sched/x86: Add 'struct inactive_task_frame' to better document the sleeping task...
[linux-block.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
3e035305
BP
291 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
292 * restore RF properly. If the slowpath sets it for whatever reason, we
293 * need to restore it correctly.
294 *
295 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
296 * trap from userspace immediately after SYSRET. This would cause an
297 * infinite loop whenever #DB happens with register state that satisfies
298 * the opportunistic SYSRET conditions. For example, single-stepping
299 * this user code:
fffbb5dc 300 *
4d732138 301 * movq $stuck_here, %rcx
fffbb5dc
DV
302 * pushfq
303 * popq %r11
304 * stuck_here:
305 *
306 * would never get past 'stuck_here'.
307 */
4d732138
IM
308 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
309 jnz opportunistic_sysret_failed
fffbb5dc
DV
310
311 /* nothing to check for RSP */
312
4d732138
IM
313 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
314 jne opportunistic_sysret_failed
fffbb5dc
DV
315
316 /*
4d732138
IM
317 * We win! This label is here just for ease of understanding
318 * perf profiles. Nothing jumps here.
fffbb5dc
DV
319 */
320syscall_return_via_sysret:
17be0aec
DV
321 /* rcx and r11 are already restored (see code above) */
322 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 323 movq RSP(%rsp), %rsp
fffbb5dc 324 USERGS_SYSRET64
fffbb5dc
DV
325
326opportunistic_sysret_failed:
327 SWAPGS
328 jmp restore_c_regs_and_iret
b2502b41 329END(entry_SYSCALL_64)
0bd7b798 330
302f5b26
AL
331ENTRY(stub_ptregs_64)
332 /*
333 * Syscalls marked as needing ptregs land here.
b7765086
AL
334 * If we are on the fast path, we need to save the extra regs,
335 * which we achieve by trying again on the slow path. If we are on
336 * the slow path, the extra regs are already saved.
302f5b26
AL
337 *
338 * RAX stores a pointer to the C function implementing the syscall.
b7765086 339 * IRQs are on.
302f5b26
AL
340 */
341 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
342 jne 1f
343
b7765086
AL
344 /*
345 * Called from fast path -- disable IRQs again, pop return address
346 * and jump to slow path
347 */
348 DISABLE_INTERRUPTS(CLBR_NONE)
349 TRACE_IRQS_OFF
302f5b26 350 popq %rax
b7765086 351 jmp entry_SYSCALL64_slow_path
302f5b26
AL
352
3531:
b3830e8d 354 jmp *%rax /* Called from C */
302f5b26
AL
355END(stub_ptregs_64)
356
357.macro ptregs_stub func
358ENTRY(ptregs_\func)
359 leaq \func(%rip), %rax
360 jmp stub_ptregs_64
361END(ptregs_\func)
362.endm
363
364/* Instantiate ptregs_stub for each ptregs-using syscall */
365#define __SYSCALL_64_QUAL_(sym)
366#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
367#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
368#include <asm/syscalls_64.h>
fffbb5dc 369
1eeb207f
DV
370/*
371 * A newly forked process directly context switches into this address.
372 *
373 * rdi: prev task we switched from
374 */
375ENTRY(ret_from_fork)
4d732138 376 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 377
4d732138 378 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 379
4d732138 380 testb $3, CS(%rsp) /* from kernel_thread? */
24d978b7 381 jnz 1f
1eeb207f 382
1e3fbb8a 383 /*
24d978b7
AL
384 * We came from kernel_thread. This code path is quite twisted, and
385 * someone should clean it up.
386 *
387 * copy_thread_tls stashes the function pointer in RBX and the
388 * parameter to be passed in RBP. The called function is permitted
389 * to call do_execve and thereby jump to user mode.
1e3fbb8a 390 */
24d978b7
AL
391 movq RBP(%rsp), %rdi
392 call *RBX(%rsp)
393 movl $0, RAX(%rsp)
1eeb207f 394
4d732138 395 /*
24d978b7
AL
396 * Fall through as though we're exiting a syscall. This makes a
397 * twisted sort of sense if we just called do_execve.
4d732138 398 */
24d978b7
AL
399
4001:
401 movq %rsp, %rdi
402 call syscall_return_slowpath /* returns with IRQs disabled */
403 TRACE_IRQS_ON /* user mode is traced as IRQS on */
404 SWAPGS
405 jmp restore_regs_and_iret
1eeb207f
DV
406END(ret_from_fork)
407
939b7871 408/*
3304c9c3
DV
409 * Build the entry stubs with some assembler magic.
410 * We pack 1 stub into every 8-byte block.
939b7871 411 */
3304c9c3 412 .align 8
939b7871 413ENTRY(irq_entries_start)
3304c9c3
DV
414 vector=FIRST_EXTERNAL_VECTOR
415 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 416 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
417 vector=vector+1
418 jmp common_interrupt
3304c9c3
DV
419 .align 8
420 .endr
939b7871
PA
421END(irq_entries_start)
422
d99015b1 423/*
1da177e4
LT
424 * Interrupt entry/exit.
425 *
426 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
427 *
428 * Entry runs with interrupts off.
429 */
1da177e4 430
722024db 431/* 0(%rsp): ~(interrupt number) */
1da177e4 432 .macro interrupt func
f6f64681 433 cld
ff467594
AL
434 ALLOC_PT_GPREGS_ON_STACK
435 SAVE_C_REGS
436 SAVE_EXTRA_REGS
76f5df43 437
ff467594 438 testb $3, CS(%rsp)
dde74f2e 439 jz 1f
02bc7768
AL
440
441 /*
442 * IRQ from user mode. Switch to kernel gsbase and inform context
443 * tracking that we're in kernel mode.
