while we're writing to
1449 * it or it will end up containing garbage.
62610913 1450 */
4d732138 1451 addq $(10*8), %rsp
3f3c8b8c 1452 .rept 5
4d732138 1453 pushq -6*8(%rsp)
3f3c8b8c 1454 .endr
4d732138 1455 subq $(5*8), %rsp
62610913 1456end_repeat_nmi:
3f3c8b8c
SR
1457
1458 /*
0b22930e
AL
1459 * Everything below this point can be preempted by a nested NMI.
1460 * If this happens, then the inner NMI will change the "iret"
1461 * frame to point back to repeat_nmi.
3f3c8b8c 1462 */
4d732138 1463 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1464 ALLOC_PT_GPREGS_ON_STACK
1465
1fd466ef 1466 /*
ebfc453e 1467 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1468 * as we should not be calling schedule in NMI context.
1469 * Even with normal interrupts enabled. An NMI should not be
1470 * setting NEED_RESCHED or anything that normal interrupts and
1471 * exceptions might do.
1472 */
4d732138 1473 call paranoid_entry
7fbb98c5 1474
ddeb8f21 1475 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1476 movq %rsp, %rdi
1477 movq $-1, %rsi
1478 call do_nmi
7fbb98c5 1479
4d732138
IM
1480 testl %ebx, %ebx /* swapgs needed? */
1481 jnz nmi_restore
ddeb8f21
AH
1482nmi_swapgs:
1483 SWAPGS_UNSAFE_STACK
1484nmi_restore:
76f5df43
DV
1485 RESTORE_EXTRA_REGS
1486 RESTORE_C_REGS
0b22930e
AL
1487
1488 /* Point RSP at the "iret" frame. */
76f5df43 1489 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1490
810bc075
AL
1491 /*
1492 * Clear "NMI executing". Set DF first so that we can easily
1493 * distinguish the remaining code between here and IRET from
1494 * the SYSCALL entry and exit paths. On a native kernel, we
1495 * could just inspect RIP, but, on paravirt kernels,
1496 * INTERRUPT_RETURN can translate into a jump into a
1497 * hypercall page.
1498 */
1499 std
1500 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1501
1502 /*
1503 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1504 * stack in a single instruction. We are returning to kernel
1505 * mode, so this cannot result in a fault.
1506 */
5ca6f70f 1507 INTERRUPT_RETURN
ddeb8f21
AH
1508END(nmi)
1509
1510ENTRY(ignore_sysret)
4d732138 1511 mov $-ENOSYS, %eax
ddeb8f21 1512 sysret
ddeb8f21 1513END(ignore_sysret)
2deb4be2
AL
1514
1515ENTRY(rewind_stack_do_exit)
1516 /* Prevent any naive code from trying to unwind to our caller. */
1517 xorl %ebp, %ebp
1518
1519 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1520 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1521
1522 call do_exit
15231: jmp 1b
1524END(rewind_stack_do_exit)