444 */
f6f64681 445 SWAPGS
f1075053
AL
446
447 /*
448 * We need to tell lockdep that IRQs are off. We can't do this until
449 * we fix gsbase, and we should do it before enter_from_user_mode
450 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
451 * the simplest way to handle it is to just call it twice if
452 * we enter from user mode. There's no reason to optimize this since
453 * TRACE_IRQS_OFF is a no-op if lockdep is off.
454 */
455 TRACE_IRQS_OFF
456
478dc89c 457 CALL_enter_from_user_mode
02bc7768 458
76f5df43 4591:
f6f64681 460 /*
e90e147c 461 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
462 * irq_count is used to check if a CPU is already on an interrupt stack
463 * or not. While this is essentially redundant with preempt_count it is
464 * a little cheaper to use a separate counter in the PDA (short of
465 * moving irq_enter into assembly, which would be too much work)
466 */
a586f98e 467 movq %rsp, %rdi
4d732138
IM
468 incl PER_CPU_VAR(irq_count)
469 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 470 pushq %rdi
f6f64681
DV
471 /* We entered an interrupt context - irqs are off: */
472 TRACE_IRQS_OFF
473
a586f98e 474 call \func /* rdi points to pt_regs */
1da177e4
LT
475 .endm
476
722024db
AH
477 /*
478 * The interrupt stubs push (~vector+0x80) onto the stack and
479 * then jump to common_interrupt.
480 */
939b7871
PA
481 .p2align CONFIG_X86_L1_CACHE_SHIFT
482common_interrupt:
ee4eb87b 483 ASM_CLAC
4d732138 484 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 485 interrupt do_IRQ
34061f13 486 /* 0(%rsp): old RSP */
7effaa88 487ret_from_intr:
72fe4858 488 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 489 TRACE_IRQS_OFF
4d732138 490 decl PER_CPU_VAR(irq_count)
625dbc3b 491
a2bbe750 492 /* Restore saved previous stack */
ff467594 493 popq %rsp
625dbc3b 494
03335e95 495 testb $3, CS(%rsp)
dde74f2e 496 jz retint_kernel
4d732138 497
02bc7768 498 /* Interrupt came from user space */
02bc7768
AL
499GLOBAL(retint_user)
500 mov %rsp,%rdi
501 call prepare_exit_to_usermode
2601e64d 502 TRACE_IRQS_IRETQ
72fe4858 503 SWAPGS
ff467594 504 jmp restore_regs_and_iret
2601e64d 505
627276cb 506/* Returning to kernel space */
6ba71b76 507retint_kernel:
627276cb
DV
508#ifdef CONFIG_PREEMPT
509 /* Interrupts are off */
510 /* Check if we need preemption */
4d732138 511 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 512 jnc 1f
4d732138 5130: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 514 jnz 1f
627276cb 515 call preempt_schedule_irq
36acef25 516 jmp 0b
6ba71b76 5171:
627276cb 518#endif
2601e64d
IM
519 /*
520 * The iretq could re-enable interrupts:
521 */
522 TRACE_IRQS_IRETQ
fffbb5dc
DV
523
524/*
525 * At this label, code paths which return to kernel and to user,
526 * which come from interrupts/exception and from syscalls, merge.
527 */
ee08c6bd 528GLOBAL(restore_regs_and_iret)
ff467594 529 RESTORE_EXTRA_REGS
fffbb5dc 530restore_c_regs_and_iret:
76f5df43
DV
531 RESTORE_C_REGS
532 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
533 INTERRUPT_RETURN
534
535ENTRY(native_iret)
3891a04a
PA
536 /*
537 * Are we returning to a stack segment from the LDT? Note: in
538 * 64-bit mode SS:RSP on the exception stack is always valid.
539 */
34273f41 540#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
541 testb $4, (SS-RIP)(%rsp)
542 jnz native_irq_return_ldt
34273f41 543#endif
3891a04a 544
af726f21 545.global native_irq_return_iret
7209a75d 546native_irq_return_iret:
b645af2d
AL
547 /*
548 * This may fault. Non-paranoid faults on return to userspace are
549 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
550 * Double-faults due to espfix64 are handled in do_double_fault.
551 * Other faults here are fatal.
552 */
1da177e4 553 iretq
3701d863 554
34273f41 555#ifdef CONFIG_X86_ESPFIX64
7209a75d 556native_irq_return_ldt:
4d732138
IM
557 pushq %rax
558 pushq %rdi
3891a04a 559 SWAPGS
4d732138
IM
560 movq PER_CPU_VAR(espfix_waddr), %rdi
561 movq %rax, (0*8)(%rdi) /* RAX */
562 movq (2*8)(%rsp), %rax /* RIP */
563 movq %rax, (1*8)(%rdi)
564 movq (3*8)(%rsp), %rax /* CS */
565 movq %rax, (2*8)(%rdi)
566 movq (4*8)(%rsp), %rax /* RFLAGS */
567 movq %rax, (3*8)(%rdi)
568 movq (6*8)(%rsp), %rax /* SS */
569 movq %rax, (5*8)(%rdi)
570 movq (5*8)(%rsp), %rax /* RSP */
571 movq %rax, (4*8)(%rdi)
572 andl $0xffff0000, %eax
573 popq %rdi
574 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 575 SWAPGS
4d732138
IM
576 movq %rax, %rsp
577 popq %rax
578 jmp native_irq_return_iret
34273f41 579#endif
4b787e0b 580END(common_interrupt)
3891a04a 581
1da177e4
LT
582/*
583 * APIC interrupts.
0bd7b798 584 */
cf910e83 585.macro apicinterrupt3 num sym do_sym
322648d1 586ENTRY(\sym)
ee4eb87b 587 ASM_CLAC
4d732138 588 pushq $~(\num)
39e95433 589.Lcommon_\sym:
322648d1 590 interrupt \do_sym
4d732138 591 jmp ret_from_intr
322648d1
AH
592END(\sym)
593.endm
1da177e4 594
cf910e83
SA
595#ifdef CONFIG_TRACING
596#define trace(sym) trace_##sym
597#define smp_trace(sym) smp_trace_##sym
598
599.macro trace_apicinterrupt num sym
600apicinterrupt3 \num trace(\sym) smp_trace(\sym)
601.endm
602#else
603.macro trace_apicinterrupt num sym do_sym
604.endm
605#endif
606
469f0023
AP
607/* Make sure APIC interrupt handlers end up in the irqentry section: */
608#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
609# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
610# define POP_SECTION_IRQENTRY .popsection
611#else
612# define PUSH_SECTION_IRQENTRY
613# define POP_SECTION_IRQENTRY
614#endif
615
cf910e83 616.macro apicinterrupt num sym do_sym
469f0023 617PUSH_SECTION_IRQENTRY
cf910e83
SA
618apicinterrupt3 \num \sym \do_sym
619trace_apicinterrupt \num \sym
469f0023 620POP_SECTION_IRQENTRY
cf910e83
SA
621.endm
622
322648d1 623#ifdef CONFIG_SMP
4d732138
IM
624apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
625apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 626#endif
1da177e4 627
03b48632 628#ifdef CONFIG_X86_UV
4d732138 629apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 630#endif
4d732138
IM
631
632apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
633apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 634
d78f2664 635#ifdef CONFIG_HAVE_KVM
4d732138
IM
636apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
637apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
638#endif
639
33e5ff63 640#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 641apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
642#endif
643
24fd78a8 644#ifdef CONFIG_X86_MCE_AMD
4d732138 645apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
646#endif
647
33e5ff63 648#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 649apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 650#endif
1812924b 651
322648d1 652#ifdef CONFIG_SMP
4d732138
IM
653apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
654apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
655apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 656#endif
1da177e4 657
4d732138
IM
658apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
659apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 660
e360adbe 661#ifdef CONFIG_IRQ_WORK
4d732138 662apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
663#endif
664
1da177e4
LT
665/*
666 * Exception entry points.
0bd7b798 667 */
9b476688 668#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
669
670.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 671ENTRY(\sym)
577ed45e
AL
672 /* Sanity check */
673 .if \shift_ist != -1 && \paranoid == 0
674 .error "using shift_ist requires paranoid=1"
675 .endif
676
ee4eb87b 677 ASM_CLAC
b8b1d08b 678 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
679
680 .ifeq \has_error_code
4d732138 681 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
682 .endif
683
76f5df43 684 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
685
686 .if \paranoid
48e08d0f 687 .if \paranoid == 1
4d732138
IM
688 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
689 jnz 1f
48e08d0f 690 .endif
4d732138 691 call paranoid_entry
cb5dd2c5 692 .else
4d732138 693 call error_entry
cb5dd2c5 694 .endif
ebfc453e 695 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 696
cb5dd2c5 697 .if \paranoid
577ed45e 698 .if \shift_ist != -1
4d732138 699 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 700 .else
b8b1d08b 701 TRACE_IRQS_OFF
cb5dd2c5 702 .endif
577ed45e 703 .endif
cb5dd2c5 704
4d732138 705 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
706
707 .if \has_error_code
4d732138
IM
708 movq ORIG_RAX(%rsp), %rsi /* get error code */
709 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 710 .else
4d732138 711 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
712 .endif
713
577ed45e 714 .if \shift_ist != -1
4d732138 715 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
716 .endif
717
4d732138 718 call \do_sym
cb5dd2c5 719
577ed45e 720 .if \shift_ist != -1
4d732138 721 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
722 .endif
723
ebfc453e 724 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 725 .if \paranoid
4d732138 726 jmp paranoid_exit
cb5dd2c5 727 .else
4d732138 728 jmp error_exit
cb5dd2c5
AL
729 .endif
730
48e08d0f 731 .if \paranoid == 1
48e08d0f
AL
732 /*
733 * Paranoid entry from userspace. Switch stacks and treat it
734 * as a normal entry. This means that paranoid handlers
735 * run in real process context if user_mode(regs).
736 */
7371:
4d732138 738 call error_entry
48e08d0f 739
48e08d0f 740
4d732138
IM
741 movq %rsp, %rdi /* pt_regs pointer */
742 call sync_regs
743 movq %rax, %rsp /* switch stack */
48e08d0f 744
4d732138 745 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
746
747 .if \has_error_code
4d732138
IM
748 movq ORIG_RAX(%rsp), %rsi /* get error code */
749 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 750 .else
4d732138 751 xorl %esi, %esi /* no error code */
48e08d0f
AL
752 .endif
753
4d732138 754 call \do_sym
48e08d0f 755
4d732138 756 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 757 .endif
ddeb8f21 758END(\sym)
322648d1 759.endm
b8b1d08b 760
25c74b10 761#ifdef CONFIG_TRACING
cb5dd2c5
AL
762.macro trace_idtentry sym do_sym has_error_code:req
763idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
764idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
765.endm
766#else
cb5dd2c5
AL
767.macro trace_idtentry sym do_sym has_error_code:req
768idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
769.endm
770#endif
771
4d732138
IM
772idtentry divide_error do_divide_error has_error_code=0
773idtentry overflow do_overflow has_error_code=0
774idtentry bounds do_bounds has_error_code=0
775idtentry invalid_op do_invalid_op has_error_code=0
776idtentry device_not_available do_device_not_available has_error_code=0
777idtentry double_fault do_double_fault has_error_code=1 paranoid=2
778idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
779idtentry invalid_TSS do_invalid_TSS has_error_code=1
780idtentry segment_not_present do_segment_not_present has_error_code=1
781idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
782idtentry coprocessor_error do_coprocessor_error has_error_code=0
783idtentry alignment_check do_alignment_check has_error_code=1
784idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
785
786
787 /*
788 * Reload gs selector with exception handling
789 * edi: new selector
790 */
9f9d489a 791ENTRY(native_load_gs_index)
131484c8 792 pushfq
b8aa287f 793 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 794 SWAPGS
42c748bb 795.Lgs_change:
4d732138 796 movl %edi, %gs
96e5d28a 7972: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 798 SWAPGS
131484c8 799 popfq
9f1e87ea 800 ret
6efdcfaf 801END(native_load_gs_index)
0bd7b798 802
42c748bb 803 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 804 .section .fixup, "ax"
1da177e4 805 /* running with kernelgs */
0bd7b798 806bad_gs:
4d732138 807 SWAPGS /* switch back to user gs */
b038c842
AL
808.macro ZAP_GS
809 /* This can't be a string because the preprocessor needs to see it. */
810 movl $__USER_DS, %eax
811 movl %eax, %gs
812.endm
813 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
814 xorl %eax, %eax
815 movl %eax, %gs
816 jmp 2b
9f1e87ea 817 .previous
0bd7b798 818
2699500b 819/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 820ENTRY(do_softirq_own_stack)
4d732138
IM
821 pushq %rbp
822 mov %rsp, %rbp
823 incl PER_CPU_VAR(irq_count)
824 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
825 push %rbp /* frame pointer backlink */
826 call __do_softirq
2699500b 827 leaveq
4d732138 828 decl PER_CPU_VAR(irq_count)
ed6b676c 829 ret
7d65f4a6 830END(do_softirq_own_stack)
75154f40 831
3d75e1b8 832#ifdef CONFIG_XEN
cb5dd2c5 833idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
834
835/*
9f1e87ea
CG
836 * A note on the "critical region" in our callback handler.
837 * We want to avoid stacking callback handlers due to events occurring
838 * during handling of the last event. To do this, we keep events disabled
839 * until we've done all processing. HOWEVER, we must enable events before
840 * popping the stack frame (can't be done atomically) and so it would still
841 * be possible to get enough handler activations to overflow the stack.
842 * Although unlikely, bugs of that kind are hard to track down, so we'd
843 * like to avoid the possibility.
844 * So, on entry to the handler we detect whether we interrupted an
845 * existing activation in its critical region -- if so, we pop the current
846 * activation and restart the handler using the previous one.
847 */
4d732138
IM
848ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
849
9f1e87ea
CG
850/*
851 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
852 * see the correct pointer to the pt_regs
853 */
4d732138
IM
854 movq %rdi, %rsp /* we don't return, adjust the stack frame */
85511: incl PER_CPU_VAR(irq_count)
856 movq %rsp, %rbp
857 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
858 pushq %rbp /* frame pointer backlink */
859 call xen_evtchn_do_upcall
860 popq %rsp
861 decl PER_CPU_VAR(irq_count)
fdfd811d 862#ifndef CONFIG_PREEMPT
4d732138 863 call xen_maybe_preempt_hcall
fdfd811d 864#endif
4d732138 865 jmp error_exit
371c394a 866END(xen_do_hypervisor_callback)
3d75e1b8
JF
867
868/*
9f1e87ea
CG
869 * Hypervisor uses this for application faults while it executes.
870 * We get here for two reasons:
871 * 1. Fault while reloading DS, ES, FS or GS
872 * 2. Fault while executing IRET
873 * Category 1 we do not need to fix up as Xen has already reloaded all segment
874 * registers that could be reloaded and zeroed the others.
875 * Category 2 we fix up by killing the current process. We cannot use the
876 * normal Linux return path in this case because if we use the IRET hypercall
877 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
878 * We distinguish between categories by comparing each saved segment register
879 * with its current contents: any discrepancy means we in category 1.
880 */
3d75e1b8 881ENTRY(xen_failsafe_callback)
4d732138
IM
882 movl %ds, %ecx
883 cmpw %cx, 0x10(%rsp)
884 jne 1f
885 movl %es, %ecx
886 cmpw %cx, 0x18(%rsp)
887 jne 1f
888 movl %fs, %ecx
889 cmpw %cx, 0x20(%rsp)
890 jne 1f
891 movl %gs, %ecx
892 cmpw %cx, 0x28(%rsp)
893 jne 1f
3d75e1b8 894 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
895 movq (%rsp), %rcx
896 movq 8(%rsp), %r11
897 addq $0x30, %rsp
898 pushq $0 /* RIP */
899 pushq %r11
900 pushq %rcx
901 jmp general_protection
3d75e1b8 9021: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
903 movq (%rsp), %rcx
904 movq 8(%rsp), %r11
905 addq $0x30, %rsp
906 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
907 ALLOC_PT_GPREGS_ON_STACK
908 SAVE_C_REGS
909 SAVE_EXTRA_REGS
4d732138 910 jmp error_exit
3d75e1b8
JF
911END(xen_failsafe_callback)
912
cf910e83 913apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
914 xen_hvm_callback_vector xen_evtchn_do_upcall
915
3d75e1b8 916#endif /* CONFIG_XEN */
ddeb8f21 917
bc2b0331 918#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 919apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
920 hyperv_callback_vector hyperv_vector_handler
921#endif /* CONFIG_HYPERV */
922
4d732138
IM
923idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
924idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
925idtentry stack_segment do_stack_segment has_error_code=1
926
6cac5a92 927#ifdef CONFIG_XEN
4d732138
IM
928idtentry xen_debug do_debug has_error_code=0
929idtentry xen_int3 do_int3 has_error_code=0
930idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 931#endif
4d732138
IM
932
933idtentry general_protection do_general_protection has_error_code=1
934trace_idtentry page_fault do_page_fault has_error_code=1
935
631bc487 936#ifdef CONFIG_KVM_GUEST
4d732138 937idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 938#endif
4d732138 939
ddeb8f21 940#ifdef CONFIG_X86_MCE
4d732138 941idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
942#endif
943
ebfc453e
DV
944/*
945 * Save all registers in pt_regs, and switch gs if needed.
946 * Use slow, but surefire "are we in kernel?" check.
947 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
948 */
949ENTRY(paranoid_entry)
1eeb207f
DV
950 cld
951 SAVE_C_REGS 8
952 SAVE_EXTRA_REGS 8
4d732138
IM
953 movl $1, %ebx
954 movl $MSR_GS_BASE, %ecx
1eeb207f 955 rdmsr
4d732138
IM
956 testl %edx, %edx
957 js 1f /* negative -> in kernel */
1eeb207f 958 SWAPGS
4d732138 959 xorl %ebx, %ebx
1eeb207f 9601: ret
ebfc453e 961END(paranoid_entry)
ddeb8f21 962
ebfc453e
DV
963/*
964 * "Paranoid" exit path from exception stack. This is invoked
965 * only on return from non-NMI IST interrupts that came
966 * from kernel space.
967 *
968 * We may be returning to very strange contexts (e.g. very early
969 * in syscall entry), so checking for preemption here would
970 * be complicated. Fortunately, we there's no good reason
971 * to try to handle preemption here.
4d732138
IM
972 *
973 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 974 */
ddeb8f21 975ENTRY(paranoid_exit)
ddeb8f21 976 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 977 TRACE_IRQS_OFF_DEBUG
4d732138
IM
978 testl %ebx, %ebx /* swapgs needed? */
979 jnz paranoid_exit_no_swapgs
f2db9382 980 TRACE_IRQS_IRETQ
ddeb8f21 981 SWAPGS_UNSAFE_STACK
4d732138 982 jmp paranoid_exit_restore
0d550836 983paranoid_exit_no_swapgs:
f2db9382 984 TRACE_IRQS_IRETQ_DEBUG
0d550836 985paranoid_exit_restore:
76f5df43
DV
986 RESTORE_EXTRA_REGS
987 RESTORE_C_REGS
988 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 989 INTERRUPT_RETURN
ddeb8f21
AH
990END(paranoid_exit)
991
992/*
ebfc453e 993 * Save all registers in pt_regs, and switch gs if needed.
539f5113 994 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
995 */
996ENTRY(error_entry)
ddeb8f21 997 cld
76f5df43
DV
998 SAVE_C_REGS 8
999 SAVE_EXTRA_REGS 8
4d732138 1000 xorl %ebx, %ebx
03335e95 1001 testb $3, CS+8(%rsp)
cb6f64ed 1002 jz .Lerror_kernelspace
539f5113 1003
cb6f64ed
AL
1004.Lerror_entry_from_usermode_swapgs:
1005 /*
1006 * We entered from user mode or we're pretending to have entered
1007 * from user mode due to an IRET fault.
1008 */
ddeb8f21 1009 SWAPGS
539f5113 1010
cb6f64ed 1011.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1012 /*
1013 * We need to tell lockdep that IRQs are off. We can't do this until
1014 * we fix gsbase, and we should do it before enter_from_user_mode
1015 * (which can take locks).
1016 */
1017 TRACE_IRQS_OFF
478dc89c 1018 CALL_enter_from_user_mode
f1075053 1019 ret
02bc7768 1020
cb6f64ed 1021.Lerror_entry_done:
ddeb8f21
AH
1022 TRACE_IRQS_OFF
1023 ret
ddeb8f21 1024
ebfc453e
DV
1025 /*
1026 * There are two places in the kernel that can potentially fault with
1027 * usergs. Handle them here. B stepping K8s sometimes report a
1028 * truncated RIP for IRET exceptions returning to compat mode. Check
1029 * for these here too.
1030 */
cb6f64ed 1031.Lerror_kernelspace:
4d732138
IM
1032 incl %ebx
1033 leaq native_irq_return_iret(%rip), %rcx
1034 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1035 je .Lerror_bad_iret
4d732138
IM
1036 movl %ecx, %eax /* zero extend */
1037 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1038 je .Lbstep_iret
42c748bb 1039 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1040 jne .Lerror_entry_done
539f5113
AL
1041
1042 /*
42c748bb 1043 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1044 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1045 * .Lgs_change's error handler with kernel gsbase.
539f5113 1046 */
cb6f64ed 1047 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1048
cb6f64ed 1049.Lbstep_iret:
ae24ffe5 1050 /* Fix truncated RIP */
4d732138 1051 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1052 /* fall through */
1053
cb6f64ed 1054.Lerror_bad_iret:
539f5113
AL
1055 /*
1056 * We came from an IRET to user mode, so we have user gsbase.
1057 * Switch to kernel gsbase:
1058 */
b645af2d 1059 SWAPGS
539f5113
AL
1060
1061 /*
1062 * Pretend that the exception came from user mode: set up pt_regs
1063 * as if we faulted immediately after IRET and clear EBX so that
1064 * error_exit knows that we will be returning to user mode.
1065 */
4d732138
IM
1066 mov %rsp, %rdi
1067 call fixup_bad_iret
1068 mov %rax, %rsp
539f5113 1069 decl %ebx
cb6f64ed 1070 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1071END(error_entry)
1072
1073
539f5113
AL
1074/*
1075 * On entry, EBS is a "return to kernel mode" flag:
1076 * 1: already in kernel mode, don't need SWAPGS
1077 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1078 */
ddeb8f21 1079ENTRY(error_exit)
4d732138 1080 movl %ebx, %eax
ddeb8f21
AH
1081 DISABLE_INTERRUPTS(CLBR_NONE)
1082 TRACE_IRQS_OFF
4d732138
IM
1083 testl %eax, %eax
1084 jnz retint_kernel
1085 jmp retint_user
ddeb8f21
AH
1086END(error_exit)
1087
0784b364 1088/* Runs on exception stack */
ddeb8f21 1089ENTRY(nmi)
fc57a7c6
AL
1090 /*
1091 * Fix up the exception frame if we're on Xen.
1092 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1093 * one value to the stack on native, so it may clobber the rdx
1094 * scratch slot, but it won't clobber any of the important
1095 * slots past it.
1096 *
1097 * Xen is a different story, because the Xen frame itself overlaps
1098 * the "NMI executing" variable.
1099 */
ddeb8f21 1100 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1101
3f3c8b8c
SR
1102 /*
1103 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1104 * the iretq it performs will take us out of NMI context.
1105 * This means that we can have nested NMIs where the next
1106 * NMI is using the top of the stack of the previous NMI. We
1107 * can't let it execute because the nested NMI will corrupt the
1108 * stack of the previous NMI. NMI handlers are not re-entrant
1109 * anyway.
1110 *
1111 * To handle this case we do the following:
1112 * Check the a special location on the stack that contains
1113 * a variable that is set when NMIs are executing.
1114 * The interrupted task's stack is also checked to see if it
1115 * is an NMI stack.
1116 * If the variable is not set and the stack is not the NMI
1117 * stack then:
1118 * o Set the special variable on the stack
0b22930e
AL
1119 * o Copy the interrupt frame into an "outermost" location on the
1120 * stack
1121 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1122 * o Continue processing the NMI
1123 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1124 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1125 * o return back to the first NMI
1126 *
1127 * Now on exit of the first NMI, we first clear the stack variable
1128 * The NMI stack will tell any nested NMIs at that point that it is
1129 * nested. Then we pop the stack normally with iret, and if there was
1130 * a nested NMI that updated the copy interrupt stack frame, a
1131 * jump will be made to the repeat_nmi code that will handle the second
1132 * NMI.
9b6e6a83
AL
1133 *
1134 * However, espfix prevents us from directly returning to userspace
1135 * with a single IRET instruction. Similarly, IRET to user mode
1136 * can fault. We therefore handle NMIs from user space like
1137 * other IST entries.
3f3c8b8c
SR
1138 */
1139
146b2b09 1140 /* Use %rdx as our temp variable throughout */
4d732138 1141 pushq %rdx
3f3c8b8c 1142
9b6e6a83
AL
1143 testb $3, CS-RIP+8(%rsp)
1144 jz .Lnmi_from_kernel
1145
1146 /*
1147 * NMI from user mode. We need to run on the thread stack, but we
1148 * can't go through the normal entry paths: NMIs are masked, and
1149 * we don't want to enable interrupts, because then we'll end
1150 * up in an awkward situation in which IRQs are on but NMIs
1151 * are off.
83c133cf
AL
1152 *
1153 * We also must not push anything to the stack before switching
1154 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1155 */
1156
83c133cf 1157 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1158 cld
1159 movq %rsp, %rdx
1160 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1161 pushq 5*8(%rdx) /* pt_regs->ss */
1162 pushq 4*8(%rdx) /* pt_regs->rsp */
1163 pushq 3*8(%rdx) /* pt_regs->flags */
1164 pushq 2*8(%rdx) /* pt_regs->cs */
1165 pushq 1*8(%rdx) /* pt_regs->rip */
1166 pushq $-1 /* pt_regs->orig_ax */
1167 pushq %rdi /* pt_regs->di */
1168 pushq %rsi /* pt_regs->si */
1169 pushq (%rdx) /* pt_regs->dx */
1170 pushq %rcx /* pt_regs->cx */
1171 pushq %rax /* pt_regs->ax */
1172 pushq %r8 /* pt_regs->r8 */
1173 pushq %r9 /* pt_regs->r9 */
1174 pushq %r10 /* pt_regs->r10 */
1175 pushq %r11 /* pt_regs->r11 */
1176 pushq %rbx /* pt_regs->rbx */
1177 pushq %rbp /* pt_regs->rbp */
1178 pushq %r12 /* pt_regs->r12 */
1179 pushq %r13 /* pt_regs->r13 */
1180 pushq %r14 /* pt_regs->r14 */
1181 pushq %r15 /* pt_regs->r15 */
1182
1183 /*
1184 * At this point we no longer need to worry about stack damage
1185 * due to nesting -- we're on the normal thread stack and we're
1186 * done with the NMI stack.
1187 */
1188
1189 movq %rsp, %rdi
1190 movq $-1, %rsi
1191 call do_nmi
1192
45d5a168 1193 /*
9b6e6a83
AL
1194 * Return back to user mode. We must *not* do the normal exit
1195 * work, because we don't want to enable interrupts. Fortunately,
1196 * do_nmi doesn't modify pt_regs.
45d5a168 1197 */
9b6e6a83
AL
1198 SWAPGS
1199 jmp restore_c_regs_and_iret
45d5a168 1200
9b6e6a83 1201.Lnmi_from_kernel:
3f3c8b8c 1202 /*
0b22930e
AL
1203 * Here's what our stack frame will look like:
1204 * +---------------------------------------------------------+
1205 * | original SS |
1206 * | original Return RSP |
1207 * | original RFLAGS |
1208 * | original CS |
1209 * | original RIP |
1210 * +---------------------------------------------------------+
1211 * | temp storage for rdx |
1212 * +---------------------------------------------------------+
1213 * | "NMI executing" variable |
1214 * +---------------------------------------------------------+
1215 * | iret SS } Copied from "outermost" frame |
1216 * | iret Return RSP } on each loop iteration; overwritten |
1217 * | iret RFLAGS } by a nested NMI to force another |
1218 * | iret CS } iteration if needed. |
1219 * | iret RIP } |
1220 * +---------------------------------------------------------+
1221 * | outermost SS } initialized in first_nmi; |
1222 * | outermost Return RSP } will not be changed before |
1223 * | outermost RFLAGS } NMI processing is done. |
1224 * | outermost CS } Copied to "iret" frame on each |
1225 * | outermost RIP } iteration. |
1226 * +---------------------------------------------------------+
1227 * | pt_regs |
1228 * +---------------------------------------------------------+
1229 *
1230 * The "original" frame is used by hardware. Before re-enabling
1231 * NMIs, we need to be done with it, and we need to leave enough
1232 * space for the asm code here.
1233 *
1234 * We return by executing IRET while RSP points to the "iret" frame.
1235 * That will either return for real or it will loop back into NMI
1236 * processing.
1237 *
1238 * The "outermost" frame is copied to the "iret" frame on each
1239 * iteration of the loop, so each iteration starts with the "iret"
1240 * frame pointing to the final return target.
1241 */
1242
45d5a168 1243 /*
0b22930e
AL
1244 * Determine whether we're a nested NMI.
1245 *
a27507ca
AL
1246 * If we interrupted kernel code between repeat_nmi and
1247 * end_repeat_nmi, then we are a nested NMI. We must not
1248 * modify the "iret" frame because it's being written by
1249 * the outer NMI. That's okay; the outer NMI handler is
1250 * about to about to call do_nmi anyway, so we can just
1251 * resume the outer NMI.
45d5a168 1252 */
a27507ca
AL
1253
1254 movq $repeat_nmi, %rdx
1255 cmpq 8(%rsp), %rdx
1256 ja 1f
1257 movq $end_repeat_nmi, %rdx
1258 cmpq 8(%rsp), %rdx
1259 ja nested_nmi_out
12601:
45d5a168 1261
3f3c8b8c 1262 /*
a27507ca 1263 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1264 * This will not detect if we interrupted an outer NMI just
1265 * before IRET.
3f3c8b8c 1266 */
4d732138
IM
1267 cmpl $1, -8(%rsp)
1268 je nested_nmi
3f3c8b8c
SR
1269
1270 /*
0b22930e
AL
1271 * Now test if the previous stack was an NMI stack. This covers
1272 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1273 * "NMI executing" but before IRET. We need to be careful, though:
1274 * there is one case in which RSP could point to the NMI stack
1275 * despite there being no NMI active: naughty userspace controls
1276 * RSP at the very beginning of the SYSCALL targets. We can
1277 * pull a fast one on naughty userspace, though: we program
1278 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1279 * if it controls the kernel's RSP. We set DF before we clear
1280 * "NMI executing".
3f3c8b8c 1281 */
0784b364
DV
1282 lea 6*8(%rsp), %rdx
1283 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1284 cmpq %rdx, 4*8(%rsp)
1285 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1286 ja first_nmi
4d732138 1287
0784b364
DV
1288 subq $EXCEPTION_STKSZ, %rdx
1289 cmpq %rdx, 4*8(%rsp)
1290 /* If it is below the NMI stack, it is a normal NMI */
1291 jb first_nmi
810bc075
AL
1292
1293 /* Ah, it is within the NMI stack. */
1294
1295 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1296 jz first_nmi /* RSP was user controlled. */
1297
1298 /* This is a nested NMI. */
0784b364 1299
3f3c8b8c
SR
1300nested_nmi:
1301 /*
0b22930e
AL
1302 * Modify the "iret" frame to point to repeat_nmi, forcing another
1303 * iteration of NMI handling.
3f3c8b8c 1304 */
23a781e9 1305 subq $8, %rsp
4d732138
IM
1306 leaq -10*8(%rsp), %rdx
1307 pushq $__KERNEL_DS
1308 pushq %rdx
131484c8 1309 pushfq
4d732138
IM
1310 pushq $__KERNEL_CS
1311 pushq $repeat_nmi
3f3c8b8c
SR
1312
1313 /* Put stack back */
4d732138 1314 addq $(6*8), %rsp
3f3c8b8c
SR
1315
1316nested_nmi_out:
4d732138 1317 popq %rdx
3f3c8b8c 1318
0b22930e 1319 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1320 INTERRUPT_RETURN
1321
1322first_nmi:
0b22930e 1323 /* Restore rdx. */
4d732138 1324 movq (%rsp), %rdx
62610913 1325
36f1a77b
AL
1326 /* Make room for "NMI executing". */
1327 pushq $0
3f3c8b8c 1328
0b22930e 1329 /* Leave room for the "iret" frame */
4d732138 1330 subq $(5*8), %rsp
28696f43 1331
0b22930e 1332 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1333 .rept 5
4d732138 1334 pushq 11*8(%rsp)
3f3c8b8c 1335 .endr
62610913 1336
79fb4ad6
SR
1337 /* Everything up to here is safe from nested NMIs */
1338
a97439aa
AL
1339#ifdef CONFIG_DEBUG_ENTRY
1340 /*
1341 * For ease of testing, unmask NMIs right away. Disabled by
1342 * default because IRET is very expensive.
1343 */
1344 pushq $0 /* SS */
1345 pushq %rsp /* RSP (minus 8 because of the previous push) */
1346 addq $8, (%rsp) /* Fix up RSP */
1347 pushfq /* RFLAGS */
1348 pushq $__KERNEL_CS /* CS */
1349 pushq $1f /* RIP */
1350 INTERRUPT_RETURN /* continues at repeat_nmi below */
13511:
1352#endif
1353
0b22930e 1354repeat_nmi:
62610913
JB
1355 /*
1356 * If there was a nested NMI, the first NMI's iret will return
1357 * here. But NMIs are still enabled and we can take another
1358 * nested NMI. The nested NMI checks the interrupted RIP to see
1359 * if it is between repeat_nmi and end_repeat_nmi, and if so
1360 * it will just return, as we are about to repeat an NMI anyway.
1361 * This makes it safe to copy to the stack frame that a nested
1362 * NMI will update.
0b22930e
AL
1363 *
1364 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1365 * we're repeating an NMI, gsbase has the same value that it had on
1366 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1367 * gsbase if needed before we call do_nmi. "NMI executing"
1368 * is zero.
62610913 1369 */
36f1a77b 1370 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1371
62610913 1372 /*
0b22930e
AL
1373 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1374 * here must not modify the "iret" frame while we're writing to
1375 * it or it will end up containing garbage.
62610913 1376 */
4d732138 1377 addq $(10*8), %rsp
3f3c8b8c 1378 .rept 5
4d732138 1379 pushq -6*8(%rsp)
3f3c8b8c 1380 .endr
4d732138 1381 subq $(5*8), %rsp
62610913 1382end_repeat_nmi:
3f3c8b8c
SR
1383
1384 /*
0b22930e
AL
1385 * Everything below this point can be preempted by a nested NMI.
1386 * If this happens, then the inner NMI will change the "iret"
1387 * frame to point back to repeat_nmi.
3f3c8b8c 1388 */
4d732138 1389 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1390 ALLOC_PT_GPREGS_ON_STACK
1391
1fd466ef 1392 /*
ebfc453e 1393 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1394 * as we should not be calling schedule in NMI context.
1395 * Even with normal interrupts enabled. An NMI should not be
1396 * setting NEED_RESCHED or anything that normal interrupts and
1397 * exceptions might do.
1398 */
4d732138 1399 call paranoid_entry
7fbb98c5 1400
ddeb8f21 1401 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1402 movq %rsp, %rdi
1403 movq $-1, %rsi
1404 call do_nmi
7fbb98c5 1405
4d732138
IM
1406 testl %ebx, %ebx /* swapgs needed? */
1407 jnz nmi_restore
ddeb8f21
AH
1408nmi_swapgs:
1409 SWAPGS_UNSAFE_STACK
1410nmi_restore:
76f5df43
DV
1411 RESTORE_EXTRA_REGS
1412 RESTORE_C_REGS
0b22930e
AL
1413
1414 /* Point RSP at the "iret" frame. */
76f5df43 1415 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1416
810bc075
AL
1417 /*
1418 * Clear "NMI executing". Set DF first so that we can easily
1419 * distinguish the remaining code between here and IRET from
1420 * the SYSCALL entry and exit paths. On a native kernel, we
1421 * could just inspect RIP, but, on paravirt kernels,
1422 * INTERRUPT_RETURN can translate into a jump into a
1423 * hypercall page.
1424 */
1425 std
1426 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1427
1428 /*
1429 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1430 * stack in a single instruction. We are returning to kernel
1431 * mode, so this cannot result in a fault.
1432 */
5ca6f70f 1433 INTERRUPT_RETURN
ddeb8f21
AH
1434END(nmi)
1435
1436ENTRY(ignore_sysret)
4d732138 1437 mov $-ENOSYS, %eax
ddeb8f21 1438 sysret
ddeb8f21 1439END(ignore_sysret)
2deb4be2
AL
1440
1441ENTRY(rewind_stack_do_exit)
1442 /* Prevent any naive code from trying to unwind to our caller. */
1443 xorl %ebp, %ebp
1444
1445 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1446 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1447
1448 call do_exit
14491: jmp 1b
1450END(rewind_stack_do_exit)